]> err.no Git - linux-2.6/blob - drivers/md/raid5.c
544e1600f20828ed24532787ef06b14b69456803
[linux-2.6] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56
57 /*
58  * Stripe cache
59  */
60
61 #define NR_STRIPES              256
62 #define STRIPE_SIZE             PAGE_SIZE
63 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD            1
66 #define BYPASS_THRESHOLD        1
67 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK               (NR_HASH - 1)
69
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73  * order without overlap.  There may be several bio's per stripe+device, and
74  * a bio could span several devices.
75  * When walking this list for a particular stripe+device, we must never proceed
76  * beyond a bio that extends past this device, as the next bio might no longer
77  * be valid.
78  * This macro is used to determine the 'next' bio in the list, given the sector
79  * of the current stripe+device
80  */
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 /*
83  * The following can be used to debug the driver
84  */
85 #define RAID5_PARANOIA  1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
91
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
96
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98
99 #if !RAID6_USE_EMPTY_ZERO_PAGE
100 /* In .bss so it's zeroed */
101 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
102 #endif
103
104 static inline int raid6_next_disk(int disk, int raid_disks)
105 {
106         disk++;
107         return (disk < raid_disks) ? disk : 0;
108 }
109
110 static void return_io(struct bio *return_bi)
111 {
112         struct bio *bi = return_bi;
113         while (bi) {
114
115                 return_bi = bi->bi_next;
116                 bi->bi_next = NULL;
117                 bi->bi_size = 0;
118                 bio_endio(bi, 0);
119                 bi = return_bi;
120         }
121 }
122
123 static void print_raid5_conf (raid5_conf_t *conf);
124
125 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
126 {
127         if (atomic_dec_and_test(&sh->count)) {
128                 BUG_ON(!list_empty(&sh->lru));
129                 BUG_ON(atomic_read(&conf->active_stripes)==0);
130                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
131                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
132                                 list_add_tail(&sh->lru, &conf->delayed_list);
133                                 blk_plug_device(conf->mddev->queue);
134                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
135                                    sh->bm_seq - conf->seq_write > 0) {
136                                 list_add_tail(&sh->lru, &conf->bitmap_list);
137                                 blk_plug_device(conf->mddev->queue);
138                         } else {
139                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
140                                 list_add_tail(&sh->lru, &conf->handle_list);
141                         }
142                         md_wakeup_thread(conf->mddev->thread);
143                 } else {
144                         BUG_ON(sh->ops.pending);
145                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146                                 atomic_dec(&conf->preread_active_stripes);
147                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148                                         md_wakeup_thread(conf->mddev->thread);
149                         }
150                         atomic_dec(&conf->active_stripes);
151                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152                                 list_add_tail(&sh->lru, &conf->inactive_list);
153                                 wake_up(&conf->wait_for_stripe);
154                                 if (conf->retry_read_aligned)
155                                         md_wakeup_thread(conf->mddev->thread);
156                         }
157                 }
158         }
159 }
160 static void release_stripe(struct stripe_head *sh)
161 {
162         raid5_conf_t *conf = sh->raid_conf;
163         unsigned long flags;
164
165         spin_lock_irqsave(&conf->device_lock, flags);
166         __release_stripe(conf, sh);
167         spin_unlock_irqrestore(&conf->device_lock, flags);
168 }
169
170 static inline void remove_hash(struct stripe_head *sh)
171 {
172         pr_debug("remove_hash(), stripe %llu\n",
173                 (unsigned long long)sh->sector);
174
175         hlist_del_init(&sh->hash);
176 }
177
178 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
179 {
180         struct hlist_head *hp = stripe_hash(conf, sh->sector);
181
182         pr_debug("insert_hash(), stripe %llu\n",
183                 (unsigned long long)sh->sector);
184
185         CHECK_DEVLOCK();
186         hlist_add_head(&sh->hash, hp);
187 }
188
189
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192 {
193         struct stripe_head *sh = NULL;
194         struct list_head *first;
195
196         CHECK_DEVLOCK();
197         if (list_empty(&conf->inactive_list))
198                 goto out;
199         first = conf->inactive_list.next;
200         sh = list_entry(first, struct stripe_head, lru);
201         list_del_init(first);
202         remove_hash(sh);
203         atomic_inc(&conf->active_stripes);
204 out:
205         return sh;
206 }
207
208 static void shrink_buffers(struct stripe_head *sh, int num)
209 {
210         struct page *p;
211         int i;
212
213         for (i=0; i<num ; i++) {
214                 p = sh->dev[i].page;
215                 if (!p)
216                         continue;
217                 sh->dev[i].page = NULL;
218                 put_page(p);
219         }
220 }
221
222 static int grow_buffers(struct stripe_head *sh, int num)
223 {
224         int i;
225
226         for (i=0; i<num; i++) {
227                 struct page *page;
228
229                 if (!(page = alloc_page(GFP_KERNEL))) {
230                         return 1;
231                 }
232                 sh->dev[i].page = page;
233         }
234         return 0;
235 }
236
237 static void raid5_build_block (struct stripe_head *sh, int i);
238
239 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
240 {
241         raid5_conf_t *conf = sh->raid_conf;
242         int i;
243
244         BUG_ON(atomic_read(&sh->count) != 0);
245         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
246         BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
247
248         CHECK_DEVLOCK();
249         pr_debug("init_stripe called, stripe %llu\n",
250                 (unsigned long long)sh->sector);
251
252         remove_hash(sh);
253
254         sh->sector = sector;
255         sh->pd_idx = pd_idx;
256         sh->state = 0;
257
258         sh->disks = disks;
259
260         for (i = sh->disks; i--; ) {
261                 struct r5dev *dev = &sh->dev[i];
262
263                 if (dev->toread || dev->read || dev->towrite || dev->written ||
264                     test_bit(R5_LOCKED, &dev->flags)) {
265                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
266                                (unsigned long long)sh->sector, i, dev->toread,
267                                dev->read, dev->towrite, dev->written,
268                                test_bit(R5_LOCKED, &dev->flags));
269                         BUG();
270                 }
271                 dev->flags = 0;
272                 raid5_build_block(sh, i);
273         }
274         insert_hash(conf, sh);
275 }
276
277 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
278 {
279         struct stripe_head *sh;
280         struct hlist_node *hn;
281
282         CHECK_DEVLOCK();
283         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
284         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
285                 if (sh->sector == sector && sh->disks == disks)
286                         return sh;
287         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
288         return NULL;
289 }
290
291 static void unplug_slaves(mddev_t *mddev);
292 static void raid5_unplug_device(struct request_queue *q);
293
294 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295                                              int pd_idx, int noblock)
296 {
297         struct stripe_head *sh;
298
299         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
300
301         spin_lock_irq(&conf->device_lock);
302
303         do {
304                 wait_event_lock_irq(conf->wait_for_stripe,
305                                     conf->quiesce == 0,
306                                     conf->device_lock, /* nothing */);
307                 sh = __find_stripe(conf, sector, disks);
308                 if (!sh) {
309                         if (!conf->inactive_blocked)
310                                 sh = get_free_stripe(conf);
311                         if (noblock && sh == NULL)
312                                 break;
313                         if (!sh) {
314                                 conf->inactive_blocked = 1;
315                                 wait_event_lock_irq(conf->wait_for_stripe,
316                                                     !list_empty(&conf->inactive_list) &&
317                                                     (atomic_read(&conf->active_stripes)
318                                                      < (conf->max_nr_stripes *3/4)
319                                                      || !conf->inactive_blocked),
320                                                     conf->device_lock,
321                                                     raid5_unplug_device(conf->mddev->queue)
322                                         );
323                                 conf->inactive_blocked = 0;
324                         } else
325                                 init_stripe(sh, sector, pd_idx, disks);
326                 } else {
327                         if (atomic_read(&sh->count)) {
328                           BUG_ON(!list_empty(&sh->lru));
329                         } else {
330                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
331                                         atomic_inc(&conf->active_stripes);
332                                 if (list_empty(&sh->lru) &&
333                                     !test_bit(STRIPE_EXPANDING, &sh->state))
334                                         BUG();
335                                 list_del_init(&sh->lru);
336                         }
337                 }
338         } while (sh == NULL);
339
340         if (sh)
341                 atomic_inc(&sh->count);
342
343         spin_unlock_irq(&conf->device_lock);
344         return sh;
345 }
346
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
349 do {                                                    \
350         if (test_bit(op, &sh->ops.pending) &&           \
351                 !test_bit(op, &sh->ops.complete)) {     \
352                 if (test_and_set_bit(op, &sh->ops.ack)) \
353                         clear_bit(op, &pend);           \
354                 else                                    \
355                         ack++;                          \
356         } else                                          \
357                 clear_bit(op, &pend);                   \
358 } while (0)
359
360 /* find new work to run, do not resubmit work that is already
361  * in flight
362  */
363 static unsigned long get_stripe_work(struct stripe_head *sh)
364 {
365         unsigned long pending;
366         int ack = 0;
367
368         pending = sh->ops.pending;
369
370         test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371         test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372         test_and_ack_op(STRIPE_OP_PREXOR, pending);
373         test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374         test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375         test_and_ack_op(STRIPE_OP_CHECK, pending);
376
377         sh->ops.count -= ack;
378         if (unlikely(sh->ops.count < 0)) {
379                 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
380                         "ops.complete: %#lx\n", pending, sh->ops.pending,
381                         sh->ops.ack, sh->ops.complete);
382                 BUG();
383         }
384
385         return pending;
386 }
387
388 static void
389 raid5_end_read_request(struct bio *bi, int error);
390 static void
391 raid5_end_write_request(struct bio *bi, int error);
392
393 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
394 {
395         raid5_conf_t *conf = sh->raid_conf;
396         int i, disks = sh->disks;
397
398         might_sleep();
399
400         for (i = disks; i--; ) {
401                 int rw;
402                 struct bio *bi;
403                 mdk_rdev_t *rdev;
404                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
405                         rw = WRITE;
406                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
407                         rw = READ;
408                 else
409                         continue;
410
411                 bi = &sh->dev[i].req;
412
413                 bi->bi_rw = rw;
414                 if (rw == WRITE)
415                         bi->bi_end_io = raid5_end_write_request;
416                 else
417                         bi->bi_end_io = raid5_end_read_request;
418
419                 rcu_read_lock();
420                 rdev = rcu_dereference(conf->disks[i].rdev);
421                 if (rdev && test_bit(Faulty, &rdev->flags))
422                         rdev = NULL;
423                 if (rdev)
424                         atomic_inc(&rdev->nr_pending);
425                 rcu_read_unlock();
426
427                 if (rdev) {
428                         if (s->syncing || s->expanding || s->expanded)
429                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
430
431                         set_bit(STRIPE_IO_STARTED, &sh->state);
432
433                         bi->bi_bdev = rdev->bdev;
434                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
435                                 __func__, (unsigned long long)sh->sector,
436                                 bi->bi_rw, i);
437                         atomic_inc(&sh->count);
438                         bi->bi_sector = sh->sector + rdev->data_offset;
439                         bi->bi_flags = 1 << BIO_UPTODATE;
440                         bi->bi_vcnt = 1;
441                         bi->bi_max_vecs = 1;
442                         bi->bi_idx = 0;
443                         bi->bi_io_vec = &sh->dev[i].vec;
444                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
445                         bi->bi_io_vec[0].bv_offset = 0;
446                         bi->bi_size = STRIPE_SIZE;
447                         bi->bi_next = NULL;
448                         if (rw == WRITE &&
449                             test_bit(R5_ReWrite, &sh->dev[i].flags))
450                                 atomic_add(STRIPE_SECTORS,
451                                         &rdev->corrected_errors);
452                         generic_make_request(bi);
453                 } else {
454                         if (rw == WRITE)
455                                 set_bit(STRIPE_DEGRADED, &sh->state);
456                         pr_debug("skip op %ld on disc %d for sector %llu\n",
457                                 bi->bi_rw, i, (unsigned long long)sh->sector);
458                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
459                         set_bit(STRIPE_HANDLE, &sh->state);
460                 }
461         }
462 }
463
464 static struct dma_async_tx_descriptor *
465 async_copy_data(int frombio, struct bio *bio, struct page *page,
466         sector_t sector, struct dma_async_tx_descriptor *tx)
467 {
468         struct bio_vec *bvl;
469         struct page *bio_page;
470         int i;
471         int page_offset;
472
473         if (bio->bi_sector >= sector)
474                 page_offset = (signed)(bio->bi_sector - sector) * 512;
475         else
476                 page_offset = (signed)(sector - bio->bi_sector) * -512;
477         bio_for_each_segment(bvl, bio, i) {
478                 int len = bio_iovec_idx(bio, i)->bv_len;
479                 int clen;
480                 int b_offset = 0;
481
482                 if (page_offset < 0) {
483                         b_offset = -page_offset;
484                         page_offset += b_offset;
485                         len -= b_offset;
486                 }
487
488                 if (len > 0 && page_offset + len > STRIPE_SIZE)
489                         clen = STRIPE_SIZE - page_offset;
490                 else
491                         clen = len;
492
493                 if (clen > 0) {
494                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
495                         bio_page = bio_iovec_idx(bio, i)->bv_page;
496                         if (frombio)
497                                 tx = async_memcpy(page, bio_page, page_offset,
498                                         b_offset, clen,
499                                         ASYNC_TX_DEP_ACK,
500                                         tx, NULL, NULL);
501                         else
502                                 tx = async_memcpy(bio_page, page, b_offset,
503                                         page_offset, clen,
504                                         ASYNC_TX_DEP_ACK,
505                                         tx, NULL, NULL);
506                 }
507                 if (clen < len) /* hit end of page */
508                         break;
509                 page_offset +=  len;
510         }
511
512         return tx;
513 }
514
515 static void ops_complete_biofill(void *stripe_head_ref)
516 {
517         struct stripe_head *sh = stripe_head_ref;
518         struct bio *return_bi = NULL;
519         raid5_conf_t *conf = sh->raid_conf;
520         int i;
521
522         pr_debug("%s: stripe %llu\n", __func__,
523                 (unsigned long long)sh->sector);
524
525         /* clear completed biofills */
526         for (i = sh->disks; i--; ) {
527                 struct r5dev *dev = &sh->dev[i];
528
529                 /* acknowledge completion of a biofill operation */
530                 /* and check if we need to reply to a read request,
531                  * new R5_Wantfill requests are held off until
532                  * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
533                  */
534                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
535                         struct bio *rbi, *rbi2;
536
537                         /* The access to dev->read is outside of the
538                          * spin_lock_irq(&conf->device_lock), but is protected
539                          * by the STRIPE_OP_BIOFILL pending bit
540                          */
541                         BUG_ON(!dev->read);
542                         rbi = dev->read;
543                         dev->read = NULL;
544                         while (rbi && rbi->bi_sector <
545                                 dev->sector + STRIPE_SECTORS) {
546                                 rbi2 = r5_next_bio(rbi, dev->sector);
547                                 spin_lock_irq(&conf->device_lock);
548                                 if (--rbi->bi_phys_segments == 0) {
549                                         rbi->bi_next = return_bi;
550                                         return_bi = rbi;
551                                 }
552                                 spin_unlock_irq(&conf->device_lock);
553                                 rbi = rbi2;
554                         }
555                 }
556         }
557         set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
558
559         return_io(return_bi);
560
561         set_bit(STRIPE_HANDLE, &sh->state);
562         release_stripe(sh);
563 }
564
565 static void ops_run_biofill(struct stripe_head *sh)
566 {
567         struct dma_async_tx_descriptor *tx = NULL;
568         raid5_conf_t *conf = sh->raid_conf;
569         int i;
570
571         pr_debug("%s: stripe %llu\n", __func__,
572                 (unsigned long long)sh->sector);
573
574         for (i = sh->disks; i--; ) {
575                 struct r5dev *dev = &sh->dev[i];
576                 if (test_bit(R5_Wantfill, &dev->flags)) {
577                         struct bio *rbi;
578                         spin_lock_irq(&conf->device_lock);
579                         dev->read = rbi = dev->toread;
580                         dev->toread = NULL;
581                         spin_unlock_irq(&conf->device_lock);
582                         while (rbi && rbi->bi_sector <
583                                 dev->sector + STRIPE_SECTORS) {
584                                 tx = async_copy_data(0, rbi, dev->page,
585                                         dev->sector, tx);
586                                 rbi = r5_next_bio(rbi, dev->sector);
587                         }
588                 }
589         }
590
591         atomic_inc(&sh->count);
592         async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
593                 ops_complete_biofill, sh);
594 }
595
596 static void ops_complete_compute5(void *stripe_head_ref)
597 {
598         struct stripe_head *sh = stripe_head_ref;
599         int target = sh->ops.target;
600         struct r5dev *tgt = &sh->dev[target];
601
602         pr_debug("%s: stripe %llu\n", __func__,
603                 (unsigned long long)sh->sector);
604
605         set_bit(R5_UPTODATE, &tgt->flags);
606         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
607         clear_bit(R5_Wantcompute, &tgt->flags);
608         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
609         if (sh->check_state == check_state_compute_run)
610                 sh->check_state = check_state_compute_result;
611         else
612                 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
613         set_bit(STRIPE_HANDLE, &sh->state);
614         release_stripe(sh);
615 }
616
617 static struct dma_async_tx_descriptor *
618 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
619 {
620         /* kernel stack size limits the total number of disks */
621         int disks = sh->disks;
622         struct page *xor_srcs[disks];
623         int target = sh->ops.target;
624         struct r5dev *tgt = &sh->dev[target];
625         struct page *xor_dest = tgt->page;
626         int count = 0;
627         struct dma_async_tx_descriptor *tx;
628         int i;
629
630         pr_debug("%s: stripe %llu block: %d\n",
631                 __func__, (unsigned long long)sh->sector, target);
632         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
633
634         for (i = disks; i--; )
635                 if (i != target)
636                         xor_srcs[count++] = sh->dev[i].page;
637
638         atomic_inc(&sh->count);
639
640         if (unlikely(count == 1))
641                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
642                         0, NULL, ops_complete_compute5, sh);
643         else
644                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
645                         ASYNC_TX_XOR_ZERO_DST, NULL,
646                         ops_complete_compute5, sh);
647
648         /* ack now if postxor is not set to be run */
649         if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
650                 async_tx_ack(tx);
651
652         return tx;
653 }
654
655 static void ops_complete_prexor(void *stripe_head_ref)
656 {
657         struct stripe_head *sh = stripe_head_ref;
658
659         pr_debug("%s: stripe %llu\n", __func__,
660                 (unsigned long long)sh->sector);
661
662         set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
663 }
664
665 static struct dma_async_tx_descriptor *
666 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
667 {
668         /* kernel stack size limits the total number of disks */
669         int disks = sh->disks;
670         struct page *xor_srcs[disks];
671         int count = 0, pd_idx = sh->pd_idx, i;
672
673         /* existing parity data subtracted */
674         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
675
676         pr_debug("%s: stripe %llu\n", __func__,
677                 (unsigned long long)sh->sector);
678
679         for (i = disks; i--; ) {
680                 struct r5dev *dev = &sh->dev[i];
681                 /* Only process blocks that are known to be uptodate */
682                 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
683                         xor_srcs[count++] = dev->page;
684         }
685
686         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
687                 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
