2 * linux/drivers/mmc/host/au1xmmc.c - AU1XX0 MMC driver
4 * Copyright (c) 2005, Advanced Micro Devices, Inc.
6 * Developed with help from the 2.4.30 MMC AU1XXX controller including
7 * the following copyright notices:
8 * Copyright (c) 2003-2004 Embedded Edge, LLC.
9 * Portions Copyright (C) 2002 Embedix, Inc
10 * Copyright 2002 Hewlett-Packard Company
12 * 2.6 version of this driver inspired by:
13 * (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman,
14 * All Rights Reserved.
15 * (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King,
16 * All Rights Reserved.
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License version 2 as
21 * published by the Free Software Foundation.
24 /* Why don't we use the SD controllers' carddetect feature?
26 * From the AU1100 MMC application guide:
27 * If the Au1100-based design is intended to support both MultiMediaCards
28 * and 1- or 4-data bit SecureDigital cards, then the solution is to
29 * connect a weak (560KOhm) pull-up resistor to connector pin 1.
30 * In doing so, a MMC card never enters SPI-mode communications,
31 * but now the SecureDigital card-detect feature of CD/DAT3 is ineffective
32 * (the low to high transition will not occur).
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/platform_device.h>
39 #include <linux/interrupt.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/leds.h>
43 #include <linux/mmc/host.h>
46 #include <asm/mach-au1x00/au1000.h>
47 #include <asm/mach-au1x00/au1xxx_dbdma.h>
48 #include <asm/mach-au1x00/au1100_mmc.h>
50 #define DRIVER_NAME "au1xxx-mmc"
52 /* Set this to enable special debugging macros */
56 #define DBG(fmt, idx, args...) \
57 printk(KERN_DEBUG "au1xmmc(%d): DEBUG: " fmt, idx, ##args)
59 #define DBG(fmt, idx, args...) do {} while (0)
62 /* Hardware definitions */
63 #define AU1XMMC_DESCRIPTOR_COUNT 1
65 /* max DMA seg size: 64KB on Au1100, 4MB on Au1200 */
66 #ifdef CONFIG_SOC_AU1100
67 #define AU1XMMC_DESCRIPTOR_SIZE 0x0000ffff
69 #define AU1XMMC_DESCRIPTOR_SIZE 0x003fffff
72 #define AU1XMMC_OCR (MMC_VDD_27_28 | MMC_VDD_28_29 | MMC_VDD_29_30 | \
73 MMC_VDD_30_31 | MMC_VDD_31_32 | MMC_VDD_32_33 | \
74 MMC_VDD_33_34 | MMC_VDD_34_35 | MMC_VDD_35_36)
76 /* This gives us a hard value for the stop command that we can write directly
77 * to the command register.
80 (SD_CMD_RT_1B | SD_CMD_CT_7 | (0xC << SD_CMD_CI_SHIFT) | SD_CMD_GO)
82 /* This is the set of interrupts that we configure by default. */
83 #define AU1XMMC_INTERRUPTS \
84 (SD_CONFIG_SC | SD_CONFIG_DT | SD_CONFIG_RAT | \
85 SD_CONFIG_CR | SD_CONFIG_I)
87 /* The poll event (looking for insert/remove events runs twice a second. */
88 #define AU1XMMC_DETECT_TIMEOUT (HZ/2)
92 struct mmc_request *mrq;
118 struct tasklet_struct finish_task;
119 struct tasklet_struct data_task;
120 struct au1xmmc_platform_data *platdata;
121 struct platform_device *pdev;
122 struct resource *ioarea;
125 /* Status flags used by the host structure */
126 #define HOST_F_XMIT 0x0001
127 #define HOST_F_RECV 0x0002
128 #define HOST_F_DMA 0x0010
129 #define HOST_F_ACTIVE 0x0100
130 #define HOST_F_STOP 0x1000
132 #define HOST_S_IDLE 0x0001
133 #define HOST_S_CMD 0x0002
134 #define HOST_S_DATA 0x0003
135 #define HOST_S_STOP 0x0004
137 /* Easy access macros */
