]> err.no Git - linux-2.6/blob - drivers/md/raid5.c
md: kill STRIPE_OP_MOD_DMA in raid5 offload
[linux-2.6] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56
57 /*
58  * Stripe cache
59  */
60
61 #define NR_STRIPES              256
62 #define STRIPE_SIZE             PAGE_SIZE
63 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD            1
66 #define BYPASS_THRESHOLD        1
67 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK               (NR_HASH - 1)
69
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73  * order without overlap.  There may be several bio's per stripe+device, and
74  * a bio could span several devices.
75  * When walking this list for a particular stripe+device, we must never proceed
76  * beyond a bio that extends past this device, as the next bio might no longer
77  * be valid.
78  * This macro is used to determine the 'next' bio in the list, given the sector
79  * of the current stripe+device
80  */
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 /*
83  * The following can be used to debug the driver
84  */
85 #define RAID5_PARANOIA  1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
91
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
96
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98
99 #if !RAID6_USE_EMPTY_ZERO_PAGE
100 /* In .bss so it's zeroed */
101 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
102 #endif
103
104 static inline int raid6_next_disk(int disk, int raid_disks)
105 {
106         disk++;
107         return (disk < raid_disks) ? disk : 0;
108 }
109
110 static void return_io(struct bio *return_bi)
111 {
112         struct bio *bi = return_bi;
113         while (bi) {
114
115                 return_bi = bi->bi_next;
116                 bi->bi_next = NULL;
117                 bi->bi_size = 0;
118                 bio_endio(bi, 0);
119                 bi = return_bi;
120         }
121 }
122
123 static void print_raid5_conf (raid5_conf_t *conf);
124
125 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
126 {
127         if (atomic_dec_and_test(&sh->count)) {
128                 BUG_ON(!list_empty(&sh->lru));
129                 BUG_ON(atomic_read(&conf->active_stripes)==0);
130                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
131                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
132                                 list_add_tail(&sh->lru, &conf->delayed_list);
133                                 blk_plug_device(conf->mddev->queue);
134                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
135                                    sh->bm_seq - conf->seq_write > 0) {
136                                 list_add_tail(&sh->lru, &conf->bitmap_list);
137                                 blk_plug_device(conf->mddev->queue);
138                         } else {
139                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
140                                 list_add_tail(&sh->lru, &conf->handle_list);
141                         }
142                         md_wakeup_thread(conf->mddev->thread);
143                 } else {
144                         BUG_ON(sh->ops.pending);
145                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146                                 atomic_dec(&conf->preread_active_stripes);
147                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148                                         md_wakeup_thread(conf->mddev->thread);
149                         }
150                         atomic_dec(&conf->active_stripes);
151                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152                                 list_add_tail(&sh->lru, &conf->inactive_list);
153                                 wake_up(&conf->wait_for_stripe);
154                                 if (conf->retry_read_aligned)
155                                         md_wakeup_thread(conf->mddev->thread);
156                         }
157                 }
158         }
159 }
160 static void release_stripe(struct stripe_head *sh)
161 {
162         raid5_conf_t *conf = sh->raid_conf;
163         unsigned long flags;
164
165         spin_lock_irqsave(&conf->device_lock, flags);
166         __release_stripe(conf, sh);
167         spin_unlock_irqrestore(&conf->device_lock, flags);
168 }
169
170 static inline void remove_hash(struct stripe_head *sh)
171 {
172         pr_debug("remove_hash(), stripe %llu\n",
173                 (unsigned long long)sh->sector);
174
175         hlist_del_init(&sh->hash);
176 }
177
178 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
179 {
180         struct hlist_head *hp = stripe_hash(conf, sh->sector);
181
182         pr_debug("insert_hash(), stripe %llu\n",
183                 (unsigned long long)sh->sector);
184
185         CHECK_DEVLOCK();
186         hlist_add_head(&sh->hash, hp);
187 }
188
189
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192 {
193         struct stripe_head *sh = NULL;
194         struct list_head *first;
195
196         CHECK_DEVLOCK();
197         if (list_empty(&conf->inactive_list))
198                 goto out;
199         first = conf->inactive_list.next;
200         sh = list_entry(first, struct stripe_head, lru);
201         list_del_init(first);
202         remove_hash(sh);
203         atomic_inc(&conf->active_stripes);
204 out:
205         return sh;
206 }
207
208 static void shrink_buffers(struct stripe_head *sh, int num)
209 {
210         struct page *p;
211         int i;
212
213         for (i=0; i<num ; i++) {
214                 p = sh->dev[i].page;
215                 if (!p)
216                         continue;
217                 sh->dev[i].page = NULL;
218                 put_page(p);
219         }
220 }
221
222 static int grow_buffers(struct stripe_head *sh, int num)
223 {
224         int i;
225
226         for (i=0; i<num; i++) {
227                 struct page *page;
228
229                 if (!(page = alloc_page(GFP_KERNEL))) {
230                         return 1;
231                 }
232                 sh->dev[i].page = page;
233         }
234         return 0;
235 }
236
237 static void raid5_build_block (struct stripe_head *sh, int i);
238
239 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
240 {
241         raid5_conf_t *conf = sh->raid_conf;
242         int i;
243
244         BUG_ON(atomic_read(&sh->count) != 0);
245         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
246         BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
247
248         CHECK_DEVLOCK();
249         pr_debug("init_stripe called, stripe %llu\n",
250                 (unsigned long long)sh->sector);
251
252         remove_hash(sh);
253
254         sh->sector = sector;
255         sh->pd_idx = pd_idx;
256         sh->state = 0;
257
258         sh->disks = disks;
259
260         for (i = sh->disks; i--; ) {
261                 struct r5dev *dev = &sh->dev[i];
262
263                 if (dev->toread || dev->read || dev->towrite || dev->written ||
264                     test_bit(R5_LOCKED, &dev->flags)) {
265                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
266                                (unsigned long long)sh->sector, i, dev->toread,
267                                dev->read, dev->towrite, dev->written,
268                                test_bit(R5_LOCKED, &dev->flags));
269                         BUG();
270                 }
271                 dev->flags = 0;
272                 raid5_build_block(sh, i);
273         }
274         insert_hash(conf, sh);
275 }
276
277 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
278 {
279         struct stripe_head *sh;
280         struct hlist_node *hn;
281
282         CHECK_DEVLOCK();
283         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
284         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
285                 if (sh->sector == sector && sh->disks == disks)
286                         return sh;
287         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
288         return NULL;
289 }
290
291 static void unplug_slaves(mddev_t *mddev);
292 static void raid5_unplug_device(struct request_queue *q);
293
294 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295                                              int pd_idx, int noblock)
296 {
297         struct stripe_head *sh;
298
299         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
300
301         spin_lock_irq(&conf->device_lock);
302
303         do {
304                 wait_event_lock_irq(conf->wait_for_stripe,
305                                     conf->quiesce == 0,
306                                     conf->device_lock, /* nothing */);
307                 sh = __find_stripe(conf, sector, disks);
308                 if (!sh) {
309                         if (!conf->inactive_blocked)
310                                 sh = get_free_stripe(conf);
311                         if (noblock && sh == NULL)
312                                 break;
313                         if (!sh) {
314                                 conf->inactive_blocked = 1;
315                                 wait_event_lock_irq(conf->wait_for_stripe,
316                                                     !list_empty(&conf->inactive_list) &&
317                                                     (atomic_read(&conf->active_stripes)
318                                                      < (conf->max_nr_stripes *3/4)
319                                                      || !conf->inactive_blocked),
320                                                     conf->device_lock,
321                                                     raid5_unplug_device(conf->mddev->queue)
322                                         );
323                                 conf->inactive_blocked = 0;
324                         } else
325                                 init_stripe(sh, sector, pd_idx, disks);
326                 } else {
327                         if (atomic_read(&sh->count)) {
328                           BUG_ON(!list_empty(&sh->lru));
329                         } else {
330                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
331                                         atomic_inc(&conf->active_stripes);
332                                 if (list_empty(&sh->lru) &&
333                                     !test_bit(STRIPE_EXPANDING, &sh->state))
334                                         BUG();
335                                 list_del_init(&sh->lru);
336                         }
337                 }
338         } while (sh == NULL);
339
340         if (sh)
341                 atomic_inc(&sh->count);
342
343         spin_unlock_irq(&conf->device_lock);
344         return sh;
345 }
346
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
349 do {                                                    \
350         if (test_bit(op, &sh->ops.pending) &&           \
351                 !test_bit(op, &sh->ops.complete)) {     \
352                 if (test_and_set_bit(op, &sh->ops.ack)) \
353                         clear_bit(op, &pend);           \
354                 else                                    \
355                         ack++;                          \
356         } else                                          \
357                 clear_bit(op, &pend);                   \
358 } while (0)
359
360 /* find new work to run, do not resubmit work that is already
361  * in flight
362  */
363 static unsigned long get_stripe_work(struct stripe_head *sh)
364 {
365         unsigned long pending;
366         int ack = 0;
367
368         pending = sh->ops.pending;
369
370         test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371         test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372         test_and_ack_op(STRIPE_OP_PREXOR, pending);
373         test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374         test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375         test_and_ack_op(STRIPE_OP_CHECK, pending);
376         if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
377                 ack++;
378
379         sh->ops.count -= ack;
380         if (unlikely(sh->ops.count < 0)) {
381                 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
382                         "ops.complete: %#lx\n", pending, sh->ops.pending,
383                         sh->ops.ack, sh->ops.complete);
384                 BUG();
385         }
386
387         return pending;
388 }
389
390 static void
391 raid5_end_read_request(struct bio *bi, int error);
392 static void
393 raid5_end_write_request(struct bio *bi, int error);
394
395 static void ops_run_io(struct stripe_head *sh)
396 {
397         raid5_conf_t *conf = sh->raid_conf;
398         int i, disks = sh->disks;
399
400         might_sleep();
401
402         set_bit(STRIPE_IO_STARTED, &sh->state);
403         for (i = disks; i--; ) {
404                 int rw;
405                 struct bio *bi;
406                 mdk_rdev_t *rdev;
407                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
408                         rw = WRITE;
409                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
410                         rw = READ;
411                 else
412                         continue;
413
414                 bi = &sh->dev[i].req;
415
416                 bi->bi_rw = rw;
417                 if (rw == WRITE)
418                         bi->bi_end_io = raid5_end_write_request;
419                 else
420                         bi->bi_end_io = raid5_end_read_request;
421
422                 rcu_read_lock();
423                 rdev = rcu_dereference(conf->disks[i].rdev);
424                 if (rdev && test_bit(Faulty, &rdev->flags))
425                         rdev = NULL;
426                 if (rdev)
427                         atomic_inc(&rdev->nr_pending);
428                 rcu_read_unlock();
429
430                 if (rdev) {
431                         if (test_bit(STRIPE_SYNCING, &sh->state) ||
432                                 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
433                                 test_bit(STRIPE_EXPAND_READY, &sh->state))
434                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
435
436                         bi->bi_bdev = rdev->bdev;
437                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
438                                 __func__, (unsigned long long)sh->sector,
439                                 bi->bi_rw, i);
440                         atomic_inc(&sh->count);
441                         bi->bi_sector = sh->sector + rdev->data_offset;
442                         bi->bi_flags = 1 << BIO_UPTODATE;
443                         bi->bi_vcnt = 1;
444                         bi->bi_max_vecs = 1;
445                         bi->bi_idx = 0;
446                         bi->bi_io_vec = &sh->dev[i].vec;
447                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
448                         bi->bi_io_vec[0].bv_offset = 0;
449                         bi->bi_size = STRIPE_SIZE;
450                         bi->bi_next = NULL;
451                         if (rw == WRITE &&
452                             test_bit(R5_ReWrite, &sh->dev[i].flags))
453                                 atomic_add(STRIPE_SECTORS,
454                                         &rdev->corrected_errors);
455                         generic_make_request(bi);
456                 } else {
457                         if (rw == WRITE)
458                                 set_bit(STRIPE_DEGRADED, &sh->state);
459                         pr_debug("skip op %ld on disc %d for sector %llu\n",
460                                 bi->bi_rw, i, (unsigned long long)sh->sector);
461                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
462                         set_bit(STRIPE_HANDLE, &sh->state);
463                 }
464         }
465 }
466
467 static struct dma_async_tx_descriptor *
468 async_copy_data(int frombio, struct bio *bio, struct page *page,
469         sector_t sector, struct dma_async_tx_descriptor *tx)
470 {
471         struct bio_vec *bvl;
472         struct page *bio_page;
473         int i;
474         int page_offset;
475
476         if (bio->bi_sector >= sector)
477                 page_offset = (signed)(bio->bi_sector - sector) * 512;
478         else
479                 page_offset = (signed)(sector - bio->bi_sector) * -512;
480         bio_for_each_segment(bvl, bio, i) {
481                 int len = bio_iovec_idx(bio, i)->bv_len;
482                 int clen;
483                 int b_offset = 0;
484
485                 if (page_offset < 0) {
486                         b_offset = -page_offset;
487                         page_offset += b_offset;
488                         len -= b_offset;
489                 }
490
491                 if (len > 0 && page_offset + len > STRIPE_SIZE)
492                         clen = STRIPE_SIZE - page_offset;
493                 else
494                         clen = len;
495
496                 if (clen > 0) {
497                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
498                         bio_page = bio_iovec_idx(bio, i)->bv_page;
499                         if (frombio)
500                                 tx = async_memcpy(page, bio_page, page_offset,
501                                         b_offset, clen,
502                                         ASYNC_TX_DEP_ACK,
503                                         tx, NULL, NULL);
504                         else
505                                 tx = async_memcpy(bio_page, page, b_offset,
506                                         page_offset, clen,
507                                         ASYNC_TX_DEP_ACK,
508                                         tx, NULL, NULL);
509                 }
510                 if (clen < len) /* hit end of page */
511                         break;
512                 page_offset +=  len;
513         }
514
515         return tx;
516 }
517
518 static void ops_complete_biofill(void *stripe_head_ref)
519 {
520         struct stripe_head *sh = stripe_head_ref;
521         struct bio *return_bi = NULL;
522         raid5_conf_t *conf = sh->raid_conf;
523         int i;
524
525         pr_debug("%s: stripe %llu\n", __func__,
526                 (unsigned long long)sh->sector);
527
528         /* clear completed biofills */
529         for (i = sh->disks; i--; ) {
530                 struct r5dev *dev = &sh->dev[i];
531
532                 /* acknowledge completion of a biofill operation */
533                 /* and check if we need to reply to a read request,
534                  * new R5_Wantfill requests are held off until
535                  * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
536                  */
537                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
538                         struct bio *rbi, *rbi2;
539
540                         /* The access to dev->read is outside of the
541                          * spin_lock_irq(&conf->device_lock), but is protected
542                          * by the STRIPE_OP_BIOFILL pending bit
543                          */
544                         BUG_ON(!dev->read);
545                         rbi = dev->read;
546                         dev->read = NULL;
547                         while (rbi && rbi->bi_sector <
548                                 dev->sector + STRIPE_SECTORS) {
549                                 rbi2 = r5_next_bio(rbi, dev->sector);
550                                 spin_lock_irq(&conf->device_lock);
551                                 if (--rbi->bi_phys_segments == 0) {
552                                         rbi->bi_next = return_bi;
553                                         return_bi = rbi;
554                                 }
555                                 spin_unlock_irq(&conf->device_lock);
556                                 rbi = rbi2;
557                         }
558                 }
559         }
560         set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
561
562         return_io(return_bi);
563
564         set_bit(STRIPE_HANDLE, &sh->state);
565         release_stripe(sh);
566 }
567
568 static void ops_run_biofill(struct stripe_head *sh)
569 {
570         struct dma_async_tx_descriptor *tx = NULL;
571         raid5_conf_t *conf = sh->raid_conf;
572         int i;
573
574         pr_debug("%s: stripe %llu\n", __func__,
575                 (unsigned long long)sh->sector);
576
577         for (i = sh->disks; i--; ) {
578                 struct r5dev *dev = &sh->dev[i];
579                 if (test_bit(R5_Wantfill, &dev->flags)) {
580                         struct bio *rbi;
581                         spin_lock_irq(&conf->device_lock);
582                         dev->read = rbi = dev->toread;
583                         dev->toread = NULL;
584                         spin_unlock_irq(&conf->device_lock);
585                         while (rbi && rbi->bi_sector <
586                                 dev->sector + STRIPE_SECTORS) {
587                                 tx = async_copy_data(0, rbi, dev->page,
588                                         dev->sector, tx);
589                                 rbi = r5_next_bio(rbi, dev->sector);
590                         }
591                 }
592         }
593
594         atomic_inc(&sh->count);
595         async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
596                 ops_complete_biofill, sh);
597 }
598
599 static void ops_complete_compute5(void *stripe_head_ref)
600 {
601         struct stripe_head *sh = stripe_head_ref;
602         int target = sh->ops.target;
603         struct r5dev *tgt = &sh->dev[target];
604
605         pr_debug("%s: stripe %llu\n", __func__,
606                 (unsigned long long)sh->sector);
607
608         set_bit(R5_UPTODATE, &tgt->flags);
609         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
610         clear_bit(R5_Wantcompute, &tgt->flags);
611         set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
612         set_bit(STRIPE_HANDLE, &sh->state);
613         release_stripe(sh);
614 }
615
616 static struct dma_async_tx_descriptor *
617 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
618 {
619         /* kernel stack size limits the total number of disks */
620         int disks = sh->disks;
621         struct page *xor_srcs[disks];
622         int target = sh->ops.target;
623         struct r5dev *tgt = &sh->dev[target];
624         struct page *xor_dest = tgt->page;
625         int count = 0;
626         struct dma_async_tx_descriptor *tx;
627         int i;
628
629         pr_debug("%s: stripe %llu block: %d\n",
630                 __func__, (unsigned long long)sh->sector, target);
631         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
632
633         for (i = disks; i--; )
634                 if (i != target)
635                         xor_srcs[count++] = sh->dev[i].page;
636
637         atomic_inc(&sh->count);
638
639         if (unlikely(count == 1))
640                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
641                         0, NULL, ops_complete_compute5, sh);
642         else
643                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
644                         ASYNC_TX_XOR_ZERO_DST, NULL,
645                         ops_complete_compute5, sh);
646
647         /* ack now if postxor is not set to be run */
648         if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
649                 async_tx_ack(tx);
650
651         return tx;
652 }
653
654 static void ops_complete_prexor(void *stripe_head_ref)
655 {
656         struct stripe_head *sh = stripe_head_ref;
657
658         pr_debug("%s: stripe %llu\n", __func__,
659                 (unsigned long long)sh->sector);
660
661         set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
662 }
663
664 static struct dma_async_tx_descriptor *
665 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
666 {
667         /* kernel stack size limits the total number of disks */
668         int disks = sh->disks;
669         struct page *xor_srcs[disks];
670         int count = 0, pd_idx = sh->pd_idx, i;
671
672         /* existing parity data subtracted */
673         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
674
675         pr_debug("%s: stripe %llu\n", __func__,
676                 (unsigned long long)sh->sector);
677
678         for (i = disks; i--; ) {
679                 struct r5dev *dev = &sh->dev[i];
680                 /* Only process blocks that are known to be uptodate */
681                 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
682                         xor_srcs[count++] = dev->page;
683         }
684
685         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