688                 ops_complete_prexor, sh);
689
690         return tx;
691 }
692
693 static struct dma_async_tx_descriptor *
694 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
695                  unsigned long pending)
696 {
697         int disks = sh->disks;
698         int pd_idx = sh->pd_idx, i;
699
700         /* check if prexor is active which means only process blocks
701          * that are part of a read-modify-write (Wantprexor)
702          */
703         int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
704
705         pr_debug("%s: stripe %llu\n", __func__,
706                 (unsigned long long)sh->sector);
707
708         for (i = disks; i--; ) {
709                 struct r5dev *dev = &sh->dev[i];
710                 struct bio *chosen;
711                 int towrite;
712
713                 towrite = 0;
714                 if (prexor) { /* rmw */
715                         if (dev->towrite &&
716                             test_bit(R5_Wantprexor, &dev->flags))
717                                 towrite = 1;
718                 } else { /* rcw */
719                         if (i != pd_idx && dev->towrite &&
720                                 test_bit(R5_LOCKED, &dev->flags))
721                                 towrite = 1;
722                 }
723
724                 if (towrite) {
725                         struct bio *wbi;
726
727                         spin_lock(&sh->lock);
728                         chosen = dev->towrite;
729                         dev->towrite = NULL;
730                         BUG_ON(dev->written);
731                         wbi = dev->written = chosen;
732                         spin_unlock(&sh->lock);
733
734                         while (wbi && wbi->bi_sector <
735                                 dev->sector + STRIPE_SECTORS) {
736                                 tx = async_copy_data(1, wbi, dev->page,
737                                         dev->sector, tx);
738                                 wbi = r5_next_bio(wbi, dev->sector);
739                         }
740                 }
741         }
742
743         return tx;
744 }
745
746 static void ops_complete_postxor(void *stripe_head_ref)
747 {
748         struct stripe_head *sh = stripe_head_ref;
749
750         pr_debug("%s: stripe %llu\n", __func__,
751                 (unsigned long long)sh->sector);
752
753         set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
754         set_bit(STRIPE_HANDLE, &sh->state);
755         release_stripe(sh);
756 }
757
758 static void ops_complete_write(void *stripe_head_ref)
759 {
760         struct stripe_head *sh = stripe_head_ref;
761         int disks = sh->disks, i, pd_idx = sh->pd_idx;
762
763         pr_debug("%s: stripe %llu\n", __func__,
764                 (unsigned long long)sh->sector);
765
766         for (i = disks; i--; ) {
767                 struct r5dev *dev = &sh->dev[i];
768                 if (dev->written || i == pd_idx)
769                         set_bit(R5_UPTODATE, &dev->flags);
770         }
771
772         set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
773         set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
774
775         set_bit(STRIPE_HANDLE, &sh->state);
776         release_stripe(sh);
777 }
778
779 static void
780 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
781                 unsigned long pending)
782 {
783         /* kernel stack size limits the total number of disks */
784         int disks = sh->disks;
785         struct page *xor_srcs[disks];
786
787         int count = 0, pd_idx = sh->pd_idx, i;
788         struct page *xor_dest;
789         int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
790         unsigned long flags;
791         dma_async_tx_callback callback;
792
793         pr_debug("%s: stripe %llu\n", __func__,
794                 (unsigned long long)sh->sector);
795
796         /* check if prexor is active which means only process blocks
797          * that are part of a read-modify-write (written)
798          */
799         if (prexor) {
800                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
801                 for (i = disks; i--; ) {
802                         struct r5dev *dev = &sh->dev[i];
803                         if (dev->written)
804                                 xor_srcs[count++] = dev->page;
805                 }
806         } else {
807                 xor_dest = sh->dev[pd_idx].page;
808                 for (i = disks; i--; ) {
809                         struct r5dev *dev = &sh->dev[i];
810                         if (i != pd_idx)
811                                 xor_srcs[count++] = dev->page;
812                 }
813         }
814
815         /* check whether this postxor is part of a write */
816         callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
817                 ops_complete_write : ops_complete_postxor;
818
819         /* 1/ if we prexor'd then the dest is reused as a source
820          * 2/ if we did not prexor then we are redoing the parity
821          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
822          * for the synchronous xor case
823          */
824         flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
825                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
826
827         atomic_inc(&sh->count);
828
829         if (unlikely(count == 1)) {
830                 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
831                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
832                         flags, tx, callback, sh);
833         } else
834                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
835                         flags, tx, callback, sh);
836 }
837
838 static void ops_complete_check(void *stripe_head_ref)
839 {
840         struct stripe_head *sh = stripe_head_ref;
841
842         pr_debug("%s: stripe %llu\n", __func__,
843                 (unsigned long long)sh->sector);
844
845         sh->check_state = check_state_check_result;
846         set_bit(STRIPE_HANDLE, &sh->state);
847         release_stripe(sh);
848 }
849
850 static void ops_run_check(struct stripe_head *sh)
851 {
852         /* kernel stack size limits the total number of disks */
853         int disks = sh->disks;
854         struct page *xor_srcs[disks];
855         struct dma_async_tx_descriptor *tx;
856
857         int count = 0, pd_idx = sh->pd_idx, i;
858         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
859
860         pr_debug("%s: stripe %llu\n", __func__,
861                 (unsigned long long)sh->sector);
862
863         for (i = disks; i--; ) {
864                 struct r5dev *dev = &sh->dev[i];
865                 if (i != pd_idx)
866                         xor_srcs[count++] = dev->page;
867         }
868
869         tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
870                 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
871
872         atomic_inc(&sh->count);
873         tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
874                 ops_complete_check, sh);
875 }
876
877 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending,
878                           unsigned long ops_request)
879 {
880         int overlap_clear = 0, i, disks = sh->disks;
881         struct dma_async_tx_descriptor *tx = NULL;
882
883         if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
884                 ops_run_biofill(sh);
885                 overlap_clear++;
886         }
887
888         if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending) ||
889             test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request))
890                 tx = ops_run_compute5(sh, pending);
891
892         if (test_bit(STRIPE_OP_PREXOR, &pending))
893                 tx = ops_run_prexor(sh, tx);
894
895         if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
896                 tx = ops_run_biodrain(sh, tx, pending);
897                 overlap_clear++;
898         }
899
900         if (test_bit(STRIPE_OP_POSTXOR, &pending))
901                 ops_run_postxor(sh, tx, pending);
902
903         if (test_bit(STRIPE_OP_CHECK, &ops_request))
904                 ops_run_check(sh);
905
906         if (overlap_clear)
907                 for (i = disks; i--; ) {
908                         struct r5dev *dev = &sh->dev[i];
909                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
910                                 wake_up(&sh->raid_conf->wait_for_overlap);
911                 }
912 }
913
914 static int grow_one_stripe(raid5_conf_t *conf)
915 {
916         struct stripe_head *sh;
917         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
918         if (!sh)
919                 return 0;
920         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
921         sh->raid_conf = conf;
922         spin_lock_init(&sh->lock);
923
924         if (grow_buffers(sh, conf->raid_disks)) {
925                 shrink_buffers(sh, conf->raid_disks);
926                 kmem_cache_free(conf->slab_cache, sh);
927                 return 0;
928         }
929         sh->disks = conf->raid_disks;
930         /* we just created an active stripe so... */
931         atomic_set(&sh->count, 1);
932         atomic_inc(&conf->active_stripes);
933         INIT_LIST_HEAD(&sh->lru);
934         release_stripe(sh);
935         return 1;
936 }
937
938 static int grow_stripes(raid5_conf_t *conf, int num)
939 {
940         struct kmem_cache *sc;
941         int devs = conf->raid_disks;
942
943         sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
944         sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
945         conf->active_name = 0;
946         sc = kmem_cache_create(conf->cache_name[conf->active_name],
947                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
948                                0, 0, NULL);
949         if (!sc)
950                 return 1;
951         conf->slab_cache = sc;
952         conf->pool_size = devs;
953         while (num--)
954                 if (!grow_one_stripe(conf))
955                         return 1;
956         return 0;
957 }
958
959 #ifdef CONFIG_MD_RAID5_RESHAPE
960 static int resize_stripes(raid5_conf_t *conf, int newsize)
961 {
962         /* Make all the stripes able to hold 'newsize' devices.
963          * New slots in each stripe get 'page' set to a new page.
964          *
965          * This happens in stages:
966          * 1/ create a new kmem_cache and allocate the required number of
967          *    stripe_heads.
968          * 2/ gather all the old stripe_heads and tranfer the pages across
969          *    to the new stripe_heads.  This will have the side effect of
970          *    freezing the array as once all stripe_heads have been collected,
971          *    no IO will be possible.  Old stripe heads are freed once their
972          *    pages have been transferred over, and the old kmem_cache is
973          *    freed when all stripes are done.
974          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
975          *    we simple return a failre status - no need to clean anything up.
976          * 4/ allocate new pages for the new slots in the new stripe_heads.
977          *    If this fails, we don't bother trying the shrink the
978          *    stripe_heads down again, we just leave them as they are.
979          *    As each stripe_head is processed the new one is released into
980          *    active service.
981          *
982          * Once step2 is started, we cannot afford to wait for a write,
983          * so we use GFP_NOIO allocations.
984          */
985         struct stripe_head *osh, *nsh;
986         LIST_HEAD(newstripes);
987         struct disk_info *ndisks;
988         int err = 0;
989         struct kmem_cache *sc;
990         int i;
991
992         if (newsize <= conf->pool_size)
993                 return 0; /* never bother to shrink */
994
995         md_allow_write(conf->mddev);
996
997         /* Step 1 */
998         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
999                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1000                                0, 0, NULL);
1001         if (!sc)
1002                 return -ENOMEM;
1003
1004         for (i = conf->max_nr_stripes; i; i--) {
1005                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1006                 if (!nsh)
1007                         break;
1008
1009                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1010
1011                 nsh->raid_conf = conf;
1012                 spin_lock_init(&nsh->lock);
1013
1014                 list_add(&nsh->lru, &newstripes);
1015         }
1016         if (i) {
1017                 /* didn't get enough, give up */
1018                 while (!list_empty(&newstripes)) {
1019                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1020                         list_del(&nsh->lru);
1021                         kmem_cache_free(sc, nsh);
1022                 }
1023                 kmem_cache_destroy(sc);
1024                 return -ENOMEM;
1025         }
1026         /* Step 2 - Must use GFP_NOIO now.
1027          * OK, we have enough stripes, start collecting inactive
1028          * stripes and copying them over
1029          */
1030         list_for_each_entry(nsh, &newstripes, lru) {
1031                 spin_lock_irq(&conf->device_lock);
1032                 wait_event_lock_irq(conf->wait_for_stripe,
1033                                     !list_empty(&conf->inactive_list),
1034                                     conf->device_lock,
1035                                     unplug_slaves(conf->mddev)
1036                         );
1037                 osh = get_free_stripe(conf);
1038                 spin_unlock_irq(&conf->device_lock);
1039                 atomic_set(&nsh->count, 1);
1040                 for(i=0; i<conf->pool_size; i++)
1041                         nsh->dev[i].page = osh->dev[i].page;
1042                 for( ; i<newsize; i++)
1043                         nsh->dev[i].page = NULL;
1044                 kmem_cache_free(conf->slab_cache, osh);
1045         }
1046         kmem_cache_destroy(conf->slab_cache);
1047
1048         /* Step 3.
1049          * At this point, we are holding all the stripes so the array
1050          * is completely stalled, so now is a good time to resize
1051          * conf->disks.
1052          */
1053         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1054         if (ndisks) {
1055                 for (i=0; i<conf->raid_disks; i++)
1056                         ndisks[i] = conf->disks[i];
1057                 kfree(conf->disks);
1058                 conf->disks = ndisks;
1059         } else
1060                 err = -ENOMEM;
1061
1062         /* Step 4, return new stripes to service */
1063         while(!list_empty(&newstripes)) {
1064                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1065                 list_del_init(&nsh->lru);
1066                 for (i=conf->raid_disks; i < newsize; i++)
1067                         if (nsh->dev[i].page == NULL) {
1068                                 struct page *p = alloc_page(GFP_NOIO);
1069                                 nsh->dev[i].page = p;
1070                                 if (!p)
1071                                         err = -ENOMEM;
1072                         }
1073                 release_stripe(nsh);
1074         }
1075         /* critical section pass, GFP_NOIO no longer needed */
1076
1077         conf->slab_cache = sc;
1078         conf->active_name = 1-conf->active_name;
1079         conf->pool_size = newsize;
1080         return err;
1081 }
1082 #endif
1083
1084 static int drop_one_stripe(raid5_conf_t *conf)
1085 {
1086         struct stripe_head *sh;
1087
1088         spin_lock_irq(&conf->device_lock);
1089         sh = get_free_stripe(conf);
1090         spin_unlock_irq(&conf->device_lock);
1091         if (!sh)
1092                 return 0;
1093         BUG_ON(atomic_read(&sh->count));
1094         shrink_buffers(sh, conf->pool_size);
1095         kmem_cache_free(conf->slab_cache, sh);
1096         atomic_dec(&conf->active_stripes);
1097         return 1;
1098 }
1099
1100 static void shrink_stripes(raid5_conf_t *conf)
1101 {
1102         while (drop_one_stripe(conf))
1103                 ;
1104
1105         if (conf->slab_cache)
1106                 kmem_cache_destroy(conf->slab_cache);
1107         conf->slab_cache = NULL;
1108 }
1109
1110 static void raid5_end_read_request(struct bio * bi, int error)
1111 {
1112         struct stripe_head *sh = bi->bi_private;
1113         raid5_conf_t *conf = sh->raid_conf;
1114         int disks = sh->disks, i;
1115         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1116         char b[BDEVNAME_SIZE];
1117         mdk_rdev_t *rdev;
1118
1119
1120         for (i=0 ; i<disks; i++)
1121                 if (bi == &sh->dev[i].req)
1122                         break;
1123
1124         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1125                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1126                 uptodate);
1127         if (i == disks) {
1128                 BUG();
1129                 return;
1130         }
1131
1132         if (uptodate) {
1133                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1134                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1135                         rdev = conf->disks[i].rdev;
1136                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1137                                   " (%lu sectors at %llu on %s)\n",
1138                                   mdname(conf->mddev), STRIPE_SECTORS,
1139                                   (unsigned long long)(sh->sector
1140                                                        + rdev->data_offset),
1141                                   bdevname(rdev->bdev, b));
1142                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1143                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1144                 }
1145                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1146                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1147         } else {
1148                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1149                 int retry = 0;
1150                 rdev = conf->disks[i].rdev;
1151
1152                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1153                 atomic_inc(&rdev->read_errors);
1154                 if (conf->mddev->degraded)
1155                         printk_rl(KERN_WARNING
1156                                   "raid5:%s: read error not correctable "
1157                                   "(sector %llu on %s).\n",
1158                                   mdname(conf->mddev),
1159                                   (unsigned long long)(sh->sector
1160                                                        + rdev->data_offset),
1161                                   bdn);
1162                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1163                         /* Oh, no!!! */
1164                         printk_rl(KERN_WARNING
1165                                   "raid5:%s: read error NOT corrected!! "
1166                                   "(sector %llu on %s).\n",
1167                                   mdname(conf->mddev),
1168                                   (unsigned long long)(sh->sector
1169                                                        + rdev->data_offset),
1170                                   bdn);
1171                 else if (atomic_read(&rdev->read_errors)
1172                          > conf->max_nr_stripes)
1173                         printk(KERN_WARNING
1174                                "raid5:%s: Too many read errors, failing device %s.\n",
1175                                mdname(conf->mddev), bdn);
1176                 else
1177                         retry = 1;
1178                 if (retry)
1179                         set_bit(R5_ReadError, &sh->dev[i].flags);
1180                 else {
1181                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1182                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1183                         md_error(conf->mddev, rdev);
1184                 }
1185         }
1186         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1187         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1188         set_bit(STRIPE_HANDLE, &sh->state);
1189         release_stripe(sh);
1190 }
1191
1192 static void raid5_end_write_request (struct bio *bi, int error)
1193 {
1194         struct stripe_head *sh = bi->bi_private;
1195         raid5_conf_t *conf = sh->raid_conf;
1196         int disks = sh->disks, i;
1197         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1198
1199         for (i=0 ; i<disks; i++)
1200                 if (bi == &sh->dev[i].req)
1201                         break;
1202
1203         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1204                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1205                 uptodate);
1206         if (i == disks) {
1207                 BUG();
1208                 return;
1209         }
1210
1211         if (!uptodate)
1212                 md_error(conf->mddev, conf->disks[i].rdev);
1213
1214         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1215         
1216         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1217         set_bit(STRIPE_HANDLE, &sh->state);
1218         release_stripe(sh);
1219 }
1220
1221
1222 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1223         
1224 static void raid5_build_block (struct stripe_head *sh, int i)
1225 {
1226         struct r5dev *dev = &sh->dev[i];
1227
1228         bio_init(&dev->req);
1229         dev->req.bi_io_vec = &dev->vec;
1230         dev->req.bi_vcnt++;
1231         dev->req.bi_max_vecs++;
1232         dev->vec.bv_page = dev->page;
1233         dev->vec.bv_len = STRIPE_SIZE;
1234         dev->vec.bv_offset = 0;
1235
1236         dev->req.bi_sector = sh->sector;
1237         dev->req.bi_private = sh;
1238
1239         dev->flags = 0;
1240         dev->sector = compute_blocknr(sh, i);
1241 }
1242
1243 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1244 {
1245         char b[BDEVNAME_SIZE];
1246         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1247         pr_debug("raid5: error called\n");
1248
1249         if (!test_bit(Faulty, &rdev->flags)) {
1250                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1251                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1252                         unsigned long flags;
1253                         spin_lock_irqsave(&conf->device_lock, flags);
1254                         mddev->degraded++;
1255                         spin_unlock_irqrestore(&conf->device_lock, flags);
1256                         /*
1257                          * if recovery was running, make sure it aborts.
1258                          */
1259                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1260                 }
1261                 set_bit(Faulty, &rdev->flags);
1262                 printk (KERN_ALERT
1263                         "raid5: Disk failure on %s, disabling device.\n"
1264                         "raid5: Operation continuing on %d devices.\n",
1265                         bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1266         }
1267 }
1268
1269 /*
1270  * Input: a 'big' sector number,
1271  * Output: index of the data and parity disk, and the sector # in them.
1272  */
1273 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1274                         unsigned int data_disks, unsigned int * dd_idx,
1275                         unsigned int * pd_idx, raid5_conf_t *conf)
1276 {
1277         long stripe;
1278         unsigned long chunk_number;
1279         unsigned int chunk_offset;
1280         sector_t new_sector;
1281         int sectors_per_chunk = conf->chunk_size >> 9;
1282
1283         /* First compute the information on this sector */
1284
1285         /*
1286          * Compute the chunk number and the sector offset inside the chunk
1287          */
1288         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1289         chunk_number = r_sector;
1290         BUG_ON(r_sector != chunk_number);
1291
1292         /*
1293          * Compute the stripe number
1294          */
1295         stripe = chunk_number / data_disks;
1296
1297         /*
1298          * Compute the data disk and parity disk indexes inside the stripe
1299          */
1300         *dd_idx = chunk_number % data_disks;
1301
1302         /*
1303          * Select the parity disk based on the user selected algorithm.