138 #define HOST_STATUS(h) ((h)->iobase + SD_STATUS)
139 #define HOST_CONFIG(h) ((h)->iobase + SD_CONFIG)
140 #define HOST_ENABLE(h) ((h)->iobase + SD_ENABLE)
141 #define HOST_TXPORT(h) ((h)->iobase + SD_TXPORT)
142 #define HOST_RXPORT(h) ((h)->iobase + SD_RXPORT)
143 #define HOST_CMDARG(h) ((h)->iobase + SD_CMDARG)
144 #define HOST_BLKSIZE(h) ((h)->iobase + SD_BLKSIZE)
145 #define HOST_CMD(h) ((h)->iobase + SD_CMD)
146 #define HOST_CONFIG2(h) ((h)->iobase + SD_CONFIG2)
147 #define HOST_TIMEOUT(h) ((h)->iobase + SD_TIMEOUT)
148 #define HOST_DEBUG(h) ((h)->iobase + SD_DEBUG)
150 #define DMA_CHANNEL(h) \
151 (((h)->flags & HOST_F_XMIT) ? (h)->tx_chan : (h)->rx_chan)
153 static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask)
155 u32 val = au_readl(HOST_CONFIG(host));
157 au_writel(val, HOST_CONFIG(host));
161 static inline void FLUSH_FIFO(struct au1xmmc_host *host)
163 u32 val = au_readl(HOST_CONFIG2(host));
165 au_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host));
168 /* SEND_STOP will turn off clock control - this re-enables it */
169 val &= ~SD_CONFIG2_DF;
171 au_writel(val, HOST_CONFIG2(host));
175 static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask)
177 u32 val = au_readl(HOST_CONFIG(host));
179 au_writel(val, HOST_CONFIG(host));
183 static inline void SEND_STOP(struct au1xmmc_host *host)
187 WARN_ON(host->status != HOST_S_DATA);
188 host->status = HOST_S_STOP;
190 config2 = au_readl(HOST_CONFIG2(host));
191 au_writel(config2 | SD_CONFIG2_DF, HOST_CONFIG2(host));
194 /* Send the stop commmand */
195 au_writel(STOP_CMD, HOST_CMD(host));
198 static void au1xmmc_set_power(struct au1xmmc_host *host, int state)
200 if (host->platdata && host->platdata->set_power)
201 host->platdata->set_power(host->mmc, state);
204 static int au1xmmc_card_inserted(struct mmc_host *mmc)
206 struct au1xmmc_host *host = mmc_priv(mmc);
208 if (host->platdata && host->platdata->card_inserted)
209 return !!host->platdata->card_inserted(host->mmc);
214 static int au1xmmc_card_readonly(struct mmc_host *mmc)
216 struct au1xmmc_host *host = mmc_priv(mmc);
218 if (host->platdata && host->platdata->card_readonly)
219 return !!host->platdata->card_readonly(mmc);
224 static void au1xmmc_finish_request(struct au1xmmc_host *host)
226 struct mmc_request *mrq = host->mrq;
229 host->flags &= HOST_F_ACTIVE | HOST_F_DMA;
235 host->pio.offset = 0;
238 host->status = HOST_S_IDLE;
240 mmc_request_done(host->mmc, mrq);
243 static void au1xmmc_tasklet_finish(unsigned long param)
245 struct au1xmmc_host *host = (struct au1xmmc_host *) param;
246 au1xmmc_finish_request(host);
249 static int au1xmmc_send_command(struct au1xmmc_host *host, int wait,
250 struct mmc_command *cmd, struct mmc_data *data)
252 u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT);
254 switch (mmc_resp_type(cmd)) {
258 mmccmd |= SD_CMD_RT_1;
261 mmccmd |= SD_CMD_RT_1B;
264 mmccmd |= SD_CMD_RT_2;
267 mmccmd |= SD_CMD_RT_3;
270 printk(KERN_INFO "au1xmmc: unhandled response type %02x\n",
276 if (data->flags & MMC_DATA_READ) {
277 if (data->blocks > 1)
278 mmccmd |= SD_CMD_CT_4;
280 mmccmd |= SD_CMD_CT_2;
281 } else if (data->flags & MMC_DATA_WRITE) {
282 if (data->blocks > 1)
283 mmccmd |= SD_CMD_CT_3;
285 mmccmd |= SD_CMD_CT_1;
289 au_writel(cmd->arg, HOST_CMDARG(host));
