]> err.no Git - linux-2.6/blob - drivers/md/raid1.c
[PATCH] md: make sure read error on last working drive of raid1 actually returns...
[linux-2.6] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
37
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
44
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define NR_RAID1_BIOS 256
49
50 static mdk_personality_t raid1_personality;
51
52 static void unplug_slaves(mddev_t *mddev);
53
54 static void allow_barrier(conf_t *conf);
55 static void lower_barrier(conf_t *conf);
56
57 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
58 {
59         struct pool_info *pi = data;
60         r1bio_t *r1_bio;
61         int size = offsetof(r1bio_t, bios[pi->raid_disks]);
62
63         /* allocate a r1bio with room for raid_disks entries in the bios array */
64         r1_bio = kmalloc(size, gfp_flags);
65         if (r1_bio)
66                 memset(r1_bio, 0, size);
67         else
68                 unplug_slaves(pi->mddev);
69
70         return r1_bio;
71 }
72
73 static void r1bio_pool_free(void *r1_bio, void *data)
74 {
75         kfree(r1_bio);
76 }
77
78 #define RESYNC_BLOCK_SIZE (64*1024)
79 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
80 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
82 #define RESYNC_WINDOW (2048*1024)
83
84 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
85 {
86         struct pool_info *pi = data;
87         struct page *page;
88         r1bio_t *r1_bio;
89         struct bio *bio;
90         int i, j;
91
92         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
93         if (!r1_bio) {
94                 unplug_slaves(pi->mddev);
95                 return NULL;
96         }
97
98         /*
99          * Allocate bios : 1 for reading, n-1 for writing
100          */
101         for (j = pi->raid_disks ; j-- ; ) {
102                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
103                 if (!bio)
104                         goto out_free_bio;
105                 r1_bio->bios[j] = bio;
106         }
107         /*
108          * Allocate RESYNC_PAGES data pages and attach them to
109          * the first bio.
110          * If this is a user-requested check/repair, allocate
111          * RESYNC_PAGES for each bio.
112          */
113         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
114                 j = pi->raid_disks;
115         else
116                 j = 1;
117         while(j--) {
118                 bio = r1_bio->bios[j];
119                 for (i = 0; i < RESYNC_PAGES; i++) {
120                         page = alloc_page(gfp_flags);
121                         if (unlikely(!page))
122                                 goto out_free_pages;
123
124                         bio->bi_io_vec[i].bv_page = page;
125                 }
126         }
127         /* If not user-requests, copy the page pointers to all bios */
128         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
129                 for (i=0; i<RESYNC_PAGES ; i++)
130                         for (j=1; j<pi->raid_disks; j++)
131                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
132                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
133         }
134
135         r1_bio->master_bio = NULL;
136
137         return r1_bio;
138
139 out_free_pages:
140         for (i=0; i < RESYNC_PAGES ; i++)
141                 for (j=0 ; j < pi->raid_disks; j++)
142                         __free_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
143         j = -1;
144 out_free_bio:
145         while ( ++j < pi->raid_disks )
146                 bio_put(r1_bio->bios[j]);
147         r1bio_pool_free(r1_bio, data);
148         return NULL;
149 }
150
151 static void r1buf_pool_free(void *__r1_bio, void *data)
152 {
153         struct pool_info *pi = data;
154         int i,j;
155         r1bio_t *r1bio = __r1_bio;
156
157         for (i = 0; i < RESYNC_PAGES; i++)
158                 for (j = pi->raid_disks; j-- ;) {
159                         if (j == 0 ||
160                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
161                             r1bio->bios[0]->bi_io_vec[i].bv_page)
162                                 __free_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
163                 }
164         for (i=0 ; i < pi->raid_disks; i++)
165                 bio_put(r1bio->bios[i]);
166
167         r1bio_pool_free(r1bio, data);
168 }
169
170 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
171 {
172         int i;
173
174         for (i = 0; i < conf->raid_disks; i++) {
175                 struct bio **bio = r1_bio->bios + i;
176                 if (*bio && *bio != IO_BLOCKED)
177                         bio_put(*bio);
178                 *bio = NULL;
179         }
180 }
181
182 static inline void free_r1bio(r1bio_t *r1_bio)
183 {
184         conf_t *conf = mddev_to_conf(r1_bio->mddev);
185
186         /*
187          * Wake up any possible resync thread that waits for the device
188          * to go idle.