686                 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
687                 ops_complete_prexor, sh);
688
689         return tx;
690 }
691
692 static struct dma_async_tx_descriptor *
693 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
694                  unsigned long pending)
695 {
696         int disks = sh->disks;
697         int pd_idx = sh->pd_idx, i;
698
699         /* check if prexor is active which means only process blocks
700          * that are part of a read-modify-write (Wantprexor)
701          */
702         int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
703
704         pr_debug("%s: stripe %llu\n", __func__,
705                 (unsigned long long)sh->sector);
706
707         for (i = disks; i--; ) {
708                 struct r5dev *dev = &sh->dev[i];
709                 struct bio *chosen;
710                 int towrite;
711
712                 towrite = 0;
713                 if (prexor) { /* rmw */
714                         if (dev->towrite &&
715                             test_bit(R5_Wantprexor, &dev->flags))
716                                 towrite = 1;
717                 } else { /* rcw */
718                         if (i != pd_idx && dev->towrite &&
719                                 test_bit(R5_LOCKED, &dev->flags))
720                                 towrite = 1;
721                 }
722
723                 if (towrite) {
724                         struct bio *wbi;
725
726                         spin_lock(&sh->lock);
727                         chosen = dev->towrite;
728                         dev->towrite = NULL;
729                         BUG_ON(dev->written);
730                         wbi = dev->written = chosen;
731                         spin_unlock(&sh->lock);
732
733                         while (wbi && wbi->bi_sector <
734                                 dev->sector + STRIPE_SECTORS) {
735                                 tx = async_copy_data(1, wbi, dev->page,
736                                         dev->sector, tx);
737                                 wbi = r5_next_bio(wbi, dev->sector);
738                         }
739                 }
740         }
741
742         return tx;
743 }
744
745 static void ops_complete_postxor(void *stripe_head_ref)
746 {
747         struct stripe_head *sh = stripe_head_ref;
748
749         pr_debug("%s: stripe %llu\n", __func__,
750                 (unsigned long long)sh->sector);
751
752         set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
753         set_bit(STRIPE_HANDLE, &sh->state);
754         release_stripe(sh);
755 }
756
757 static void ops_complete_write(void *stripe_head_ref)
758 {
759         struct stripe_head *sh = stripe_head_ref;
760         int disks = sh->disks, i, pd_idx = sh->pd_idx;
761
762         pr_debug("%s: stripe %llu\n", __func__,
763                 (unsigned long long)sh->sector);
764
765         for (i = disks; i--; ) {
766                 struct r5dev *dev = &sh->dev[i];
767                 if (dev->written || i == pd_idx)
768                         set_bit(R5_UPTODATE, &dev->flags);
769         }
770
771         set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
772         set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
773
774         set_bit(STRIPE_HANDLE, &sh->state);
775         release_stripe(sh);
776 }
777
778 static void
779 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
780                 unsigned long pending)
781 {
782         /* kernel stack size limits the total number of disks */
783         int disks = sh->disks;
784         struct page *xor_srcs[disks];
785
786         int count = 0, pd_idx = sh->pd_idx, i;
787         struct page *xor_dest;
788         int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
789         unsigned long flags;
790         dma_async_tx_callback callback;
791
792         pr_debug("%s: stripe %llu\n", __func__,
793                 (unsigned long long)sh->sector);
794
795         /* check if prexor is active which means only process blocks
796          * that are part of a read-modify-write (written)
797          */
798         if (prexor) {
799                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
800                 for (i = disks; i--; ) {
801                         struct r5dev *dev = &sh->dev[i];
802                         if (dev->written)
803                                 xor_srcs[count++] = dev->page;
804                 }
805         } else {
806                 xor_dest = sh->dev[pd_idx].page;
807                 for (i = disks; i--; ) {
808                         struct r5dev *dev = &sh->dev[i];
809                         if (i != pd_idx)
810                                 xor_srcs[count++] = dev->page;
811                 }
812         }
813
814         /* check whether this postxor is part of a write */
815         callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
816                 ops_complete_write : ops_complete_postxor;
817
818         /* 1/ if we prexor'd then the dest is reused as a source
819          * 2/ if we did not prexor then we are redoing the parity
820          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
821          * for the synchronous xor case
822          */
823         flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
824                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
825
826         atomic_inc(&sh->count);
827
828         if (unlikely(count == 1)) {
829                 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
830                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
831                         flags, tx, callback, sh);
832         } else
833                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
834                         flags, tx, callback, sh);
835 }
836
837 static void ops_complete_check(void *stripe_head_ref)
838 {
839         struct stripe_head *sh = stripe_head_ref;
840
841         pr_debug("%s: stripe %llu\n", __func__,
842                 (unsigned long long)sh->sector);
843
844         set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
845         set_bit(STRIPE_HANDLE, &sh->state);
846         release_stripe(sh);
847 }
848
849 static void ops_run_check(struct stripe_head *sh)
850 {
851         /* kernel stack size limits the total number of disks */
852         int disks = sh->disks;
853         struct page *xor_srcs[disks];
854         struct dma_async_tx_descriptor *tx;
855
856         int count = 0, pd_idx = sh->pd_idx, i;
857         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
858
859         pr_debug("%s: stripe %llu\n", __func__,
860                 (unsigned long long)sh->sector);
861
862         for (i = disks; i--; ) {
863                 struct r5dev *dev = &sh->dev[i];
864                 if (i != pd_idx)
865                         xor_srcs[count++] = dev->page;
866         }
867
868         tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
869                 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
870
871         atomic_inc(&sh->count);
872         tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
873                 ops_complete_check, sh);
874 }
875
876 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
877 {
878         int overlap_clear = 0, i, disks = sh->disks;
879         struct dma_async_tx_descriptor *tx = NULL;
880
881         if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
882                 ops_run_biofill(sh);
883                 overlap_clear++;
884         }
885
886         if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
887                 tx = ops_run_compute5(sh, pending);
888
889         if (test_bit(STRIPE_OP_PREXOR, &pending))
890                 tx = ops_run_prexor(sh, tx);
891
892         if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
893                 tx = ops_run_biodrain(sh, tx, pending);
894                 overlap_clear++;
895         }
896
897         if (test_bit(STRIPE_OP_POSTXOR, &pending))
898                 ops_run_postxor(sh, tx, pending);
899
900         if (test_bit(STRIPE_OP_CHECK, &pending))
901                 ops_run_check(sh);
902
903         if (test_bit(STRIPE_OP_IO, &pending))
904                 ops_run_io(sh);
905
906         if (overlap_clear)
907                 for (i = disks; i--; ) {
908                         struct r5dev *dev = &sh->dev[i];
909                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
910                                 wake_up(&sh->raid_conf->wait_for_overlap);
911                 }
912 }
913
914 static int grow_one_stripe(raid5_conf_t *conf)
915 {
916         struct stripe_head *sh;
917         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
918         if (!sh)
919                 return 0;
920         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
921         sh->raid_conf = conf;
922         spin_lock_init(&sh->lock);
923
924         if (grow_buffers(sh, conf->raid_disks)) {
925                 shrink_buffers(sh, conf->raid_disks);
926                 kmem_cache_free(conf->slab_cache, sh);
927                 return 0;
928         }
929         sh->disks = conf->raid_disks;
930         /* we just created an active stripe so... */
931         atomic_set(&sh->count, 1);
932         atomic_inc(&conf->active_stripes);
933         INIT_LIST_HEAD(&sh->lru);
934         release_stripe(sh);
935         return 1;
936 }
937
938 static int grow_stripes(raid5_conf_t *conf, int num)
939 {
940         struct kmem_cache *sc;
941         int devs = conf->raid_disks;
942
943         sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
944         sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
945         conf->active_name = 0;
946         sc = kmem_cache_create(conf->cache_name[conf->active_name],
947                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
948                                0, 0, NULL);
949         if (!sc)
950                 return 1;
951         conf->slab_cache = sc;
952         conf->pool_size = devs;
953         while (num--)
954                 if (!grow_one_stripe(conf))
955                         return 1;
956         return 0;
957 }
958
959 #ifdef CONFIG_MD_RAID5_RESHAPE
960 static int resize_stripes(raid5_conf_t *conf, int newsize)
961 {
962         /* Make all the stripes able to hold 'newsize' devices.
963          * New slots in each stripe get 'page' set to a new page.
964          *
965          * This happens in stages:
966          * 1/ create a new kmem_cache and allocate the required number of
967          *    stripe_heads.
968          * 2/ gather all the old stripe_heads and tranfer the pages across
969          *    to the new stripe_heads.  This will have the side effect of
970          *    freezing the array as once all stripe_heads have been collected,
971          *    no IO will be possible.  Old stripe heads are freed once their
972          *    pages have been transferred over, and the old kmem_cache is
973          *    freed when all stripes are done.
974          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
975          *    we simple return a failre status - no need to clean anything up.
976          * 4/ allocate new pages for the new slots in the new stripe_heads.
977          *    If this fails, we don't bother trying the shrink the
978          *    stripe_heads down again, we just leave them as they are.
979          *    As each stripe_head is processed the new one is released into
980          *    active service.
981          *
982          * Once step2 is started, we cannot afford to wait for a write,
983          * so we use GFP_NOIO allocations.
984          */
985         struct stripe_head *osh, *nsh;
986         LIST_HEAD(newstripes);
987         struct disk_info *ndisks;
988         int err = 0;
989         struct kmem_cache *sc;
990         int i;
991
992         if (newsize <= conf->pool_size)
993                 return 0; /* never bother to shrink */
994
995         md_allow_write(conf->mddev);
996
997         /* Step 1 */
998         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
999                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1000                                0, 0, NULL);
1001         if (!sc)
1002                 return -ENOMEM;
1003
1004         for (i = conf->max_nr_stripes; i; i--) {
1005                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1006                 if (!nsh)
1007                         break;
1008
1009                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1010
1011                 nsh->raid_conf = conf;
1012                 spin_lock_init(&nsh->lock);
1013
1014                 list_add(&nsh->lru, &newstripes);
1015         }
1016         if (i) {
1017                 /* didn't get enough, give up */
1018                 while (!list_empty(&newstripes)) {
1019                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1020                         list_del(&nsh->lru);
1021                         kmem_cache_free(sc, nsh);
1022                 }
1023                 kmem_cache_destroy(sc);
1024                 return -ENOMEM;
1025         }
1026         /* Step 2 - Must use GFP_NOIO now.
1027          * OK, we have enough stripes, start collecting inactive
1028          * stripes and copying them over
1029          */
1030         list_for_each_entry(nsh, &newstripes, lru) {
1031                 spin_lock_irq(&conf->device_lock);
1032                 wait_event_lock_irq(conf->wait_for_stripe,
1033                                     !list_empty(&conf->inactive_list),
1034                                     conf->device_lock,
1035                                     unplug_slaves(conf->mddev)
1036                         );
1037                 osh = get_free_stripe(conf);
1038                 spin_unlock_irq(&conf->device_lock);
1039                 atomic_set(&nsh->count, 1);
1040                 for(i=0; i<conf->pool_size; i++)
1041                         nsh->dev[i].page = osh->dev[i].page;
1042                 for( ; i<newsize; i++)
1043                         nsh->dev[i].page = NULL;
1044                 kmem_cache_free(conf->slab_cache, osh);
1045         }
1046         kmem_cache_destroy(conf->slab_cache);
1047
1048         /* Step 3.
1049          * At this point, we are holding all the stripes so the array
1050          * is completely stalled, so now is a good time to resize
1051          * conf->disks.
1052          */
1053         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1054         if (ndisks) {
1055                 for (i=0; i<conf->raid_disks; i++)
1056                         ndisks[i] = conf->disks[i];
1057                 kfree(conf->disks);
1058                 conf->disks = ndisks;
1059         } else
1060                 err = -ENOMEM;
1061
1062         /* Step 4, return new stripes to service */
1063         while(!list_empty(&newstripes)) {
1064                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1065                 list_del_init(&nsh->lru);
1066                 for (i=conf->raid_disks; i < newsize; i++)
1067                         if (nsh->dev[i].page == NULL) {
1068                                 struct page *p = alloc_page(GFP_NOIO);
1069                                 nsh->dev[i].page = p;
1070                                 if (!p)
1071                                         err = -ENOMEM;
1072                         }
1073                 release_stripe(nsh);
1074         }
1075         /* critical section pass, GFP_NOIO no longer needed */
1076
1077         conf->slab_cache = sc;
1078         conf->active_name = 1-conf->active_name;
1079         conf->pool_size = newsize;
1080         return err;
1081 }
1082 #endif
1083
1084 static int drop_one_stripe(raid5_conf_t *conf)
1085 {
1086         struct stripe_head *sh;
1087
1088         spin_lock_irq(&conf->device_lock);
1089         sh = get_free_stripe(conf);
1090         spin_unlock_irq(&conf->device_lock);
1091         if (!sh)
1092                 return 0;
1093         BUG_ON(atomic_read(&sh->count));
1094         shrink_buffers(sh, conf->pool_size);
1095         kmem_cache_free(conf->slab_cache, sh);
1096         atomic_dec(&conf->active_stripes);
1097         return 1;
1098 }
1099
1100 static void shrink_stripes(raid5_conf_t *conf)
1101 {
1102         while (drop_one_stripe(conf))
1103                 ;
1104
1105         if (conf->slab_cache)
1106                 kmem_cache_destroy(conf->slab_cache);
1107         conf->slab_cache = NULL;
1108 }
1109
1110 static void raid5_end_read_request(struct bio * bi, int error)
1111 {
1112         struct stripe_head *sh = bi->bi_private;
1113         raid5_conf_t *conf = sh->raid_conf;
1114         int disks = sh->disks, i;
1115         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1116         char b[BDEVNAME_SIZE];
1117         mdk_rdev_t *rdev;
1118
1119
1120         for (i=0 ; i<disks; i++)
1121                 if (bi == &sh->dev[i].req)
1122                         break;
1123
1124         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1125                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1126                 uptodate);
1127         if (i == disks) {
1128                 BUG();
1129                 return;
1130         }
1131
1132         if (uptodate) {
1133                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1134                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1135                         rdev = conf->disks[i].rdev;
1136                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1137                                   " (%lu sectors at %llu on %s)\n",
1138                                   mdname(conf->mddev), STRIPE_SECTORS,
1139                                   (unsigned long long)(sh->sector
1140                                                        + rdev->data_offset),
1141                                   bdevname(rdev->bdev, b));
1142                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1143                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1144                 }
1145                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1146                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1147         } else {
1148                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1149                 int retry = 0;
1150                 rdev = conf->disks[i].rdev;
1151
1152                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1153                 atomic_inc(&rdev->read_errors);
1154                 if (conf->mddev->degraded)
1155                         printk_rl(KERN_WARNING
1156                                   "raid5:%s: read error not correctable "
1157                                   "(sector %llu on %s).\n",
1158                                   mdname(conf->mddev),
1159                                   (unsigned long long)(sh->sector
1160                                                        + rdev->data_offset),
1161                                   bdn);
1162                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1163                         /* Oh, no!!! */
1164                         printk_rl(KERN_WARNING
1165                                   "raid5:%s: read error NOT corrected!! "
1166                                   "(sector %llu on %s).\n",
1167                                   mdname(conf->mddev),
1168                                   (unsigned long long)(sh->sector
1169                                                        + rdev->data_offset),
1170                                   bdn);
1171                 else if (atomic_read(&rdev->read_errors)
1172                          > conf->max_nr_stripes)
1173                         printk(KERN_WARNING
1174                                "raid5:%s: Too many read errors, failing device %s.\n",
1175                                mdname(conf->mddev), bdn);
1176                 else
1177                         retry = 1;
1178                 if (retry)
1179                         set_bit(R5_ReadError, &sh->dev[i].flags);
1180                 else {
1181                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1182                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1183                         md_error(conf->mddev, rdev);
1184                 }
1185         }
1186         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1187         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1188         set_bit(STRIPE_HANDLE, &sh->state);
1189         release_stripe(sh);
1190 }
1191
1192 static void raid5_end_write_request (struct bio *bi, int error)
1193 {
1194         struct stripe_head *sh = bi->bi_private;
1195         raid5_conf_t *conf = sh->raid_conf;
1196         int disks = sh->disks, i;
1197         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1198
1199         for (i=0 ; i<disks; i++)
1200                 if (bi == &sh->dev[i].req)
1201                         break;
1202
1203         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1204                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1205                 uptodate);
1206         if (i == disks) {
1207                 BUG();
1208                 return;
1209         }
1210
1211         if (!uptodate)
1212                 md_error(conf->mddev, conf->disks[i].rdev);
1213
1214         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1215         
1216         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1217         set_bit(STRIPE_HANDLE, &sh->state);
1218         release_stripe(sh);
1219 }
1220
1221
1222 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1223         
1224 static void raid5_build_block (struct stripe_head *sh, int i)
1225 {
1226         struct r5dev *dev = &sh->dev[i];
1227
1228         bio_init(&dev->req);
1229         dev->req.bi_io_vec = &dev->vec;
1230         dev->req.bi_vcnt++;
1231         dev->req.bi_max_vecs++;
1232         dev->vec.bv_page = dev->page;
1233         dev->vec.bv_len = STRIPE_SIZE;
1234         dev->vec.bv_offset = 0;
1235
1236         dev->req.bi_sector = sh->sector;
1237         dev->req.bi_private = sh;
1238
1239         dev->flags = 0;
1240         dev->sector = compute_blocknr(sh, i);
1241 }
1242
1243 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1244 {
1245         char b[BDEVNAME_SIZE];
1246         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1247         pr_debug("raid5: error called\n");
1248
1249         if (!test_bit(Faulty, &rdev->flags)) {
1250                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1251                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1252                         unsigned long flags;
1253                         spin_lock_irqsave(&conf->device_lock, flags);
1254                         mddev->degraded++;
1255                         spin_unlock_irqrestore(&conf->device_lock, flags);
1256                         /*
1257                          * if recovery was running, make sure it aborts.
1258                          */
1259                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1260                 }
1261                 set_bit(Faulty, &rdev->flags);
1262                 printk (KERN_ALERT
1263                         "raid5: Disk failure on %s, disabling device.\n"
1264                         "raid5: Operation continuing on %d devices.\n",
1265                         bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1266         }
1267 }
1268
1269 /*
1270  * Input: a 'big' sector number,
1271  * Output: index of the data and parity disk, and the sector # in them.
1272  */
1273 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1274                         unsigned int data_disks, unsigned int * dd_idx,
1275                         unsigned int * pd_idx, raid5_conf_t *conf)
1276 {
1277         long stripe;
1278         unsigned long chunk_number;
1279         unsigned int chunk_offset;
1280         sector_t new_sector;
1281         int sectors_per_chunk = conf->chunk_size >> 9;
1282
1283         /* First compute the information on this sector */
1284
1285         /*
1286          * Compute the chunk number and the sector offset inside the chunk
1287          */
1288         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1289         chunk_number = r_sector;
1290         BUG_ON(r_sector != chunk_number);
1291
1292         /*
1293          * Compute the stripe number
1294          */
1295         stripe = chunk_number / data_disks;
1296
1297         /*
1298          * Compute the data disk and parity disk indexes inside the stripe
1299          */
1300         *dd_idx = chunk_number % data_disks;
1301
1302         /*
1303          * Select the parity disk based on the user selected algorithm.