293 IRQ_OFF(host, SD_CONFIG_CR);
295 au_writel((mmccmd | SD_CMD_GO), HOST_CMD(host));
298 /* Wait for the command to go on the line */
299 while (au_readl(HOST_CMD(host)) & SD_CMD_GO)
302 /* Wait for the command to come back */
304 u32 status = au_readl(HOST_STATUS(host));
306 while (!(status & SD_STATUS_CR))
307 status = au_readl(HOST_STATUS(host));
309 /* Clear the CR status */
310 au_writel(SD_STATUS_CR, HOST_STATUS(host));
312 IRQ_ON(host, SD_CONFIG_CR);
318 static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status)
320 struct mmc_request *mrq = host->mrq;
321 struct mmc_data *data;
324 WARN_ON((host->status != HOST_S_DATA) && (host->status != HOST_S_STOP));
326 if (host->mrq == NULL)
329 data = mrq->cmd->data;
332 status = au_readl(HOST_STATUS(host));
334 /* The transaction is really over when the SD_STATUS_DB bit is clear */
335 while ((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB))
336 status = au_readl(HOST_STATUS(host));
339 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir);
341 /* Process any errors */
342 crc = (status & (SD_STATUS_WC | SD_STATUS_RC));
343 if (host->flags & HOST_F_XMIT)
344 crc |= ((status & 0x07) == 0x02) ? 0 : 1;
347 data->error = -EILSEQ;
349 /* Clear the CRC bits */
350 au_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host));
352 data->bytes_xfered = 0;
355 if (host->flags & HOST_F_DMA) {
356 #ifdef CONFIG_SOC_AU1200 /* DBDMA */
357 u32 chan = DMA_CHANNEL(host);
359 chan_tab_t *c = *((chan_tab_t **)chan);
360 au1x_dma_chan_t *cp = c->chan_ptr;
361 data->bytes_xfered = cp->ddma_bytecnt;
365 (data->blocks * data->blksz) - host->pio.len;
368 au1xmmc_finish_request(host);
371 static void au1xmmc_tasklet_data(unsigned long param)
373 struct au1xmmc_host *host = (struct au1xmmc_host *)param;
375 u32 status = au_readl(HOST_STATUS(host));
376 au1xmmc_data_complete(host, status);
379 #define AU1XMMC_MAX_TRANSFER 8
381 static void au1xmmc_send_pio(struct au1xmmc_host *host)
383 struct mmc_data *data;
384 int sg_len, max, count;
385 unsigned char *sg_ptr, val;
387 struct scatterlist *sg;
389 data = host->mrq->data;
391 if (!(host->flags & HOST_F_XMIT))
394 /* This is the pointer to the data buffer */
395 sg = &data->sg[host->pio.index];
396 sg_ptr = sg_virt(sg) + host->pio.offset;
398 /* This is the space left inside the buffer */
399 sg_len = data->sg[host->pio.index].length - host->pio.offset;
401 /* Check if we need less than the size of the sg_buffer */
402 max = (sg_len > host->pio.len) ? host->pio.len : sg_len;
403 if (max > AU1XMMC_MAX_TRANSFER)
404 max = AU1XMMC_MAX_TRANSFER;
406 for (count = 0; count < max; count++) {
407 status = au_readl(HOST_STATUS(host));
409 if (!(status & SD_STATUS_TH))
414 au_writel((unsigned long)val, HOST_TXPORT(host));
418 host->pio.len -= count;
419 host->pio.offset += count;
421 if (count == sg_len) {
423 host->pio.offset = 0;
426 if (host->pio.len == 0) {
427 IRQ_OFF(host, SD_CONFIG_TH);
429 if (host->flags & HOST_F_STOP)
432 tasklet_schedule(&host->data_task);
436 static void au1xmmc_receive_pio(struct au1xmmc_host *host)
438 struct mmc_data *data;
439 int max, count, sg_len = 0;
440 unsigned char *sg_ptr = NULL;
442 struct scatterlist *sg;
444 data = host->mrq->data;
446 if (!(host->flags & HOST_F_RECV))