189          */
190         allow_barrier(conf);
191
192         put_all_bios(conf, r1_bio);
193         mempool_free(r1_bio, conf->r1bio_pool);
194 }
195
196 static inline void put_buf(r1bio_t *r1_bio)
197 {
198         conf_t *conf = mddev_to_conf(r1_bio->mddev);
199         int i;
200
201         for (i=0; i<conf->raid_disks; i++) {
202                 struct bio *bio = r1_bio->bios[i];
203                 if (bio->bi_end_io)
204                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
205         }
206
207         mempool_free(r1_bio, conf->r1buf_pool);
208
209         lower_barrier(conf);
210 }
211
212 static void reschedule_retry(r1bio_t *r1_bio)
213 {
214         unsigned long flags;
215         mddev_t *mddev = r1_bio->mddev;
216         conf_t *conf = mddev_to_conf(mddev);
217
218         spin_lock_irqsave(&conf->device_lock, flags);
219         list_add(&r1_bio->retry_list, &conf->retry_list);
220         conf->nr_queued ++;
221         spin_unlock_irqrestore(&conf->device_lock, flags);
222
223         wake_up(&conf->wait_barrier);
224         md_wakeup_thread(mddev->thread);
225 }
226
227 /*
228  * raid_end_bio_io() is called when we have finished servicing a mirrored
229  * operation and are ready to return a success/failure code to the buffer
230  * cache layer.
231  */
232 static void raid_end_bio_io(r1bio_t *r1_bio)
233 {
234         struct bio *bio = r1_bio->master_bio;
235
236         /* if nobody has done the final endio yet, do it now */
237         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
238                 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
239                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
240                         (unsigned long long) bio->bi_sector,
241                         (unsigned long long) bio->bi_sector +
242                                 (bio->bi_size >> 9) - 1);
243
244                 bio_endio(bio, bio->bi_size,
245                         test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
246         }
247         free_r1bio(r1_bio);
248 }
249
250 /*
251  * Update disk head position estimator based on IRQ completion info.
252  */
253 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
254 {
255         conf_t *conf = mddev_to_conf(r1_bio->mddev);
256
257         conf->mirrors[disk].head_position =
258                 r1_bio->sector + (r1_bio->sectors);
259 }
260
261 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
262 {
263         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
264         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
265         int mirror;
266         conf_t *conf = mddev_to_conf(r1_bio->mddev);
267
268         if (bio->bi_size)
269                 return 1;
270         
271         mirror = r1_bio->read_disk;
272         /*
273          * this branch is our 'one mirror IO has finished' event handler:
274          */
275         update_head_pos(mirror, r1_bio);
276
277         if (uptodate || conf->working_disks <= 1) {
278                 /*
279                  * Set R1BIO_Uptodate in our master bio, so that
280                  * we will return a good error code for to the higher
281                  * levels even if IO on some other mirrored buffer fails.
282                  *
283                  * The 'master' represents the composite IO operation to
284                  * user-side. So if something waits for IO, then it will
285                  * wait for the 'master' bio.
286                  */
287                 if (uptodate)
288                         set_bit(R1BIO_Uptodate, &r1_bio->state);
289
290                 raid_end_bio_io(r1_bio);
291         } else {
292                 /*
293                  * oops, read error:
294                  */
295                 char b[BDEVNAME_SIZE];
296                 if (printk_ratelimit())
297                         printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
298                                bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
299                 reschedule_retry(r1_bio);
300         }
301
302         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
303         return 0;
304 }
305
306 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
307 {
308         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
309         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
310         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
311         conf_t *conf = mddev_to_conf(r1_bio->mddev);
312
313         if (bio->bi_size)
314                 return 1;
315
316         for (mirror = 0; mirror < conf->raid_disks; mirror++)
317                 if (r1_bio->bios[mirror] == bio)
318                         break;
319
320         if (error == -ENOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
321                 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
322                 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
323                 r1_bio->mddev->barriers_work = 0;
324         } else {
325                 /*
326                  * this branch is our 'one mirror IO has finished' event handler:
327                  */
328                 r1_bio->bios[mirror] = NULL;
329                 if (!uptodate) {
330                         md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
331                         /* an I/O failed, we can't clear the bitmap */
332                         set_bit(R1BIO_Degraded, &r1_bio->state);
333                 } else
334                         /*
335                          * Set R1BIO_Uptodate in our master bio, so that
336                          * we will return a good error code for to the higher
337                          * levels even if IO on some other mirrored buffer fails.
338                          *
339                          * The 'master' represents the composite IO operation to
340                          * user-side. So if something waits for IO, then it will
341                          * wait for the 'master' bio.