1304          */
1305         switch(conf->level) {
1306         case 4:
1307                 *pd_idx = data_disks;
1308                 break;
1309         case 5:
1310                 switch (conf->algorithm) {
1311                 case ALGORITHM_LEFT_ASYMMETRIC:
1312                         *pd_idx = data_disks - stripe % raid_disks;
1313                         if (*dd_idx >= *pd_idx)
1314                                 (*dd_idx)++;
1315                         break;
1316                 case ALGORITHM_RIGHT_ASYMMETRIC:
1317                         *pd_idx = stripe % raid_disks;
1318                         if (*dd_idx >= *pd_idx)
1319                                 (*dd_idx)++;
1320                         break;
1321                 case ALGORITHM_LEFT_SYMMETRIC:
1322                         *pd_idx = data_disks - stripe % raid_disks;
1323                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1324                         break;
1325                 case ALGORITHM_RIGHT_SYMMETRIC:
1326                         *pd_idx = stripe % raid_disks;
1327                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1328                         break;
1329                 default:
1330                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1331                                 conf->algorithm);
1332                 }
1333                 break;
1334         case 6:
1335
1336                 /**** FIX THIS ****/
1337                 switch (conf->algorithm) {
1338                 case ALGORITHM_LEFT_ASYMMETRIC:
1339                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1340                         if (*pd_idx == raid_disks-1)
1341                                 (*dd_idx)++;    /* Q D D D P */
1342                         else if (*dd_idx >= *pd_idx)
1343                                 (*dd_idx) += 2; /* D D P Q D */
1344                         break;
1345                 case ALGORITHM_RIGHT_ASYMMETRIC:
1346                         *pd_idx = stripe % raid_disks;
1347                         if (*pd_idx == raid_disks-1)
1348                                 (*dd_idx)++;    /* Q D D D P */
1349                         else if (*dd_idx >= *pd_idx)
1350                                 (*dd_idx) += 2; /* D D P Q D */
1351                         break;
1352                 case ALGORITHM_LEFT_SYMMETRIC:
1353                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1354                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1355                         break;
1356                 case ALGORITHM_RIGHT_SYMMETRIC:
1357                         *pd_idx = stripe % raid_disks;
1358                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1359                         break;
1360                 default:
1361                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1362                                 conf->algorithm);
1363                 }
1364                 break;
1365         }
1366
1367         /*
1368          * Finally, compute the new sector number
1369          */
1370         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1371         return new_sector;
1372 }
1373
1374
1375 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1376 {
1377         raid5_conf_t *conf = sh->raid_conf;
1378         int raid_disks = sh->disks;
1379         int data_disks = raid_disks - conf->max_degraded;
1380         sector_t new_sector = sh->sector, check;
1381         int sectors_per_chunk = conf->chunk_size >> 9;
1382         sector_t stripe;
1383         int chunk_offset;
1384         int chunk_number, dummy1, dummy2, dd_idx = i;
1385         sector_t r_sector;
1386
1387
1388         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1389         stripe = new_sector;
1390         BUG_ON(new_sector != stripe);
1391
1392         if (i == sh->pd_idx)
1393                 return 0;
1394         switch(conf->level) {
1395         case 4: break;
1396         case 5:
1397                 switch (conf->algorithm) {
1398                 case ALGORITHM_LEFT_ASYMMETRIC:
1399                 case ALGORITHM_RIGHT_ASYMMETRIC:
1400                         if (i > sh->pd_idx)
1401                                 i--;
1402                         break;
1403                 case ALGORITHM_LEFT_SYMMETRIC:
1404                 case ALGORITHM_RIGHT_SYMMETRIC:
1405                         if (i < sh->pd_idx)
1406                                 i += raid_disks;
1407                         i -= (sh->pd_idx + 1);
1408                         break;
1409                 default:
1410                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1411                                conf->algorithm);
1412                 }
1413                 break;
1414         case 6:
1415                 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1416                         return 0; /* It is the Q disk */
1417                 switch (conf->algorithm) {
1418                 case ALGORITHM_LEFT_ASYMMETRIC:
1419                 case ALGORITHM_RIGHT_ASYMMETRIC:
1420                         if (sh->pd_idx == raid_disks-1)
1421                                 i--;    /* Q D D D P */
1422                         else if (i > sh->pd_idx)
1423                                 i -= 2; /* D D P Q D */
1424                         break;
1425                 case ALGORITHM_LEFT_SYMMETRIC:
1426                 case ALGORITHM_RIGHT_SYMMETRIC:
1427                         if (sh->pd_idx == raid_disks-1)
1428                                 i--; /* Q D D D P */
1429                         else {
1430                                 /* D D P Q D */
1431                                 if (i < sh->pd_idx)
1432                                         i += raid_disks;
1433                                 i -= (sh->pd_idx + 2);
1434                         }
1435                         break;
1436                 default:
1437                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1438                                 conf->algorithm);
1439                 }
1440                 break;
1441         }
1442
1443         chunk_number = stripe * data_disks + i;
1444         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1445
1446         check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1447         if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1448                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1449                 return 0;
1450         }
1451         return r_sector;
1452 }
1453
1454
1455
1456 /*
1457  * Copy data between a page in the stripe cache, and one or more bion
1458  * The page could align with the middle of the bio, or there could be
1459  * several bion, each with several bio_vecs, which cover part of the page
1460  * Multiple bion are linked together on bi_next.  There may be extras
1461  * at the end of this list.  We ignore them.
1462  */
1463 static void copy_data(int frombio, struct bio *bio,
1464                      struct page *page,
1465                      sector_t sector)
1466 {
1467         char *pa = page_address(page);
1468         struct bio_vec *bvl;
1469         int i;
1470         int page_offset;
1471
1472         if (bio->bi_sector >= sector)
1473                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1474         else
1475                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1476         bio_for_each_segment(bvl, bio, i) {
1477                 int len = bio_iovec_idx(bio,i)->bv_len;
1478                 int clen;
1479                 int b_offset = 0;
1480
1481                 if (page_offset < 0) {
1482                         b_offset = -page_offset;
1483                         page_offset += b_offset;
1484                         len -= b_offset;
1485                 }
1486
1487                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1488                         clen = STRIPE_SIZE - page_offset;
1489                 else clen = len;
1490
1491                 if (clen > 0) {
1492                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1493                         if (frombio)
1494                                 memcpy(pa+page_offset, ba+b_offset, clen);
1495                         else
1496                                 memcpy(ba+b_offset, pa+page_offset, clen);
1497                         __bio_kunmap_atomic(ba, KM_USER0);
1498                 }
1499                 if (clen < len) /* hit end of page */
1500                         break;
1501                 page_offset +=  len;
1502         }
1503 }
1504
1505 #define check_xor()     do {                                              \
1506                                 if (count == MAX_XOR_BLOCKS) {            \
1507                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1508                                 count = 0;                                \
1509                            }                                              \
1510                         } while(0)
1511
1512 static void compute_parity6(struct stripe_head *sh, int method)
1513 {
1514         raid6_conf_t *conf = sh->raid_conf;
1515         int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1516         struct bio *chosen;
1517         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1518         void *ptrs[disks];
1519
1520         qd_idx = raid6_next_disk(pd_idx, disks);
1521         d0_idx = raid6_next_disk(qd_idx, disks);
1522
1523         pr_debug("compute_parity, stripe %llu, method %d\n",
1524                 (unsigned long long)sh->sector, method);
1525
1526         switch(method) {
1527         case READ_MODIFY_WRITE:
1528                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1529         case RECONSTRUCT_WRITE:
1530                 for (i= disks; i-- ;)
1531                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1532                                 chosen = sh->dev[i].towrite;
1533                                 sh->dev[i].towrite = NULL;
1534
1535                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1536                                         wake_up(&conf->wait_for_overlap);
1537
1538                                 BUG_ON(sh->dev[i].written);
1539                                 sh->dev[i].written = chosen;
1540                         }
1541                 break;
1542         case CHECK_PARITY:
1543                 BUG();          /* Not implemented yet */
1544         }
1545
1546         for (i = disks; i--;)
1547                 if (sh->dev[i].written) {
1548                         sector_t sector = sh->dev[i].sector;
1549                         struct bio *wbi = sh->dev[i].written;
1550                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1551                                 copy_data(1, wbi, sh->dev[i].page, sector);
1552                                 wbi = r5_next_bio(wbi, sector);
1553                         }
1554
1555                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1556                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1557                 }
1558
1559 //      switch(method) {
1560 //      case RECONSTRUCT_WRITE:
1561 //      case CHECK_PARITY:
1562 //      case UPDATE_PARITY:
1563                 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1564                 /* FIX: Is this ordering of drives even remotely optimal? */
1565                 count = 0;
1566                 i = d0_idx;
1567                 do {
1568                         ptrs[count++] = page_address(sh->dev[i].page);
1569                         if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1570                                 printk("block %d/%d not uptodate on parity calc\n", i,count);
1571                         i = raid6_next_disk(i, disks);
1572                 } while ( i != d0_idx );
1573 //              break;
1574 //      }
1575
1576         raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1577
1578         switch(method) {
1579         case RECONSTRUCT_WRITE:
1580                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1581                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1582                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1583                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1584                 break;
1585         case UPDATE_PARITY:
1586                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1587                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1588                 break;
1589         }
1590 }
1591
1592
1593 /* Compute one missing block */
1594 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1595 {
1596         int i, count, disks = sh->disks;
1597         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1598         int pd_idx = sh->pd_idx;
1599         int qd_idx = raid6_next_disk(pd_idx, disks);
1600
1601         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1602                 (unsigned long long)sh->sector, dd_idx);
1603
1604         if ( dd_idx == qd_idx ) {
1605                 /* We're actually computing the Q drive */
1606                 compute_parity6(sh, UPDATE_PARITY);
1607         } else {
1608                 dest = page_address(sh->dev[dd_idx].page);
1609                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1610                 count = 0;
1611                 for (i = disks ; i--; ) {
1612                         if (i == dd_idx || i == qd_idx)
1613                                 continue;
1614                         p = page_address(sh->dev[i].page);
1615                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1616                                 ptr[count++] = p;
1617                         else
1618                                 printk("compute_block() %d, stripe %llu, %d"
1619                                        " not present\n", dd_idx,
1620                                        (unsigned long long)sh->sector, i);
1621
1622                         check_xor();
1623                 }
1624                 if (count)
1625                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1626                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1627                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1628         }
1629 }
1630
1631 /* Compute two missing blocks */
1632 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1633 {
1634         int i, count, disks = sh->disks;
1635         int pd_idx = sh->pd_idx;
1636         int qd_idx = raid6_next_disk(pd_idx, disks);
1637         int d0_idx = raid6_next_disk(qd_idx, disks);
1638         int faila, failb;
1639
1640         /* faila and failb are disk numbers relative to d0_idx */
1641         /* pd_idx become disks-2 and qd_idx become disks-1 */
1642         faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1643         failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1644
1645         BUG_ON(faila == failb);
1646         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1647
1648         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1649                (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1650
1651         if ( failb == disks-1 ) {
1652                 /* Q disk is one of the missing disks */
1653                 if ( faila == disks-2 ) {
1654                         /* Missing P+Q, just recompute */
1655                         compute_parity6(sh, UPDATE_PARITY);
1656                         return;
1657                 } else {
1658                         /* We're missing D+Q; recompute D from P */
1659                         compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1660                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1661                         return;
1662                 }
1663         }
1664
1665         /* We're missing D+P or D+D; build pointer table */
1666         {
1667                 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1668                 void *ptrs[disks];
1669
1670                 count = 0;
1671                 i = d0_idx;
1672                 do {
1673                         ptrs[count++] = page_address(sh->dev[i].page);
1674                         i = raid6_next_disk(i, disks);
1675                         if (i != dd_idx1 && i != dd_idx2 &&
1676                             !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1677                                 printk("compute_2 with missing block %d/%d\n", count, i);
1678                 } while ( i != d0_idx );
1679
1680                 if ( failb == disks-2 ) {
1681                         /* We're missing D+P. */
1682                         raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1683                 } else {
1684                         /* We're missing D+D. */
1685                         raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1686                 }
1687
1688                 /* Both the above update both missing blocks */
1689                 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1690                 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1691         }
1692 }
1693
1694 static int
1695 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1696 {
1697         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1698         int locked = 0;
1699
1700         if (rcw) {
1701                 /* if we are not expanding this is a proper write request, and
1702                  * there will be bios with new data to be drained into the
1703                  * stripe cache
1704                  */
1705                 if (!expand) {
1706                         set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1707                         sh->ops.count++;
1708                 }
1709
1710                 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1711                 sh->ops.count++;
1712
1713                 for (i = disks; i--; ) {
1714                         struct r5dev *dev = &sh->dev[i];
1715
1716                         if (dev->towrite) {
1717                                 set_bit(R5_LOCKED, &dev->flags);
1718                                 if (!expand)
1719                                         clear_bit(R5_UPTODATE, &dev->flags);
1720                                 locked++;
1721                         }
1722                 }
1723                 if (locked + 1 == disks)
1724                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1725                                 atomic_inc(&sh->raid_conf->pending_full_writes);
1726         } else {
1727                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1728                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1729
1730                 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1731                 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1732                 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1733
1734                 sh->ops.count += 3;
1735
1736                 for (i = disks; i--; ) {
1737                         struct r5dev *dev = &sh->dev[i];
1738                         if (i == pd_idx)
1739                                 continue;
1740
1741                         /* For a read-modify write there may be blocks that are
1742                          * locked for reading while others are ready to be
1743                          * written so we distinguish these blocks by the
1744                          * R5_Wantprexor bit
1745                          */
1746                         if (dev->towrite &&
1747                             (test_bit(R5_UPTODATE, &dev->flags) ||
1748                             test_bit(R5_Wantcompute, &dev->flags))) {
1749                                 set_bit(R5_Wantprexor, &dev->flags);
1750                                 set_bit(R5_LOCKED, &dev->flags);
1751                                 clear_bit(R5_UPTODATE, &dev->flags);
1752                                 locked++;
1753                         }
1754                 }
1755         }
1756
1757         /* keep the parity disk locked while asynchronous operations
1758          * are in flight
1759          */
1760         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1761         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1762         locked++;
1763
1764         pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1765                 __func__, (unsigned long long)sh->sector,
1766                 locked, sh->ops.pending);
1767
1768         return locked;
1769 }
1770
1771 /*
1772  * Each stripe/dev can have one or more bion attached.
1773  * toread/towrite point to the first in a chain.
1774  * The bi_next chain must be in order.
1775  */
1776 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1777 {
1778         struct bio **bip;
1779         raid5_conf_t *conf = sh->raid_conf;
1780         int firstwrite=0;
1781
1782         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1783                 (unsigned long long)bi->bi_sector,
1784                 (unsigned long long)sh->sector);
1785
1786
1787         spin_lock(&sh->lock);
1788         spin_lock_irq(&conf->device_lock);
1789         if (forwrite) {
1790                 bip = &sh->dev[dd_idx].towrite;
1791                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1792                         firstwrite = 1;
1793         } else
1794                 bip = &sh->dev[dd_idx].toread;
1795         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1796                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1797                         goto overlap;
1798                 bip = & (*bip)->bi_next;
1799         }
1800         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1801                 goto overlap;
1802
1803         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1804         if (*bip)
1805                 bi->bi_next = *bip;
1806         *bip = bi;
1807         bi->bi_phys_segments ++;
1808         spin_unlock_irq(&conf->device_lock);
1809         spin_unlock(&sh->lock);
1810
1811         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1812                 (unsigned long long)bi->bi_sector,
1813                 (unsigned long long)sh->sector, dd_idx);
1814
1815         if (conf->mddev->bitmap && firstwrite) {
1816                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1817                                   STRIPE_SECTORS, 0);
1818                 sh->bm_seq = conf->seq_flush+1;
1819                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1820         }
1821
1822         if (forwrite) {
1823                 /* check if page is covered */
1824                 sector_t sector = sh->dev[dd_idx].sector;
1825                 for (bi=sh->dev[dd_idx].towrite;
1826                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1827                              bi && bi->bi_sector <= sector;
1828                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1829                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1830                                 sector = bi->bi_sector + (bi->bi_size>>9);
1831                 }
1832                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1833                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1834         }
1835         return 1;
1836
1837  overlap:
1838         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1839         spin_unlock_irq(&conf->device_lock);
1840         spin_unlock(&sh->lock);
1841         return 0;
1842 }
1843
1844 static void end_reshape(raid5_conf_t *conf);
1845
1846 static int page_is_zero(struct page *p)
1847 {
1848         char *a = page_address(p);
1849         return ((*(u32*)a) == 0 &&
1850                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1851 }
1852
1853 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1854 {
1855         int sectors_per_chunk = conf->chunk_size >> 9;
1856         int pd_idx, dd_idx;
1857         int chunk_offset = sector_div(stripe, sectors_per_chunk);
1858
1859         raid5_compute_sector(stripe * (disks - conf->max_degraded)
1860                              *sectors_per_chunk + chunk_offset,
1861                              disks, disks - conf->max_degraded,
1862                              &dd_idx, &pd_idx, conf);
1863         return pd_idx;
1864 }
1865
1866 static void
1867 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1868                                 struct stripe_head_state *s, int disks,
1869                                 struct bio **return_bi)
1870 {
1871         int i;
1872         for (i = disks; i--; ) {
1873                 struct bio *bi;
1874                 int bitmap_end = 0;
1875
1876                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1877                         mdk_rdev_t *rdev;
1878                         rcu_read_lock();
1879                         rdev = rcu_dereference(conf->disks[i].rdev);
1880                         if (rdev && test_bit(In_sync, &rdev->flags))
1881                                 /* multiple read failures in one stripe */
1882                                 md_error(conf->mddev, rdev);
1883                         rcu_read_unlock();
1884                 }
1885                 spin_lock_irq(&conf->device_lock);
1886                 /* fail all writes first */
1887                 bi = sh->dev[i].towrite;
1888                 sh->dev[i].towrite = NULL;
1889                 if (bi) {
1890                         s->to_write--;
1891                         bitmap_end = 1;
1892                 }
1893
1894                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1895                         wake_up(&conf->wait_for_overlap);
1896
1897                 while (bi && bi->bi_sector <
1898                         sh->dev[i].sector + STRIPE_SECTORS) {
1899                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1900                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1901                         if (--bi->bi_phys_segments == 0) {
1902                                 md_write_end(conf->mddev);
1903                                 bi->bi_next = *return_bi;
1904                                 *return_bi = bi;
1905                         }
1906                         bi = nextbi;
1907                 }
1908                 /* and fail all 'written' */
1909                 bi = sh->dev[i].written;
1910                 sh->dev[i].written = NULL;
1911                 if (bi) bitmap_end = 1;
1912                 while (bi && bi->bi_sector <
1913                        sh->dev[i].sector + STRIPE_SECTORS) {
1914                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1915                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1916                         if (--bi->bi_phys_segments == 0) {
1917                                 md_write_end(conf->mddev);
1918                                 bi->bi_next = *return_bi;
1919                                 *return_bi = bi;
1920                         }
1921                         bi = bi2;
1922                 }
1923
1924                 /* fail any reads if this device is non-operational and
1925                  * the data has not reached the cache yet.