451 if (host->pio.index < host->dma.len) {
452 sg = &data->sg[host->pio.index];
453 sg_ptr = sg_virt(sg) + host->pio.offset;
455 /* This is the space left inside the buffer */
456 sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset;
458 /* Check if we need less than the size of the sg_buffer */
463 if (max > AU1XMMC_MAX_TRANSFER)
464 max = AU1XMMC_MAX_TRANSFER;
466 for (count = 0; count < max; count++) {
467 status = au_readl(HOST_STATUS(host));
469 if (!(status & SD_STATUS_NE))
472 if (status & SD_STATUS_RC) {
473 DBG("RX CRC Error [%d + %d].\n", host->pdev->id,
474 host->pio.len, count);
478 if (status & SD_STATUS_RO) {
479 DBG("RX Overrun [%d + %d]\n", host->pdev->id,
480 host->pio.len, count);
483 else if (status & SD_STATUS_RU) {
484 DBG("RX Underrun [%d + %d]\n", host->pdev->id,
485 host->pio.len, count);
489 val = au_readl(HOST_RXPORT(host));
492 *sg_ptr++ = (unsigned char)(val & 0xFF);
495 host->pio.len -= count;
496 host->pio.offset += count;
498 if (sg_len && count == sg_len) {
500 host->pio.offset = 0;
503 if (host->pio.len == 0) {
504 /* IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF); */
505 IRQ_OFF(host, SD_CONFIG_NE);
507 if (host->flags & HOST_F_STOP)
510 tasklet_schedule(&host->data_task);
514 /* This is called when a command has been completed - grab the response
515 * and check for errors. Then start the data transfer if it is indicated.
517 static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status)
519 struct mmc_request *mrq = host->mrq;
520 struct mmc_command *cmd;
530 if (cmd->flags & MMC_RSP_PRESENT) {
531 if (cmd->flags & MMC_RSP_136) {
532 r[0] = au_readl(host->iobase + SD_RESP3);
533 r[1] = au_readl(host->iobase + SD_RESP2);
534 r[2] = au_readl(host->iobase + SD_RESP1);
535 r[3] = au_readl(host->iobase + SD_RESP0);
537 /* The CRC is omitted from the response, so really
538 * we only got 120 bytes, but the engine expects
539 * 128 bits, so we have to shift things up.
541 for (i = 0; i < 4; i++) {
542 cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8;
544 cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24;
547 /* Techincally, we should be getting all 48 bits of
548 * the response (SD_RESP1 + SD_RESP2), but because
549 * our response omits the CRC, our data ends up
550 * being shifted 8 bits to the right. In this case,
551 * that means that the OSR data starts at bit 31,
552 * so we can just read RESP0 and return that.
554 cmd->resp[0] = au_readl(host->iobase + SD_RESP0);
558 /* Figure out errors */
559 if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC))
560 cmd->error = -EILSEQ;
562 trans = host->flags & (HOST_F_XMIT | HOST_F_RECV);
564 if (!trans || cmd->error) {
565 IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF);
566 tasklet_schedule(&host->finish_task);
570 host->status = HOST_S_DATA;
572 if (host->flags & HOST_F_DMA) {
573 #ifdef CONFIG_SOC_AU1200 /* DBDMA */
574 u32 channel = DMA_CHANNEL(host);
576 /* Start the DMA as soon as the buffer gets something in it */
578 if (host->flags & HOST_F_RECV) {
579 u32 mask = SD_STATUS_DB | SD_STATUS_NE;
581 while((status & mask) != mask)
582 status = au_readl(HOST_STATUS(host));
585 au1xxx_dbdma_start(channel);
590 static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate)
592 unsigned int pbus = get_au1x00_speed();