1304          */
1305         switch(conf->level) {
1306         case 4:
1307                 *pd_idx = data_disks;
1308                 break;
1309         case 5:
1310                 switch (conf->algorithm) {
1311                 case ALGORITHM_LEFT_ASYMMETRIC:
1312                         *pd_idx = data_disks - stripe % raid_disks;
1313                         if (*dd_idx >= *pd_idx)
1314                                 (*dd_idx)++;
1315                         break;
1316                 case ALGORITHM_RIGHT_ASYMMETRIC:
1317                         *pd_idx = stripe % raid_disks;
1318                         if (*dd_idx >= *pd_idx)
1319                                 (*dd_idx)++;
1320                         break;
1321                 case ALGORITHM_LEFT_SYMMETRIC:
1322                         *pd_idx = data_disks - stripe % raid_disks;
1323                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1324                         break;
1325                 case ALGORITHM_RIGHT_SYMMETRIC:
1326                         *pd_idx = stripe % raid_disks;
1327                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1328                         break;
1329                 default:
1330                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1331                                 conf->algorithm);
1332                 }
1333                 break;
1334         case 6:
1335
1336                 /**** FIX THIS ****/
1337                 switch (conf->algorithm) {
1338                 case ALGORITHM_LEFT_ASYMMETRIC:
1339                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1340                         if (*pd_idx == raid_disks-1)
1341                                 (*dd_idx)++;    /* Q D D D P */
1342                         else if (*dd_idx >= *pd_idx)
1343                                 (*dd_idx) += 2; /* D D P Q D */
1344                         break;
1345                 case ALGORITHM_RIGHT_ASYMMETRIC:
1346                         *pd_idx = stripe % raid_disks;
1347                         if (*pd_idx == raid_disks-1)
1348                                 (*dd_idx)++;    /* Q D D D P */
1349                         else if (*dd_idx >= *pd_idx)
1350                                 (*dd_idx) += 2; /* D D P Q D */
1351                         break;
1352                 case ALGORITHM_LEFT_SYMMETRIC:
1353                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1354                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1355                         break;
1356                 case ALGORITHM_RIGHT_SYMMETRIC:
1357                         *pd_idx = stripe % raid_disks;
1358                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1359                         break;
1360                 default:
1361                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1362                                 conf->algorithm);
1363                 }
1364                 break;
1365         }
1366
1367         /*
1368          * Finally, compute the new sector number
1369          */
1370         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1371         return new_sector;
1372 }
1373
1374
1375 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1376 {
1377         raid5_conf_t *conf = sh->raid_conf;
1378         int raid_disks = sh->disks;
1379         int data_disks = raid_disks - conf->max_degraded;
1380         sector_t new_sector = sh->sector, check;
1381         int sectors_per_chunk = conf->chunk_size >> 9;
1382         sector_t stripe;
1383         int chunk_offset;
1384         int chunk_number, dummy1, dummy2, dd_idx = i;
1385         sector_t r_sector;
1386
1387
1388         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1389         stripe = new_sector;
1390         BUG_ON(new_sector != stripe);
1391
1392         if (i == sh->pd_idx)
1393                 return 0;
1394         switch(conf->level) {
1395         case 4: break;
1396         case 5:
1397                 switch (conf->algorithm) {
1398                 case ALGORITHM_LEFT_ASYMMETRIC:
1399                 case ALGORITHM_RIGHT_ASYMMETRIC:
1400                         if (i > sh->pd_idx)
1401                                 i--;
1402                         break;
1403                 case ALGORITHM_LEFT_SYMMETRIC:
1404                 case ALGORITHM_RIGHT_SYMMETRIC:
1405                         if (i < sh->pd_idx)
1406                                 i += raid_disks;
1407                         i -= (sh->pd_idx + 1);
1408                         break;
1409                 default:
1410                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1411                                conf->algorithm);
1412                 }
1413                 break;
1414         case 6:
1415                 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1416                         return 0; /* It is the Q disk */
1417                 switch (conf->algorithm) {
1418                 case ALGORITHM_LEFT_ASYMMETRIC:
1419                 case ALGORITHM_RIGHT_ASYMMETRIC:
1420                         if (sh->pd_idx == raid_disks-1)
1421                                 i--;    /* Q D D D P */
1422                         else if (i > sh->pd_idx)
1423                                 i -= 2; /* D D P Q D */
1424                         break;
1425                 case ALGORITHM_LEFT_SYMMETRIC:
1426                 case ALGORITHM_RIGHT_SYMMETRIC:
1427                         if (sh->pd_idx == raid_disks-1)
1428                                 i--; /* Q D D D P */
1429                         else {
1430                                 /* D D P Q D */
1431                                 if (i < sh->pd_idx)
1432                                         i += raid_disks;
1433                                 i -= (sh->pd_idx + 2);
1434                         }
1435                         break;
1436                 default:
1437                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1438                                 conf->algorithm);
1439                 }
1440                 break;
1441         }
1442
1443         chunk_number = stripe * data_disks + i;
1444         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1445
1446         check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1447         if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1448                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1449                 return 0;
1450         }
1451         return r_sector;
1452 }
1453
1454
1455
1456 /*
1457  * Copy data between a page in the stripe cache, and one or more bion
1458  * The page could align with the middle of the bio, or there could be
1459  * several bion, each with several bio_vecs, which cover part of the page
1460  * Multiple bion are linked together on bi_next.  There may be extras
1461  * at the end of this list.  We ignore them.
1462  */
1463 static void copy_data(int frombio, struct bio *bio,
1464                      struct page *page,
1465                      sector_t sector)
1466 {
1467         char *pa = page_address(page);
1468         struct bio_vec *bvl;
1469         int i;
1470         int page_offset;
1471
1472         if (bio->bi_sector >= sector)
1473                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1474         else
1475                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1476         bio_for_each_segment(bvl, bio, i) {
1477                 int len = bio_iovec_idx(bio,i)->bv_len;
1478                 int clen;
1479                 int b_offset = 0;
1480
1481                 if (page_offset < 0) {
1482                         b_offset = -page_offset;
1483                         page_offset += b_offset;
1484                         len -= b_offset;
1485                 }
1486
1487                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1488                         clen = STRIPE_SIZE - page_offset;
1489                 else clen = len;
1490
1491                 if (clen > 0) {
1492                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1493                         if (frombio)
1494                                 memcpy(pa+page_offset, ba+b_offset, clen);
1495                         else
1496                                 memcpy(ba+b_offset, pa+page_offset, clen);
1497                         __bio_kunmap_atomic(ba, KM_USER0);
1498                 }
1499                 if (clen < len) /* hit end of page */
1500                         break;
1501                 page_offset +=  len;
1502         }
1503 }
1504
1505 #define check_xor()     do {                                              \
1506                                 if (count == MAX_XOR_BLOCKS) {            \
1507                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1508                                 count = 0;                                \
1509                            }                                              \
1510                         } while(0)
1511
1512 static void compute_parity6(struct stripe_head *sh, int method)
1513 {
1514         raid6_conf_t *conf = sh->raid_conf;
1515         int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1516         struct bio *chosen;
1517         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1518         void *ptrs[disks];
1519
1520         qd_idx = raid6_next_disk(pd_idx, disks);
1521         d0_idx = raid6_next_disk(qd_idx, disks);
1522
1523         pr_debug("compute_parity, stripe %llu, method %d\n",
1524                 (unsigned long long)sh->sector, method);
1525
1526         switch(method) {
1527         case READ_MODIFY_WRITE:
1528                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1529         case RECONSTRUCT_WRITE:
1530                 for (i= disks; i-- ;)
1531                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1532                                 chosen = sh->dev[i].towrite;
1533                                 sh->dev[i].towrite = NULL;
1534
1535                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1536                                         wake_up(&conf->wait_for_overlap);
1537
1538                                 BUG_ON(sh->dev[i].written);
1539                                 sh->dev[i].written = chosen;
1540                         }
1541                 break;
1542         case CHECK_PARITY:
1543                 BUG();          /* Not implemented yet */
1544         }
1545
1546         for (i = disks; i--;)
1547                 if (sh->dev[i].written) {
1548                         sector_t sector = sh->dev[i].sector;
1549                         struct bio *wbi = sh->dev[i].written;
1550                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1551                                 copy_data(1, wbi, sh->dev[i].page, sector);
1552                                 wbi = r5_next_bio(wbi, sector);
1553                         }
1554
1555                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1556                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1557                 }
1558
1559 //      switch(method) {
1560 //      case RECONSTRUCT_WRITE:
1561 //      case CHECK_PARITY:
1562 //      case UPDATE_PARITY:
1563                 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1564                 /* FIX: Is this ordering of drives even remotely optimal? */
1565                 count = 0;
1566                 i = d0_idx;
1567                 do {
1568                         ptrs[count++] = page_address(sh->dev[i].page);
1569                         if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1570                                 printk("block %d/%d not uptodate on parity calc\n", i,count);
1571                         i = raid6_next_disk(i, disks);
1572                 } while ( i != d0_idx );
1573 //              break;
1574 //      }
1575
1576         raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1577
1578         switch(method) {
1579         case RECONSTRUCT_WRITE:
1580                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1581                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1582                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1583                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1584                 break;
1585         case UPDATE_PARITY:
1586                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1587                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1588                 break;
1589         }
1590 }
1591
1592
1593 /* Compute one missing block */
1594 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1595 {
1596         int i, count, disks = sh->disks;
1597         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1598         int pd_idx = sh->pd_idx;
1599         int qd_idx = raid6_next_disk(pd_idx, disks);
1600
1601         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1602                 (unsigned long long)sh->sector, dd_idx);
1603
1604         if ( dd_idx == qd_idx ) {
1605                 /* We're actually computing the Q drive */
1606                 compute_parity6(sh, UPDATE_PARITY);
1607         } else {
1608                 dest = page_address(sh->dev[dd_idx].page);
1609                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1610                 count = 0;
1611                 for (i = disks ; i--; ) {
1612                         if (i == dd_idx || i == qd_idx)
1613                                 continue;
1614                         p = page_address(sh->dev[i].page);
1615                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1616                                 ptr[count++] = p;
1617                         else
1618                                 printk("compute_block() %d, stripe %llu, %d"
1619                                        " not present\n", dd_idx,
1620                                        (unsigned long long)sh->sector, i);
1621
1622                         check_xor();
1623                 }
1624                 if (count)
1625                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1626                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1627                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1628         }
1629 }
1630
1631 /* Compute two missing blocks */
1632 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1633 {
1634         int i, count, disks = sh->disks;
1635         int pd_idx = sh->pd_idx;
1636         int qd_idx = raid6_next_disk(pd_idx, disks);
1637         int d0_idx = raid6_next_disk(qd_idx, disks);
1638         int faila, failb;
1639
1640         /* faila and failb are disk numbers relative to d0_idx */
1641         /* pd_idx become disks-2 and qd_idx become disks-1 */
1642         faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1643         failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1644
1645         BUG_ON(faila == failb);
1646         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1647
1648         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1649                (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1650
1651         if ( failb == disks-1 ) {
1652                 /* Q disk is one of the missing disks */
1653                 if ( faila == disks-2 ) {
1654                         /* Missing P+Q, just recompute */
1655                         compute_parity6(sh, UPDATE_PARITY);
1656                         return;
1657                 } else {
1658                         /* We're missing D+Q; recompute D from P */
1659                         compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1660                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1661                         return;
1662                 }
1663         }
1664
1665         /* We're missing D+P or D+D; build pointer table */
1666         {
1667                 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1668                 void *ptrs[disks];
1669
1670                 count = 0;
1671                 i = d0_idx;
1672                 do {
1673                         ptrs[count++] = page_address(sh->dev[i].page);
1674                         i = raid6_next_disk(i, disks);
1675                         if (i != dd_idx1 && i != dd_idx2 &&
1676                             !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1677                                 printk("compute_2 with missing block %d/%d\n", count, i);
1678                 } while ( i != d0_idx );
1679
1680                 if ( failb == disks-2 ) {
1681                         /* We're missing D+P. */
1682                         raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1683                 } else {
1684                         /* We're missing D+D. */
1685                         raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1686                 }
1687
1688                 /* Both the above update both missing blocks */
1689                 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1690                 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1691         }
1692 }
1693
1694 static int
1695 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1696 {
1697         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1698         int locked = 0;
1699
1700         if (rcw) {
1701                 /* if we are not expanding this is a proper write request, and
1702                  * there will be bios with new data to be drained into the
1703                  * stripe cache
1704                  */
1705                 if (!expand) {
1706                         set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1707                         sh->ops.count++;
1708                 }
1709
1710                 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1711                 sh->ops.count++;
1712
1713                 for (i = disks; i--; ) {
1714                         struct r5dev *dev = &sh->dev[i];
1715
1716                         if (dev->towrite) {
1717                                 set_bit(R5_LOCKED, &dev->flags);
1718                                 if (!expand)
1719                                         clear_bit(R5_UPTODATE, &dev->flags);
1720                                 locked++;
1721                         }
1722                 }
1723                 if (locked + 1 == disks)
1724                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1725                                 atomic_inc(&sh->raid_conf->pending_full_writes);
1726         } else {
1727                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1728                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1729
1730                 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1731                 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1732                 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1733
1734                 sh->ops.count += 3;
1735
1736                 for (i = disks; i--; ) {
1737                         struct r5dev *dev = &sh->dev[i];
1738                         if (i == pd_idx)
1739                                 continue;
1740
1741                         /* For a read-modify write there may be blocks that are
1742                          * locked for reading while others are ready to be
1743                          * written so we distinguish these blocks by the
1744                          * R5_Wantprexor bit
1745                          */
1746                         if (dev->towrite &&
1747                             (test_bit(R5_UPTODATE, &dev->flags) ||
1748                             test_bit(R5_Wantcompute, &dev->flags))) {
1749                                 set_bit(R5_Wantprexor, &dev->flags);
1750                                 set_bit(R5_LOCKED, &dev->flags);
1751                                 clear_bit(R5_UPTODATE, &dev->flags);
1752                                 locked++;
1753                         }
1754                 }
1755         }
1756
1757         /* keep the parity disk locked while asynchronous operations
1758          * are in flight
1759          */
1760         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1761         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1762         locked++;
1763
1764         pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1765                 __func__, (unsigned long long)sh->sector,
1766                 locked, sh->ops.pending);
1767
1768         return locked;
1769 }
1770
1771 /*
1772  * Each stripe/dev can have one or more bion attached.
1773  * toread/towrite point to the first in a chain.
1774  * The bi_next chain must be in order.
1775  */
1776 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1777 {
1778         struct bio **bip;
1779         raid5_conf_t *conf = sh->raid_conf;
1780         int firstwrite=0;
1781
1782         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1783                 (unsigned long long)bi->bi_sector,
1784                 (unsigned long long)sh->sector);
1785
1786
1787         spin_lock(&sh->lock);
1788         spin_lock_irq(&conf->device_lock);
1789         if (forwrite) {
1790                 bip = &sh->dev[dd_idx].towrite;
1791                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1792                         firstwrite = 1;
1793         } else
1794                 bip = &sh->dev[dd_idx].toread;
1795         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1796                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1797                         goto overlap;
1798                 bip = & (*bip)->bi_next;
1799         }
1800         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1801                 goto overlap;
1802
1803         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1804         if (*bip)
1805                 bi->bi_next = *bip;
1806         *bip = bi;
1807         bi->bi_phys_segments ++;
1808         spin_unlock_irq(&conf->device_lock);
1809         spin_unlock(&sh->lock);
1810
1811         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1812                 (unsigned long long)bi->bi_sector,
1813                 (unsigned long long)sh->sector, dd_idx);
1814
1815         if (conf->mddev->bitmap && firstwrite) {
1816                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1817                                   STRIPE_SECTORS, 0);
1818                 sh->bm_seq = conf->seq_flush+1;
1819                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1820         }
1821
1822         if (forwrite) {
1823                 /* check if page is covered */
1824                 sector_t sector = sh->dev[dd_idx].sector;
1825                 for (bi=sh->dev[dd_idx].towrite;
1826                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1827                              bi && bi->bi_sector <= sector;
1828                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1829                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1830                                 sector = bi->bi_sector + (bi->bi_size>>9);
1831                 }
1832                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1833                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1834         }
1835         return 1;
1836
1837  overlap:
1838         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1839         spin_unlock_irq(&conf->device_lock);
1840         spin_unlock(&sh->lock);
1841         return 0;
1842 }
1843
1844 static void end_reshape(raid5_conf_t *conf);
1845
1846 static int page_is_zero(struct page *p)
1847 {
1848         char *a = page_address(p);
1849         return ((*(u32*)a) == 0 &&
1850                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1851 }
1852
1853 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1854 {
1855         int sectors_per_chunk = conf->chunk_size >> 9;
1856         int pd_idx, dd_idx;
1857         int chunk_offset = sector_div(stripe, sectors_per_chunk);
1858
1859         raid5_compute_sector(stripe * (disks - conf->max_degraded)
1860                              *sectors_per_chunk + chunk_offset,
1861                              disks, disks - conf->max_degraded,
1862                              &dd_idx, &pd_idx, conf);
1863         return pd_idx;
1864 }
1865
1866 static void
1867 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1868                                 struct stripe_head_state *s, int disks,
1869                                 struct bio **return_bi)
1870 {
1871         int i;
1872         for (i = disks; i--; ) {
1873                 struct bio *bi;
1874                 int bitmap_end = 0;
1875
1876                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1877                         mdk_rdev_t *rdev;
1878                         rcu_read_lock();
1879                         rdev = rcu_dereference(conf->disks[i].rdev);
1880                         if (rdev && test_bit(In_sync, &rdev->flags))
1881                                 /* multiple read failures in one stripe */
1882                                 md_error(conf->mddev, rdev);
1883                         rcu_read_unlock();
1884                 }
1885                 spin_lock_irq(&conf->device_lock);
1886                 /* fail all writes first */
1887                 bi = sh->dev[i].towrite;
1888                 sh->dev[i].towrite = NULL;
1889                 if (bi) {
1890                         s->to_write--;
1891                         bitmap_end = 1;
1892                 }
1893
1894                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1895                         wake_up(&conf->wait_for_overlap);
1896
1897                 while (bi && bi->bi_sector <
1898                         sh->dev[i].sector + STRIPE_SECTORS) {
1899                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1900                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1901                         if (--bi->bi_phys_segments == 0) {
1902                                 md_write_end(conf->mddev);
1903                                 bi->bi_next = *return_bi;
1904                                 *return_bi = bi;
1905                         }
1906                         bi = nextbi;
1907                 }
1908                 /* and fail all 'written' */
1909                 bi = sh->dev[i].written;
1910                 sh->dev[i].written = NULL;
1911                 if (bi) bitmap_end = 1;
1912                 while (bi && bi->bi_sector <
1913                        sh->dev[i].sector + STRIPE_SECTORS) {
1914                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1915                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1916                         if (--bi->bi_phys_segments == 0) {
1917                                 md_write_end(conf->mddev);
1918                                 bi->bi_next = *return_bi;
1919                                 *return_bi = bi;
1920                         }
1921                         bi = bi2;
1922                 }
1923
1924                 /* fail any reads if this device is non-operational and
1925                  * the data has not reached the cache yet.
1926                  */
1927                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1928                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1929                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
1930                         bi = sh->dev[i].toread;
1931                         sh->dev[i].toread = NULL;
1932                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1933                                 wake_up(&conf->wait_for_overlap);
1934                         if (bi) s->to_read--;
1935                         while (bi && bi->bi_sector <
1936                                sh->dev[i].sector + STRIPE_SECTORS) {
1937                                 struct bio *nextbi =
1938                                         r5_next_bio(bi, sh->dev[i].sector);
1939                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1940                                 if (--bi->bi_phys_segments == 0) {
1941                                         bi->bi_next = *return_bi;
1942                                         *return_bi = bi;
1943                                 }
1944                                 bi = nextbi;
1945                         }
1946                 }
1947                 spin_unlock_irq(&conf->device_lock);
1948                 if (bitmap_end)
1949                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1950                                         STRIPE_SECTORS, 0, 0);
1951         }
1952
1953         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1954                 if (atomic_dec_and_test(&conf->pending_full_writes))
1955                         md_wakeup_thread(conf->mddev->thread);
1956 }
1957
1958 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1959  * to process
1960  */
1961 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1962                         struct stripe_head_state *s, int disk_idx, int disks)
1963 {
1964         struct r5dev *dev = &sh->dev[disk_idx];
1965         struct r5dev *failed_dev = &sh->dev[s->failed_num];
1966
1967         /* don't schedule compute operations or reads on the parity block while
1968          * a check is in flight
1969          */
1970         if ((disk_idx == sh->pd_idx) &&
1971              test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1972                 return ~0;
1973
1974         /* is the data in this block needed, and can we get it? */
1975         if (!test_bit(R5_LOCKED, &dev->flags) &&
1976             !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1977             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1978              s->syncing || s->expanding || (s->failed &&
1979              (failed_dev->toread || (failed_dev->towrite &&
1980              !test_bit(R5_OVERWRITE, &failed_dev->flags)
1981              ))))) {
1982                 /* 1/ We would like to get this block, possibly by computing it,
1983                  * but we might not be able to.
1984                  *
1985                  * 2/ Since parity check operations potentially make the parity
1986                  * block !uptodate it will need to be refreshed before any
1987                  * compute operations on data disks are scheduled.