1926                  */
1927                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1928                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1929                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
1930                         bi = sh->dev[i].toread;
1931                         sh->dev[i].toread = NULL;
1932                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1933                                 wake_up(&conf->wait_for_overlap);
1934                         if (bi) s->to_read--;
1935                         while (bi && bi->bi_sector <
1936                                sh->dev[i].sector + STRIPE_SECTORS) {
1937                                 struct bio *nextbi =
1938                                         r5_next_bio(bi, sh->dev[i].sector);
1939                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1940                                 if (--bi->bi_phys_segments == 0) {
1941                                         bi->bi_next = *return_bi;
1942                                         *return_bi = bi;
1943                                 }
1944                                 bi = nextbi;
1945                         }
1946                 }
1947                 spin_unlock_irq(&conf->device_lock);
1948                 if (bitmap_end)
1949                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1950                                         STRIPE_SECTORS, 0, 0);
1951         }
1952
1953         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1954                 if (atomic_dec_and_test(&conf->pending_full_writes))
1955                         md_wakeup_thread(conf->mddev->thread);
1956 }
1957
1958 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1959  * to process
1960  */
1961 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1962                         struct stripe_head_state *s, int disk_idx, int disks)
1963 {
1964         struct r5dev *dev = &sh->dev[disk_idx];
1965         struct r5dev *failed_dev = &sh->dev[s->failed_num];
1966
1967         /* don't schedule compute operations or reads on the parity block while
1968          * a check is in flight
1969          */
1970         if (disk_idx == sh->pd_idx && sh->check_state)
1971                 return ~0;
1972
1973         /* is the data in this block needed, and can we get it? */
1974         if (!test_bit(R5_LOCKED, &dev->flags) &&
1975             !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1976             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1977              s->syncing || s->expanding || (s->failed &&
1978              (failed_dev->toread || (failed_dev->towrite &&
1979              !test_bit(R5_OVERWRITE, &failed_dev->flags)
1980              ))))) {
1981                 /* 1/ We would like to get this block, possibly by computing it,
1982                  * but we might not be able to.
1983                  *
1984                  * 2/ Since parity check operations potentially make the parity
1985                  * block !uptodate it will need to be refreshed before any
1986                  * compute operations on data disks are scheduled.
1987                  *
1988                  * 3/ We hold off parity block re-reads until check operations
1989                  * have quiesced.
1990                  */
1991                 if ((s->uptodate == disks - 1) && !sh->check_state &&
1992                     (s->failed && disk_idx == s->failed_num)) {
1993                         set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1994                         set_bit(R5_Wantcompute, &dev->flags);
1995                         sh->ops.target = disk_idx;
1996                         s->req_compute = 1;
1997                         sh->ops.count++;
1998                         /* Careful: from this point on 'uptodate' is in the eye
1999                          * of raid5_run_ops which services 'compute' operations
2000                          * before writes. R5_Wantcompute flags a block that will
2001                          * be R5_UPTODATE by the time it is needed for a
2002                          * subsequent operation.
2003                          */
2004                         s->uptodate++;
2005                         return 0; /* uptodate + compute == disks */
2006                 } else if ((s->uptodate < disks - 1) &&
2007                         test_bit(R5_Insync, &dev->flags)) {
2008                         /* Note: we hold off compute operations while checks are
2009                          * in flight, but we still prefer 'compute' over 'read'
2010                          * hence we only read if (uptodate < * disks-1)
2011                          */
2012                         set_bit(R5_LOCKED, &dev->flags);
2013                         set_bit(R5_Wantread, &dev->flags);
2014                         s->locked++;
2015                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2016                                 s->syncing);
2017                 }
2018         }
2019
2020         return ~0;
2021 }
2022
2023 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2024                         struct stripe_head_state *s, int disks)
2025 {
2026         int i;
2027
2028         /* Clear completed compute operations */
2029         if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete)) {
2030                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2031                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2032                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2033         }
2034
2035         /* look for blocks to read/compute, skip this if a compute
2036          * is already in flight, or if the stripe contents are in the
2037          * midst of changing due to a write
2038          */
2039         if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2040                 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2041                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2042                 for (i = disks; i--; )
2043                         if (__handle_issuing_new_read_requests5(
2044                                 sh, s, i, disks) == 0)
2045                                 break;
2046         }
2047         set_bit(STRIPE_HANDLE, &sh->state);
2048 }
2049
2050 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2051                         struct stripe_head_state *s, struct r6_state *r6s,
2052                         int disks)
2053 {
2054         int i;
2055         for (i = disks; i--; ) {
2056                 struct r5dev *dev = &sh->dev[i];
2057                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2058                     !test_bit(R5_UPTODATE, &dev->flags) &&
2059                     (dev->toread || (dev->towrite &&
2060                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
2061                      s->syncing || s->expanding ||
2062                      (s->failed >= 1 &&
2063                       (sh->dev[r6s->failed_num[0]].toread ||
2064                        s->to_write)) ||
2065                      (s->failed >= 2 &&
2066                       (sh->dev[r6s->failed_num[1]].toread ||
2067                        s->to_write)))) {
2068                         /* we would like to get this block, possibly
2069                          * by computing it, but we might not be able to
2070                          */
2071                         if ((s->uptodate == disks - 1) &&
2072                             (s->failed && (i == r6s->failed_num[0] ||
2073                                            i == r6s->failed_num[1]))) {
2074                                 pr_debug("Computing stripe %llu block %d\n",
2075                                        (unsigned long long)sh->sector, i);
2076                                 compute_block_1(sh, i, 0);
2077                                 s->uptodate++;
2078                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2079                                 /* Computing 2-failure is *very* expensive; only
2080                                  * do it if failed >= 2
2081                                  */
2082                                 int other;
2083                                 for (other = disks; other--; ) {
2084                                         if (other == i)
2085                                                 continue;
2086                                         if (!test_bit(R5_UPTODATE,
2087                                               &sh->dev[other].flags))
2088                                                 break;
2089                                 }
2090                                 BUG_ON(other < 0);
2091                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2092                                        (unsigned long long)sh->sector,
2093                                        i, other);
2094                                 compute_block_2(sh, i, other);
2095                                 s->uptodate += 2;
2096                         } else if (test_bit(R5_Insync, &dev->flags)) {
2097                                 set_bit(R5_LOCKED, &dev->flags);
2098                                 set_bit(R5_Wantread, &dev->flags);
2099                                 s->locked++;
2100                                 pr_debug("Reading block %d (sync=%d)\n",
2101                                         i, s->syncing);
2102                         }
2103                 }
2104         }
2105         set_bit(STRIPE_HANDLE, &sh->state);
2106 }
2107
2108
2109 /* handle_completed_write_requests
2110  * any written block on an uptodate or failed drive can be returned.
2111  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2112  * never LOCKED, so we don't need to test 'failed' directly.
2113  */
2114 static void handle_completed_write_requests(raid5_conf_t *conf,
2115         struct stripe_head *sh, int disks, struct bio **return_bi)
2116 {
2117         int i;
2118         struct r5dev *dev;
2119
2120         for (i = disks; i--; )
2121                 if (sh->dev[i].written) {
2122                         dev = &sh->dev[i];
2123                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2124                                 test_bit(R5_UPTODATE, &dev->flags)) {
2125                                 /* We can return any write requests */
2126                                 struct bio *wbi, *wbi2;
2127                                 int bitmap_end = 0;
2128                                 pr_debug("Return write for disc %d\n", i);
2129                                 spin_lock_irq(&conf->device_lock);
2130                                 wbi = dev->written;
2131                                 dev->written = NULL;
2132                                 while (wbi && wbi->bi_sector <
2133                                         dev->sector + STRIPE_SECTORS) {
2134                                         wbi2 = r5_next_bio(wbi, dev->sector);
2135                                         if (--wbi->bi_phys_segments == 0) {
2136                                                 md_write_end(conf->mddev);
2137                                                 wbi->bi_next = *return_bi;
2138                                                 *return_bi = wbi;
2139                                         }
2140                                         wbi = wbi2;
2141                                 }
2142                                 if (dev->towrite == NULL)
2143                                         bitmap_end = 1;
2144                                 spin_unlock_irq(&conf->device_lock);
2145                                 if (bitmap_end)
2146                                         bitmap_endwrite(conf->mddev->bitmap,
2147                                                         sh->sector,
2148                                                         STRIPE_SECTORS,
2149                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2150                                                         0);
2151                         }
2152                 }
2153
2154         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2155                 if (atomic_dec_and_test(&conf->pending_full_writes))
2156                         md_wakeup_thread(conf->mddev->thread);
2157 }
2158
2159 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2160                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2161 {
2162         int rmw = 0, rcw = 0, i;
2163         for (i = disks; i--; ) {
2164                 /* would I have to read this buffer for read_modify_write */
2165                 struct r5dev *dev = &sh->dev[i];
2166                 if ((dev->towrite || i == sh->pd_idx) &&
2167                     !test_bit(R5_LOCKED, &dev->flags) &&
2168                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2169                       test_bit(R5_Wantcompute, &dev->flags))) {
2170                         if (test_bit(R5_Insync, &dev->flags))
2171                                 rmw++;
2172                         else
2173                                 rmw += 2*disks;  /* cannot read it */
2174                 }
2175                 /* Would I have to read this buffer for reconstruct_write */
2176                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2177                     !test_bit(R5_LOCKED, &dev->flags) &&
2178                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2179                     test_bit(R5_Wantcompute, &dev->flags))) {
2180                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2181                         else
2182                                 rcw += 2*disks;
2183                 }
2184         }
2185         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2186                 (unsigned long long)sh->sector, rmw, rcw);
2187         set_bit(STRIPE_HANDLE, &sh->state);
2188         if (rmw < rcw && rmw > 0)
2189                 /* prefer read-modify-write, but need to get some data */
2190                 for (i = disks; i--; ) {
2191                         struct r5dev *dev = &sh->dev[i];
2192                         if ((dev->towrite || i == sh->pd_idx) &&
2193                             !test_bit(R5_LOCKED, &dev->flags) &&
2194                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2195                             test_bit(R5_Wantcompute, &dev->flags)) &&
2196                             test_bit(R5_Insync, &dev->flags)) {
2197                                 if (
2198                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2199                                         pr_debug("Read_old block "
2200                                                 "%d for r-m-w\n", i);
2201                                         set_bit(R5_LOCKED, &dev->flags);
2202                                         set_bit(R5_Wantread, &dev->flags);
2203                                         s->locked++;
2204                                 } else {
2205                                         set_bit(STRIPE_DELAYED, &sh->state);
2206                                         set_bit(STRIPE_HANDLE, &sh->state);
2207                                 }
2208                         }
2209                 }
2210         if (rcw <= rmw && rcw > 0)
2211                 /* want reconstruct write, but need to get some data */
2212                 for (i = disks; i--; ) {
2213                         struct r5dev *dev = &sh->dev[i];
2214                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2215                             i != sh->pd_idx &&
2216                             !test_bit(R5_LOCKED, &dev->flags) &&
2217                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2218                             test_bit(R5_Wantcompute, &dev->flags)) &&
2219                             test_bit(R5_Insync, &dev->flags)) {
2220                                 if (
2221                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2222                                         pr_debug("Read_old block "
2223                                                 "%d for Reconstruct\n", i);
2224                                         set_bit(R5_LOCKED, &dev->flags);
2225                                         set_bit(R5_Wantread, &dev->flags);
2226                                         s->locked++;
2227                                 } else {
2228                                         set_bit(STRIPE_DELAYED, &sh->state);
2229                                         set_bit(STRIPE_HANDLE, &sh->state);
2230                                 }
2231                         }
2232                 }
2233         /* now if nothing is locked, and if we have enough data,
2234          * we can start a write request
2235          */
2236         /* since handle_stripe can be called at any time we need to handle the
2237          * case where a compute block operation has been submitted and then a
2238          * subsequent call wants to start a write request.  raid5_run_ops only
2239          * handles the case where compute block and postxor are requested
2240          * simultaneously.  If this is not the case then new writes need to be
2241          * held off until the compute completes.
2242          */
2243         if ((s->req_compute ||
2244             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2245                 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2246                 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2247                 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2248 }
2249
2250 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2251                 struct stripe_head *sh, struct stripe_head_state *s,
2252                 struct r6_state *r6s, int disks)
2253 {
2254         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2255         int qd_idx = r6s->qd_idx;
2256         for (i = disks; i--; ) {
2257                 struct r5dev *dev = &sh->dev[i];
2258                 /* Would I have to read this buffer for reconstruct_write */
2259                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2260                     && i != pd_idx && i != qd_idx
2261                     && (!test_bit(R5_LOCKED, &dev->flags)
2262                             ) &&
2263                     !test_bit(R5_UPTODATE, &dev->flags)) {
2264                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2265                         else {
2266                                 pr_debug("raid6: must_compute: "
2267                                         "disk %d flags=%#lx\n", i, dev->flags);
2268                                 must_compute++;
2269                         }
2270                 }
2271         }
2272         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2273                (unsigned long long)sh->sector, rcw, must_compute);
2274         set_bit(STRIPE_HANDLE, &sh->state);
2275
2276         if (rcw > 0)
2277                 /* want reconstruct write, but need to get some data */
2278                 for (i = disks; i--; ) {
2279                         struct r5dev *dev = &sh->dev[i];
2280                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2281                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2282                             && !test_bit(R5_LOCKED, &dev->flags) &&
2283                             !test_bit(R5_UPTODATE, &dev->flags) &&
2284                             test_bit(R5_Insync, &dev->flags)) {
2285                                 if (
2286                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2287                                         pr_debug("Read_old stripe %llu "
2288                                                 "block %d for Reconstruct\n",
2289                                              (unsigned long long)sh->sector, i);
2290                                         set_bit(R5_LOCKED, &dev->flags);
2291                                         set_bit(R5_Wantread, &dev->flags);
2292                                         s->locked++;
2293                                 } else {
2294                                         pr_debug("Request delayed stripe %llu "
2295                                                 "block %d for Reconstruct\n",
2296                                              (unsigned long long)sh->sector, i);
2297                                         set_bit(STRIPE_DELAYED, &sh->state);
2298                                         set_bit(STRIPE_HANDLE, &sh->state);
2299                                 }
2300                         }
2301                 }
2302         /* now if nothing is locked, and if we have enough data, we can start a
2303          * write request
2304          */
2305         if (s->locked == 0 && rcw == 0 &&
2306             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2307                 if (must_compute > 0) {
2308                         /* We have failed blocks and need to compute them */
2309                         switch (s->failed) {
2310                         case 0:
2311                                 BUG();
2312                         case 1:
2313                                 compute_block_1(sh, r6s->failed_num[0], 0);
2314                                 break;
2315                         case 2:
2316                                 compute_block_2(sh, r6s->failed_num[0],
2317                                                 r6s->failed_num[1]);
2318                                 break;
2319                         default: /* This request should have been failed? */
2320                                 BUG();
2321                         }
2322                 }
2323
2324                 pr_debug("Computing parity for stripe %llu\n",
2325                         (unsigned long long)sh->sector);
2326                 compute_parity6(sh, RECONSTRUCT_WRITE);
2327                 /* now every locked buffer is ready to be written */
2328                 for (i = disks; i--; )
2329                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2330                                 pr_debug("Writing stripe %llu block %d\n",
2331                                        (unsigned long long)sh->sector, i);
2332                                 s->locked++;
2333                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2334                         }
2335                 if (s->locked == disks)
2336                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2337                                 atomic_inc(&conf->pending_full_writes);
2338                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2339                 set_bit(STRIPE_INSYNC, &sh->state);
2340
2341                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2342                         atomic_dec(&conf->preread_active_stripes);
2343                         if (atomic_read(&conf->preread_active_stripes) <
2344                             IO_THRESHOLD)
2345                                 md_wakeup_thread(conf->mddev->thread);
2346                 }
2347         }
2348 }
2349
2350 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2351                                 struct stripe_head_state *s, int disks)
2352 {
2353         struct r5dev *dev = NULL;
2354
2355         set_bit(STRIPE_HANDLE, &sh->state);
2356
2357         switch (sh->check_state) {
2358         case check_state_idle:
2359                 /* start a new check operation if there are no failures */
2360                 if (s->failed == 0) {
2361                         BUG_ON(s->uptodate != disks);
2362                         sh->check_state = check_state_run;
2363                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2364                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2365                         s->uptodate--;
2366                         break;
2367                 }
2368                 dev = &sh->dev[s->failed_num];
2369                 /* fall through */
2370         case check_state_compute_result:
2371                 sh->check_state = check_state_idle;
2372                 if (!dev)
2373                         dev = &sh->dev[sh->pd_idx];
2374
2375                 /* check that a write has not made the stripe insync */
2376                 if (test_bit(STRIPE_INSYNC, &sh->state))
2377                         break;
2378
2379                 /* either failed parity check, or recovery is happening */
2380                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2381                 BUG_ON(s->uptodate != disks);
2382
2383                 set_bit(R5_LOCKED, &dev->flags);
2384                 s->locked++;
2385                 set_bit(R5_Wantwrite, &dev->flags);
2386
2387                 clear_bit(STRIPE_DEGRADED, &sh->state);
2388                 set_bit(STRIPE_INSYNC, &sh->state);
2389                 break;
2390         case check_state_run:
2391                 break; /* we will be called again upon completion */
2392         case check_state_check_result:
2393                 sh->check_state = check_state_idle;
2394
2395                 /* if a failure occurred during the check operation, leave
2396                  * STRIPE_INSYNC not set and let the stripe be handled again
2397                  */
2398                 if (s->failed)
2399                         break;
2400
2401                 /* handle a successful check operation, if parity is correct
2402                  * we are done.  Otherwise update the mismatch count and repair
2403                  * parity if !MD_RECOVERY_CHECK
2404                  */
2405                 if (sh->ops.zero_sum_result == 0)
2406                         /* parity is correct (on disc,
2407                          * not in buffer any more)
2408                          */
2409                         set_bit(STRIPE_INSYNC, &sh->state);
2410                 else {
2411                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2412                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2413                                 /* don't try to repair!! */
2414                                 set_bit(STRIPE_INSYNC, &sh->state);
2415                         else {
2416                                 sh->check_state = check_state_compute_run;
2417                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2418                                 set_bit(R5_Wantcompute,
2419                                         &sh->dev[sh->pd_idx].flags);
2420                                 sh->ops.target = sh->pd_idx;
2421                                 s->uptodate++;
2422                         }
2423                 }
2424                 break;
2425         case check_state_compute_run:
2426                 break;
2427         default:
2428                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2429                        __func__, sh->check_state,
2430                        (unsigned long long) sh->sector);
2431                 BUG();
2432         }
2433 }
2434
2435
2436 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2437                                 struct stripe_head_state *s,
2438                                 struct r6_state *r6s, struct page *tmp_page,
2439                                 int disks)
2440 {
2441         int update_p = 0, update_q = 0;
2442         struct r5dev *dev;
2443         int pd_idx = sh->pd_idx;
2444         int qd_idx = r6s->qd_idx;
2445
2446         set_bit(STRIPE_HANDLE, &sh->state);
2447
2448         BUG_ON(s->failed > 2);
2449         BUG_ON(s->uptodate < disks);
2450         /* Want to check and possibly repair P and Q.
2451          * However there could be one 'failed' device, in which
2452          * case we can only check one of them, possibly using the
2453          * other to generate missing data
2454          */
2455
2456         /* If !tmp_page, we cannot do the calculations,
2457          * but as we have set STRIPE_HANDLE, we will soon be called
2458          * by stripe_handle with a tmp_page - just wait until then.
2459          */
2460         if (tmp_page) {
2461                 if (s->failed == r6s->q_failed) {
2462                         /* The only possible failed device holds 'Q', so it
2463                          * makes sense to check P (If anything else were failed,
2464                          * we would have used P to recreate it).