593 unsigned int divisor;
597 * divisor = ((((cpuclock / sbus_divisor) / 2) / mmcclock) / 2) - 1
599 pbus /= ((au_readl(SYS_POWERCTRL) & 0x3) + 2);
601 divisor = ((pbus / rate) / 2) - 1;
603 config = au_readl(HOST_CONFIG(host));
605 config &= ~(SD_CONFIG_DIV);
606 config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE;
608 au_writel(config, HOST_CONFIG(host));
612 static int au1xmmc_prepare_data(struct au1xmmc_host *host,
613 struct mmc_data *data)
615 int datalen = data->blocks * data->blksz;
617 if (data->flags & MMC_DATA_READ)
618 host->flags |= HOST_F_RECV;
620 host->flags |= HOST_F_XMIT;
623 host->flags |= HOST_F_STOP;
625 host->dma.dir = DMA_BIDIRECTIONAL;
627 host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg,
628 data->sg_len, host->dma.dir);
630 if (host->dma.len == 0)
633 au_writel(data->blksz - 1, HOST_BLKSIZE(host));
635 if (host->flags & HOST_F_DMA) {
636 #ifdef CONFIG_SOC_AU1200 /* DBDMA */
638 u32 channel = DMA_CHANNEL(host);
640 au1xxx_dbdma_stop(channel);
642 for (i = 0; i < host->dma.len; i++) {
643 u32 ret = 0, flags = DDMA_FLAGS_NOIE;
644 struct scatterlist *sg = &data->sg[i];
645 int sg_len = sg->length;
647 int len = (datalen > sg_len) ? sg_len : datalen;
649 if (i == host->dma.len - 1)
650 flags = DDMA_FLAGS_IE;
652 if (host->flags & HOST_F_XMIT) {
653 ret = au1xxx_dbdma_put_source_flags(channel,
654 (void *)sg_virt(sg), len, flags);
656 ret = au1xxx_dbdma_put_dest_flags(channel,
657 (void *)sg_virt(sg), len, flags);
668 host->pio.offset = 0;
669 host->pio.len = datalen;
671 if (host->flags & HOST_F_XMIT)
672 IRQ_ON(host, SD_CONFIG_TH);
674 IRQ_ON(host, SD_CONFIG_NE);
675 /* IRQ_ON(host, SD_CONFIG_RA | SD_CONFIG_RF); */
681 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
686 /* This actually starts a command or data transaction */
687 static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq)
689 struct au1xmmc_host *host = mmc_priv(mmc);
692 WARN_ON(irqs_disabled());
693 WARN_ON(host->status != HOST_S_IDLE);
696 host->status = HOST_S_CMD;
698 /* fail request immediately if no card is present */
699 if (0 == au1xmmc_card_inserted(mmc)) {
700 mrq->cmd->error = -ENOMEDIUM;
701 au1xmmc_finish_request(host);
707 ret = au1xmmc_prepare_data(host, mrq->data);
711 ret = au1xmmc_send_command(host, 0, mrq->cmd, mrq->data);
714 mrq->cmd->error = ret;
715 au1xmmc_finish_request(host);
719 static void au1xmmc_reset_controller(struct au1xmmc_host *host)
721 /* Apply the clock */
722 au_writel(SD_ENABLE_CE, HOST_ENABLE(host));
725 au_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host));
728 au_writel(~0, HOST_STATUS(host));
731 au_writel(0, HOST_BLKSIZE(host));
732 au_writel(0x001fffff, HOST_TIMEOUT(host));
735 au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
738 au_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host));
741 au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
744 /* Configure interrupts */
745 au_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host));
750 static void au1xmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
752 struct au1xmmc_host *host = mmc_priv(mmc);
755 if (ios->power_mode == MMC_POWER_OFF)
756 au1xmmc_set_power(host, 0);
757 else if (ios->power_mode == MMC_POWER_ON) {
758 au1xmmc_set_power(host, 1);