1988                  *
1989                  * 3/ We hold off parity block re-reads until check operations
1990                  * have quiesced.
1991                  */
1992                 if ((s->uptodate == disks - 1) &&
1993                     (s->failed && disk_idx == s->failed_num) &&
1994                     !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1995                         set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1996                         set_bit(R5_Wantcompute, &dev->flags);
1997                         sh->ops.target = disk_idx;
1998                         s->req_compute = 1;
1999                         sh->ops.count++;
2000                         /* Careful: from this point on 'uptodate' is in the eye
2001                          * of raid5_run_ops which services 'compute' operations
2002                          * before writes. R5_Wantcompute flags a block that will
2003                          * be R5_UPTODATE by the time it is needed for a
2004                          * subsequent operation.
2005                          */
2006                         s->uptodate++;
2007                         return 0; /* uptodate + compute == disks */
2008                 } else if ((s->uptodate < disks - 1) &&
2009                         test_bit(R5_Insync, &dev->flags)) {
2010                         /* Note: we hold off compute operations while checks are
2011                          * in flight, but we still prefer 'compute' over 'read'
2012                          * hence we only read if (uptodate < * disks-1)
2013                          */
2014                         set_bit(R5_LOCKED, &dev->flags);
2015                         set_bit(R5_Wantread, &dev->flags);
2016                         if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2017                                 sh->ops.count++;
2018                         s->locked++;
2019                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2020                                 s->syncing);
2021                 }
2022         }
2023
2024         return ~0;
2025 }
2026
2027 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2028                         struct stripe_head_state *s, int disks)
2029 {
2030         int i;
2031
2032         /* Clear completed compute operations.  Parity recovery
2033          * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2034          * later on in this routine
2035          */
2036         if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2037                 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2038                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2039                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2040                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2041         }
2042
2043         /* look for blocks to read/compute, skip this if a compute
2044          * is already in flight, or if the stripe contents are in the
2045          * midst of changing due to a write
2046          */
2047         if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2048                 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2049                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2050                 for (i = disks; i--; )
2051                         if (__handle_issuing_new_read_requests5(
2052                                 sh, s, i, disks) == 0)
2053                                 break;
2054         }
2055         set_bit(STRIPE_HANDLE, &sh->state);
2056 }
2057
2058 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2059                         struct stripe_head_state *s, struct r6_state *r6s,
2060                         int disks)
2061 {
2062         int i;
2063         for (i = disks; i--; ) {
2064                 struct r5dev *dev = &sh->dev[i];
2065                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2066                     !test_bit(R5_UPTODATE, &dev->flags) &&
2067                     (dev->toread || (dev->towrite &&
2068                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
2069                      s->syncing || s->expanding ||
2070                      (s->failed >= 1 &&
2071                       (sh->dev[r6s->failed_num[0]].toread ||
2072                        s->to_write)) ||
2073                      (s->failed >= 2 &&
2074                       (sh->dev[r6s->failed_num[1]].toread ||
2075                        s->to_write)))) {
2076                         /* we would like to get this block, possibly
2077                          * by computing it, but we might not be able to
2078                          */
2079                         if ((s->uptodate == disks - 1) &&
2080                             (s->failed && (i == r6s->failed_num[0] ||
2081                                            i == r6s->failed_num[1]))) {
2082                                 pr_debug("Computing stripe %llu block %d\n",
2083                                        (unsigned long long)sh->sector, i);
2084                                 compute_block_1(sh, i, 0);
2085                                 s->uptodate++;
2086                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2087                                 /* Computing 2-failure is *very* expensive; only
2088                                  * do it if failed >= 2
2089                                  */
2090                                 int other;
2091                                 for (other = disks; other--; ) {
2092                                         if (other == i)
2093                                                 continue;
2094                                         if (!test_bit(R5_UPTODATE,
2095                                               &sh->dev[other].flags))
2096                                                 break;
2097                                 }
2098                                 BUG_ON(other < 0);
2099                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2100                                        (unsigned long long)sh->sector,
2101                                        i, other);
2102                                 compute_block_2(sh, i, other);
2103                                 s->uptodate += 2;
2104                         } else if (test_bit(R5_Insync, &dev->flags)) {
2105                                 set_bit(R5_LOCKED, &dev->flags);
2106                                 set_bit(R5_Wantread, &dev->flags);
2107                                 s->locked++;
2108                                 pr_debug("Reading block %d (sync=%d)\n",
2109                                         i, s->syncing);
2110                         }
2111                 }
2112         }
2113         set_bit(STRIPE_HANDLE, &sh->state);
2114 }
2115
2116
2117 /* handle_completed_write_requests
2118  * any written block on an uptodate or failed drive can be returned.
2119  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2120  * never LOCKED, so we don't need to test 'failed' directly.
2121  */
2122 static void handle_completed_write_requests(raid5_conf_t *conf,
2123         struct stripe_head *sh, int disks, struct bio **return_bi)
2124 {
2125         int i;
2126         struct r5dev *dev;
2127
2128         for (i = disks; i--; )
2129                 if (sh->dev[i].written) {
2130                         dev = &sh->dev[i];
2131                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2132                                 test_bit(R5_UPTODATE, &dev->flags)) {
2133                                 /* We can return any write requests */
2134                                 struct bio *wbi, *wbi2;
2135                                 int bitmap_end = 0;
2136                                 pr_debug("Return write for disc %d\n", i);
2137                                 spin_lock_irq(&conf->device_lock);
2138                                 wbi = dev->written;
2139                                 dev->written = NULL;
2140                                 while (wbi && wbi->bi_sector <
2141                                         dev->sector + STRIPE_SECTORS) {
2142                                         wbi2 = r5_next_bio(wbi, dev->sector);
2143                                         if (--wbi->bi_phys_segments == 0) {
2144                                                 md_write_end(conf->mddev);
2145                                                 wbi->bi_next = *return_bi;
2146                                                 *return_bi = wbi;
2147                                         }
2148                                         wbi = wbi2;
2149                                 }
2150                                 if (dev->towrite == NULL)
2151                                         bitmap_end = 1;
2152                                 spin_unlock_irq(&conf->device_lock);
2153                                 if (bitmap_end)
2154                                         bitmap_endwrite(conf->mddev->bitmap,
2155                                                         sh->sector,
2156                                                         STRIPE_SECTORS,
2157                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2158                                                         0);
2159                         }
2160                 }
2161
2162         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2163                 if (atomic_dec_and_test(&conf->pending_full_writes))
2164                         md_wakeup_thread(conf->mddev->thread);
2165 }
2166
2167 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2168                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2169 {
2170         int rmw = 0, rcw = 0, i;
2171         for (i = disks; i--; ) {
2172                 /* would I have to read this buffer for read_modify_write */
2173                 struct r5dev *dev = &sh->dev[i];
2174                 if ((dev->towrite || i == sh->pd_idx) &&
2175                     !test_bit(R5_LOCKED, &dev->flags) &&
2176                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2177                       test_bit(R5_Wantcompute, &dev->flags))) {
2178                         if (test_bit(R5_Insync, &dev->flags))
2179                                 rmw++;
2180                         else
2181                                 rmw += 2*disks;  /* cannot read it */
2182                 }
2183                 /* Would I have to read this buffer for reconstruct_write */
2184                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2185                     !test_bit(R5_LOCKED, &dev->flags) &&
2186                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2187                     test_bit(R5_Wantcompute, &dev->flags))) {
2188                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2189                         else
2190                                 rcw += 2*disks;
2191                 }
2192         }
2193         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2194                 (unsigned long long)sh->sector, rmw, rcw);
2195         set_bit(STRIPE_HANDLE, &sh->state);
2196         if (rmw < rcw && rmw > 0)
2197                 /* prefer read-modify-write, but need to get some data */
2198                 for (i = disks; i--; ) {
2199                         struct r5dev *dev = &sh->dev[i];
2200                         if ((dev->towrite || i == sh->pd_idx) &&
2201                             !test_bit(R5_LOCKED, &dev->flags) &&
2202                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2203                             test_bit(R5_Wantcompute, &dev->flags)) &&
2204                             test_bit(R5_Insync, &dev->flags)) {
2205                                 if (
2206                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2207                                         pr_debug("Read_old block "
2208                                                 "%d for r-m-w\n", i);
2209                                         set_bit(R5_LOCKED, &dev->flags);
2210                                         set_bit(R5_Wantread, &dev->flags);
2211                                         if (!test_and_set_bit(
2212                                                 STRIPE_OP_IO, &sh->ops.pending))
2213                                                 sh->ops.count++;
2214                                         s->locked++;
2215                                 } else {
2216                                         set_bit(STRIPE_DELAYED, &sh->state);
2217                                         set_bit(STRIPE_HANDLE, &sh->state);
2218                                 }
2219                         }
2220                 }
2221         if (rcw <= rmw && rcw > 0)
2222                 /* want reconstruct write, but need to get some data */
2223                 for (i = disks; i--; ) {
2224                         struct r5dev *dev = &sh->dev[i];
2225                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2226                             i != sh->pd_idx &&
2227                             !test_bit(R5_LOCKED, &dev->flags) &&
2228                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2229                             test_bit(R5_Wantcompute, &dev->flags)) &&
2230                             test_bit(R5_Insync, &dev->flags)) {
2231                                 if (
2232                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2233                                         pr_debug("Read_old block "
2234                                                 "%d for Reconstruct\n", i);
2235                                         set_bit(R5_LOCKED, &dev->flags);
2236                                         set_bit(R5_Wantread, &dev->flags);
2237                                         if (!test_and_set_bit(
2238                                                 STRIPE_OP_IO, &sh->ops.pending))
2239                                                 sh->ops.count++;
2240                                         s->locked++;
2241                                 } else {
2242                                         set_bit(STRIPE_DELAYED, &sh->state);
2243                                         set_bit(STRIPE_HANDLE, &sh->state);
2244                                 }
2245                         }
2246                 }
2247         /* now if nothing is locked, and if we have enough data,
2248          * we can start a write request
2249          */
2250         /* since handle_stripe can be called at any time we need to handle the
2251          * case where a compute block operation has been submitted and then a
2252          * subsequent call wants to start a write request.  raid5_run_ops only
2253          * handles the case where compute block and postxor are requested
2254          * simultaneously.  If this is not the case then new writes need to be
2255          * held off until the compute completes.
2256          */
2257         if ((s->req_compute ||
2258             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2259                 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2260                 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2261                 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2262 }
2263
2264 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2265                 struct stripe_head *sh, struct stripe_head_state *s,
2266                 struct r6_state *r6s, int disks)
2267 {
2268         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2269         int qd_idx = r6s->qd_idx;
2270         for (i = disks; i--; ) {
2271                 struct r5dev *dev = &sh->dev[i];
2272                 /* Would I have to read this buffer for reconstruct_write */
2273                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2274                     && i != pd_idx && i != qd_idx
2275                     && (!test_bit(R5_LOCKED, &dev->flags)
2276                             ) &&
2277                     !test_bit(R5_UPTODATE, &dev->flags)) {
2278                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2279                         else {
2280                                 pr_debug("raid6: must_compute: "
2281                                         "disk %d flags=%#lx\n", i, dev->flags);
2282                                 must_compute++;
2283                         }
2284                 }
2285         }
2286         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2287                (unsigned long long)sh->sector, rcw, must_compute);
2288         set_bit(STRIPE_HANDLE, &sh->state);
2289
2290         if (rcw > 0)
2291                 /* want reconstruct write, but need to get some data */
2292                 for (i = disks; i--; ) {
2293                         struct r5dev *dev = &sh->dev[i];
2294                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2295                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2296                             && !test_bit(R5_LOCKED, &dev->flags) &&
2297                             !test_bit(R5_UPTODATE, &dev->flags) &&
2298                             test_bit(R5_Insync, &dev->flags)) {
2299                                 if (
2300                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2301                                         pr_debug("Read_old stripe %llu "
2302                                                 "block %d for Reconstruct\n",
2303                                              (unsigned long long)sh->sector, i);
2304                                         set_bit(R5_LOCKED, &dev->flags);
2305                                         set_bit(R5_Wantread, &dev->flags);
2306                                         s->locked++;
2307                                 } else {
2308                                         pr_debug("Request delayed stripe %llu "
2309                                                 "block %d for Reconstruct\n",
2310                                              (unsigned long long)sh->sector, i);
2311                                         set_bit(STRIPE_DELAYED, &sh->state);
2312                                         set_bit(STRIPE_HANDLE, &sh->state);
2313                                 }
2314                         }
2315                 }
2316         /* now if nothing is locked, and if we have enough data, we can start a
2317          * write request
2318          */
2319         if (s->locked == 0 && rcw == 0 &&
2320             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2321                 if (must_compute > 0) {
2322                         /* We have failed blocks and need to compute them */
2323                         switch (s->failed) {
2324                         case 0:
2325                                 BUG();
2326                         case 1:
2327                                 compute_block_1(sh, r6s->failed_num[0], 0);
2328                                 break;
2329                         case 2:
2330                                 compute_block_2(sh, r6s->failed_num[0],
2331                                                 r6s->failed_num[1]);
2332                                 break;
2333                         default: /* This request should have been failed? */
2334                                 BUG();
2335                         }
2336                 }
2337
2338                 pr_debug("Computing parity for stripe %llu\n",
2339                         (unsigned long long)sh->sector);
2340                 compute_parity6(sh, RECONSTRUCT_WRITE);
2341                 /* now every locked buffer is ready to be written */
2342                 for (i = disks; i--; )
2343                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2344                                 pr_debug("Writing stripe %llu block %d\n",
2345                                        (unsigned long long)sh->sector, i);
2346                                 s->locked++;
2347                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2348                         }
2349                 if (s->locked == disks)
2350                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2351                                 atomic_inc(&conf->pending_full_writes);
2352                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2353                 set_bit(STRIPE_INSYNC, &sh->state);
2354
2355                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2356                         atomic_dec(&conf->preread_active_stripes);
2357                         if (atomic_read(&conf->preread_active_stripes) <
2358                             IO_THRESHOLD)
2359                                 md_wakeup_thread(conf->mddev->thread);
2360                 }
2361         }
2362 }
2363
2364 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2365                                 struct stripe_head_state *s, int disks)
2366 {
2367         int canceled_check = 0;
2368
2369         set_bit(STRIPE_HANDLE, &sh->state);
2370
2371         /* complete a check operation */
2372         if (test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2373                 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2374                 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2375                 if (s->failed == 0) {
2376                         if (sh->ops.zero_sum_result == 0)
2377                                 /* parity is correct (on disc,
2378                                  * not in buffer any more)
2379                                  */
2380                                 set_bit(STRIPE_INSYNC, &sh->state);
2381                         else {
2382                                 conf->mddev->resync_mismatches +=
2383                                         STRIPE_SECTORS;
2384                                 if (test_bit(
2385                                      MD_RECOVERY_CHECK, &conf->mddev->recovery))
2386                                         /* don't try to repair!! */
2387                                         set_bit(STRIPE_INSYNC, &sh->state);
2388                                 else {
2389                                         set_bit(STRIPE_OP_COMPUTE_BLK,
2390                                                 &sh->ops.pending);
2391                                         set_bit(STRIPE_OP_MOD_REPAIR_PD,
2392                                                 &sh->ops.pending);
2393                                         set_bit(R5_Wantcompute,
2394                                                 &sh->dev[sh->pd_idx].flags);
2395                                         sh->ops.target = sh->pd_idx;
2396                                         sh->ops.count++;
2397                                         s->uptodate++;
2398                                 }
2399                         }
2400                 } else
2401                         canceled_check = 1; /* STRIPE_INSYNC is not set */
2402         }
2403
2404         /* start a new check operation if there are no failures, the stripe is
2405          * not insync, and a repair is not in flight
2406          */
2407         if (s->failed == 0 &&
2408             !test_bit(STRIPE_INSYNC, &sh->state) &&
2409             !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2410                 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2411                         BUG_ON(s->uptodate != disks);
2412                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2413                         sh->ops.count++;
2414                         s->uptodate--;
2415                 }
2416         }
2417
2418         /* check if we can clear a parity disk reconstruct */
2419         if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2420             test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2421
2422                 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2423                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2424                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2425                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2426         }
2427
2428
2429         /* Wait for check parity and compute block operations to complete
2430          * before write-back.  If a failure occurred while the check operation
2431          * was in flight we need to cycle this stripe through handle_stripe
2432          * since the parity block may not be uptodate
2433          */
2434         if (!canceled_check && !test_bit(STRIPE_INSYNC, &sh->state) &&
2435             !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2436             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2437                 struct r5dev *dev;
2438                 /* either failed parity check, or recovery is happening */
2439                 if (s->failed == 0)
2440                         s->failed_num = sh->pd_idx;
2441                 dev = &sh->dev[s->failed_num];
2442                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2443                 BUG_ON(s->uptodate != disks);
2444
2445                 set_bit(R5_LOCKED, &dev->flags);
2446                 set_bit(R5_Wantwrite, &dev->flags);
2447                 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2448                         sh->ops.count++;
2449
2450                 clear_bit(STRIPE_DEGRADED, &sh->state);
2451                 s->locked++;
2452                 set_bit(STRIPE_INSYNC, &sh->state);
2453         }
2454 }
2455
2456
2457 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2458                                 struct stripe_head_state *s,
2459                                 struct r6_state *r6s, struct page *tmp_page,
2460                                 int disks)
2461 {
2462         int update_p = 0, update_q = 0;
2463         struct r5dev *dev;
2464         int pd_idx = sh->pd_idx;
2465         int qd_idx = r6s->qd_idx;
2466
2467         set_bit(STRIPE_HANDLE, &sh->state);
2468
2469         BUG_ON(s->failed > 2);
2470         BUG_ON(s->uptodate < disks);
2471         /* Want to check and possibly repair P and Q.
2472          * However there could be one 'failed' device, in which
2473          * case we can only check one of them, possibly using the
2474          * other to generate missing data
2475          */
2476
2477         /* If !tmp_page, we cannot do the calculations,
2478          * but as we have set STRIPE_HANDLE, we will soon be called
2479          * by stripe_handle with a tmp_page - just wait until then.
2480          */
2481         if (tmp_page) {
2482                 if (s->failed == r6s->q_failed) {
2483                         /* The only possible failed device holds 'Q', so it
2484                          * makes sense to check P (If anything else were failed,
2485                          * we would have used P to recreate it).
2486                          */
2487                         compute_block_1(sh, pd_idx, 1);
2488                         if (!page_is_zero(sh->dev[pd_idx].page)) {
2489                                 compute_block_1(sh, pd_idx, 0);
2490                                 update_p = 1;
2491                         }
2492                 }
2493                 if (!r6s->q_failed && s->failed < 2) {
2494                         /* q is not failed, and we didn't use it to generate
2495                          * anything, so it makes sense to check it
2496                          */
2497                         memcpy(page_address(tmp_page),
2498                                page_address(sh->dev[qd_idx].page),
2499                                STRIPE_SIZE);
2500                         compute_parity6(sh, UPDATE_PARITY);
2501                         if (memcmp(page_address(tmp_page),
2502                                    page_address(sh->dev[qd_idx].page),
2503                                    STRIPE_SIZE) != 0) {
2504                                 clear_bit(STRIPE_INSYNC, &sh->state);
2505                                 update_q = 1;
2506                         }
2507                 }
2508                 if (update_p || update_q) {
2509                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2510                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2511                                 /* don't try to repair!! */
2512                                 update_p = update_q = 0;
2513                 }
2514
2515                 /* now write out any block on a failed drive,
2516                  * or P or Q if they need it
2517                  */
2518
2519                 if (s->failed == 2) {
2520                         dev = &sh->dev[r6s->failed_num[1]];
2521                         s->locked++;
2522                         set_bit(R5_LOCKED, &dev->flags);
2523                         set_bit(R5_Wantwrite, &dev->flags);
2524                 }
2525                 if (s->failed >= 1) {
2526                         dev = &sh->dev[r6s->failed_num[0]];
2527                         s->locked++;
2528                         set_bit(R5_LOCKED, &dev->flags);
2529                         set_bit(R5_Wantwrite, &dev->flags);
2530                 }
2531
2532                 if (update_p) {
2533                         dev = &sh->dev[pd_idx];
2534                         s->locked++;
2535                         set_bit(R5_LOCKED, &dev->flags);
2536                         set_bit(R5_Wantwrite, &dev->flags);
2537                 }
2538                 if (update_q) {
2539                         dev = &sh->dev[qd_idx];
2540                         s->locked++;
2541                         set_bit(R5_LOCKED, &dev->flags);
2542                         set_bit(R5_Wantwrite, &dev->flags);
2543                 }
2544                 clear_bit(STRIPE_DEGRADED, &sh->state);
2545
2546                 set_bit(STRIPE_INSYNC, &sh->state);
2547         }
2548 }
2549
2550 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2551                                 struct r6_state *r6s)
2552 {
2553         int i;
2554
2555         /* We have read all the blocks in this stripe and now we need to
2556          * copy some of them into a target stripe for expand.