2465                          */
2466                         compute_block_1(sh, pd_idx, 1);
2467                         if (!page_is_zero(sh->dev[pd_idx].page)) {
2468                                 compute_block_1(sh, pd_idx, 0);
2469                                 update_p = 1;
2470                         }
2471                 }
2472                 if (!r6s->q_failed && s->failed < 2) {
2473                         /* q is not failed, and we didn't use it to generate
2474                          * anything, so it makes sense to check it
2475                          */
2476                         memcpy(page_address(tmp_page),
2477                                page_address(sh->dev[qd_idx].page),
2478                                STRIPE_SIZE);
2479                         compute_parity6(sh, UPDATE_PARITY);
2480                         if (memcmp(page_address(tmp_page),
2481                                    page_address(sh->dev[qd_idx].page),
2482                                    STRIPE_SIZE) != 0) {
2483                                 clear_bit(STRIPE_INSYNC, &sh->state);
2484                                 update_q = 1;
2485                         }
2486                 }
2487                 if (update_p || update_q) {
2488                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2489                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2490                                 /* don't try to repair!! */
2491                                 update_p = update_q = 0;
2492                 }
2493
2494                 /* now write out any block on a failed drive,
2495                  * or P or Q if they need it
2496                  */
2497
2498                 if (s->failed == 2) {
2499                         dev = &sh->dev[r6s->failed_num[1]];
2500                         s->locked++;
2501                         set_bit(R5_LOCKED, &dev->flags);
2502                         set_bit(R5_Wantwrite, &dev->flags);
2503                 }
2504                 if (s->failed >= 1) {
2505                         dev = &sh->dev[r6s->failed_num[0]];
2506                         s->locked++;
2507                         set_bit(R5_LOCKED, &dev->flags);
2508                         set_bit(R5_Wantwrite, &dev->flags);
2509                 }
2510
2511                 if (update_p) {
2512                         dev = &sh->dev[pd_idx];
2513                         s->locked++;
2514                         set_bit(R5_LOCKED, &dev->flags);
2515                         set_bit(R5_Wantwrite, &dev->flags);
2516                 }
2517                 if (update_q) {
2518                         dev = &sh->dev[qd_idx];
2519                         s->locked++;
2520                         set_bit(R5_LOCKED, &dev->flags);
2521                         set_bit(R5_Wantwrite, &dev->flags);
2522                 }
2523                 clear_bit(STRIPE_DEGRADED, &sh->state);
2524
2525                 set_bit(STRIPE_INSYNC, &sh->state);
2526         }
2527 }
2528
2529 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2530                                 struct r6_state *r6s)
2531 {
2532         int i;
2533
2534         /* We have read all the blocks in this stripe and now we need to
2535          * copy some of them into a target stripe for expand.
2536          */
2537         struct dma_async_tx_descriptor *tx = NULL;
2538         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2539         for (i = 0; i < sh->disks; i++)
2540                 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2541                         int dd_idx, pd_idx, j;
2542                         struct stripe_head *sh2;
2543
2544                         sector_t bn = compute_blocknr(sh, i);
2545                         sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2546                                                 conf->raid_disks -
2547                                                 conf->max_degraded, &dd_idx,
2548                                                 &pd_idx, conf);
2549                         sh2 = get_active_stripe(conf, s, conf->raid_disks,
2550                                                 pd_idx, 1);
2551                         if (sh2 == NULL)
2552                                 /* so far only the early blocks of this stripe
2553                                  * have been requested.  When later blocks
2554                                  * get requested, we will try again
2555                                  */
2556                                 continue;
2557                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2558                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2559                                 /* must have already done this block */
2560                                 release_stripe(sh2);
2561                                 continue;
2562                         }
2563
2564                         /* place all the copies on one channel */
2565                         tx = async_memcpy(sh2->dev[dd_idx].page,
2566                                 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2567                                 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2568
2569                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2570                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2571                         for (j = 0; j < conf->raid_disks; j++)
2572                                 if (j != sh2->pd_idx &&
2573                                     (!r6s || j != raid6_next_disk(sh2->pd_idx,
2574                                                                  sh2->disks)) &&
2575                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2576                                         break;
2577                         if (j == conf->raid_disks) {
2578                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2579                                 set_bit(STRIPE_HANDLE, &sh2->state);
2580                         }
2581                         release_stripe(sh2);
2582
2583                 }
2584         /* done submitting copies, wait for them to complete */
2585         if (tx) {
2586                 async_tx_ack(tx);
2587                 dma_wait_for_async_tx(tx);
2588         }
2589 }
2590
2591
2592 /*
2593  * handle_stripe - do things to a stripe.
2594  *
2595  * We lock the stripe and then examine the state of various bits
2596  * to see what needs to be done.
2597  * Possible results:
2598  *    return some read request which now have data
2599  *    return some write requests which are safely on disc
2600  *    schedule a read on some buffers
2601  *    schedule a write of some buffers
2602  *    return confirmation of parity correctness
2603  *
2604  * buffers are taken off read_list or write_list, and bh_cache buffers
2605  * get BH_Lock set before the stripe lock is released.
2606  *
2607  */
2608
2609 static void handle_stripe5(struct stripe_head *sh)
2610 {
2611         raid5_conf_t *conf = sh->raid_conf;
2612         int disks = sh->disks, i;
2613         struct bio *return_bi = NULL;
2614         struct stripe_head_state s;
2615         struct r5dev *dev;
2616         unsigned long pending = 0;
2617         mdk_rdev_t *blocked_rdev = NULL;
2618         int prexor;
2619
2620         memset(&s, 0, sizeof(s));
2621         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2622                 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2623                 atomic_read(&sh->count), sh->pd_idx,
2624                 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2625
2626         spin_lock(&sh->lock);
2627         clear_bit(STRIPE_HANDLE, &sh->state);
2628         clear_bit(STRIPE_DELAYED, &sh->state);
2629
2630         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2631         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2632         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2633         /* Now to look around and see what can be done */
2634
2635         /* clean-up completed biofill operations */
2636         if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2637                 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2638                 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2639                 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2640         }
2641
2642         rcu_read_lock();
2643         for (i=disks; i--; ) {
2644                 mdk_rdev_t *rdev;
2645                 struct r5dev *dev = &sh->dev[i];
2646                 clear_bit(R5_Insync, &dev->flags);
2647
2648                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2649                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2650                         dev->towrite, dev->written);
2651
2652                 /* maybe we can request a biofill operation
2653                  *
2654                  * new wantfill requests are only permitted while
2655                  * STRIPE_OP_BIOFILL is clear
2656                  */
2657                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2658                         !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2659                         set_bit(R5_Wantfill, &dev->flags);
2660
2661                 /* now count some things */
2662                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2663                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2664                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2665
2666                 if (test_bit(R5_Wantfill, &dev->flags))
2667                         s.to_fill++;
2668                 else if (dev->toread)
2669                         s.to_read++;
2670                 if (dev->towrite) {
2671                         s.to_write++;
2672                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2673                                 s.non_overwrite++;
2674                 }
2675                 if (dev->written)
2676                         s.written++;
2677                 rdev = rcu_dereference(conf->disks[i].rdev);
2678                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2679                         blocked_rdev = rdev;
2680                         atomic_inc(&rdev->nr_pending);
2681                         break;
2682                 }
2683                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2684                         /* The ReadError flag will just be confusing now */
2685                         clear_bit(R5_ReadError, &dev->flags);
2686                         clear_bit(R5_ReWrite, &dev->flags);
2687                 }
2688                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2689                     || test_bit(R5_ReadError, &dev->flags)) {
2690                         s.failed++;
2691                         s.failed_num = i;
2692                 } else
2693                         set_bit(R5_Insync, &dev->flags);
2694         }
2695         rcu_read_unlock();
2696
2697         if (unlikely(blocked_rdev)) {
2698                 set_bit(STRIPE_HANDLE, &sh->state);
2699                 goto unlock;
2700         }
2701
2702         if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2703                 sh->ops.count++;
2704
2705         pr_debug("locked=%d uptodate=%d to_read=%d"
2706                 " to_write=%d failed=%d failed_num=%d\n",
2707                 s.locked, s.uptodate, s.to_read, s.to_write,
2708                 s.failed, s.failed_num);
2709         /* check if the array has lost two devices and, if so, some requests might
2710          * need to be failed
2711          */
2712         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2713                 handle_requests_to_failed_array(conf, sh, &s, disks,
2714                                                 &return_bi);
2715         if (s.failed > 1 && s.syncing) {
2716                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2717                 clear_bit(STRIPE_SYNCING, &sh->state);
2718                 s.syncing = 0;
2719         }
2720
2721         /* might be able to return some write requests if the parity block
2722          * is safe, or on a failed drive
2723          */
2724         dev = &sh->dev[sh->pd_idx];
2725         if ( s.written &&
2726              ((test_bit(R5_Insync, &dev->flags) &&
2727                !test_bit(R5_LOCKED, &dev->flags) &&
2728                test_bit(R5_UPTODATE, &dev->flags)) ||
2729                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2730                 handle_completed_write_requests(conf, sh, disks, &return_bi);
2731
2732         /* Now we might consider reading some blocks, either to check/generate
2733          * parity, or to satisfy requests
2734          * or to load a block that is being partially written.
2735          */
2736         if (s.to_read || s.non_overwrite ||
2737             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2738             test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2739                 handle_issuing_new_read_requests5(sh, &s, disks);
2740
2741         /* Now we check to see if any write operations have recently
2742          * completed
2743          */
2744
2745         /* leave prexor set until postxor is done, allows us to distinguish
2746          * a rmw from a rcw during biodrain
2747          */
2748         prexor = 0;
2749         if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2750                 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2751
2752                 prexor = 1;
2753                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2754                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2755                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2756
2757                 for (i = disks; i--; )
2758                         clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2759         }
2760
2761         /* if only POSTXOR is set then this is an 'expand' postxor */
2762         if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2763                 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2764
2765                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2766                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2767                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2768
2769                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2770                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2771                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2772
2773                 /* All the 'written' buffers and the parity block are ready to
2774                  * be written back to disk
2775                  */
2776                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2777                 for (i = disks; i--; ) {
2778                         dev = &sh->dev[i];
2779                         if (test_bit(R5_LOCKED, &dev->flags) &&
2780                                 (i == sh->pd_idx || dev->written)) {
2781                                 pr_debug("Writing block %d\n", i);
2782                                 set_bit(R5_Wantwrite, &dev->flags);
2783                                 if (prexor)
2784                                         continue;
2785                                 if (!test_bit(R5_Insync, &dev->flags) ||
2786                                     (i == sh->pd_idx && s.failed == 0))
2787                                         set_bit(STRIPE_INSYNC, &sh->state);
2788                         }
2789                 }
2790                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2791                         atomic_dec(&conf->preread_active_stripes);
2792                         if (atomic_read(&conf->preread_active_stripes) <
2793                                 IO_THRESHOLD)
2794                                 md_wakeup_thread(conf->mddev->thread);
2795                 }
2796         }
2797
2798         /* Now to consider new write requests and what else, if anything
2799          * should be read.  We do not handle new writes when:
2800          * 1/ A 'write' operation (copy+xor) is already in flight.
2801          * 2/ A 'check' operation is in flight, as it may clobber the parity
2802          *    block.
2803          */
2804         if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2805             !sh->check_state)
2806                 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2807
2808         /* maybe we need to check and possibly fix the parity for this stripe
2809          * Any reads will already have been scheduled, so we just see if enough
2810          * data is available.  The parity check is held off while parity
2811          * dependent operations are in flight.
2812          */
2813         if (sh->check_state ||
2814             (s.syncing && s.locked == 0 &&
2815              !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2816              !test_bit(STRIPE_INSYNC, &sh->state)))
2817                 handle_parity_checks5(conf, sh, &s, disks);
2818
2819         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2820                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2821                 clear_bit(STRIPE_SYNCING, &sh->state);
2822         }
2823
2824         /* If the failed drive is just a ReadError, then we might need to progress
2825          * the repair/check process
2826          */
2827         if (s.failed == 1 && !conf->mddev->ro &&
2828             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2829             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2830             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2831                 ) {
2832                 dev = &sh->dev[s.failed_num];
2833                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2834                         set_bit(R5_Wantwrite, &dev->flags);
2835                         set_bit(R5_ReWrite, &dev->flags);
2836                         set_bit(R5_LOCKED, &dev->flags);
2837                         s.locked++;
2838                 } else {
2839                         /* let's read it back */
2840                         set_bit(R5_Wantread, &dev->flags);
2841                         set_bit(R5_LOCKED, &dev->flags);
2842                         s.locked++;
2843                 }
2844         }
2845
2846         /* Finish postxor operations initiated by the expansion
2847          * process
2848          */
2849         if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2850                 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2851
2852                 clear_bit(STRIPE_EXPANDING, &sh->state);
2853
2854                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2855                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2856                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2857
2858                 for (i = conf->raid_disks; i--; )
2859                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2860                         set_bit(R5_LOCKED, &dev->flags);
2861                         s.locked++;
2862         }
2863
2864         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2865                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2866                 /* Need to write out all blocks after computing parity */
2867                 sh->disks = conf->raid_disks;
2868                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2869                         conf->raid_disks);
2870                 s.locked += handle_write_operations5(sh, 1, 1);
2871         } else if (s.expanded &&
2872                    s.locked == 0 &&
2873                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2874                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2875                 atomic_dec(&conf->reshape_stripes);
2876                 wake_up(&conf->wait_for_overlap);
2877                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2878         }
2879
2880         if (s.expanding && s.locked == 0 &&
2881             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2882                 handle_stripe_expansion(conf, sh, NULL);
2883
2884         if (sh->ops.count)
2885                 pending = get_stripe_work(sh);
2886
2887  unlock:
2888         spin_unlock(&sh->lock);
2889
2890         /* wait for this device to become unblocked */
2891         if (unlikely(blocked_rdev))
2892                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2893
2894         if (pending || s.ops_request)
2895                 raid5_run_ops(sh, pending, s.ops_request);
2896
2897         ops_run_io(sh, &s);
2898
2899         return_io(return_bi);
2900 }
2901
2902 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2903 {
2904         raid6_conf_t *conf = sh->raid_conf;
2905         int disks = sh->disks;
2906         struct bio *return_bi = NULL;
2907         int i, pd_idx = sh->pd_idx;
2908         struct stripe_head_state s;
2909         struct r6_state r6s;
2910         struct r5dev *dev, *pdev, *qdev;
2911         mdk_rdev_t *blocked_rdev = NULL;
2912
2913         r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2914         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2915                 "pd_idx=%d, qd_idx=%d\n",
2916                (unsigned long long)sh->sector, sh->state,
2917                atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2918         memset(&s, 0, sizeof(s));
2919
2920         spin_lock(&sh->lock);
2921         clear_bit(STRIPE_HANDLE, &sh->state);
2922         clear_bit(STRIPE_DELAYED, &sh->state);
2923
2924         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2925         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2926         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2927         /* Now to look around and see what can be done */
2928
2929         rcu_read_lock();
2930         for (i=disks; i--; ) {
2931                 mdk_rdev_t *rdev;
2932                 dev = &sh->dev[i];
2933                 clear_bit(R5_Insync, &dev->flags);
2934
2935                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2936                         i, dev->flags, dev->toread, dev->towrite, dev->written);
2937                 /* maybe we can reply to a read */
2938                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2939                         struct bio *rbi, *rbi2;
2940                         pr_debug("Return read for disc %d\n", i);
2941                         spin_lock_irq(&conf->device_lock);
2942                         rbi = dev->toread;
2943                         dev->toread = NULL;
2944                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
2945                                 wake_up(&conf->wait_for_overlap);
2946                         spin_unlock_irq(&conf->device_lock);
2947                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2948                                 copy_data(0, rbi, dev->page, dev->sector);
2949                                 rbi2 = r5_next_bio(rbi, dev->sector);
2950                                 spin_lock_irq(&conf->device_lock);
2951                                 if (--rbi->bi_phys_segments == 0) {
2952                                         rbi->bi_next = return_bi;
2953                                         return_bi = rbi;
2954                                 }
2955                                 spin_unlock_irq(&conf->device_lock);
2956                                 rbi = rbi2;
2957                         }
2958                 }
2959
2960                 /* now count some things */
2961                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2962                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2963
2964
2965                 if (dev->toread)
2966                         s.to_read++;
2967                 if (dev->towrite) {
2968                         s.to_write++;
2969                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2970                                 s.non_overwrite++;
2971                 }
2972                 if (dev->written)
2973                         s.written++;
2974                 rdev = rcu_dereference(conf->disks[i].rdev);
2975                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2976                         blocked_rdev = rdev;
2977                         atomic_inc(&rdev->nr_pending);
2978                         break;
2979                 }
2980                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2981                         /* The ReadError flag will just be confusing now */
2982                         clear_bit(R5_ReadError, &dev->flags);
2983                         clear_bit(R5_ReWrite, &dev->flags);
2984                 }
2985                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2986                     || test_bit(R5_ReadError, &dev->flags)) {
2987                         if (s.failed < 2)
2988                                 r6s.failed_num[s.failed] = i;
2989                         s.failed++;
2990                 } else
2991                         set_bit(R5_Insync, &dev->flags);
2992         }
2993         rcu_read_unlock();
2994
2995         if (unlikely(blocked_rdev)) {
2996                 set_bit(STRIPE_HANDLE, &sh->state);
2997                 goto unlock;
2998         }
2999         pr_debug("locked=%d uptodate=%d to_read=%d"
3000                " to_write=%d failed=%d failed_num=%d,%d\n",
3001                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3002                r6s.failed_num[0], r6s.failed_num[1]);
3003         /* check if the array has lost >2 devices and, if so, some requests
3004          * might need to be failed
3005          */
3006         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3007                 handle_requests_to_failed_array(conf, sh, &s, disks,
3008                                                 &return_bi);
3009         if (s.failed > 2 && s.syncing) {
3010                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3011                 clear_bit(STRIPE_SYNCING, &sh->state);
3012                 s.syncing = 0;
3013         }
3014
3015         /*
3016          * might be able to return some write requests if the parity blocks
3017          * are safe, or on a failed drive
3018          */
3019         pdev = &sh->dev[pd_idx];
3020         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3021                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3022         qdev = &sh->dev[r6s.qd_idx];
3023         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3024                 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3025
3026         if ( s.written &&
3027              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3028                              && !test_bit(R5_LOCKED, &pdev->flags)
3029                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3030              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3031                              && !test_bit(R5_LOCKED, &qdev->flags)
3032                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3033                 handle_completed_write_requests(conf, sh, disks, &return_bi);
3034
3035         /* Now we might consider reading some blocks, either to check/generate
3036          * parity, or to satisfy requests
3037          * or to load a block that is being partially written.