761 if (ios->clock && ios->clock != host->clock) {
762 au1xmmc_set_clock(host, ios->clock);
763 host->clock = ios->clock;
766 config2 = au_readl(HOST_CONFIG2(host));
767 switch (ios->bus_width) {
768 case MMC_BUS_WIDTH_4:
769 config2 |= SD_CONFIG2_WB;
771 case MMC_BUS_WIDTH_1:
772 config2 &= ~SD_CONFIG2_WB;
775 au_writel(config2, HOST_CONFIG2(host));
779 #define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT)
780 #define STATUS_DATA_IN (SD_STATUS_NE)
781 #define STATUS_DATA_OUT (SD_STATUS_TH)
783 static irqreturn_t au1xmmc_irq(int irq, void *dev_id)
785 struct au1xmmc_host *host = dev_id;
788 status = au_readl(HOST_STATUS(host));
790 if (!(status & SD_STATUS_I))
791 return IRQ_NONE; /* not ours */
793 if (status & SD_STATUS_SI) /* SDIO */
794 mmc_signal_sdio_irq(host->mmc);
796 if (host->mrq && (status & STATUS_TIMEOUT)) {
797 if (status & SD_STATUS_RAT)
798 host->mrq->cmd->error = -ETIMEDOUT;
799 else if (status & SD_STATUS_DT)
800 host->mrq->data->error = -ETIMEDOUT;
802 /* In PIO mode, interrupts might still be enabled */
803 IRQ_OFF(host, SD_CONFIG_NE | SD_CONFIG_TH);
805 /* IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF); */
806 tasklet_schedule(&host->finish_task);
809 else if (status & SD_STATUS_DD) {
810 /* Sometimes we get a DD before a NE in PIO mode */
811 if (!(host->flags & HOST_F_DMA) && (status & SD_STATUS_NE))
812 au1xmmc_receive_pio(host);
814 au1xmmc_data_complete(host, status);
815 /* tasklet_schedule(&host->data_task); */
819 else if (status & SD_STATUS_CR) {
820 if (host->status == HOST_S_CMD)
821 au1xmmc_cmd_complete(host, status);
823 } else if (!(host->flags & HOST_F_DMA)) {
824 if ((host->flags & HOST_F_XMIT) && (status & STATUS_DATA_OUT))
825 au1xmmc_send_pio(host);
826 else if ((host->flags & HOST_F_RECV) && (status & STATUS_DATA_IN))
827 au1xmmc_receive_pio(host);
829 } else if (status & 0x203F3C70) {
830 DBG("Unhandled status %8.8x\n", host->pdev->id,
834 au_writel(status, HOST_STATUS(host));
840 #ifdef CONFIG_SOC_AU1200
841 /* 8bit memory DMA device */
842 static dbdev_tab_t au1xmmc_mem_dbdev = {
843 .dev_id = DSCR_CMD0_ALWAYS,
844 .dev_flags = DEV_FLAGS_ANYUSE,
847 .dev_physaddr = 0x00000000,
849 .dev_intpolarity = 0,
853 static void au1xmmc_dbdma_callback(int irq, void *dev_id)
855 struct au1xmmc_host *host = (struct au1xmmc_host *)dev_id;
857 /* Avoid spurious interrupts */
861 if (host->flags & HOST_F_STOP)
864 tasklet_schedule(&host->data_task);
867 static int au1xmmc_dbdma_init(struct au1xmmc_host *host)
869 struct resource *res;
872 res = platform_get_resource(host->pdev, IORESOURCE_DMA, 0);
877 res = platform_get_resource(host->pdev, IORESOURCE_DMA, 1);
885 host->tx_chan = au1xxx_dbdma_chan_alloc(memid, txid,
886 au1xmmc_dbdma_callback, (void *)host);
887 if (!host->tx_chan) {
888 dev_err(&host->pdev->dev, "cannot allocate TX DMA\n");
892 host->rx_chan = au1xxx_dbdma_chan_alloc(rxid, memid,
893 au1xmmc_dbdma_callback, (void *)host);
894 if (!host->rx_chan) {
895 dev_err(&host->pdev->dev, "cannot allocate RX DMA\n");
896 au1xxx_dbdma_chan_free(host->tx_chan);
900 au1xxx_dbdma_set_devwidth(host->tx_chan, 8);
901 au1xxx_dbdma_set_devwidth(host->rx_chan, 8);
903 au1xxx_dbdma_ring_alloc(host->tx_chan, AU1XMMC_DESCRIPTOR_COUNT);
904 au1xxx_dbdma_ring_alloc(host->rx_chan, AU1XMMC_DESCRIPTOR_COUNT);