2557          */
2558         struct dma_async_tx_descriptor *tx = NULL;
2559         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2560         for (i = 0; i < sh->disks; i++)
2561                 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2562                         int dd_idx, pd_idx, j;
2563                         struct stripe_head *sh2;
2564
2565                         sector_t bn = compute_blocknr(sh, i);
2566                         sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2567                                                 conf->raid_disks -
2568                                                 conf->max_degraded, &dd_idx,
2569                                                 &pd_idx, conf);
2570                         sh2 = get_active_stripe(conf, s, conf->raid_disks,
2571                                                 pd_idx, 1);
2572                         if (sh2 == NULL)
2573                                 /* so far only the early blocks of this stripe
2574                                  * have been requested.  When later blocks
2575                                  * get requested, we will try again
2576                                  */
2577                                 continue;
2578                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2579                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2580                                 /* must have already done this block */
2581                                 release_stripe(sh2);
2582                                 continue;
2583                         }
2584
2585                         /* place all the copies on one channel */
2586                         tx = async_memcpy(sh2->dev[dd_idx].page,
2587                                 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2588                                 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2589
2590                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2591                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2592                         for (j = 0; j < conf->raid_disks; j++)
2593                                 if (j != sh2->pd_idx &&
2594                                     (!r6s || j != raid6_next_disk(sh2->pd_idx,
2595                                                                  sh2->disks)) &&
2596                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2597                                         break;
2598                         if (j == conf->raid_disks) {
2599                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2600                                 set_bit(STRIPE_HANDLE, &sh2->state);
2601                         }
2602                         release_stripe(sh2);
2603
2604                 }
2605         /* done submitting copies, wait for them to complete */
2606         if (tx) {
2607                 async_tx_ack(tx);
2608                 dma_wait_for_async_tx(tx);
2609         }
2610 }
2611
2612
2613 /*
2614  * handle_stripe - do things to a stripe.
2615  *
2616  * We lock the stripe and then examine the state of various bits
2617  * to see what needs to be done.
2618  * Possible results:
2619  *    return some read request which now have data
2620  *    return some write requests which are safely on disc
2621  *    schedule a read on some buffers
2622  *    schedule a write of some buffers
2623  *    return confirmation of parity correctness
2624  *
2625  * buffers are taken off read_list or write_list, and bh_cache buffers
2626  * get BH_Lock set before the stripe lock is released.
2627  *
2628  */
2629
2630 static void handle_stripe5(struct stripe_head *sh)
2631 {
2632         raid5_conf_t *conf = sh->raid_conf;
2633         int disks = sh->disks, i;
2634         struct bio *return_bi = NULL;
2635         struct stripe_head_state s;
2636         struct r5dev *dev;
2637         unsigned long pending = 0;
2638         mdk_rdev_t *blocked_rdev = NULL;
2639         int prexor;
2640
2641         memset(&s, 0, sizeof(s));
2642         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2643                 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2644                 atomic_read(&sh->count), sh->pd_idx,
2645                 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2646
2647         spin_lock(&sh->lock);
2648         clear_bit(STRIPE_HANDLE, &sh->state);
2649         clear_bit(STRIPE_DELAYED, &sh->state);
2650
2651         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2652         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2653         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2654         /* Now to look around and see what can be done */
2655
2656         /* clean-up completed biofill operations */
2657         if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2658                 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2659                 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2660                 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2661         }
2662
2663         rcu_read_lock();
2664         for (i=disks; i--; ) {
2665                 mdk_rdev_t *rdev;
2666                 struct r5dev *dev = &sh->dev[i];
2667                 clear_bit(R5_Insync, &dev->flags);
2668
2669                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2670                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2671                         dev->towrite, dev->written);
2672
2673                 /* maybe we can request a biofill operation
2674                  *
2675                  * new wantfill requests are only permitted while
2676                  * STRIPE_OP_BIOFILL is clear
2677                  */
2678                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2679                         !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2680                         set_bit(R5_Wantfill, &dev->flags);
2681
2682                 /* now count some things */
2683                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2684                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2685                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2686
2687                 if (test_bit(R5_Wantfill, &dev->flags))
2688                         s.to_fill++;
2689                 else if (dev->toread)
2690                         s.to_read++;
2691                 if (dev->towrite) {
2692                         s.to_write++;
2693                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2694                                 s.non_overwrite++;
2695                 }
2696                 if (dev->written)
2697                         s.written++;
2698                 rdev = rcu_dereference(conf->disks[i].rdev);
2699                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2700                         blocked_rdev = rdev;
2701                         atomic_inc(&rdev->nr_pending);
2702                         break;
2703                 }
2704                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2705                         /* The ReadError flag will just be confusing now */
2706                         clear_bit(R5_ReadError, &dev->flags);
2707                         clear_bit(R5_ReWrite, &dev->flags);
2708                 }
2709                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2710                     || test_bit(R5_ReadError, &dev->flags)) {
2711                         s.failed++;
2712                         s.failed_num = i;
2713                 } else
2714                         set_bit(R5_Insync, &dev->flags);
2715         }
2716         rcu_read_unlock();
2717
2718         if (unlikely(blocked_rdev)) {
2719                 set_bit(STRIPE_HANDLE, &sh->state);
2720                 goto unlock;
2721         }
2722
2723         if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2724                 sh->ops.count++;
2725
2726         pr_debug("locked=%d uptodate=%d to_read=%d"
2727                 " to_write=%d failed=%d failed_num=%d\n",
2728                 s.locked, s.uptodate, s.to_read, s.to_write,
2729                 s.failed, s.failed_num);
2730         /* check if the array has lost two devices and, if so, some requests might
2731          * need to be failed
2732          */
2733         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2734                 handle_requests_to_failed_array(conf, sh, &s, disks,
2735                                                 &return_bi);
2736         if (s.failed > 1 && s.syncing) {
2737                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2738                 clear_bit(STRIPE_SYNCING, &sh->state);
2739                 s.syncing = 0;
2740         }
2741
2742         /* might be able to return some write requests if the parity block
2743          * is safe, or on a failed drive
2744          */
2745         dev = &sh->dev[sh->pd_idx];
2746         if ( s.written &&
2747              ((test_bit(R5_Insync, &dev->flags) &&
2748                !test_bit(R5_LOCKED, &dev->flags) &&
2749                test_bit(R5_UPTODATE, &dev->flags)) ||
2750                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2751                 handle_completed_write_requests(conf, sh, disks, &return_bi);
2752
2753         /* Now we might consider reading some blocks, either to check/generate
2754          * parity, or to satisfy requests
2755          * or to load a block that is being partially written.
2756          */
2757         if (s.to_read || s.non_overwrite ||
2758             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2759             test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2760                 handle_issuing_new_read_requests5(sh, &s, disks);
2761
2762         /* Now we check to see if any write operations have recently
2763          * completed
2764          */
2765
2766         /* leave prexor set until postxor is done, allows us to distinguish
2767          * a rmw from a rcw during biodrain
2768          */
2769         prexor = 0;
2770         if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2771                 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2772
2773                 prexor = 1;
2774                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2775                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2776                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2777
2778                 for (i = disks; i--; )
2779                         clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2780         }
2781
2782         /* if only POSTXOR is set then this is an 'expand' postxor */
2783         if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2784                 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2785
2786                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2787                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2788                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2789
2790                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2791                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2792                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2793
2794                 /* All the 'written' buffers and the parity block are ready to
2795                  * be written back to disk
2796                  */
2797                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2798                 for (i = disks; i--; ) {
2799                         dev = &sh->dev[i];
2800                         if (test_bit(R5_LOCKED, &dev->flags) &&
2801                                 (i == sh->pd_idx || dev->written)) {
2802                                 pr_debug("Writing block %d\n", i);
2803                                 set_bit(R5_Wantwrite, &dev->flags);
2804                                 if (!test_and_set_bit(
2805                                     STRIPE_OP_IO, &sh->ops.pending))
2806                                         sh->ops.count++;
2807                                 if (prexor)
2808                                         continue;
2809                                 if (!test_bit(R5_Insync, &dev->flags) ||
2810                                     (i == sh->pd_idx && s.failed == 0))
2811                                         set_bit(STRIPE_INSYNC, &sh->state);
2812                         }
2813                 }
2814                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2815                         atomic_dec(&conf->preread_active_stripes);
2816                         if (atomic_read(&conf->preread_active_stripes) <
2817                                 IO_THRESHOLD)
2818                                 md_wakeup_thread(conf->mddev->thread);
2819                 }
2820         }
2821
2822         /* Now to consider new write requests and what else, if anything
2823          * should be read.  We do not handle new writes when:
2824          * 1/ A 'write' operation (copy+xor) is already in flight.
2825          * 2/ A 'check' operation is in flight, as it may clobber the parity
2826          *    block.
2827          */
2828         if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2829                           !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2830                 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2831
2832         /* maybe we need to check and possibly fix the parity for this stripe
2833          * Any reads will already have been scheduled, so we just see if enough
2834          * data is available.  The parity check is held off while parity
2835          * dependent operations are in flight.
2836          */
2837         if ((s.syncing && s.locked == 0 &&
2838              !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2839              !test_bit(STRIPE_INSYNC, &sh->state)) ||
2840               test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2841               test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2842                 handle_parity_checks5(conf, sh, &s, disks);
2843
2844         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2845                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2846                 clear_bit(STRIPE_SYNCING, &sh->state);
2847         }
2848
2849         /* If the failed drive is just a ReadError, then we might need to progress
2850          * the repair/check process
2851          */
2852         if (s.failed == 1 && !conf->mddev->ro &&
2853             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2854             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2855             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2856                 ) {
2857                 dev = &sh->dev[s.failed_num];
2858                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2859                         set_bit(R5_Wantwrite, &dev->flags);
2860                         if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2861                                 sh->ops.count++;
2862                         set_bit(R5_ReWrite, &dev->flags);
2863                         set_bit(R5_LOCKED, &dev->flags);
2864                         s.locked++;
2865                 } else {
2866                         /* let's read it back */
2867                         set_bit(R5_Wantread, &dev->flags);
2868                         if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2869                                 sh->ops.count++;
2870                         set_bit(R5_LOCKED, &dev->flags);
2871                         s.locked++;
2872                 }
2873         }
2874
2875         /* Finish postxor operations initiated by the expansion
2876          * process
2877          */
2878         if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2879                 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2880
2881                 clear_bit(STRIPE_EXPANDING, &sh->state);
2882
2883                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2884                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2885                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2886
2887                 for (i = conf->raid_disks; i--; ) {
2888                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2889                         set_bit(R5_LOCKED, &dev->flags);
2890                         s.locked++;
2891                         if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2892                                 sh->ops.count++;
2893                 }
2894         }
2895
2896         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2897                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2898                 /* Need to write out all blocks after computing parity */
2899                 sh->disks = conf->raid_disks;
2900                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2901                         conf->raid_disks);
2902                 s.locked += handle_write_operations5(sh, 1, 1);
2903         } else if (s.expanded &&
2904                    s.locked == 0 &&
2905                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2906                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2907                 atomic_dec(&conf->reshape_stripes);
2908                 wake_up(&conf->wait_for_overlap);
2909                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2910         }
2911
2912         if (s.expanding && s.locked == 0 &&
2913             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2914                 handle_stripe_expansion(conf, sh, NULL);
2915
2916         if (sh->ops.count)
2917                 pending = get_stripe_work(sh);
2918
2919  unlock:
2920         spin_unlock(&sh->lock);
2921
2922         /* wait for this device to become unblocked */
2923         if (unlikely(blocked_rdev))
2924                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2925
2926         if (pending)
2927                 raid5_run_ops(sh, pending);
2928
2929         return_io(return_bi);
2930
2931 }
2932
2933 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2934 {
2935         raid6_conf_t *conf = sh->raid_conf;
2936         int disks = sh->disks;
2937         struct bio *return_bi = NULL;
2938         int i, pd_idx = sh->pd_idx;
2939         struct stripe_head_state s;
2940         struct r6_state r6s;
2941         struct r5dev *dev, *pdev, *qdev;
2942         mdk_rdev_t *blocked_rdev = NULL;
2943
2944         r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2945         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2946                 "pd_idx=%d, qd_idx=%d\n",
2947                (unsigned long long)sh->sector, sh->state,
2948                atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2949         memset(&s, 0, sizeof(s));
2950
2951         spin_lock(&sh->lock);
2952         clear_bit(STRIPE_HANDLE, &sh->state);
2953         clear_bit(STRIPE_DELAYED, &sh->state);
2954
2955         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2956         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2957         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2958         /* Now to look around and see what can be done */
2959
2960         rcu_read_lock();
2961         for (i=disks; i--; ) {
2962                 mdk_rdev_t *rdev;
2963                 dev = &sh->dev[i];
2964                 clear_bit(R5_Insync, &dev->flags);
2965
2966                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2967                         i, dev->flags, dev->toread, dev->towrite, dev->written);
2968                 /* maybe we can reply to a read */
2969                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2970                         struct bio *rbi, *rbi2;
2971                         pr_debug("Return read for disc %d\n", i);
2972                         spin_lock_irq(&conf->device_lock);
2973                         rbi = dev->toread;
2974                         dev->toread = NULL;
2975                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
2976                                 wake_up(&conf->wait_for_overlap);
2977                         spin_unlock_irq(&conf->device_lock);
2978                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2979                                 copy_data(0, rbi, dev->page, dev->sector);
2980                                 rbi2 = r5_next_bio(rbi, dev->sector);
2981                                 spin_lock_irq(&conf->device_lock);
2982                                 if (--rbi->bi_phys_segments == 0) {
2983                                         rbi->bi_next = return_bi;
2984                                         return_bi = rbi;
2985                                 }
2986                                 spin_unlock_irq(&conf->device_lock);
2987                                 rbi = rbi2;
2988                         }
2989                 }
2990
2991                 /* now count some things */
2992                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2993                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2994
2995
2996                 if (dev->toread)
2997                         s.to_read++;
2998                 if (dev->towrite) {
2999                         s.to_write++;
3000                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3001                                 s.non_overwrite++;
3002                 }
3003                 if (dev->written)
3004                         s.written++;
3005                 rdev = rcu_dereference(conf->disks[i].rdev);
3006                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3007                         blocked_rdev = rdev;
3008                         atomic_inc(&rdev->nr_pending);
3009                         break;
3010                 }
3011                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3012                         /* The ReadError flag will just be confusing now */
3013                         clear_bit(R5_ReadError, &dev->flags);
3014                         clear_bit(R5_ReWrite, &dev->flags);
3015                 }
3016                 if (!rdev || !test_bit(In_sync, &rdev->flags)
3017                     || test_bit(R5_ReadError, &dev->flags)) {
3018                         if (s.failed < 2)
3019                                 r6s.failed_num[s.failed] = i;
3020                         s.failed++;
3021                 } else
3022                         set_bit(R5_Insync, &dev->flags);
3023         }
3024         rcu_read_unlock();
3025
3026         if (unlikely(blocked_rdev)) {
3027                 set_bit(STRIPE_HANDLE, &sh->state);
3028                 goto unlock;
3029         }
3030         pr_debug("locked=%d uptodate=%d to_read=%d"
3031                " to_write=%d failed=%d failed_num=%d,%d\n",
3032                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3033                r6s.failed_num[0], r6s.failed_num[1]);
3034         /* check if the array has lost >2 devices and, if so, some requests
3035          * might need to be failed
3036          */
3037         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3038                 handle_requests_to_failed_array(conf, sh, &s, disks,
3039                                                 &return_bi);
3040         if (s.failed > 2 && s.syncing) {
3041                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3042                 clear_bit(STRIPE_SYNCING, &sh->state);
3043                 s.syncing = 0;
3044         }
3045
3046         /*
3047          * might be able to return some write requests if the parity blocks
3048          * are safe, or on a failed drive
3049          */
3050         pdev = &sh->dev[pd_idx];
3051         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3052                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3053         qdev = &sh->dev[r6s.qd_idx];
3054         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3055                 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3056
3057         if ( s.written &&
3058              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3059                              && !test_bit(R5_LOCKED, &pdev->flags)
3060                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3061              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3062                              && !test_bit(R5_LOCKED, &qdev->flags)
3063                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3064                 handle_completed_write_requests(conf, sh, disks, &return_bi);
3065
3066         /* Now we might consider reading some blocks, either to check/generate
3067          * parity, or to satisfy requests
3068          * or to load a block that is being partially written.