3038          */
3039         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3040             (s.syncing && (s.uptodate < disks)) || s.expanding)
3041                 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3042
3043         /* now to consider writing and what else, if anything should be read */
3044         if (s.to_write)
3045                 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3046
3047         /* maybe we need to check and possibly fix the parity for this stripe
3048          * Any reads will already have been scheduled, so we just see if enough
3049          * data is available
3050          */
3051         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3052                 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3053
3054         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3055                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3056                 clear_bit(STRIPE_SYNCING, &sh->state);
3057         }
3058
3059         /* If the failed drives are just a ReadError, then we might need
3060          * to progress the repair/check process
3061          */
3062         if (s.failed <= 2 && !conf->mddev->ro)
3063                 for (i = 0; i < s.failed; i++) {
3064                         dev = &sh->dev[r6s.failed_num[i]];
3065                         if (test_bit(R5_ReadError, &dev->flags)
3066                             && !test_bit(R5_LOCKED, &dev->flags)
3067                             && test_bit(R5_UPTODATE, &dev->flags)
3068                                 ) {
3069                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3070                                         set_bit(R5_Wantwrite, &dev->flags);
3071                                         set_bit(R5_ReWrite, &dev->flags);
3072                                         set_bit(R5_LOCKED, &dev->flags);
3073                                 } else {
3074                                         /* let's read it back */
3075                                         set_bit(R5_Wantread, &dev->flags);
3076                                         set_bit(R5_LOCKED, &dev->flags);
3077                                 }
3078                         }
3079                 }
3080
3081         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3082                 /* Need to write out all blocks after computing P&Q */
3083                 sh->disks = conf->raid_disks;
3084                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3085                                              conf->raid_disks);
3086                 compute_parity6(sh, RECONSTRUCT_WRITE);
3087                 for (i = conf->raid_disks ; i-- ;  ) {
3088                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3089                         s.locked++;
3090                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3091                 }
3092                 clear_bit(STRIPE_EXPANDING, &sh->state);
3093         } else if (s.expanded) {
3094                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3095                 atomic_dec(&conf->reshape_stripes);
3096                 wake_up(&conf->wait_for_overlap);
3097                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3098         }
3099
3100         if (s.expanding && s.locked == 0 &&
3101             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
3102                 handle_stripe_expansion(conf, sh, &r6s);
3103
3104  unlock:
3105         spin_unlock(&sh->lock);
3106
3107         /* wait for this device to become unblocked */
3108         if (unlikely(blocked_rdev))
3109                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3110
3111         ops_run_io(sh, &s);
3112
3113         return_io(return_bi);
3114 }
3115
3116 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3117 {
3118         if (sh->raid_conf->level == 6)
3119                 handle_stripe6(sh, tmp_page);
3120         else
3121                 handle_stripe5(sh);
3122 }
3123
3124
3125
3126 static void raid5_activate_delayed(raid5_conf_t *conf)
3127 {
3128         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3129                 while (!list_empty(&conf->delayed_list)) {
3130                         struct list_head *l = conf->delayed_list.next;
3131                         struct stripe_head *sh;
3132                         sh = list_entry(l, struct stripe_head, lru);
3133                         list_del_init(l);
3134                         clear_bit(STRIPE_DELAYED, &sh->state);
3135                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3136                                 atomic_inc(&conf->preread_active_stripes);
3137                         list_add_tail(&sh->lru, &conf->hold_list);
3138                 }
3139         } else
3140                 blk_plug_device(conf->mddev->queue);
3141 }
3142
3143 static void activate_bit_delay(raid5_conf_t *conf)
3144 {
3145         /* device_lock is held */
3146         struct list_head head;
3147         list_add(&head, &conf->bitmap_list);
3148         list_del_init(&conf->bitmap_list);
3149         while (!list_empty(&head)) {
3150                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3151                 list_del_init(&sh->lru);
3152                 atomic_inc(&sh->count);
3153                 __release_stripe(conf, sh);
3154         }
3155 }
3156
3157 static void unplug_slaves(mddev_t *mddev)
3158 {
3159         raid5_conf_t *conf = mddev_to_conf(mddev);
3160         int i;
3161
3162         rcu_read_lock();
3163         for (i=0; i<mddev->raid_disks; i++) {
3164                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3165                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3166                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3167
3168                         atomic_inc(&rdev->nr_pending);
3169                         rcu_read_unlock();
3170
3171                         blk_unplug(r_queue);
3172
3173                         rdev_dec_pending(rdev, mddev);
3174                         rcu_read_lock();
3175                 }
3176         }
3177         rcu_read_unlock();
3178 }
3179
3180 static void raid5_unplug_device(struct request_queue *q)
3181 {
3182         mddev_t *mddev = q->queuedata;
3183         raid5_conf_t *conf = mddev_to_conf(mddev);
3184         unsigned long flags;
3185
3186         spin_lock_irqsave(&conf->device_lock, flags);
3187
3188         if (blk_remove_plug(q)) {
3189                 conf->seq_flush++;
3190                 raid5_activate_delayed(conf);
3191         }
3192         md_wakeup_thread(mddev->thread);
3193
3194         spin_unlock_irqrestore(&conf->device_lock, flags);
3195
3196         unplug_slaves(mddev);
3197 }
3198
3199 static int raid5_congested(void *data, int bits)
3200 {
3201         mddev_t *mddev = data;
3202         raid5_conf_t *conf = mddev_to_conf(mddev);
3203
3204         /* No difference between reads and writes.  Just check
3205          * how busy the stripe_cache is
3206          */
3207         if (conf->inactive_blocked)
3208                 return 1;
3209         if (conf->quiesce)
3210                 return 1;
3211         if (list_empty_careful(&conf->inactive_list))
3212                 return 1;
3213
3214         return 0;
3215 }
3216
3217 /* We want read requests to align with chunks where possible,
3218  * but write requests don't need to.
3219  */
3220 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3221 {
3222         mddev_t *mddev = q->queuedata;
3223         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3224         int max;
3225         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3226         unsigned int bio_sectors = bio->bi_size >> 9;
3227
3228         if (bio_data_dir(bio) == WRITE)
3229                 return biovec->bv_len; /* always allow writes to be mergeable */
3230
3231         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3232         if (max < 0) max = 0;
3233         if (max <= biovec->bv_len && bio_sectors == 0)
3234                 return biovec->bv_len;
3235         else
3236                 return max;
3237 }
3238
3239
3240 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3241 {
3242         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3243         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3244         unsigned int bio_sectors = bio->bi_size >> 9;
3245
3246         return  chunk_sectors >=
3247                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3248 }
3249
3250 /*
3251  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3252  *  later sampled by raid5d.
3253  */
3254 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3255 {
3256         unsigned long flags;
3257
3258         spin_lock_irqsave(&conf->device_lock, flags);
3259
3260         bi->bi_next = conf->retry_read_aligned_list;
3261         conf->retry_read_aligned_list = bi;
3262
3263         spin_unlock_irqrestore(&conf->device_lock, flags);
3264         md_wakeup_thread(conf->mddev->thread);
3265 }
3266
3267
3268 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3269 {
3270         struct bio *bi;
3271
3272         bi = conf->retry_read_aligned;
3273         if (bi) {
3274                 conf->retry_read_aligned = NULL;
3275                 return bi;
3276         }
3277         bi = conf->retry_read_aligned_list;
3278         if(bi) {
3279                 conf->retry_read_aligned_list = bi->bi_next;
3280                 bi->bi_next = NULL;
3281                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3282                 bi->bi_hw_segments = 0; /* count of processed stripes */
3283         }
3284
3285         return bi;
3286 }
3287
3288
3289 /*
3290  *  The "raid5_align_endio" should check if the read succeeded and if it
3291  *  did, call bio_endio on the original bio (having bio_put the new bio
3292  *  first).
3293  *  If the read failed..
3294  */
3295 static void raid5_align_endio(struct bio *bi, int error)
3296 {
3297         struct bio* raid_bi  = bi->bi_private;
3298         mddev_t *mddev;
3299         raid5_conf_t *conf;
3300         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3301         mdk_rdev_t *rdev;
3302
3303         bio_put(bi);
3304
3305         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3306         conf = mddev_to_conf(mddev);
3307         rdev = (void*)raid_bi->bi_next;
3308         raid_bi->bi_next = NULL;
3309
3310         rdev_dec_pending(rdev, conf->mddev);
3311
3312         if (!error && uptodate) {
3313                 bio_endio(raid_bi, 0);
3314                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3315                         wake_up(&conf->wait_for_stripe);
3316                 return;
3317         }
3318
3319
3320         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3321
3322         add_bio_to_retry(raid_bi, conf);
3323 }
3324
3325 static int bio_fits_rdev(struct bio *bi)
3326 {
3327         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3328
3329         if ((bi->bi_size>>9) > q->max_sectors)
3330                 return 0;
3331         blk_recount_segments(q, bi);
3332         if (bi->bi_phys_segments > q->max_phys_segments ||
3333             bi->bi_hw_segments > q->max_hw_segments)
3334                 return 0;
3335
3336         if (q->merge_bvec_fn)
3337                 /* it's too hard to apply the merge_bvec_fn at this stage,
3338                  * just just give up
3339                  */
3340                 return 0;
3341
3342         return 1;
3343 }
3344
3345
3346 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3347 {
3348         mddev_t *mddev = q->queuedata;
3349         raid5_conf_t *conf = mddev_to_conf(mddev);
3350         const unsigned int raid_disks = conf->raid_disks;
3351         const unsigned int data_disks = raid_disks - conf->max_degraded;
3352         unsigned int dd_idx, pd_idx;
3353         struct bio* align_bi;
3354         mdk_rdev_t *rdev;
3355
3356         if (!in_chunk_boundary(mddev, raid_bio)) {
3357                 pr_debug("chunk_aligned_read : non aligned\n");
3358                 return 0;
3359         }
3360         /*
3361          * use bio_clone to make a copy of the bio
3362          */
3363         align_bi = bio_clone(raid_bio, GFP_NOIO);
3364         if (!align_bi)
3365                 return 0;
3366         /*
3367          *   set bi_end_io to a new function, and set bi_private to the
3368          *     original bio.
3369          */
3370         align_bi->bi_end_io  = raid5_align_endio;
3371         align_bi->bi_private = raid_bio;
3372         /*
3373          *      compute position
3374          */
3375         align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
3376                                         raid_disks,
3377                                         data_disks,
3378                                         &dd_idx,
3379                                         &pd_idx,
3380                                         conf);
3381
3382         rcu_read_lock();
3383         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3384         if (rdev && test_bit(In_sync, &rdev->flags)) {
3385                 atomic_inc(&rdev->nr_pending);
3386                 rcu_read_unlock();
3387                 raid_bio->bi_next = (void*)rdev;
3388                 align_bi->bi_bdev =  rdev->bdev;
3389                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3390                 align_bi->bi_sector += rdev->data_offset;
3391
3392                 if (!bio_fits_rdev(align_bi)) {
3393                         /* too big in some way */
3394                         bio_put(align_bi);
3395                         rdev_dec_pending(rdev, mddev);
3396                         return 0;
3397                 }
3398
3399                 spin_lock_irq(&conf->device_lock);
3400                 wait_event_lock_irq(conf->wait_for_stripe,
3401                                     conf->quiesce == 0,
3402                                     conf->device_lock, /* nothing */);
3403                 atomic_inc(&conf->active_aligned_reads);
3404                 spin_unlock_irq(&conf->device_lock);
3405
3406                 generic_make_request(align_bi);
3407                 return 1;
3408         } else {
3409                 rcu_read_unlock();
3410                 bio_put(align_bi);
3411                 return 0;
3412         }
3413 }
3414
3415 /* __get_priority_stripe - get the next stripe to process
3416  *
3417  * Full stripe writes are allowed to pass preread active stripes up until
3418  * the bypass_threshold is exceeded.  In general the bypass_count
3419  * increments when the handle_list is handled before the hold_list; however, it
3420  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3421  * stripe with in flight i/o.  The bypass_count will be reset when the
3422  * head of the hold_list has changed, i.e. the head was promoted to the
3423  * handle_list.
3424  */
3425 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3426 {
3427         struct stripe_head *sh;
3428
3429         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3430                   __func__,
3431                   list_empty(&conf->handle_list) ? "empty" : "busy",
3432                   list_empty(&conf->hold_list) ? "empty" : "busy",
3433                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3434
3435         if (!list_empty(&conf->handle_list)) {
3436                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3437
3438                 if (list_empty(&conf->hold_list))
3439                         conf->bypass_count = 0;
3440                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3441                         if (conf->hold_list.next == conf->last_hold)
3442                                 conf->bypass_count++;
3443                         else {
3444                                 conf->last_hold = conf->hold_list.next;
3445                                 conf->bypass_count -= conf->bypass_threshold;
3446                                 if (conf->bypass_count < 0)
3447                                         conf->bypass_count = 0;
3448                         }
3449                 }
3450         } else if (!list_empty(&conf->hold_list) &&
3451                    ((conf->bypass_threshold &&
3452                      conf->bypass_count > conf->bypass_threshold) ||
3453                     atomic_read(&conf->pending_full_writes) == 0)) {
3454                 sh = list_entry(conf->hold_list.next,
3455                                 typeof(*sh), lru);
3456                 conf->bypass_count -= conf->bypass_threshold;
3457                 if (conf->bypass_count < 0)
3458                         conf->bypass_count = 0;
3459         } else
3460                 return NULL;
3461
3462         list_del_init(&sh->lru);
3463         atomic_inc(&sh->count);
3464         BUG_ON(atomic_read(&sh->count) != 1);
3465         return sh;
3466 }
3467
3468 static int make_request(struct request_queue *q, struct bio * bi)
3469 {
3470         mddev_t *mddev = q->queuedata;
3471         raid5_conf_t *conf = mddev_to_conf(mddev);
3472         unsigned int dd_idx, pd_idx;
3473         sector_t new_sector;
3474         sector_t logical_sector, last_sector;
3475         struct stripe_head *sh;
3476         const int rw = bio_data_dir(bi);
3477         int remaining;
3478
3479         if (unlikely(bio_barrier(bi))) {
3480                 bio_endio(bi, -EOPNOTSUPP);
3481                 return 0;
3482         }
3483
3484         md_write_start(mddev, bi);
3485
3486         disk_stat_inc(mddev->gendisk, ios[rw]);
3487         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3488
3489         if (rw == READ &&
3490              mddev->reshape_position == MaxSector &&
3491              chunk_aligned_read(q,bi))
3492                 return 0;
3493
3494         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3495         last_sector = bi->bi_sector + (bi->bi_size>>9);
3496         bi->bi_next = NULL;
3497         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3498
3499         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3500                 DEFINE_WAIT(w);
3501                 int disks, data_disks;
3502
3503         retry:
3504                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3505                 if (likely(conf->expand_progress == MaxSector))
3506                         disks = conf->raid_disks;
3507                 else {
3508                         /* spinlock is needed as expand_progress may be
3509                          * 64bit on a 32bit platform, and so it might be
3510                          * possible to see a half-updated value
3511                          * Ofcourse expand_progress could change after
3512                          * the lock is dropped, so once we get a reference
3513                          * to the stripe that we think it is, we will have
3514                          * to check again.
3515                          */
3516                         spin_lock_irq(&conf->device_lock);
3517                         disks = conf->raid_disks;
3518                         if (logical_sector >= conf->expand_progress)
3519                                 disks = conf->previous_raid_disks;
3520                         else {
3521                                 if (logical_sector >= conf->expand_lo) {
3522                                         spin_unlock_irq(&conf->device_lock);
3523                                         schedule();
3524                                         goto retry;
3525                                 }
3526                         }
3527                         spin_unlock_irq(&conf->device_lock);
3528                 }
3529                 data_disks = disks - conf->max_degraded;
3530
3531                 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3532                                                   &dd_idx, &pd_idx, conf);
3533                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3534                         (unsigned long long)new_sector, 
3535                         (unsigned long long)logical_sector);
3536
3537                 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3538                 if (sh) {
3539                         if (unlikely(conf->expand_progress != MaxSector)) {
3540                                 /* expansion might have moved on while waiting for a
3541                                  * stripe, so we must do the range check again.
3542                                  * Expansion could still move past after this
3543                                  * test, but as we are holding a reference to
3544                                  * 'sh', we know that if that happens,
3545                                  *  STRIPE_EXPANDING will get set and the expansion
3546                                  * won't proceed until we finish with the stripe.
3547                                  */
3548                                 int must_retry = 0;
3549                                 spin_lock_irq(&conf->device_lock);
3550                                 if (logical_sector <  conf->expand_progress &&
3551                                     disks == conf->previous_raid_disks)
3552                                         /* mismatch, need to try again */
3553                                         must_retry = 1;
3554                                 spin_unlock_irq(&conf->device_lock);
3555                                 if (must_retry) {
3556                                         release_stripe(sh);
3557                                         goto retry;
3558                                 }
3559                         }
3560                         /* FIXME what if we get a false positive because these
3561                          * are being updated.
3562                          */
3563                         if (logical_sector >= mddev->suspend_lo &&
3564                             logical_sector < mddev->suspend_hi) {
3565                                 release_stripe(sh);
3566                                 schedule();
3567                                 goto retry;
3568                         }
3569
3570                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3571                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3572                                 /* Stripe is busy expanding or
3573                                  * add failed due to overlap.  Flush everything
3574                                  * and wait a while
3575                                  */
3576                                 raid5_unplug_device(mddev->queue);
3577                                 release_stripe(sh);
3578                                 schedule();
3579                                 goto retry;
3580                         }
3581                         finish_wait(&conf->wait_for_overlap, &w);
3582                         set_bit(STRIPE_HANDLE, &sh->state);
3583                         clear_bit(STRIPE_DELAYED, &sh->state);
3584                         release_stripe(sh);
3585                 } else {
3586                         /* cannot get stripe for read-ahead, just give-up */
3587                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3588                         finish_wait(&conf->wait_for_overlap, &w);
3589                         break;
3590                 }
3591                         
3592         }
3593         spin_lock_irq(&conf->device_lock);
3594         remaining = --bi->bi_phys_segments;
3595         spin_unlock_irq(&conf->device_lock);
3596         if (remaining == 0) {
3597
3598                 if ( rw == WRITE )
3599                         md_write_end(mddev);
3600
3601                 bio_endio(bi, 0);
3602         }
3603         return 0;
3604 }
3605
3606 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3607 {
3608         /* reshaping is quite different to recovery/resync so it is
3609          * handled quite separately ... here.
3610          *
3611          * On each call to sync_request, we gather one chunk worth of
3612          * destination stripes and flag them as expanding.
3613          * Then we find all the source stripes and request reads.
3614          * As the reads complete, handle_stripe will copy the data
3615          * into the destination stripe and release that stripe.
3616          */
3617         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3618         struct stripe_head *sh;
3619         int pd_idx;
3620         sector_t first_sector, last_sector;
3621         int raid_disks = conf->previous_raid_disks;
3622         int data_disks = raid_disks - conf->max_degraded;
3623         int new_data_disks = conf->raid_disks - conf->max_degraded;
3624         int i;
3625         int dd_idx;
3626         sector_t writepos, safepos, gap;
3627
3628         if (sector_nr == 0 &&
3629             conf->expand_progress != 0) {
3630                 /* restarting in the middle, skip the initial sectors */
3631                 sector_nr = conf->expand_progress;
3632                 sector_div(sector_nr, new_data_disks);
3633                 *skipped = 1;
3634                 return sector_nr;
3635         }
3636
3637         /* we update the metadata when there is more than 3Meg
3638          * in the block range (that is rather arbitrary, should
3639          * probably be time based) or when the data about to be
3640          * copied would over-write the source of the data at
3641          * the front of the range.
3642          * i.e. one new_stripe forward from expand_progress new_maps
3643          * to after where expand_lo old_maps to
3644          */
3645         writepos = conf->expand_progress +
3646                 conf->chunk_size/512*(new_data_disks);
3647         sector_div(writepos, new_data_disks);
3648         safepos = conf->expand_lo;
3649         sector_div(safepos, data_disks);
3650         gap = conf->expand_progress - conf->expand_lo;
3651
3652         if (writepos >= safepos ||
3653             gap > (new_data_disks)*3000*2 /*3Meg*/) {
3654                 /* Cannot proceed until we've updated the superblock... */
3655                 wait_event(conf->wait_for_overlap,
3656                            atomic_read(&conf->reshape_stripes)==0);
3657                 mddev->reshape_position = conf->expand_progress;
3658                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3659                 md_wakeup_thread(mddev->thread);
3660                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3661                            kthread_should_stop());
3662                 spin_lock_irq(&conf->device_lock);
3663                 conf->expand_lo = mddev->reshape_position;
3664                 spin_unlock_irq(&conf->device_lock);
3665                 wake_up(&conf->wait_for_overlap);
3666         }
3667
3668         for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3669                 int j;
3670                 int skipped = 0;
3671                 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3672                 sh = get_active_stripe(conf, sector_nr+i,
3673                                        conf->raid_disks, pd_idx, 0);
3674                 set_bit(STRIPE_EXPANDING, &sh->state);
3675                 atomic_inc(&conf->reshape_stripes);
3676                 /* If any of this stripe is beyond the end of the old
3677                  * array, then we need to zero those blocks
3678                  */
3679                 for (j=sh->disks; j--;) {
3680                         sector_t s;
3681                         if (j == sh->pd_idx)
3682                                 continue;
3683                         if (conf->level == 6 &&
3684                             j == raid6_next_disk(sh->pd_idx, sh->disks))
3685                                 continue;
3686                         s = compute_blocknr(sh, j);
3687                         if (s < (mddev->array_size<<1)) {
3688                                 skipped = 1;
3689                                 continue;
3690                         }
3691                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3692                         set_bit(R5_Expanded, &sh->dev[j].flags);
3693                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3694                 }
3695                 if (!skipped) {
3696                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3697                         set_bit(STRIPE_HANDLE, &sh->state);
3698                 }
3699                 release_stripe(sh);
3700         }
3701         spin_lock_irq(&conf->device_lock);
3702         conf->expand_progress = (sector_nr + i) * new_data_disks;
3703         spin_unlock_irq(&conf->device_lock);
3704         /* Ok, those stripe are ready. We can start scheduling
3705          * reads on the source stripes.