906 /* DBDMA is good to go */
907 host->flags |= HOST_F_DMA;
912 static void au1xmmc_dbdma_shutdown(struct au1xmmc_host *host)
914 if (host->flags & HOST_F_DMA) {
915 host->flags &= ~HOST_F_DMA;
916 au1xxx_dbdma_chan_free(host->tx_chan);
917 au1xxx_dbdma_chan_free(host->rx_chan);
922 static void au1xmmc_enable_sdio_irq(struct mmc_host *mmc, int en)
924 struct au1xmmc_host *host = mmc_priv(mmc);
927 IRQ_ON(host, SD_CONFIG_SI);
929 IRQ_OFF(host, SD_CONFIG_SI);
932 static const struct mmc_host_ops au1xmmc_ops = {
933 .request = au1xmmc_request,
934 .set_ios = au1xmmc_set_ios,
935 .get_ro = au1xmmc_card_readonly,
936 .get_cd = au1xmmc_card_inserted,
937 .enable_sdio_irq = au1xmmc_enable_sdio_irq,
940 static int __devinit au1xmmc_probe(struct platform_device *pdev)
942 struct mmc_host *mmc;
943 struct au1xmmc_host *host;
947 mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev);
949 dev_err(&pdev->dev, "no memory for mmc_host\n");
954 host = mmc_priv(mmc);
956 host->platdata = pdev->dev.platform_data;
960 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
962 dev_err(&pdev->dev, "no mmio defined\n");
966 host->ioarea = request_mem_region(r->start, r->end - r->start + 1,
969 dev_err(&pdev->dev, "mmio already in use\n");
973 host->iobase = (unsigned long)ioremap(r->start, 0x3c);
975 dev_err(&pdev->dev, "cannot remap mmio\n");
979 r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
981 dev_err(&pdev->dev, "no IRQ defined\n");
985 host->irq = r->start;
986 /* IRQ is shared among both SD controllers */
987 ret = request_irq(host->irq, au1xmmc_irq, IRQF_SHARED,
990 dev_err(&pdev->dev, "cannot grab IRQ\n");
994 mmc->ops = &au1xmmc_ops;
997 mmc->f_max = 24000000;
999 mmc->max_seg_size = AU1XMMC_DESCRIPTOR_SIZE;
1000 mmc->max_phys_segs = AU1XMMC_DESCRIPTOR_COUNT;
1002 mmc->max_blk_size = 2048;
1003 mmc->max_blk_count = 512;
1005 mmc->ocr_avail = AU1XMMC_OCR;
1006 mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_SDIO_IRQ;
1008 host->status = HOST_S_IDLE;
1010 /* board-specific carddetect setup, if any */
1011 if (host->platdata && host->platdata->cd_setup) {
1012 ret = host->platdata->cd_setup(mmc, 1);
1014 dev_warn(&pdev->dev, "board CD setup failed\n");
1015 mmc->caps |= MMC_CAP_NEEDS_POLL;
1018 mmc->caps |= MMC_CAP_NEEDS_POLL;
1020 tasklet_init(&host->data_task, au1xmmc_tasklet_data,
1021 (unsigned long)host);
1023 tasklet_init(&host->finish_task, au1xmmc_tasklet_finish,
1024 (unsigned long)host);
1026 #ifdef CONFIG_SOC_AU1200
1027 ret = au1xmmc_dbdma_init(host);
1029 printk(KERN_INFO DRIVER_NAME ": DBDMA init failed; using PIO\n");
1032 #ifdef CONFIG_LEDS_CLASS
1033 if (host->platdata && host->platdata->led) {
1034 struct led_classdev *led = host->platdata->led;
1035 led->name = mmc_hostname(mmc);
1036 led->brightness = LED_OFF;
1037 led->default_trigger = mmc_hostname(mmc);
1038 ret = led_classdev_register(mmc_dev(mmc), led);
1044 au1xmmc_reset_controller(host);
1046 ret = mmc_add_host(mmc);
1048 dev_err(&pdev->dev, "cannot add mmc host\n");
1052 platform_set_drvdata(pdev, host);
1054 printk(KERN_INFO DRIVER_NAME ": MMC Controller %d set up at %8.8X"
1055 " (mode=%s)\n", pdev->id, host->iobase,
1056 host->flags & HOST_F_DMA ? "dma" : "pio");
1058 return 0; /* all ok */