3069          */
3070         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3071             (s.syncing && (s.uptodate < disks)) || s.expanding)
3072                 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3073
3074         /* now to consider writing and what else, if anything should be read */
3075         if (s.to_write)
3076                 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3077
3078         /* maybe we need to check and possibly fix the parity for this stripe
3079          * Any reads will already have been scheduled, so we just see if enough
3080          * data is available
3081          */
3082         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3083                 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3084
3085         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3086                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3087                 clear_bit(STRIPE_SYNCING, &sh->state);
3088         }
3089
3090         /* If the failed drives are just a ReadError, then we might need
3091          * to progress the repair/check process
3092          */
3093         if (s.failed <= 2 && !conf->mddev->ro)
3094                 for (i = 0; i < s.failed; i++) {
3095                         dev = &sh->dev[r6s.failed_num[i]];
3096                         if (test_bit(R5_ReadError, &dev->flags)
3097                             && !test_bit(R5_LOCKED, &dev->flags)
3098                             && test_bit(R5_UPTODATE, &dev->flags)
3099                                 ) {
3100                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3101                                         set_bit(R5_Wantwrite, &dev->flags);
3102                                         set_bit(R5_ReWrite, &dev->flags);
3103                                         set_bit(R5_LOCKED, &dev->flags);
3104                                 } else {
3105                                         /* let's read it back */
3106                                         set_bit(R5_Wantread, &dev->flags);
3107                                         set_bit(R5_LOCKED, &dev->flags);
3108                                 }
3109                         }
3110                 }
3111
3112         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3113                 /* Need to write out all blocks after computing P&Q */
3114                 sh->disks = conf->raid_disks;
3115                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3116                                              conf->raid_disks);
3117                 compute_parity6(sh, RECONSTRUCT_WRITE);
3118                 for (i = conf->raid_disks ; i-- ;  ) {
3119                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3120                         s.locked++;
3121                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3122                 }
3123                 clear_bit(STRIPE_EXPANDING, &sh->state);
3124         } else if (s.expanded) {
3125                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3126                 atomic_dec(&conf->reshape_stripes);
3127                 wake_up(&conf->wait_for_overlap);
3128                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3129         }
3130
3131         if (s.expanding && s.locked == 0 &&
3132             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
3133                 handle_stripe_expansion(conf, sh, &r6s);
3134
3135  unlock:
3136         spin_unlock(&sh->lock);
3137
3138         /* wait for this device to become unblocked */
3139         if (unlikely(blocked_rdev))
3140                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3141
3142         return_io(return_bi);
3143
3144         for (i=disks; i-- ;) {
3145                 int rw;
3146                 struct bio *bi;
3147                 mdk_rdev_t *rdev;
3148                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3149                         rw = WRITE;
3150                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3151                         rw = READ;
3152                 else
3153                         continue;
3154
3155                 set_bit(STRIPE_IO_STARTED, &sh->state);
3156
3157                 bi = &sh->dev[i].req;
3158
3159                 bi->bi_rw = rw;
3160                 if (rw == WRITE)
3161                         bi->bi_end_io = raid5_end_write_request;
3162                 else
3163                         bi->bi_end_io = raid5_end_read_request;
3164
3165                 rcu_read_lock();
3166                 rdev = rcu_dereference(conf->disks[i].rdev);
3167                 if (rdev && test_bit(Faulty, &rdev->flags))
3168                         rdev = NULL;
3169                 if (rdev)
3170                         atomic_inc(&rdev->nr_pending);
3171                 rcu_read_unlock();
3172
3173                 if (rdev) {
3174                         if (s.syncing || s.expanding || s.expanded)
3175                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3176
3177                         bi->bi_bdev = rdev->bdev;
3178                         pr_debug("for %llu schedule op %ld on disc %d\n",
3179                                 (unsigned long long)sh->sector, bi->bi_rw, i);
3180                         atomic_inc(&sh->count);
3181                         bi->bi_sector = sh->sector + rdev->data_offset;
3182                         bi->bi_flags = 1 << BIO_UPTODATE;
3183                         bi->bi_vcnt = 1;
3184                         bi->bi_max_vecs = 1;
3185                         bi->bi_idx = 0;
3186                         bi->bi_io_vec = &sh->dev[i].vec;
3187                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3188                         bi->bi_io_vec[0].bv_offset = 0;
3189                         bi->bi_size = STRIPE_SIZE;
3190                         bi->bi_next = NULL;
3191                         if (rw == WRITE &&
3192                             test_bit(R5_ReWrite, &sh->dev[i].flags))
3193                                 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3194                         generic_make_request(bi);
3195                 } else {
3196                         if (rw == WRITE)
3197                                 set_bit(STRIPE_DEGRADED, &sh->state);
3198                         pr_debug("skip op %ld on disc %d for sector %llu\n",
3199                                 bi->bi_rw, i, (unsigned long long)sh->sector);
3200                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
3201                         set_bit(STRIPE_HANDLE, &sh->state);
3202                 }
3203         }
3204 }
3205
3206 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3207 {
3208         if (sh->raid_conf->level == 6)
3209                 handle_stripe6(sh, tmp_page);
3210         else
3211                 handle_stripe5(sh);
3212 }
3213
3214
3215
3216 static void raid5_activate_delayed(raid5_conf_t *conf)
3217 {
3218         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3219                 while (!list_empty(&conf->delayed_list)) {
3220                         struct list_head *l = conf->delayed_list.next;
3221                         struct stripe_head *sh;
3222                         sh = list_entry(l, struct stripe_head, lru);
3223                         list_del_init(l);
3224                         clear_bit(STRIPE_DELAYED, &sh->state);
3225                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3226                                 atomic_inc(&conf->preread_active_stripes);
3227                         list_add_tail(&sh->lru, &conf->hold_list);
3228                 }
3229         } else
3230                 blk_plug_device(conf->mddev->queue);
3231 }
3232
3233 static void activate_bit_delay(raid5_conf_t *conf)
3234 {
3235         /* device_lock is held */
3236         struct list_head head;
3237         list_add(&head, &conf->bitmap_list);
3238         list_del_init(&conf->bitmap_list);
3239         while (!list_empty(&head)) {
3240                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3241                 list_del_init(&sh->lru);
3242                 atomic_inc(&sh->count);
3243                 __release_stripe(conf, sh);
3244         }
3245 }
3246
3247 static void unplug_slaves(mddev_t *mddev)
3248 {
3249         raid5_conf_t *conf = mddev_to_conf(mddev);
3250         int i;
3251
3252         rcu_read_lock();
3253         for (i=0; i<mddev->raid_disks; i++) {
3254                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3255                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3256                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3257
3258                         atomic_inc(&rdev->nr_pending);
3259                         rcu_read_unlock();
3260
3261                         blk_unplug(r_queue);
3262
3263                         rdev_dec_pending(rdev, mddev);
3264                         rcu_read_lock();
3265                 }
3266         }
3267         rcu_read_unlock();
3268 }
3269
3270 static void raid5_unplug_device(struct request_queue *q)
3271 {
3272         mddev_t *mddev = q->queuedata;
3273         raid5_conf_t *conf = mddev_to_conf(mddev);
3274         unsigned long flags;
3275
3276         spin_lock_irqsave(&conf->device_lock, flags);
3277
3278         if (blk_remove_plug(q)) {
3279                 conf->seq_flush++;
3280                 raid5_activate_delayed(conf);
3281         }
3282         md_wakeup_thread(mddev->thread);
3283
3284         spin_unlock_irqrestore(&conf->device_lock, flags);
3285
3286         unplug_slaves(mddev);
3287 }
3288
3289 static int raid5_congested(void *data, int bits)
3290 {
3291         mddev_t *mddev = data;
3292         raid5_conf_t *conf = mddev_to_conf(mddev);
3293
3294         /* No difference between reads and writes.  Just check
3295          * how busy the stripe_cache is
3296          */
3297         if (conf->inactive_blocked)
3298                 return 1;
3299         if (conf->quiesce)
3300                 return 1;
3301         if (list_empty_careful(&conf->inactive_list))
3302                 return 1;
3303
3304         return 0;
3305 }
3306
3307 /* We want read requests to align with chunks where possible,
3308  * but write requests don't need to.
3309  */
3310 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3311 {
3312         mddev_t *mddev = q->queuedata;
3313         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3314         int max;
3315         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3316         unsigned int bio_sectors = bio->bi_size >> 9;
3317
3318         if (bio_data_dir(bio) == WRITE)
3319                 return biovec->bv_len; /* always allow writes to be mergeable */
3320
3321         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3322         if (max < 0) max = 0;
3323         if (max <= biovec->bv_len && bio_sectors == 0)
3324                 return biovec->bv_len;
3325         else
3326                 return max;
3327 }
3328
3329
3330 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3331 {
3332         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3333         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3334         unsigned int bio_sectors = bio->bi_size >> 9;
3335
3336         return  chunk_sectors >=
3337                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3338 }
3339
3340 /*
3341  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3342  *  later sampled by raid5d.
3343  */
3344 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3345 {
3346         unsigned long flags;
3347
3348         spin_lock_irqsave(&conf->device_lock, flags);
3349
3350         bi->bi_next = conf->retry_read_aligned_list;
3351         conf->retry_read_aligned_list = bi;
3352
3353         spin_unlock_irqrestore(&conf->device_lock, flags);
3354         md_wakeup_thread(conf->mddev->thread);
3355 }
3356
3357
3358 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3359 {
3360         struct bio *bi;
3361
3362         bi = conf->retry_read_aligned;
3363         if (bi) {
3364                 conf->retry_read_aligned = NULL;
3365                 return bi;
3366         }
3367         bi = conf->retry_read_aligned_list;
3368         if(bi) {
3369                 conf->retry_read_aligned_list = bi->bi_next;
3370                 bi->bi_next = NULL;
3371                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3372                 bi->bi_hw_segments = 0; /* count of processed stripes */
3373         }
3374
3375         return bi;
3376 }
3377
3378
3379 /*
3380  *  The "raid5_align_endio" should check if the read succeeded and if it
3381  *  did, call bio_endio on the original bio (having bio_put the new bio
3382  *  first).
3383  *  If the read failed..
3384  */
3385 static void raid5_align_endio(struct bio *bi, int error)
3386 {
3387         struct bio* raid_bi  = bi->bi_private;
3388         mddev_t *mddev;
3389         raid5_conf_t *conf;
3390         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3391         mdk_rdev_t *rdev;
3392
3393         bio_put(bi);
3394
3395         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3396         conf = mddev_to_conf(mddev);
3397         rdev = (void*)raid_bi->bi_next;
3398         raid_bi->bi_next = NULL;
3399
3400         rdev_dec_pending(rdev, conf->mddev);
3401
3402         if (!error && uptodate) {
3403                 bio_endio(raid_bi, 0);
3404                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3405                         wake_up(&conf->wait_for_stripe);
3406                 return;
3407         }
3408
3409
3410         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3411
3412         add_bio_to_retry(raid_bi, conf);
3413 }
3414
3415 static int bio_fits_rdev(struct bio *bi)
3416 {
3417         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3418
3419         if ((bi->bi_size>>9) > q->max_sectors)
3420                 return 0;
3421         blk_recount_segments(q, bi);
3422         if (bi->bi_phys_segments > q->max_phys_segments ||
3423             bi->bi_hw_segments > q->max_hw_segments)
3424                 return 0;
3425
3426         if (q->merge_bvec_fn)
3427                 /* it's too hard to apply the merge_bvec_fn at this stage,
3428                  * just just give up
3429                  */
3430                 return 0;
3431
3432         return 1;
3433 }
3434
3435
3436 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3437 {
3438         mddev_t *mddev = q->queuedata;
3439         raid5_conf_t *conf = mddev_to_conf(mddev);
3440         const unsigned int raid_disks = conf->raid_disks;
3441         const unsigned int data_disks = raid_disks - conf->max_degraded;
3442         unsigned int dd_idx, pd_idx;
3443         struct bio* align_bi;
3444         mdk_rdev_t *rdev;
3445
3446         if (!in_chunk_boundary(mddev, raid_bio)) {
3447                 pr_debug("chunk_aligned_read : non aligned\n");
3448                 return 0;
3449         }
3450         /*
3451          * use bio_clone to make a copy of the bio
3452          */
3453         align_bi = bio_clone(raid_bio, GFP_NOIO);
3454         if (!align_bi)
3455                 return 0;
3456         /*
3457          *   set bi_end_io to a new function, and set bi_private to the
3458          *     original bio.
3459          */
3460         align_bi->bi_end_io  = raid5_align_endio;
3461         align_bi->bi_private = raid_bio;
3462         /*
3463          *      compute position
3464          */
3465         align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
3466                                         raid_disks,
3467                                         data_disks,
3468                                         &dd_idx,
3469                                         &pd_idx,
3470                                         conf);
3471
3472         rcu_read_lock();
3473         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3474         if (rdev && test_bit(In_sync, &rdev->flags)) {
3475                 atomic_inc(&rdev->nr_pending);
3476                 rcu_read_unlock();
3477                 raid_bio->bi_next = (void*)rdev;
3478                 align_bi->bi_bdev =  rdev->bdev;
3479                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3480                 align_bi->bi_sector += rdev->data_offset;
3481
3482                 if (!bio_fits_rdev(align_bi)) {
3483                         /* too big in some way */
3484                         bio_put(align_bi);
3485                         rdev_dec_pending(rdev, mddev);
3486                         return 0;
3487                 }
3488
3489                 spin_lock_irq(&conf->device_lock);
3490                 wait_event_lock_irq(conf->wait_for_stripe,
3491                                     conf->quiesce == 0,
3492                                     conf->device_lock, /* nothing */);
3493                 atomic_inc(&conf->active_aligned_reads);
3494                 spin_unlock_irq(&conf->device_lock);
3495
3496                 generic_make_request(align_bi);
3497                 return 1;
3498         } else {
3499                 rcu_read_unlock();
3500                 bio_put(align_bi);
3501                 return 0;
3502         }
3503 }
3504
3505 /* __get_priority_stripe - get the next stripe to process
3506  *
3507  * Full stripe writes are allowed to pass preread active stripes up until
3508  * the bypass_threshold is exceeded.  In general the bypass_count
3509  * increments when the handle_list is handled before the hold_list; however, it
3510  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3511  * stripe with in flight i/o.  The bypass_count will be reset when the
3512  * head of the hold_list has changed, i.e. the head was promoted to the
3513  * handle_list.
3514  */
3515 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3516 {
3517         struct stripe_head *sh;
3518
3519         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3520                   __func__,
3521                   list_empty(&conf->handle_list) ? "empty" : "busy",
3522                   list_empty(&conf->hold_list) ? "empty" : "busy",
3523                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3524
3525         if (!list_empty(&conf->handle_list)) {
3526                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3527
3528                 if (list_empty(&conf->hold_list))
3529                         conf->bypass_count = 0;
3530                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3531                         if (conf->hold_list.next == conf->last_hold)
3532                                 conf->bypass_count++;
3533                         else {
3534                                 conf->last_hold = conf->hold_list.next;
3535                                 conf->bypass_count -= conf->bypass_threshold;
3536                                 if (conf->bypass_count < 0)
3537                                         conf->bypass_count = 0;
3538                         }
3539                 }
3540         } else if (!list_empty(&conf->hold_list) &&
3541                    ((conf->bypass_threshold &&
3542                      conf->bypass_count > conf->bypass_threshold) ||
3543                     atomic_read(&conf->pending_full_writes) == 0)) {
3544                 sh = list_entry(conf->hold_list.next,
3545                                 typeof(*sh), lru);
3546                 conf->bypass_count -= conf->bypass_threshold;
3547                 if (conf->bypass_count < 0)
3548                         conf->bypass_count = 0;
3549         } else
3550                 return NULL;
3551
3552         list_del_init(&sh->lru);
3553         atomic_inc(&sh->count);
3554         BUG_ON(atomic_read(&sh->count) != 1);
3555         return sh;
3556 }
3557
3558 static int make_request(struct request_queue *q, struct bio * bi)
3559 {
3560         mddev_t *mddev = q->queuedata;
3561         raid5_conf_t *conf = mddev_to_conf(mddev);
3562         unsigned int dd_idx, pd_idx;
3563         sector_t new_sector;
3564         sector_t logical_sector, last_sector;
3565         struct stripe_head *sh;
3566         const int rw = bio_data_dir(bi);
3567         int remaining;
3568
3569         if (unlikely(bio_barrier(bi))) {
3570                 bio_endio(bi, -EOPNOTSUPP);
3571                 return 0;
3572         }
3573
3574         md_write_start(mddev, bi);
3575
3576         disk_stat_inc(mddev->gendisk, ios[rw]);
3577         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3578
3579         if (rw == READ &&
3580              mddev->reshape_position == MaxSector &&
3581              chunk_aligned_read(q,bi))
3582                 return 0;
3583
3584         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3585         last_sector = bi->bi_sector + (bi->bi_size>>9);
3586         bi->bi_next = NULL;
3587         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3588
3589         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3590                 DEFINE_WAIT(w);
3591                 int disks, data_disks;
3592
3593         retry:
3594                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3595                 if (likely(conf->expand_progress == MaxSector))
3596                         disks = conf->raid_disks;
3597                 else {
3598                         /* spinlock is needed as expand_progress may be
3599                          * 64bit on a 32bit platform, and so it might be
3600                          * possible to see a half-updated value
3601                          * Ofcourse expand_progress could change after
3602                          * the lock is dropped, so once we get a reference
3603                          * to the stripe that we think it is, we will have
3604                          * to check again.
3605                          */
3606                         spin_lock_irq(&conf->device_lock);
3607                         disks = conf->raid_disks;
3608                         if (logical_sector >= conf->expand_progress)
3609                                 disks = conf->previous_raid_disks;
3610                         else {
3611                                 if (logical_sector >= conf->expand_lo) {
3612                                         spin_unlock_irq(&conf->device_lock);
3613                                         schedule();
3614                                         goto retry;
3615                                 }
3616                         }
3617                         spin_unlock_irq(&conf->device_lock);
3618                 }
3619                 data_disks = disks - conf->max_degraded;
3620
3621                 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3622                                                   &dd_idx, &pd_idx, conf);
3623                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3624                         (unsigned long long)new_sector, 
3625                         (unsigned long long)logical_sector);
3626
3627                 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3628                 if (sh) {
3629                         if (unlikely(conf->expand_progress != MaxSector)) {
3630                                 /* expansion might have moved on while waiting for a
3631                                  * stripe, so we must do the range check again.
3632                                  * Expansion could still move past after this
3633                                  * test, but as we are holding a reference to
3634                                  * 'sh', we know that if that happens,
3635                                  *  STRIPE_EXPANDING will get set and the expansion
3636                                  * won't proceed until we finish with the stripe.
3637                                  */
3638                                 int must_retry = 0;
3639                                 spin_lock_irq(&conf->device_lock);
3640                                 if (logical_sector <  conf->expand_progress &&
3641                                     disks == conf->previous_raid_disks)
3642                                         /* mismatch, need to try again */
3643                                         must_retry = 1;
3644                                 spin_unlock_irq(&conf->device_lock);
3645                                 if (must_retry) {
3646                                         release_stripe(sh);
3647                                         goto retry;
3648                                 }
3649                         }
3650                         /* FIXME what if we get a false positive because these
3651                          * are being updated.
3652                          */
3653                         if (logical_sector >= mddev->suspend_lo &&
3654                             logical_sector < mddev->suspend_hi) {
3655                                 release_stripe(sh);
3656                                 schedule();
3657                                 goto retry;
3658                         }
3659
3660                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3661                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3662                                 /* Stripe is busy expanding or
3663                                  * add failed due to overlap.  Flush everything
3664                                  * and wait a while
3665                                  */
3666                                 raid5_unplug_device(mddev->queue);
3667                                 release_stripe(sh);
3668                                 schedule();
3669                                 goto retry;
3670                         }
3671                         finish_wait(&conf->wait_for_overlap, &w);
3672                         set_bit(STRIPE_HANDLE, &sh->state);
3673                         clear_bit(STRIPE_DELAYED, &sh->state);
3674                         release_stripe(sh);
3675                 } else {
3676                         /* cannot get stripe for read-ahead, just give-up */
3677                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3678                         finish_wait(&conf->wait_for_overlap, &w);
3679                         break;
3680                 }
3681                         
3682         }
3683         spin_lock_irq(&conf->device_lock);
3684         remaining = --bi->bi_phys_segments;
3685         spin_unlock_irq(&conf->device_lock);
3686         if (remaining == 0) {
3687
3688                 if ( rw == WRITE )
3689                         md_write_end(mddev);
3690
3691                 bio_endio(bi, 0);
3692         }
3693         return 0;
3694 }
3695
3696 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3697 {
3698         /* reshaping is quite different to recovery/resync so it is
3699          * handled quite separately ... here.
3700          *
3701          * On each call to sync_request, we gather one chunk worth of
3702          * destination stripes and flag them as expanding.
3703          * Then we find all the source stripes and request reads.
3704          * As the reads complete, handle_stripe will copy the data
3705          * into the destination stripe and release that stripe.
3706          */
3707         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3708         struct stripe_head *sh;
3709         int pd_idx;
3710         sector_t first_sector, last_sector;
3711         int raid_disks = conf->previous_raid_disks;
3712         int data_disks = raid_disks - conf->max_degraded;
3713         int new_data_disks = conf->raid_disks - conf->max_degraded;
3714         int i;
3715         int dd_idx;
3716         sector_t writepos, safepos, gap;
3717
3718         if (sector_nr == 0 &&
3719             conf->expand_progress != 0) {
3720                 /* restarting in the middle, skip the initial sectors */
3721                 sector_nr = conf->expand_progress;
3722                 sector_div(sector_nr, new_data_disks);
3723                 *skipped = 1;
3724                 return sector_nr;
3725         }
3726
3727         /* we update the metadata when there is more than 3Meg
3728          * in the block range (that is rather arbitrary, should
3729          * probably be time based) or when the data about to be
3730          * copied would over-write the source of the data at
3731          * the front of the range.