3706          * The source stripes are determined by mapping the first and last
3707          * block on the destination stripes.
3708          */
3709         first_sector =
3710                 raid5_compute_sector(sector_nr*(new_data_disks),
3711                                      raid_disks, data_disks,
3712                                      &dd_idx, &pd_idx, conf);
3713         last_sector =
3714                 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3715                                      *(new_data_disks) -1,
3716                                      raid_disks, data_disks,
3717                                      &dd_idx, &pd_idx, conf);
3718         if (last_sector >= (mddev->size<<1))
3719                 last_sector = (mddev->size<<1)-1;
3720         while (first_sector <= last_sector) {
3721                 pd_idx = stripe_to_pdidx(first_sector, conf,
3722                                          conf->previous_raid_disks);
3723                 sh = get_active_stripe(conf, first_sector,
3724                                        conf->previous_raid_disks, pd_idx, 0);
3725                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3726                 set_bit(STRIPE_HANDLE, &sh->state);
3727                 release_stripe(sh);
3728                 first_sector += STRIPE_SECTORS;
3729         }
3730         /* If this takes us to the resync_max point where we have to pause,
3731          * then we need to write out the superblock.
3732          */
3733         sector_nr += conf->chunk_size>>9;
3734         if (sector_nr >= mddev->resync_max) {
3735                 /* Cannot proceed until we've updated the superblock... */
3736                 wait_event(conf->wait_for_overlap,
3737                            atomic_read(&conf->reshape_stripes) == 0);
3738                 mddev->reshape_position = conf->expand_progress;
3739                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3740                 md_wakeup_thread(mddev->thread);
3741                 wait_event(mddev->sb_wait,
3742                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3743                            || kthread_should_stop());
3744                 spin_lock_irq(&conf->device_lock);
3745                 conf->expand_lo = mddev->reshape_position;
3746                 spin_unlock_irq(&conf->device_lock);
3747                 wake_up(&conf->wait_for_overlap);
3748         }
3749         return conf->chunk_size>>9;
3750 }
3751
3752 /* FIXME go_faster isn't used */
3753 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3754 {
3755         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3756         struct stripe_head *sh;
3757         int pd_idx;
3758         int raid_disks = conf->raid_disks;
3759         sector_t max_sector = mddev->size << 1;
3760         int sync_blocks;
3761         int still_degraded = 0;
3762         int i;
3763
3764         if (sector_nr >= max_sector) {
3765                 /* just being told to finish up .. nothing much to do */
3766                 unplug_slaves(mddev);
3767                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3768                         end_reshape(conf);
3769                         return 0;
3770                 }
3771
3772                 if (mddev->curr_resync < max_sector) /* aborted */
3773                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3774                                         &sync_blocks, 1);
3775                 else /* completed sync */
3776                         conf->fullsync = 0;
3777                 bitmap_close_sync(mddev->bitmap);
3778
3779                 return 0;
3780         }
3781
3782         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3783                 return reshape_request(mddev, sector_nr, skipped);
3784
3785         /* No need to check resync_max as we never do more than one
3786          * stripe, and as resync_max will always be on a chunk boundary,
3787          * if the check in md_do_sync didn't fire, there is no chance
3788          * of overstepping resync_max here
3789          */
3790
3791         /* if there is too many failed drives and we are trying
3792          * to resync, then assert that we are finished, because there is
3793          * nothing we can do.
3794          */
3795         if (mddev->degraded >= conf->max_degraded &&
3796             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3797                 sector_t rv = (mddev->size << 1) - sector_nr;
3798                 *skipped = 1;
3799                 return rv;
3800         }
3801         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3802             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3803             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3804                 /* we can skip this block, and probably more */
3805                 sync_blocks /= STRIPE_SECTORS;
3806                 *skipped = 1;
3807                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3808         }
3809
3810
3811         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3812
3813         pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3814         sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3815         if (sh == NULL) {
3816                 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3817                 /* make sure we don't swamp the stripe cache if someone else
3818                  * is trying to get access
3819                  */
3820                 schedule_timeout_uninterruptible(1);
3821         }
3822         /* Need to check if array will still be degraded after recovery/resync
3823          * We don't need to check the 'failed' flag as when that gets set,
3824          * recovery aborts.
3825          */
3826         for (i=0; i<mddev->raid_disks; i++)
3827                 if (conf->disks[i].rdev == NULL)
3828                         still_degraded = 1;
3829
3830         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3831
3832         spin_lock(&sh->lock);
3833         set_bit(STRIPE_SYNCING, &sh->state);
3834         clear_bit(STRIPE_INSYNC, &sh->state);
3835         spin_unlock(&sh->lock);
3836
3837         handle_stripe(sh, NULL);
3838         release_stripe(sh);
3839
3840         return STRIPE_SECTORS;
3841 }
3842
3843 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3844 {
3845         /* We may not be able to submit a whole bio at once as there
3846          * may not be enough stripe_heads available.
3847          * We cannot pre-allocate enough stripe_heads as we may need
3848          * more than exist in the cache (if we allow ever large chunks).
3849          * So we do one stripe head at a time and record in
3850          * ->bi_hw_segments how many have been done.
3851          *
3852          * We *know* that this entire raid_bio is in one chunk, so
3853          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3854          */
3855         struct stripe_head *sh;
3856         int dd_idx, pd_idx;
3857         sector_t sector, logical_sector, last_sector;
3858         int scnt = 0;
3859         int remaining;
3860         int handled = 0;
3861
3862         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3863         sector = raid5_compute_sector(  logical_sector,
3864                                         conf->raid_disks,
3865                                         conf->raid_disks - conf->max_degraded,
3866                                         &dd_idx,
3867                                         &pd_idx,
3868                                         conf);
3869         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3870
3871         for (; logical_sector < last_sector;
3872              logical_sector += STRIPE_SECTORS,
3873                      sector += STRIPE_SECTORS,
3874                      scnt++) {
3875
3876                 if (scnt < raid_bio->bi_hw_segments)
3877                         /* already done this stripe */
3878                         continue;
3879
3880                 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3881
3882                 if (!sh) {
3883                         /* failed to get a stripe - must wait */
3884                         raid_bio->bi_hw_segments = scnt;
3885                         conf->retry_read_aligned = raid_bio;
3886                         return handled;
3887                 }
3888
3889                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3890                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3891                         release_stripe(sh);
3892                         raid_bio->bi_hw_segments = scnt;
3893                         conf->retry_read_aligned = raid_bio;
3894                         return handled;
3895                 }
3896
3897                 handle_stripe(sh, NULL);
3898                 release_stripe(sh);
3899                 handled++;
3900         }
3901         spin_lock_irq(&conf->device_lock);
3902         remaining = --raid_bio->bi_phys_segments;
3903         spin_unlock_irq(&conf->device_lock);
3904         if (remaining == 0)
3905                 bio_endio(raid_bio, 0);
3906         if (atomic_dec_and_test(&conf->active_aligned_reads))
3907                 wake_up(&conf->wait_for_stripe);
3908         return handled;
3909 }
3910
3911
3912
3913 /*
3914  * This is our raid5 kernel thread.
3915  *
3916  * We scan the hash table for stripes which can be handled now.
3917  * During the scan, completed stripes are saved for us by the interrupt
3918  * handler, so that they will not have to wait for our next wakeup.
3919  */
3920 static void raid5d(mddev_t *mddev)
3921 {
3922         struct stripe_head *sh;
3923         raid5_conf_t *conf = mddev_to_conf(mddev);
3924         int handled;
3925
3926         pr_debug("+++ raid5d active\n");
3927
3928         md_check_recovery(mddev);
3929
3930         handled = 0;
3931         spin_lock_irq(&conf->device_lock);
3932         while (1) {
3933                 struct bio *bio;
3934
3935                 if (conf->seq_flush != conf->seq_write) {
3936                         int seq = conf->seq_flush;
3937                         spin_unlock_irq(&conf->device_lock);
3938                         bitmap_unplug(mddev->bitmap);
3939                         spin_lock_irq(&conf->device_lock);
3940                         conf->seq_write = seq;
3941                         activate_bit_delay(conf);
3942                 }
3943
3944                 while ((bio = remove_bio_from_retry(conf))) {
3945                         int ok;
3946                         spin_unlock_irq(&conf->device_lock);
3947                         ok = retry_aligned_read(conf, bio);
3948                         spin_lock_irq(&conf->device_lock);
3949                         if (!ok)
3950                                 break;
3951                         handled++;
3952                 }
3953
3954                 sh = __get_priority_stripe(conf);
3955
3956                 if (!sh) {
3957                         async_tx_issue_pending_all();
3958                         break;
3959                 }
3960                 spin_unlock_irq(&conf->device_lock);
3961                 
3962                 handled++;
3963                 handle_stripe(sh, conf->spare_page);
3964                 release_stripe(sh);
3965
3966                 spin_lock_irq(&conf->device_lock);
3967         }
3968         pr_debug("%d stripes handled\n", handled);
3969
3970         spin_unlock_irq(&conf->device_lock);
3971
3972         unplug_slaves(mddev);
3973
3974         pr_debug("--- raid5d inactive\n");
3975 }
3976
3977 static ssize_t
3978 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3979 {
3980         raid5_conf_t *conf = mddev_to_conf(mddev);
3981         if (conf)
3982                 return sprintf(page, "%d\n", conf->max_nr_stripes);
3983         else
3984                 return 0;
3985 }
3986
3987 static ssize_t
3988 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3989 {
3990         raid5_conf_t *conf = mddev_to_conf(mddev);
3991         unsigned long new;
3992         if (len >= PAGE_SIZE)
3993                 return -EINVAL;
3994         if (!conf)
3995                 return -ENODEV;
3996
3997         if (strict_strtoul(page, 10, &new))
3998                 return -EINVAL;
3999         if (new <= 16 || new > 32768)
4000                 return -EINVAL;
4001         while (new < conf->max_nr_stripes) {
4002                 if (drop_one_stripe(conf))
4003                         conf->max_nr_stripes--;
4004                 else
4005                         break;
4006         }
4007         md_allow_write(mddev);
4008         while (new > conf->max_nr_stripes) {
4009                 if (grow_one_stripe(conf))
4010                         conf->max_nr_stripes++;
4011                 else break;
4012         }
4013         return len;
4014 }
4015
4016 static struct md_sysfs_entry
4017 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4018                                 raid5_show_stripe_cache_size,
4019                                 raid5_store_stripe_cache_size);
4020
4021 static ssize_t
4022 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4023 {
4024         raid5_conf_t *conf = mddev_to_conf(mddev);
4025         if (conf)
4026                 return sprintf(page, "%d\n", conf->bypass_threshold);
4027         else
4028                 return 0;
4029 }
4030
4031 static ssize_t
4032 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4033 {
4034         raid5_conf_t *conf = mddev_to_conf(mddev);
4035         unsigned long new;
4036         if (len >= PAGE_SIZE)
4037                 return -EINVAL;
4038         if (!conf)
4039                 return -ENODEV;
4040
4041         if (strict_strtoul(page, 10, &new))
4042                 return -EINVAL;
4043         if (new > conf->max_nr_stripes)
4044                 return -EINVAL;
4045         conf->bypass_threshold = new;
4046         return len;
4047 }
4048
4049 static struct md_sysfs_entry
4050 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4051                                         S_IRUGO | S_IWUSR,
4052                                         raid5_show_preread_threshold,
4053                                         raid5_store_preread_threshold);
4054
4055 static ssize_t
4056 stripe_cache_active_show(mddev_t *mddev, char *page)
4057 {
4058         raid5_conf_t *conf = mddev_to_conf(mddev);
4059         if (conf)
4060                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4061         else
4062                 return 0;
4063 }
4064
4065 static struct md_sysfs_entry
4066 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4067
4068 static struct attribute *raid5_attrs[] =  {
4069         &raid5_stripecache_size.attr,
4070         &raid5_stripecache_active.attr,
4071         &raid5_preread_bypass_threshold.attr,
4072         NULL,
4073 };
4074 static struct attribute_group raid5_attrs_group = {
4075         .name = NULL,
4076         .attrs = raid5_attrs,
4077 };
4078
4079 static int run(mddev_t *mddev)
4080 {
4081         raid5_conf_t *conf;
4082         int raid_disk, memory;
4083         mdk_rdev_t *rdev;
4084         struct disk_info *disk;
4085         struct list_head *tmp;
4086         int working_disks = 0;
4087
4088         if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4089                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4090                        mdname(mddev), mddev->level);
4091                 return -EIO;
4092         }
4093
4094         if (mddev->reshape_position != MaxSector) {
4095                 /* Check that we can continue the reshape.
4096                  * Currently only disks can change, it must
4097                  * increase, and we must be past the point where
4098                  * a stripe over-writes itself
4099                  */
4100                 sector_t here_new, here_old;
4101                 int old_disks;
4102                 int max_degraded = (mddev->level == 5 ? 1 : 2);
4103
4104                 if (mddev->new_level != mddev->level ||
4105                     mddev->new_layout != mddev->layout ||
4106                     mddev->new_chunk != mddev->chunk_size) {
4107                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4108                                "required - aborting.\n",
4109                                mdname(mddev));
4110                         return -EINVAL;
4111                 }
4112                 if (mddev->delta_disks <= 0) {
4113                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4114                                "(reduce disks) required - aborting.\n",
4115                                mdname(mddev));
4116                         return -EINVAL;
4117                 }
4118                 old_disks = mddev->raid_disks - mddev->delta_disks;
4119                 /* reshape_position must be on a new-stripe boundary, and one
4120                  * further up in new geometry must map after here in old
4121                  * geometry.
4122                  */
4123                 here_new = mddev->reshape_position;
4124                 if (sector_div(here_new, (mddev->chunk_size>>9)*
4125                                (mddev->raid_disks - max_degraded))) {
4126                         printk(KERN_ERR "raid5: reshape_position not "
4127                                "on a stripe boundary\n");
4128                         return -EINVAL;
4129                 }
4130                 /* here_new is the stripe we will write to */
4131                 here_old = mddev->reshape_position;
4132                 sector_div(here_old, (mddev->chunk_size>>9)*
4133                            (old_disks-max_degraded));
4134                 /* here_old is the first stripe that we might need to read
4135                  * from */
4136                 if (here_new >= here_old) {
4137                         /* Reading from the same stripe as writing to - bad */
4138                         printk(KERN_ERR "raid5: reshape_position too early for "
4139                                "auto-recovery - aborting.\n");
4140                         return -EINVAL;
4141                 }
4142                 printk(KERN_INFO "raid5: reshape will continue\n");
4143                 /* OK, we should be able to continue; */
4144         }
4145
4146
4147         mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4148         if ((conf = mddev->private) == NULL)
4149                 goto abort;
4150         if (mddev->reshape_position == MaxSector) {
4151                 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4152         } else {
4153                 conf->raid_disks = mddev->raid_disks;
4154                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4155         }
4156
4157         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4158                               GFP_KERNEL);
4159         if (!conf->disks)
4160                 goto abort;
4161
4162         conf->mddev = mddev;
4163
4164         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4165                 goto abort;
4166
4167         if (mddev->level == 6) {
4168                 conf->spare_page = alloc_page(GFP_KERNEL);
4169                 if (!conf->spare_page)
4170                         goto abort;
4171         }
4172         spin_lock_init(&conf->device_lock);
4173         mddev->queue->queue_lock = &conf->device_lock;
4174         init_waitqueue_head(&conf->wait_for_stripe);
4175         init_waitqueue_head(&conf->wait_for_overlap);
4176         INIT_LIST_HEAD(&conf->handle_list);
4177         INIT_LIST_HEAD(&conf->hold_list);
4178         INIT_LIST_HEAD(&conf->delayed_list);
4179         INIT_LIST_HEAD(&conf->bitmap_list);
4180         INIT_LIST_HEAD(&conf->inactive_list);
4181         atomic_set(&conf->active_stripes, 0);
4182         atomic_set(&conf->preread_active_stripes, 0);
4183         atomic_set(&conf->active_aligned_reads, 0);
4184         conf->bypass_threshold = BYPASS_THRESHOLD;
4185
4186         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4187
4188         rdev_for_each(rdev, tmp, mddev) {
4189                 raid_disk = rdev->raid_disk;
4190                 if (raid_disk >= conf->raid_disks
4191                     || raid_disk < 0)
4192                         continue;
4193                 disk = conf->disks + raid_disk;
4194
4195                 disk->rdev = rdev;
4196
4197                 if (test_bit(In_sync, &rdev->flags)) {
4198                         char b[BDEVNAME_SIZE];
4199                         printk(KERN_INFO "raid5: device %s operational as raid"
4200                                 " disk %d\n", bdevname(rdev->bdev,b),
4201                                 raid_disk);
4202                         working_disks++;
4203                 } else
4204                         /* Cannot rely on bitmap to complete recovery */
4205                         conf->fullsync = 1;
4206         }
4207
4208         /*
4209          * 0 for a fully functional array, 1 or 2 for a degraded array.