1061 #ifdef CONFIG_LEDS_CLASS
1062 if (host->platdata && host->platdata->led)
1063 led_classdev_unregister(host->platdata->led);
1066 au_writel(0, HOST_ENABLE(host));
1067 au_writel(0, HOST_CONFIG(host));
1068 au_writel(0, HOST_CONFIG2(host));
1071 #ifdef CONFIG_SOC_AU1200
1072 au1xmmc_dbdma_shutdown(host);
1075 tasklet_kill(&host->data_task);
1076 tasklet_kill(&host->finish_task);
1078 if (host->platdata && host->platdata->cd_setup &&
1079 !(mmc->caps & MMC_CAP_NEEDS_POLL))
1080 host->platdata->cd_setup(mmc, 0);
1082 free_irq(host->irq, host);
1084 iounmap((void *)host->iobase);
1086 release_resource(host->ioarea);
1087 kfree(host->ioarea);
1094 static int __devexit au1xmmc_remove(struct platform_device *pdev)
1096 struct au1xmmc_host *host = platform_get_drvdata(pdev);
1099 mmc_remove_host(host->mmc);
1101 #ifdef CONFIG_LEDS_CLASS
1102 if (host->platdata && host->platdata->led)
1103 led_classdev_unregister(host->platdata->led);
1106 if (host->platdata && host->platdata->cd_setup &&
1107 !(host->mmc->caps & MMC_CAP_NEEDS_POLL))
1108 host->platdata->cd_setup(host->mmc, 0);
1110 au_writel(0, HOST_ENABLE(host));
1111 au_writel(0, HOST_CONFIG(host));
1112 au_writel(0, HOST_CONFIG2(host));
1115 tasklet_kill(&host->data_task);
1116 tasklet_kill(&host->finish_task);
1118 #ifdef CONFIG_SOC_AU1200
1119 au1xmmc_dbdma_shutdown(host);
1121 au1xmmc_set_power(host, 0);
1123 free_irq(host->irq, host);
1124 iounmap((void *)host->iobase);
1125 release_resource(host->ioarea);
1126 kfree(host->ioarea);
1128 mmc_free_host(host->mmc);
1129 platform_set_drvdata(pdev, NULL);
1135 static int au1xmmc_suspend(struct platform_device *pdev, pm_message_t state)
1137 struct au1xmmc_host *host = platform_get_drvdata(pdev);
1140 ret = mmc_suspend_host(host->mmc, state);
1144 au_writel(0, HOST_CONFIG2(host));
1145 au_writel(0, HOST_CONFIG(host));
1146 au_writel(0xffffffff, HOST_STATUS(host));
1147 au_writel(0, HOST_ENABLE(host));
1153 static int au1xmmc_resume(struct platform_device *pdev)
1155 struct au1xmmc_host *host = platform_get_drvdata(pdev);
1157 au1xmmc_reset_controller(host);
1159 return mmc_resume_host(host->mmc);
1162 #define au1xmmc_suspend NULL
1163 #define au1xmmc_resume NULL
1166 static struct platform_driver au1xmmc_driver = {
1167 .probe = au1xmmc_probe,
1168 .remove = au1xmmc_remove,
1169 .suspend = au1xmmc_suspend,
1170 .resume = au1xmmc_resume,
1172 .name = DRIVER_NAME,
1173 .owner = THIS_MODULE,
1177 static int __init au1xmmc_init(void)
1179 #ifdef CONFIG_SOC_AU1200
1180 /* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride
1181 * of 8 bits. And since devices are shared, we need to create
1182 * our own to avoid freaking out other devices.
1184 memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev);
1186 printk(KERN_ERR "au1xmmc: cannot add memory dbdma dev\n");
1188 return platform_driver_register(&au1xmmc_driver);
1191 static void __exit au1xmmc_exit(void)
1193 #ifdef CONFIG_SOC_AU1200
1195 au1xxx_ddma_del_device(memid);
1197 platform_driver_unregister(&au1xmmc_driver);
1200 module_init(au1xmmc_init);
1201 module_exit(au1xmmc_exit);
1203 MODULE_AUTHOR("Advanced Micro Devices, Inc");
1204 MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX");
1205 MODULE_LICENSE("GPL");
1206 MODULE_ALIAS("platform:au1xxx-mmc");