3732          * i.e. one new_stripe forward from expand_progress new_maps
3733          * to after where expand_lo old_maps to
3734          */
3735         writepos = conf->expand_progress +
3736                 conf->chunk_size/512*(new_data_disks);
3737         sector_div(writepos, new_data_disks);
3738         safepos = conf->expand_lo;
3739         sector_div(safepos, data_disks);
3740         gap = conf->expand_progress - conf->expand_lo;
3741
3742         if (writepos >= safepos ||
3743             gap > (new_data_disks)*3000*2 /*3Meg*/) {
3744                 /* Cannot proceed until we've updated the superblock... */
3745                 wait_event(conf->wait_for_overlap,
3746                            atomic_read(&conf->reshape_stripes)==0);
3747                 mddev->reshape_position = conf->expand_progress;
3748                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3749                 md_wakeup_thread(mddev->thread);
3750                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3751                            kthread_should_stop());
3752                 spin_lock_irq(&conf->device_lock);
3753                 conf->expand_lo = mddev->reshape_position;
3754                 spin_unlock_irq(&conf->device_lock);
3755                 wake_up(&conf->wait_for_overlap);
3756         }
3757
3758         for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3759                 int j;
3760                 int skipped = 0;
3761                 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3762                 sh = get_active_stripe(conf, sector_nr+i,
3763                                        conf->raid_disks, pd_idx, 0);
3764                 set_bit(STRIPE_EXPANDING, &sh->state);
3765                 atomic_inc(&conf->reshape_stripes);
3766                 /* If any of this stripe is beyond the end of the old
3767                  * array, then we need to zero those blocks
3768                  */
3769                 for (j=sh->disks; j--;) {
3770                         sector_t s;
3771                         if (j == sh->pd_idx)
3772                                 continue;
3773                         if (conf->level == 6 &&
3774                             j == raid6_next_disk(sh->pd_idx, sh->disks))
3775                                 continue;
3776                         s = compute_blocknr(sh, j);
3777                         if (s < (mddev->array_size<<1)) {
3778                                 skipped = 1;
3779                                 continue;
3780                         }
3781                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3782                         set_bit(R5_Expanded, &sh->dev[j].flags);
3783                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3784                 }
3785                 if (!skipped) {
3786                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3787                         set_bit(STRIPE_HANDLE, &sh->state);
3788                 }
3789                 release_stripe(sh);
3790         }
3791         spin_lock_irq(&conf->device_lock);
3792         conf->expand_progress = (sector_nr + i) * new_data_disks;
3793         spin_unlock_irq(&conf->device_lock);
3794         /* Ok, those stripe are ready. We can start scheduling
3795          * reads on the source stripes.
3796          * The source stripes are determined by mapping the first and last
3797          * block on the destination stripes.
3798          */
3799         first_sector =
3800                 raid5_compute_sector(sector_nr*(new_data_disks),
3801                                      raid_disks, data_disks,
3802                                      &dd_idx, &pd_idx, conf);
3803         last_sector =
3804                 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3805                                      *(new_data_disks) -1,
3806                                      raid_disks, data_disks,
3807                                      &dd_idx, &pd_idx, conf);
3808         if (last_sector >= (mddev->size<<1))
3809                 last_sector = (mddev->size<<1)-1;
3810         while (first_sector <= last_sector) {
3811                 pd_idx = stripe_to_pdidx(first_sector, conf,
3812                                          conf->previous_raid_disks);
3813                 sh = get_active_stripe(conf, first_sector,
3814                                        conf->previous_raid_disks, pd_idx, 0);
3815                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3816                 set_bit(STRIPE_HANDLE, &sh->state);
3817                 release_stripe(sh);
3818                 first_sector += STRIPE_SECTORS;
3819         }
3820         /* If this takes us to the resync_max point where we have to pause,
3821          * then we need to write out the superblock.
3822          */
3823         sector_nr += conf->chunk_size>>9;
3824         if (sector_nr >= mddev->resync_max) {
3825                 /* Cannot proceed until we've updated the superblock... */
3826                 wait_event(conf->wait_for_overlap,
3827                            atomic_read(&conf->reshape_stripes) == 0);
3828                 mddev->reshape_position = conf->expand_progress;
3829                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3830                 md_wakeup_thread(mddev->thread);
3831                 wait_event(mddev->sb_wait,
3832                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3833                            || kthread_should_stop());
3834                 spin_lock_irq(&conf->device_lock);
3835                 conf->expand_lo = mddev->reshape_position;
3836                 spin_unlock_irq(&conf->device_lock);
3837                 wake_up(&conf->wait_for_overlap);
3838         }
3839         return conf->chunk_size>>9;
3840 }
3841
3842 /* FIXME go_faster isn't used */
3843 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3844 {
3845         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3846         struct stripe_head *sh;
3847         int pd_idx;
3848         int raid_disks = conf->raid_disks;
3849         sector_t max_sector = mddev->size << 1;
3850         int sync_blocks;
3851         int still_degraded = 0;
3852         int i;
3853
3854         if (sector_nr >= max_sector) {
3855                 /* just being told to finish up .. nothing much to do */
3856                 unplug_slaves(mddev);
3857                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3858                         end_reshape(conf);
3859                         return 0;
3860                 }
3861
3862                 if (mddev->curr_resync < max_sector) /* aborted */
3863                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3864                                         &sync_blocks, 1);
3865                 else /* completed sync */
3866                         conf->fullsync = 0;
3867                 bitmap_close_sync(mddev->bitmap);
3868
3869                 return 0;
3870         }
3871
3872         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3873                 return reshape_request(mddev, sector_nr, skipped);
3874
3875         /* No need to check resync_max as we never do more than one
3876          * stripe, and as resync_max will always be on a chunk boundary,
3877          * if the check in md_do_sync didn't fire, there is no chance
3878          * of overstepping resync_max here
3879          */
3880
3881         /* if there is too many failed drives and we are trying
3882          * to resync, then assert that we are finished, because there is
3883          * nothing we can do.
3884          */
3885         if (mddev->degraded >= conf->max_degraded &&
3886             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3887                 sector_t rv = (mddev->size << 1) - sector_nr;
3888                 *skipped = 1;
3889                 return rv;
3890         }
3891         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3892             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3893             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3894                 /* we can skip this block, and probably more */
3895                 sync_blocks /= STRIPE_SECTORS;
3896                 *skipped = 1;
3897                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3898         }
3899
3900
3901         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3902
3903         pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3904         sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3905         if (sh == NULL) {
3906                 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3907                 /* make sure we don't swamp the stripe cache if someone else
3908                  * is trying to get access
3909                  */
3910                 schedule_timeout_uninterruptible(1);
3911         }
3912         /* Need to check if array will still be degraded after recovery/resync
3913          * We don't need to check the 'failed' flag as when that gets set,
3914          * recovery aborts.
3915          */
3916         for (i=0; i<mddev->raid_disks; i++)
3917                 if (conf->disks[i].rdev == NULL)
3918                         still_degraded = 1;
3919
3920         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3921
3922         spin_lock(&sh->lock);
3923         set_bit(STRIPE_SYNCING, &sh->state);
3924         clear_bit(STRIPE_INSYNC, &sh->state);
3925         spin_unlock(&sh->lock);
3926
3927         handle_stripe(sh, NULL);
3928         release_stripe(sh);
3929
3930         return STRIPE_SECTORS;
3931 }
3932
3933 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3934 {
3935         /* We may not be able to submit a whole bio at once as there
3936          * may not be enough stripe_heads available.
3937          * We cannot pre-allocate enough stripe_heads as we may need
3938          * more than exist in the cache (if we allow ever large chunks).
3939          * So we do one stripe head at a time and record in
3940          * ->bi_hw_segments how many have been done.
3941          *
3942          * We *know* that this entire raid_bio is in one chunk, so
3943          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3944          */
3945         struct stripe_head *sh;
3946         int dd_idx, pd_idx;
3947         sector_t sector, logical_sector, last_sector;
3948         int scnt = 0;
3949         int remaining;
3950         int handled = 0;
3951
3952         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3953         sector = raid5_compute_sector(  logical_sector,
3954                                         conf->raid_disks,
3955                                         conf->raid_disks - conf->max_degraded,
3956                                         &dd_idx,
3957                                         &pd_idx,
3958                                         conf);
3959         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3960
3961         for (; logical_sector < last_sector;
3962              logical_sector += STRIPE_SECTORS,
3963                      sector += STRIPE_SECTORS,
3964                      scnt++) {
3965
3966                 if (scnt < raid_bio->bi_hw_segments)
3967                         /* already done this stripe */
3968                         continue;
3969
3970                 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3971
3972                 if (!sh) {
3973                         /* failed to get a stripe - must wait */
3974                         raid_bio->bi_hw_segments = scnt;
3975                         conf->retry_read_aligned = raid_bio;
3976                         return handled;
3977                 }
3978
3979                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3980                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3981                         release_stripe(sh);
3982                         raid_bio->bi_hw_segments = scnt;
3983                         conf->retry_read_aligned = raid_bio;
3984                         return handled;
3985                 }
3986
3987                 handle_stripe(sh, NULL);
3988                 release_stripe(sh);
3989                 handled++;
3990         }
3991         spin_lock_irq(&conf->device_lock);
3992         remaining = --raid_bio->bi_phys_segments;
3993         spin_unlock_irq(&conf->device_lock);
3994         if (remaining == 0)
3995                 bio_endio(raid_bio, 0);
3996         if (atomic_dec_and_test(&conf->active_aligned_reads))
3997                 wake_up(&conf->wait_for_stripe);
3998         return handled;
3999 }
4000
4001
4002
4003 /*
4004  * This is our raid5 kernel thread.
4005  *
4006  * We scan the hash table for stripes which can be handled now.
4007  * During the scan, completed stripes are saved for us by the interrupt
4008  * handler, so that they will not have to wait for our next wakeup.
4009  */
4010 static void raid5d(mddev_t *mddev)
4011 {
4012         struct stripe_head *sh;
4013         raid5_conf_t *conf = mddev_to_conf(mddev);
4014         int handled;
4015
4016         pr_debug("+++ raid5d active\n");
4017
4018         md_check_recovery(mddev);
4019
4020         handled = 0;
4021         spin_lock_irq(&conf->device_lock);
4022         while (1) {
4023                 struct bio *bio;
4024
4025                 if (conf->seq_flush != conf->seq_write) {
4026                         int seq = conf->seq_flush;
4027                         spin_unlock_irq(&conf->device_lock);
4028                         bitmap_unplug(mddev->bitmap);
4029                         spin_lock_irq(&conf->device_lock);
4030                         conf->seq_write = seq;
4031                         activate_bit_delay(conf);
4032                 }
4033
4034                 while ((bio = remove_bio_from_retry(conf))) {
4035                         int ok;
4036                         spin_unlock_irq(&conf->device_lock);
4037                         ok = retry_aligned_read(conf, bio);
4038                         spin_lock_irq(&conf->device_lock);
4039                         if (!ok)
4040                                 break;
4041                         handled++;
4042                 }
4043
4044                 sh = __get_priority_stripe(conf);
4045
4046                 if (!sh) {
4047                         async_tx_issue_pending_all();
4048                         break;
4049                 }
4050                 spin_unlock_irq(&conf->device_lock);
4051                 
4052                 handled++;
4053                 handle_stripe(sh, conf->spare_page);
4054                 release_stripe(sh);
4055
4056                 spin_lock_irq(&conf->device_lock);
4057         }
4058         pr_debug("%d stripes handled\n", handled);
4059
4060         spin_unlock_irq(&conf->device_lock);
4061
4062         unplug_slaves(mddev);
4063
4064         pr_debug("--- raid5d inactive\n");
4065 }
4066
4067 static ssize_t
4068 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4069 {
4070         raid5_conf_t *conf = mddev_to_conf(mddev);
4071         if (conf)
4072                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4073         else
4074                 return 0;
4075 }
4076
4077 static ssize_t
4078 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4079 {
4080         raid5_conf_t *conf = mddev_to_conf(mddev);
4081         unsigned long new;
4082         if (len >= PAGE_SIZE)
4083                 return -EINVAL;
4084         if (!conf)
4085                 return -ENODEV;
4086
4087         if (strict_strtoul(page, 10, &new))
4088                 return -EINVAL;
4089         if (new <= 16 || new > 32768)
4090                 return -EINVAL;
4091         while (new < conf->max_nr_stripes) {
4092                 if (drop_one_stripe(conf))
4093                         conf->max_nr_stripes--;
4094                 else
4095                         break;
4096         }
4097         md_allow_write(mddev);
4098         while (new > conf->max_nr_stripes) {
4099                 if (grow_one_stripe(conf))
4100                         conf->max_nr_stripes++;
4101                 else break;
4102         }
4103         return len;
4104 }
4105
4106 static struct md_sysfs_entry
4107 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4108                                 raid5_show_stripe_cache_size,
4109                                 raid5_store_stripe_cache_size);
4110
4111 static ssize_t
4112 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4113 {
4114         raid5_conf_t *conf = mddev_to_conf(mddev);
4115         if (conf)
4116                 return sprintf(page, "%d\n", conf->bypass_threshold);
4117         else
4118                 return 0;
4119 }
4120
4121 static ssize_t
4122 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4123 {
4124         raid5_conf_t *conf = mddev_to_conf(mddev);
4125         unsigned long new;
4126         if (len >= PAGE_SIZE)
4127                 return -EINVAL;
4128         if (!conf)
4129                 return -ENODEV;
4130
4131         if (strict_strtoul(page, 10, &new))
4132                 return -EINVAL;
4133         if (new > conf->max_nr_stripes)
4134                 return -EINVAL;
4135         conf->bypass_threshold = new;
4136         return len;
4137 }
4138
4139 static struct md_sysfs_entry
4140 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4141                                         S_IRUGO | S_IWUSR,
4142                                         raid5_show_preread_threshold,
4143                                         raid5_store_preread_threshold);
4144
4145 static ssize_t
4146 stripe_cache_active_show(mddev_t *mddev, char *page)
4147 {
4148         raid5_conf_t *conf = mddev_to_conf(mddev);
4149         if (conf)
4150                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4151         else
4152                 return 0;
4153 }
4154
4155 static struct md_sysfs_entry
4156 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4157
4158 static struct attribute *raid5_attrs[] =  {
4159         &raid5_stripecache_size.attr,
4160         &raid5_stripecache_active.attr,
4161         &raid5_preread_bypass_threshold.attr,
4162         NULL,
4163 };
4164 static struct attribute_group raid5_attrs_group = {
4165         .name = NULL,
4166         .attrs = raid5_attrs,
4167 };
4168
4169 static int run(mddev_t *mddev)
4170 {
4171         raid5_conf_t *conf;
4172         int raid_disk, memory;
4173         mdk_rdev_t *rdev;
4174         struct disk_info *disk;
4175         struct list_head *tmp;
4176         int working_disks = 0;
4177
4178         if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4179                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4180                        mdname(mddev), mddev->level);
4181                 return -EIO;
4182         }
4183
4184         if (mddev->reshape_position != MaxSector) {
4185                 /* Check that we can continue the reshape.
4186                  * Currently only disks can change, it must
4187                  * increase, and we must be past the point where
4188                  * a stripe over-writes itself
4189                  */
4190                 sector_t here_new, here_old;
4191                 int old_disks;
4192                 int max_degraded = (mddev->level == 5 ? 1 : 2);
4193
4194                 if (mddev->new_level != mddev->level ||
4195                     mddev->new_layout != mddev->layout ||
4196                     mddev->new_chunk != mddev->chunk_size) {
4197                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4198                                "required - aborting.\n",
4199                                mdname(mddev));
4200                         return -EINVAL;
4201                 }
4202                 if (mddev->delta_disks <= 0) {
4203                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4204                                "(reduce disks) required - aborting.\n",
4205                                mdname(mddev));
4206                         return -EINVAL;
4207                 }
4208                 old_disks = mddev->raid_disks - mddev->delta_disks;
4209                 /* reshape_position must be on a new-stripe boundary, and one
4210                  * further up in new geometry must map after here in old
4211                  * geometry.
4212                  */
4213                 here_new = mddev->reshape_position;
4214                 if (sector_div(here_new, (mddev->chunk_size>>9)*
4215                                (mddev->raid_disks - max_degraded))) {
4216                         printk(KERN_ERR "raid5: reshape_position not "
4217                                "on a stripe boundary\n");
4218                         return -EINVAL;
4219                 }
4220                 /* here_new is the stripe we will write to */
4221                 here_old = mddev->reshape_position;
4222                 sector_div(here_old, (mddev->chunk_size>>9)*
4223                            (old_disks-max_degraded));
4224                 /* here_old is the first stripe that we might need to read
4225                  * from */
4226                 if (here_new >= here_old) {
4227                         /* Reading from the same stripe as writing to - bad */
4228                         printk(KERN_ERR "raid5: reshape_position too early for "
4229                                "auto-recovery - aborting.\n");
4230                         return -EINVAL;
4231                 }
4232                 printk(KERN_INFO "raid5: reshape will continue\n");
4233                 /* OK, we should be able to continue; */
4234         }
4235
4236
4237         mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4238         if ((conf = mddev->private) == NULL)
4239                 goto abort;
4240         if (mddev->reshape_position == MaxSector) {
4241                 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4242         } else {
4243                 conf->raid_disks = mddev->raid_disks;
4244                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4245         }
4246
4247         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4248                               GFP_KERNEL);
4249         if (!conf->disks)
4250                 goto abort;
4251
4252         conf->mddev = mddev;
4253
4254         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4255                 goto abort;
4256
4257         if (mddev->level == 6) {
4258                 conf->spare_page = alloc_page(GFP_KERNEL);
4259                 if (!conf->spare_page)
4260                         goto abort;
4261         }
4262         spin_lock_init(&conf->device_lock);
4263         mddev->queue->queue_lock = &conf->device_lock;
4264         init_waitqueue_head(&conf->wait_for_stripe);
4265         init_waitqueue_head(&conf->wait_for_overlap);
4266         INIT_LIST_HEAD(&conf->handle_list);
4267         INIT_LIST_HEAD(&conf->hold_list);
4268         INIT_LIST_HEAD(&conf->delayed_list);
4269         INIT_LIST_HEAD(&conf->bitmap_list);
4270         INIT_LIST_HEAD(&conf->inactive_list);
4271         atomic_set(&conf->active_stripes, 0);
4272         atomic_set(&conf->preread_active_stripes, 0);
4273         atomic_set(&conf->active_aligned_reads, 0);
4274         conf->bypass_threshold = BYPASS_THRESHOLD;
4275
4276         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4277
4278         rdev_for_each(rdev, tmp, mddev) {
4279                 raid_disk = rdev->raid_disk;
4280                 if (raid_disk >= conf->raid_disks
4281                     || raid_disk < 0)
4282                         continue;
4283                 disk = conf->disks + raid_disk;
4284
4285                 disk->rdev = rdev;
4286
4287                 if (test_bit(In_sync, &rdev->flags)) {
4288                         char b[BDEVNAME_SIZE];
4289                         printk(KERN_INFO "raid5: device %s operational as raid"
4290                                 " disk %d\n", bdevname(rdev->bdev,b),
4291                                 raid_disk);
4292                         working_disks++;
4293                 } else
4294                         /* Cannot rely on bitmap to complete recovery */
4295                         conf->fullsync = 1;
4296         }
4297
4298         /*
4299          * 0 for a fully functional array, 1 or 2 for a degraded array.