4210          */
4211         mddev->degraded = conf->raid_disks - working_disks;
4212         conf->mddev = mddev;
4213         conf->chunk_size = mddev->chunk_size;
4214         conf->level = mddev->level;
4215         if (conf->level == 6)
4216                 conf->max_degraded = 2;
4217         else
4218                 conf->max_degraded = 1;
4219         conf->algorithm = mddev->layout;
4220         conf->max_nr_stripes = NR_STRIPES;
4221         conf->expand_progress = mddev->reshape_position;
4222
4223         /* device size must be a multiple of chunk size */
4224         mddev->size &= ~(mddev->chunk_size/1024 -1);
4225         mddev->resync_max_sectors = mddev->size << 1;
4226
4227         if (conf->level == 6 && conf->raid_disks < 4) {
4228                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4229                        mdname(mddev), conf->raid_disks);
4230                 goto abort;
4231         }
4232         if (!conf->chunk_size || conf->chunk_size % 4) {
4233                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4234                         conf->chunk_size, mdname(mddev));
4235                 goto abort;
4236         }
4237         if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4238                 printk(KERN_ERR 
4239                         "raid5: unsupported parity algorithm %d for %s\n",
4240                         conf->algorithm, mdname(mddev));
4241                 goto abort;
4242         }
4243         if (mddev->degraded > conf->max_degraded) {
4244                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4245                         " (%d/%d failed)\n",
4246                         mdname(mddev), mddev->degraded, conf->raid_disks);
4247                 goto abort;
4248         }
4249
4250         if (mddev->degraded > 0 &&
4251             mddev->recovery_cp != MaxSector) {
4252                 if (mddev->ok_start_degraded)
4253                         printk(KERN_WARNING
4254                                "raid5: starting dirty degraded array: %s"
4255                                "- data corruption possible.\n",
4256                                mdname(mddev));
4257                 else {
4258                         printk(KERN_ERR
4259                                "raid5: cannot start dirty degraded array for %s\n",
4260                                mdname(mddev));
4261                         goto abort;
4262                 }
4263         }
4264
4265         {
4266                 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4267                 if (!mddev->thread) {
4268                         printk(KERN_ERR 
4269                                 "raid5: couldn't allocate thread for %s\n",
4270                                 mdname(mddev));
4271                         goto abort;
4272                 }
4273         }
4274         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4275                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4276         if (grow_stripes(conf, conf->max_nr_stripes)) {
4277                 printk(KERN_ERR 
4278                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4279                 shrink_stripes(conf);
4280                 md_unregister_thread(mddev->thread);
4281                 goto abort;
4282         } else
4283                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4284                         memory, mdname(mddev));
4285
4286         if (mddev->degraded == 0)
4287                 printk("raid5: raid level %d set %s active with %d out of %d"
4288                         " devices, algorithm %d\n", conf->level, mdname(mddev), 
4289                         mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4290                         conf->algorithm);
4291         else
4292                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4293                         " out of %d devices, algorithm %d\n", conf->level,
4294                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4295                         mddev->raid_disks, conf->algorithm);
4296
4297         print_raid5_conf(conf);
4298
4299         if (conf->expand_progress != MaxSector) {
4300                 printk("...ok start reshape thread\n");
4301                 conf->expand_lo = conf->expand_progress;
4302                 atomic_set(&conf->reshape_stripes, 0);
4303                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4304                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4305                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4306                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4307                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4308                                                         "%s_reshape");
4309         }
4310
4311         /* read-ahead size must cover two whole stripes, which is
4312          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4313          */
4314         {
4315                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4316                 int stripe = data_disks *
4317                         (mddev->chunk_size / PAGE_SIZE);
4318                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4319                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4320         }
4321
4322         /* Ok, everything is just fine now */
4323         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4324                 printk(KERN_WARNING
4325                        "raid5: failed to create sysfs attributes for %s\n",
4326                        mdname(mddev));
4327
4328         mddev->queue->unplug_fn = raid5_unplug_device;
4329         mddev->queue->backing_dev_info.congested_data = mddev;
4330         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4331
4332         mddev->array_size =  mddev->size * (conf->previous_raid_disks -
4333                                             conf->max_degraded);
4334
4335         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4336
4337         return 0;
4338 abort:
4339         if (conf) {
4340                 print_raid5_conf(conf);
4341                 safe_put_page(conf->spare_page);
4342                 kfree(conf->disks);
4343                 kfree(conf->stripe_hashtbl);
4344                 kfree(conf);
4345         }
4346         mddev->private = NULL;
4347         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4348         return -EIO;
4349 }
4350
4351
4352
4353 static int stop(mddev_t *mddev)
4354 {
4355         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4356
4357         md_unregister_thread(mddev->thread);
4358         mddev->thread = NULL;
4359         shrink_stripes(conf);
4360         kfree(conf->stripe_hashtbl);
4361         mddev->queue->backing_dev_info.congested_fn = NULL;
4362         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4363         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4364         kfree(conf->disks);
4365         kfree(conf);
4366         mddev->private = NULL;
4367         return 0;
4368 }
4369
4370 #ifdef DEBUG
4371 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4372 {
4373         int i;
4374
4375         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4376                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4377         seq_printf(seq, "sh %llu,  count %d.\n",
4378                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4379         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4380         for (i = 0; i < sh->disks; i++) {
4381                 seq_printf(seq, "(cache%d: %p %ld) ",
4382                            i, sh->dev[i].page, sh->dev[i].flags);
4383         }
4384         seq_printf(seq, "\n");
4385 }
4386
4387 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4388 {
4389         struct stripe_head *sh;
4390         struct hlist_node *hn;
4391         int i;
4392
4393         spin_lock_irq(&conf->device_lock);
4394         for (i = 0; i < NR_HASH; i++) {
4395                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4396                         if (sh->raid_conf != conf)
4397                                 continue;
4398                         print_sh(seq, sh);
4399                 }
4400         }
4401         spin_unlock_irq(&conf->device_lock);
4402 }
4403 #endif
4404
4405 static void status (struct seq_file *seq, mddev_t *mddev)
4406 {
4407         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4408         int i;
4409
4410         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4411         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4412         for (i = 0; i < conf->raid_disks; i++)
4413                 seq_printf (seq, "%s",
4414                                conf->disks[i].rdev &&
4415                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4416         seq_printf (seq, "]");
4417 #ifdef DEBUG
4418         seq_printf (seq, "\n");
4419         printall(seq, conf);
4420 #endif
4421 }
4422
4423 static void print_raid5_conf (raid5_conf_t *conf)
4424 {
4425         int i;
4426         struct disk_info *tmp;
4427
4428         printk("RAID5 conf printout:\n");
4429         if (!conf) {
4430                 printk("(conf==NULL)\n");
4431                 return;
4432         }
4433         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4434                  conf->raid_disks - conf->mddev->degraded);
4435
4436         for (i = 0; i < conf->raid_disks; i++) {
4437                 char b[BDEVNAME_SIZE];
4438                 tmp = conf->disks + i;
4439                 if (tmp->rdev)
4440                 printk(" disk %d, o:%d, dev:%s\n",
4441                         i, !test_bit(Faulty, &tmp->rdev->flags),
4442                         bdevname(tmp->rdev->bdev,b));
4443         }
4444 }
4445
4446 static int raid5_spare_active(mddev_t *mddev)
4447 {
4448         int i;
4449         raid5_conf_t *conf = mddev->private;
4450         struct disk_info *tmp;
4451
4452         for (i = 0; i < conf->raid_disks; i++) {
4453                 tmp = conf->disks + i;
4454                 if (tmp->rdev
4455                     && !test_bit(Faulty, &tmp->rdev->flags)
4456                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4457                         unsigned long flags;
4458                         spin_lock_irqsave(&conf->device_lock, flags);
4459                         mddev->degraded--;
4460                         spin_unlock_irqrestore(&conf->device_lock, flags);
4461                 }
4462         }
4463         print_raid5_conf(conf);
4464         return 0;
4465 }
4466
4467 static int raid5_remove_disk(mddev_t *mddev, int number)
4468 {
4469         raid5_conf_t *conf = mddev->private;
4470         int err = 0;
4471         mdk_rdev_t *rdev;
4472         struct disk_info *p = conf->disks + number;
4473
4474         print_raid5_conf(conf);
4475         rdev = p->rdev;
4476         if (rdev) {
4477                 if (test_bit(In_sync, &rdev->flags) ||
4478                     atomic_read(&rdev->nr_pending)) {
4479                         err = -EBUSY;
4480                         goto abort;
4481                 }
4482                 /* Only remove non-faulty devices if recovery
4483                  * isn't possible.
4484                  */
4485                 if (!test_bit(Faulty, &rdev->flags) &&
4486                     mddev->degraded <= conf->max_degraded) {
4487                         err = -EBUSY;
4488                         goto abort;
4489                 }
4490                 p->rdev = NULL;
4491                 synchronize_rcu();
4492                 if (atomic_read(&rdev->nr_pending)) {
4493                         /* lost the race, try later */
4494                         err = -EBUSY;
4495                         p->rdev = rdev;
4496                 }
4497         }
4498 abort:
4499
4500         print_raid5_conf(conf);
4501         return err;
4502 }
4503
4504 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4505 {
4506         raid5_conf_t *conf = mddev->private;
4507         int err = -EEXIST;
4508         int disk;
4509         struct disk_info *p;
4510         int first = 0;
4511         int last = conf->raid_disks - 1;
4512
4513         if (mddev->degraded > conf->max_degraded)
4514                 /* no point adding a device */
4515                 return -EINVAL;
4516
4517         if (rdev->raid_disk >= 0)
4518                 first = last = rdev->raid_disk;
4519
4520         /*
4521          * find the disk ... but prefer rdev->saved_raid_disk
4522          * if possible.
4523          */
4524         if (rdev->saved_raid_disk >= 0 &&
4525             rdev->saved_raid_disk >= first &&
4526             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4527                 disk = rdev->saved_raid_disk;
4528         else
4529                 disk = first;
4530         for ( ; disk <= last ; disk++)
4531                 if ((p=conf->disks + disk)->rdev == NULL) {
4532                         clear_bit(In_sync, &rdev->flags);
4533                         rdev->raid_disk = disk;
4534                         err = 0;
4535                         if (rdev->saved_raid_disk != disk)
4536                                 conf->fullsync = 1;
4537                         rcu_assign_pointer(p->rdev, rdev);
4538                         break;
4539                 }
4540         print_raid5_conf(conf);
4541         return err;
4542 }
4543
4544 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4545 {
4546         /* no resync is happening, and there is enough space
4547          * on all devices, so we can resize.
4548          * We need to make sure resync covers any new space.
4549          * If the array is shrinking we should possibly wait until
4550          * any io in the removed space completes, but it hardly seems
4551          * worth it.
4552          */
4553         raid5_conf_t *conf = mddev_to_conf(mddev);
4554
4555         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4556         mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4557         set_capacity(mddev->gendisk, mddev->array_size << 1);
4558         mddev->changed = 1;
4559         if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
4560                 mddev->recovery_cp = mddev->size << 1;
4561                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4562         }
4563         mddev->size = sectors /2;
4564         mddev->resync_max_sectors = sectors;
4565         return 0;
4566 }
4567
4568 #ifdef CONFIG_MD_RAID5_RESHAPE
4569 static int raid5_check_reshape(mddev_t *mddev)
4570 {
4571         raid5_conf_t *conf = mddev_to_conf(mddev);
4572         int err;
4573
4574         if (mddev->delta_disks < 0 ||
4575             mddev->new_level != mddev->level)
4576                 return -EINVAL; /* Cannot shrink array or change level yet */
4577         if (mddev->delta_disks == 0)
4578                 return 0; /* nothing to do */
4579
4580         /* Can only proceed if there are plenty of stripe_heads.
4581          * We need a minimum of one full stripe,, and for sensible progress
4582          * it is best to have about 4 times that.
4583          * If we require 4 times, then the default 256 4K stripe_heads will
4584          * allow for chunk sizes up to 256K, which is probably OK.
4585          * If the chunk size is greater, user-space should request more
4586          * stripe_heads first.
4587          */
4588         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4589             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4590                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4591                        (mddev->chunk_size / STRIPE_SIZE)*4);
4592                 return -ENOSPC;
4593         }
4594
4595         err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4596         if (err)
4597                 return err;
4598
4599         if (mddev->degraded > conf->max_degraded)
4600                 return -EINVAL;
4601         /* looks like we might be able to manage this */
4602         return 0;
4603 }
4604
4605 static int raid5_start_reshape(mddev_t *mddev)
4606 {
4607         raid5_conf_t *conf = mddev_to_conf(mddev);
4608         mdk_rdev_t *rdev;
4609         struct list_head *rtmp;
4610         int spares = 0;
4611         int added_devices = 0;
4612         unsigned long flags;
4613
4614         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4615                 return -EBUSY;
4616
4617         rdev_for_each(rdev, rtmp, mddev)
4618                 if (rdev->raid_disk < 0 &&
4619                     !test_bit(Faulty, &rdev->flags))
4620                         spares++;
4621
4622         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4623                 /* Not enough devices even to make a degraded array
4624                  * of that size
4625                  */
4626                 return -EINVAL;
4627
4628         atomic_set(&conf->reshape_stripes, 0);
4629         spin_lock_irq(&conf->device_lock);
4630         conf->previous_raid_disks = conf->raid_disks;
4631         conf->raid_disks += mddev->delta_disks;
4632         conf->expand_progress = 0;
4633         conf->expand_lo = 0;
4634         spin_unlock_irq(&conf->device_lock);
4635
4636         /* Add some new drives, as many as will fit.
4637          * We know there are enough to make the newly sized array work.
4638          */
4639         rdev_for_each(rdev, rtmp, mddev)
4640                 if (rdev->raid_disk < 0 &&
4641                     !test_bit(Faulty, &rdev->flags)) {
4642                         if (raid5_add_disk(mddev, rdev) == 0) {
4643                                 char nm[20];
4644                                 set_bit(In_sync, &rdev->flags);
4645                                 added_devices++;
4646                                 rdev->recovery_offset = 0;
4647                                 sprintf(nm, "rd%d", rdev->raid_disk);
4648                                 if (sysfs_create_link(&mddev->kobj,
4649                                                       &rdev->kobj, nm))
4650                                         printk(KERN_WARNING
4651                                                "raid5: failed to create "
4652                                                " link %s for %s\n",
4653                                                nm, mdname(mddev));
4654                         } else
4655                                 break;
4656                 }
4657
4658         spin_lock_irqsave(&conf->device_lock, flags);
4659         mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4660         spin_unlock_irqrestore(&conf->device_lock, flags);
4661         mddev->raid_disks = conf->raid_disks;
4662         mddev->reshape_position = 0;
4663         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4664
4665         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4666         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4667         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4668         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4669         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4670                                                 "%s_reshape");
4671         if (!mddev->sync_thread) {
4672                 mddev->recovery = 0;
4673                 spin_lock_irq(&conf->device_lock);
4674                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4675                 conf->expand_progress = MaxSector;
4676                 spin_unlock_irq(&conf->device_lock);
4677                 return -EAGAIN;
4678         }
4679         md_wakeup_thread(mddev->sync_thread);
4680         md_new_event(mddev);
4681         return 0;
4682 }
4683 #endif
4684
4685 static void end_reshape(raid5_conf_t *conf)
4686 {
4687         struct block_device *bdev;
4688
4689         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4690                 conf->mddev->array_size = conf->mddev->size *
4691                         (conf->raid_disks - conf->max_degraded);
4692                 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4693                 conf->mddev->changed = 1;
4694
4695                 bdev = bdget_disk(conf->mddev->gendisk, 0);
4696                 if (bdev) {
4697                         mutex_lock(&bdev->bd_inode->i_mutex);
4698                         i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4699                         mutex_unlock(&bdev->bd_inode->i_mutex);
4700                         bdput(bdev);
4701                 }
4702                 spin_lock_irq(&conf->device_lock);
4703                 conf->expand_progress = MaxSector;
4704                 spin_unlock_irq(&conf->device_lock);
4705                 conf->mddev->reshape_position = MaxSector;
4706
4707                 /* read-ahead size must cover two whole stripes, which is
4708                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4709                  */
4710                 {
4711                         int data_disks = conf->previous_raid_disks - conf->max_degraded;
4712                         int stripe = data_disks *
4713                                 (conf->mddev->chunk_size / PAGE_SIZE);
4714                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4715                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4716                 }
4717         }
4718 }
4719
4720 static void raid5_quiesce(mddev_t *mddev, int state)
4721 {
4722         raid5_conf_t *conf = mddev_to_conf(mddev);
4723
4724         switch(state) {
4725         case 2: /* resume for a suspend */
4726                 wake_up(&conf->wait_for_overlap);
4727                 break;
4728
4729         case 1: /* stop all writes */
4730                 spin_lock_irq(&conf->device_lock);
4731                 conf->quiesce = 1;
4732                 wait_event_lock_irq(conf->wait_for_stripe,
4733                                     atomic_read(&conf->active_stripes) == 0 &&
4734                                     atomic_read(&conf->active_aligned_reads) == 0,
4735                                     conf->device_lock, /* nothing */);
4736                 spin_unlock_irq(&conf->device_lock);
4737                 break;
4738
4739         case 0: /* re-enable writes */
4740                 spin_lock_irq(&conf->device_lock);
4741                 conf->quiesce = 0;
4742                 wake_up(&conf->wait_for_stripe);
4743                 wake_up(&conf->wait_for_overlap);
4744                 spin_unlock_irq(&conf->device_lock);
4745                 break;
4746         }
4747 }
4748
4749 static struct mdk_personality raid6_personality =
4750 {
4751         .name           = "raid6",
4752         .level          = 6,
4753         .owner          = THIS_MODULE,
4754         .make_request   = make_request,
4755         .run            = run,
4756         .stop           = stop,
4757         .status         = status,
4758         .error_handler  = error,
4759         .hot_add_disk   = raid5_add_disk,
4760         .hot_remove_disk= raid5_remove_disk,
4761         .spare_active   = raid5_spare_active,
4762         .sync_request   = sync_request,
4763         .resize         = raid5_resize,
4764 #ifdef CONFIG_MD_RAID5_RESHAPE
4765         .check_reshape  = raid5_check_reshape,
4766         .start_reshape  = raid5_start_reshape,
4767 #endif
4768         .quiesce        = raid5_quiesce,
4769 };
4770 static struct mdk_personality raid5_personality =
4771 {
4772         .name           = "raid5",
4773         .level          = 5,
4774         .owner          = THIS_MODULE,
4775         .make_request   = make_request,
4776         .run            = run,
4777         .stop           = stop,
4778         .status         = status,
4779         .error_handler  = error,
4780         .hot_add_disk   = raid5_add_disk,
4781         .hot_remove_disk= raid5_remove_disk,
4782         .spare_active   = raid5_spare_active,
4783         .sync_request   = sync_request,
4784         .resize         = raid5_resize,
4785 #ifdef CONFIG_MD_RAID5_RESHAPE
4786         .check_reshape  = raid5_check_reshape,
4787         .start_reshape  = raid5_start_reshape,
4788 #endif
4789         .quiesce        = raid5_quiesce,
4790 };
4791
4792 static struct mdk_personality raid4_personality =
4793 {
4794         .name           = "raid4",
4795         .level          = 4,
4796         .owner          = THIS_MODULE,
4797         .make_request   = make_request,
4798         .run            = run,
4799         .stop           = stop,
4800         .status         = status,
4801         .error_handler  = error,
4802         .hot_add_disk   = raid5_add_disk,
4803         .hot_remove_disk= raid5_remove_disk,
4804         .spare_active   = raid5_spare_active,
4805         .sync_request   = sync_request,
4806         .resize         = raid5_resize,
4807 #ifdef CONFIG_MD_RAID5_RESHAPE
4808         .check_reshape  = raid5_check_reshape,
4809         .start_reshape  = raid5_start_reshape,
4810 #endif
4811         .quiesce        = raid5_quiesce,
4812 };
4813
4814 static int __init raid5_init(void)
4815 {
4816         int e;
4817
4818         e = raid6_select_algo();
4819         if ( e )
4820                 return e;
4821         register_md_personality(&raid6_personality);
4822         register_md_personality(&raid5_personality);
4823         register_md_personality(&raid4_personality);
4824         return 0;
4825 }
4826
4827 static void raid5_exit(void)
4828 {
4829         unregister_md_personality(&raid6_personality);
4830         unregister_md_personality(&raid5_personality);
4831         unregister_md_personality(&raid4_personality);
4832 }
4833
4834 module_init(raid5_init);
4835 module_exit(raid5_exit);
4836 MODULE_LICENSE("GPL");
4837 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4838 MODULE_ALIAS("md-raid5");
4839 MODULE_ALIAS("md-raid4");
4840 MODULE_ALIAS("md-level-5");
4841 MODULE_ALIAS("md-level-4");
4842 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4843 MODULE_ALIAS("md-raid6");
4844 MODULE_ALIAS("md-level-6");
4845
4846 /* This used to be two separate modules, they were: */
4847 MODULE_ALIAS("raid5");
4848 MODULE_ALIAS("raid6");