4300          */
4301         mddev->degraded = conf->raid_disks - working_disks;
4302         conf->mddev = mddev;
4303         conf->chunk_size = mddev->chunk_size;
4304         conf->level = mddev->level;
4305         if (conf->level == 6)
4306                 conf->max_degraded = 2;
4307         else
4308                 conf->max_degraded = 1;
4309         conf->algorithm = mddev->layout;
4310         conf->max_nr_stripes = NR_STRIPES;
4311         conf->expand_progress = mddev->reshape_position;
4312
4313         /* device size must be a multiple of chunk size */
4314         mddev->size &= ~(mddev->chunk_size/1024 -1);
4315         mddev->resync_max_sectors = mddev->size << 1;
4316
4317         if (conf->level == 6 && conf->raid_disks < 4) {
4318                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4319                        mdname(mddev), conf->raid_disks);
4320                 goto abort;
4321         }
4322         if (!conf->chunk_size || conf->chunk_size % 4) {
4323                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4324                         conf->chunk_size, mdname(mddev));
4325                 goto abort;
4326         }
4327         if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4328                 printk(KERN_ERR 
4329                         "raid5: unsupported parity algorithm %d for %s\n",
4330                         conf->algorithm, mdname(mddev));
4331                 goto abort;
4332         }
4333         if (mddev->degraded > conf->max_degraded) {
4334                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4335                         " (%d/%d failed)\n",
4336                         mdname(mddev), mddev->degraded, conf->raid_disks);
4337                 goto abort;
4338         }
4339
4340         if (mddev->degraded > 0 &&
4341             mddev->recovery_cp != MaxSector) {
4342                 if (mddev->ok_start_degraded)
4343                         printk(KERN_WARNING
4344                                "raid5: starting dirty degraded array: %s"
4345                                "- data corruption possible.\n",
4346                                mdname(mddev));
4347                 else {
4348                         printk(KERN_ERR
4349                                "raid5: cannot start dirty degraded array for %s\n",
4350                                mdname(mddev));
4351                         goto abort;
4352                 }
4353         }
4354
4355         {
4356                 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4357                 if (!mddev->thread) {
4358                         printk(KERN_ERR 
4359                                 "raid5: couldn't allocate thread for %s\n",
4360                                 mdname(mddev));
4361                         goto abort;
4362                 }
4363         }
4364         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4365                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4366         if (grow_stripes(conf, conf->max_nr_stripes)) {
4367                 printk(KERN_ERR 
4368                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4369                 shrink_stripes(conf);
4370                 md_unregister_thread(mddev->thread);
4371                 goto abort;
4372         } else
4373                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4374                         memory, mdname(mddev));
4375
4376         if (mddev->degraded == 0)
4377                 printk("raid5: raid level %d set %s active with %d out of %d"
4378                         " devices, algorithm %d\n", conf->level, mdname(mddev), 
4379                         mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4380                         conf->algorithm);
4381         else
4382                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4383                         " out of %d devices, algorithm %d\n", conf->level,
4384                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4385                         mddev->raid_disks, conf->algorithm);
4386
4387         print_raid5_conf(conf);
4388
4389         if (conf->expand_progress != MaxSector) {
4390                 printk("...ok start reshape thread\n");
4391                 conf->expand_lo = conf->expand_progress;
4392                 atomic_set(&conf->reshape_stripes, 0);
4393                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4394                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4395                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4396                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4397                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4398                                                         "%s_reshape");
4399         }
4400
4401         /* read-ahead size must cover two whole stripes, which is
4402          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4403          */
4404         {
4405                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4406                 int stripe = data_disks *
4407                         (mddev->chunk_size / PAGE_SIZE);
4408                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4409                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4410         }
4411
4412         /* Ok, everything is just fine now */
4413         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4414                 printk(KERN_WARNING
4415                        "raid5: failed to create sysfs attributes for %s\n",
4416                        mdname(mddev));
4417
4418         mddev->queue->unplug_fn = raid5_unplug_device;
4419         mddev->queue->backing_dev_info.congested_data = mddev;
4420         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4421
4422         mddev->array_size =  mddev->size * (conf->previous_raid_disks -
4423                                             conf->max_degraded);
4424
4425         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4426
4427         return 0;
4428 abort:
4429         if (conf) {
4430                 print_raid5_conf(conf);
4431                 safe_put_page(conf->spare_page);
4432                 kfree(conf->disks);
4433                 kfree(conf->stripe_hashtbl);
4434                 kfree(conf);
4435         }
4436         mddev->private = NULL;
4437         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4438         return -EIO;
4439 }
4440
4441
4442
4443 static int stop(mddev_t *mddev)
4444 {
4445         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4446
4447         md_unregister_thread(mddev->thread);
4448         mddev->thread = NULL;
4449         shrink_stripes(conf);
4450         kfree(conf->stripe_hashtbl);
4451         mddev->queue->backing_dev_info.congested_fn = NULL;
4452         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4453         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4454         kfree(conf->disks);
4455         kfree(conf);
4456         mddev->private = NULL;
4457         return 0;
4458 }
4459
4460 #ifdef DEBUG
4461 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4462 {
4463         int i;
4464
4465         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4466                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4467         seq_printf(seq, "sh %llu,  count %d.\n",
4468                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4469         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4470         for (i = 0; i < sh->disks; i++) {
4471                 seq_printf(seq, "(cache%d: %p %ld) ",
4472                            i, sh->dev[i].page, sh->dev[i].flags);
4473         }
4474         seq_printf(seq, "\n");
4475 }
4476
4477 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4478 {
4479         struct stripe_head *sh;
4480         struct hlist_node *hn;
4481         int i;
4482
4483         spin_lock_irq(&conf->device_lock);
4484         for (i = 0; i < NR_HASH; i++) {
4485                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4486                         if (sh->raid_conf != conf)
4487                                 continue;
4488                         print_sh(seq, sh);
4489                 }
4490         }
4491         spin_unlock_irq(&conf->device_lock);
4492 }
4493 #endif
4494
4495 static void status (struct seq_file *seq, mddev_t *mddev)
4496 {
4497         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4498         int i;
4499
4500         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4501         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4502         for (i = 0; i < conf->raid_disks; i++)
4503                 seq_printf (seq, "%s",
4504                                conf->disks[i].rdev &&
4505                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4506         seq_printf (seq, "]");
4507 #ifdef DEBUG
4508         seq_printf (seq, "\n");
4509         printall(seq, conf);
4510 #endif
4511 }
4512
4513 static void print_raid5_conf (raid5_conf_t *conf)
4514 {
4515         int i;
4516         struct disk_info *tmp;
4517
4518         printk("RAID5 conf printout:\n");
4519         if (!conf) {
4520                 printk("(conf==NULL)\n");
4521                 return;
4522         }
4523         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4524                  conf->raid_disks - conf->mddev->degraded);
4525
4526         for (i = 0; i < conf->raid_disks; i++) {
4527                 char b[BDEVNAME_SIZE];
4528                 tmp = conf->disks + i;
4529                 if (tmp->rdev)
4530                 printk(" disk %d, o:%d, dev:%s\n",
4531                         i, !test_bit(Faulty, &tmp->rdev->flags),
4532                         bdevname(tmp->rdev->bdev,b));
4533         }
4534 }
4535
4536 static int raid5_spare_active(mddev_t *mddev)
4537 {
4538         int i;
4539         raid5_conf_t *conf = mddev->private;
4540         struct disk_info *tmp;
4541
4542         for (i = 0; i < conf->raid_disks; i++) {
4543                 tmp = conf->disks + i;
4544                 if (tmp->rdev
4545                     && !test_bit(Faulty, &tmp->rdev->flags)
4546                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4547                         unsigned long flags;
4548                         spin_lock_irqsave(&conf->device_lock, flags);
4549                         mddev->degraded--;
4550                         spin_unlock_irqrestore(&conf->device_lock, flags);
4551                 }
4552         }
4553         print_raid5_conf(conf);
4554         return 0;
4555 }
4556
4557 static int raid5_remove_disk(mddev_t *mddev, int number)
4558 {
4559         raid5_conf_t *conf = mddev->private;
4560         int err = 0;
4561         mdk_rdev_t *rdev;
4562         struct disk_info *p = conf->disks + number;
4563
4564         print_raid5_conf(conf);
4565         rdev = p->rdev;
4566         if (rdev) {
4567                 if (test_bit(In_sync, &rdev->flags) ||
4568                     atomic_read(&rdev->nr_pending)) {
4569                         err = -EBUSY;
4570                         goto abort;
4571                 }
4572                 /* Only remove non-faulty devices if recovery
4573                  * isn't possible.
4574                  */
4575                 if (!test_bit(Faulty, &rdev->flags) &&
4576                     mddev->degraded <= conf->max_degraded) {
4577                         err = -EBUSY;
4578                         goto abort;
4579                 }
4580                 p->rdev = NULL;
4581                 synchronize_rcu();
4582                 if (atomic_read(&rdev->nr_pending)) {
4583                         /* lost the race, try later */
4584                         err = -EBUSY;
4585                         p->rdev = rdev;
4586                 }
4587         }
4588 abort:
4589
4590         print_raid5_conf(conf);
4591         return err;
4592 }
4593
4594 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4595 {
4596         raid5_conf_t *conf = mddev->private;
4597         int err = -EEXIST;
4598         int disk;
4599         struct disk_info *p;
4600         int first = 0;
4601         int last = conf->raid_disks - 1;
4602
4603         if (mddev->degraded > conf->max_degraded)
4604                 /* no point adding a device */
4605                 return -EINVAL;
4606
4607         if (rdev->raid_disk >= 0)
4608                 first = last = rdev->raid_disk;
4609
4610         /*
4611          * find the disk ... but prefer rdev->saved_raid_disk
4612          * if possible.
4613          */
4614         if (rdev->saved_raid_disk >= 0 &&
4615             rdev->saved_raid_disk >= first &&
4616             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4617                 disk = rdev->saved_raid_disk;
4618         else
4619                 disk = first;
4620         for ( ; disk <= last ; disk++)
4621                 if ((p=conf->disks + disk)->rdev == NULL) {
4622                         clear_bit(In_sync, &rdev->flags);
4623                         rdev->raid_disk = disk;
4624                         err = 0;
4625                         if (rdev->saved_raid_disk != disk)
4626                                 conf->fullsync = 1;
4627                         rcu_assign_pointer(p->rdev, rdev);
4628                         break;
4629                 }
4630         print_raid5_conf(conf);
4631         return err;
4632 }
4633
4634 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4635 {
4636         /* no resync is happening, and there is enough space
4637          * on all devices, so we can resize.
4638          * We need to make sure resync covers any new space.
4639          * If the array is shrinking we should possibly wait until
4640          * any io in the removed space completes, but it hardly seems
4641          * worth it.
4642          */
4643         raid5_conf_t *conf = mddev_to_conf(mddev);
4644
4645         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4646         mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4647         set_capacity(mddev->gendisk, mddev->array_size << 1);
4648         mddev->changed = 1;
4649         if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
4650                 mddev->recovery_cp = mddev->size << 1;
4651                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4652         }
4653         mddev->size = sectors /2;
4654         mddev->resync_max_sectors = sectors;
4655         return 0;
4656 }
4657
4658 #ifdef CONFIG_MD_RAID5_RESHAPE
4659 static int raid5_check_reshape(mddev_t *mddev)
4660 {
4661         raid5_conf_t *conf = mddev_to_conf(mddev);
4662         int err;
4663
4664         if (mddev->delta_disks < 0 ||
4665             mddev->new_level != mddev->level)
4666                 return -EINVAL; /* Cannot shrink array or change level yet */
4667         if (mddev->delta_disks == 0)
4668                 return 0; /* nothing to do */
4669
4670         /* Can only proceed if there are plenty of stripe_heads.
4671          * We need a minimum of one full stripe,, and for sensible progress
4672          * it is best to have about 4 times that.
4673          * If we require 4 times, then the default 256 4K stripe_heads will
4674          * allow for chunk sizes up to 256K, which is probably OK.
4675          * If the chunk size is greater, user-space should request more
4676          * stripe_heads first.
4677          */
4678         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4679             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4680                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4681                        (mddev->chunk_size / STRIPE_SIZE)*4);
4682                 return -ENOSPC;
4683         }
4684
4685         err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4686         if (err)
4687                 return err;
4688
4689         if (mddev->degraded > conf->max_degraded)
4690                 return -EINVAL;
4691         /* looks like we might be able to manage this */
4692         return 0;
4693 }
4694
4695 static int raid5_start_reshape(mddev_t *mddev)
4696 {
4697         raid5_conf_t *conf = mddev_to_conf(mddev);
4698         mdk_rdev_t *rdev;
4699         struct list_head *rtmp;
4700         int spares = 0;
4701         int added_devices = 0;
4702         unsigned long flags;
4703
4704         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4705                 return -EBUSY;
4706
4707         rdev_for_each(rdev, rtmp, mddev)
4708                 if (rdev->raid_disk < 0 &&
4709                     !test_bit(Faulty, &rdev->flags))
4710                         spares++;
4711
4712         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4713                 /* Not enough devices even to make a degraded array
4714                  * of that size
4715                  */
4716                 return -EINVAL;
4717
4718         atomic_set(&conf->reshape_stripes, 0);
4719         spin_lock_irq(&conf->device_lock);
4720         conf->previous_raid_disks = conf->raid_disks;
4721         conf->raid_disks += mddev->delta_disks;
4722         conf->expand_progress = 0;
4723         conf->expand_lo = 0;
4724         spin_unlock_irq(&conf->device_lock);
4725
4726         /* Add some new drives, as many as will fit.
4727          * We know there are enough to make the newly sized array work.
4728          */
4729         rdev_for_each(rdev, rtmp, mddev)
4730                 if (rdev->raid_disk < 0 &&
4731                     !test_bit(Faulty, &rdev->flags)) {
4732                         if (raid5_add_disk(mddev, rdev) == 0) {
4733                                 char nm[20];
4734                                 set_bit(In_sync, &rdev->flags);
4735                                 added_devices++;
4736                                 rdev->recovery_offset = 0;
4737                                 sprintf(nm, "rd%d", rdev->raid_disk);
4738                                 if (sysfs_create_link(&mddev->kobj,
4739                                                       &rdev->kobj, nm))
4740                                         printk(KERN_WARNING
4741                                                "raid5: failed to create "
4742                                                " link %s for %s\n",
4743                                                nm, mdname(mddev));
4744                         } else
4745                                 break;
4746                 }
4747
4748         spin_lock_irqsave(&conf->device_lock, flags);
4749         mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4750         spin_unlock_irqrestore(&conf->device_lock, flags);
4751         mddev->raid_disks = conf->raid_disks;
4752         mddev->reshape_position = 0;
4753         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4754
4755         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4756         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4757         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4758         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4759         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4760                                                 "%s_reshape");
4761         if (!mddev->sync_thread) {
4762                 mddev->recovery = 0;
4763                 spin_lock_irq(&conf->device_lock);
4764                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4765                 conf->expand_progress = MaxSector;
4766                 spin_unlock_irq(&conf->device_lock);
4767                 return -EAGAIN;
4768         }
4769         md_wakeup_thread(mddev->sync_thread);
4770         md_new_event(mddev);
4771         return 0;
4772 }
4773 #endif
4774
4775 static void end_reshape(raid5_conf_t *conf)
4776 {
4777         struct block_device *bdev;
4778
4779         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4780                 conf->mddev->array_size = conf->mddev->size *
4781                         (conf->raid_disks - conf->max_degraded);
4782                 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4783                 conf->mddev->changed = 1;
4784
4785                 bdev = bdget_disk(conf->mddev->gendisk, 0);
4786                 if (bdev) {
4787                         mutex_lock(&bdev->bd_inode->i_mutex);
4788                         i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4789                         mutex_unlock(&bdev->bd_inode->i_mutex);
4790                         bdput(bdev);
4791                 }
4792                 spin_lock_irq(&conf->device_lock);
4793                 conf->expand_progress = MaxSector;
4794                 spin_unlock_irq(&conf->device_lock);
4795                 conf->mddev->reshape_position = MaxSector;
4796
4797                 /* read-ahead size must cover two whole stripes, which is
4798                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4799                  */
4800                 {
4801                         int data_disks = conf->previous_raid_disks - conf->max_degraded;
4802                         int stripe = data_disks *
4803                                 (conf->mddev->chunk_size / PAGE_SIZE);
4804                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4805                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4806                 }
4807         }
4808 }
4809
4810 static void raid5_quiesce(mddev_t *mddev, int state)
4811 {
4812         raid5_conf_t *conf = mddev_to_conf(mddev);
4813
4814         switch(state) {
4815         case 2: /* resume for a suspend */
4816                 wake_up(&conf->wait_for_overlap);
4817                 break;
4818
4819         case 1: /* stop all writes */
4820                 spin_lock_irq(&conf->device_lock);
4821                 conf->quiesce = 1;
4822                 wait_event_lock_irq(conf->wait_for_stripe,
4823                                     atomic_read(&conf->active_stripes) == 0 &&
4824                                     atomic_read(&conf->active_aligned_reads) == 0,
4825                                     conf->device_lock, /* nothing */);
4826                 spin_unlock_irq(&conf->device_lock);
4827                 break;
4828
4829         case 0: /* re-enable writes */
4830                 spin_lock_irq(&conf->device_lock);
4831                 conf->quiesce = 0;
4832                 wake_up(&conf->wait_for_stripe);
4833                 wake_up(&conf->wait_for_overlap);
4834                 spin_unlock_irq(&conf->device_lock);
4835                 break;
4836         }
4837 }
4838
4839 static struct mdk_personality raid6_personality =
4840 {
4841         .name           = "raid6",
4842         .level          = 6,
4843         .owner          = THIS_MODULE,
4844         .make_request   = make_request,
4845         .run            = run,
4846         .stop           = stop,
4847         .status         = status,
4848         .error_handler  = error,
4849         .hot_add_disk   = raid5_add_disk,
4850         .hot_remove_disk= raid5_remove_disk,
4851         .spare_active   = raid5_spare_active,
4852         .sync_request   = sync_request,
4853         .resize         = raid5_resize,
4854 #ifdef CONFIG_MD_RAID5_RESHAPE
4855         .check_reshape  = raid5_check_reshape,
4856         .start_reshape  = raid5_start_reshape,
4857 #endif
4858         .quiesce        = raid5_quiesce,
4859 };
4860 static struct mdk_personality raid5_personality =
4861 {
4862         .name           = "raid5",
4863         .level          = 5,
4864         .owner          = THIS_MODULE,
4865         .make_request   = make_request,
4866         .run            = run,
4867         .stop           = stop,
4868         .status         = status,
4869         .error_handler  = error,
4870         .hot_add_disk   = raid5_add_disk,
4871         .hot_remove_disk= raid5_remove_disk,
4872         .spare_active   = raid5_spare_active,
4873         .sync_request   = sync_request,
4874         .resize         = raid5_resize,
4875 #ifdef CONFIG_MD_RAID5_RESHAPE
4876         .check_reshape  = raid5_check_reshape,
4877         .start_reshape  = raid5_start_reshape,
4878 #endif
4879         .quiesce        = raid5_quiesce,
4880 };
4881
4882 static struct mdk_personality raid4_personality =
4883 {
4884         .name           = "raid4",
4885         .level          = 4,
4886         .owner          = THIS_MODULE,
4887         .make_request   = make_request,
4888         .run            = run,
4889         .stop           = stop,
4890         .status         = status,
4891         .error_handler  = error,
4892         .hot_add_disk   = raid5_add_disk,
4893         .hot_remove_disk= raid5_remove_disk,
4894         .spare_active   = raid5_spare_active,
4895         .sync_request   = sync_request,
4896         .resize         = raid5_resize,
4897 #ifdef CONFIG_MD_RAID5_RESHAPE
4898         .check_reshape  = raid5_check_reshape,
4899         .start_reshape  = raid5_start_reshape,
4900 #endif
4901         .quiesce        = raid5_quiesce,
4902 };
4903
4904 static int __init raid5_init(void)
4905 {
4906         int e;
4907
4908         e = raid6_select_algo();
4909         if ( e )
4910                 return e;
4911         register_md_personality(&raid6_personality);
4912         register_md_personality(&raid5_personality);
4913         register_md_personality(&raid4_personality);
4914         return 0;
4915 }
4916
4917 static void raid5_exit(void)
4918 {
4919         unregister_md_personality(&raid6_personality);
4920         unregister_md_personality(&raid5_personality);
4921         unregister_md_personality(&raid4_personality);
4922 }
4923
4924 module_init(raid5_init);
4925 module_exit(raid5_exit);
4926 MODULE_LICENSE("GPL");
4927 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4928 MODULE_ALIAS("md-raid5");
4929 MODULE_ALIAS("md-raid4");
4930 MODULE_ALIAS("md-level-5");
4931 MODULE_ALIAS("md-level-4");
4932 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4933 MODULE_ALIAS("md-raid6");
4934 MODULE_ALIAS("md-level-6");
4935
4936 /* This used to be two separate modules, they were: */
4937 MODULE_ALIAS("raid5");
4938 MODULE_ALIAS("raid6");