342                          */
343                         set_bit(R1BIO_Uptodate, &r1_bio->state);
344
345                 update_head_pos(mirror, r1_bio);
346
347                 if (behind) {
348                         if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
349                                 atomic_dec(&r1_bio->behind_remaining);
350
351                         /* In behind mode, we ACK the master bio once the I/O has safely
352                          * reached all non-writemostly disks. Setting the Returned bit
353                          * ensures that this gets done only once -- we don't ever want to
354                          * return -EIO here, instead we'll wait */
355
356                         if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
357                             test_bit(R1BIO_Uptodate, &r1_bio->state)) {
358                                 /* Maybe we can return now */
359                                 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
360                                         struct bio *mbio = r1_bio->master_bio;
361                                         PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
362                                                (unsigned long long) mbio->bi_sector,
363                                                (unsigned long long) mbio->bi_sector +
364                                                (mbio->bi_size >> 9) - 1);
365                                         bio_endio(mbio, mbio->bi_size, 0);
366                                 }
367                         }
368                 }
369         }
370         /*
371          *
372          * Let's see if all mirrored write operations have finished
373          * already.
374          */
375         if (atomic_dec_and_test(&r1_bio->remaining)) {
376                 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
377                         reschedule_retry(r1_bio);
378                         /* Don't dec_pending yet, we want to hold
379                          * the reference over the retry
380                          */
381                         return 0;
382                 }
383                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
384                         /* free extra copy of the data pages */
385                         int i = bio->bi_vcnt;
386                         while (i--)
387                                 __free_page(bio->bi_io_vec[i].bv_page);
388                 }
389                 /* clear the bitmap if all writes complete successfully */
390                 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
391                                 r1_bio->sectors,
392                                 !test_bit(R1BIO_Degraded, &r1_bio->state),
393                                 behind);
394                 md_write_end(r1_bio->mddev);
395                 raid_end_bio_io(r1_bio);
396         }
397
398         if (r1_bio->bios[mirror]==NULL)
399                 bio_put(bio);
400
401         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
402         return 0;
403 }
404
405
406 /*
407  * This routine returns the disk from which the requested read should
408  * be done. There is a per-array 'next expected sequential IO' sector
409  * number - if this matches on the next IO then we use the last disk.
410  * There is also a per-disk 'last know head position' sector that is
411  * maintained from IRQ contexts, both the normal and the resync IO
412  * completion handlers update this position correctly. If there is no
413  * perfect sequential match then we pick the disk whose head is closest.
414  *
415  * If there are 2 mirrors in the same 2 devices, performance degrades
416  * because position is mirror, not device based.
417  *
418  * The rdev for the device selected will have nr_pending incremented.
419  */
420 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
421 {
422         const unsigned long this_sector = r1_bio->sector;
423         int new_disk = conf->last_used, disk = new_disk;
424         int wonly_disk = -1;
425         const int sectors = r1_bio->sectors;
426         sector_t new_distance, current_distance;
427         mdk_rdev_t *rdev;
428
429         rcu_read_lock();
430         /*
431          * Check if we can balance. We can balance on the whole
432          * device if no resync is going on, or below the resync window.
433          * We take the first readable disk when above the resync window.
434          */
435  retry:
436         if (conf->mddev->recovery_cp < MaxSector &&
437             (this_sector + sectors >= conf->next_resync)) {
438                 /* Choose the first operation device, for consistancy */
439                 new_disk = 0;
440
441                 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
442                      r1_bio->bios[new_disk] == IO_BLOCKED ||
443                      !rdev || !test_bit(In_sync, &rdev->flags)
444                              || test_bit(WriteMostly, &rdev->flags);
445                      rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
446
447                         if (rdev && test_bit(In_sync, &rdev->flags) &&
448                                 r1_bio->bios[new_disk] != IO_BLOCKED)
449                                 wonly_disk = new_disk;
450
451                         if (new_disk == conf->raid_disks - 1) {
452                                 new_disk = wonly_disk;
453                                 break;
454                         }
455                 }
456                 goto rb_out;
457         }
458
459
460         /* make sure the disk is operational */
461         for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
462              r1_bio->bios[new_disk] == IO_BLOCKED ||
463              !rdev || !test_bit(In_sync, &rdev->flags) ||
464                      test_bit(WriteMostly, &rdev->flags);
465              rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
466
467                 if (rdev && test_bit(In_sync, &rdev->flags) &&
468                     r1_bio->bios[new_disk] != IO_BLOCKED)
469                         wonly_disk = new_disk;
470
471                 if (new_disk <= 0)
472                         new_disk = conf->raid_disks;
473                 new_disk--;
474                 if (new_disk == disk) {
475                         new_disk = wonly_disk;
476                         break;
477                 }
478         }
479
480         if (new_disk < 0)
481                 goto rb_out;
482
483         disk = new_disk;
484         /* now disk == new_disk == starting point for search */
485
486         /*
487          * Don't change to another disk for sequential reads:
488          */
489         if (conf->next_seq_sect == this_sector)
490                 goto rb_out;
491         if (this_sector == conf->mirrors[new_disk].head_position)
492                 goto rb_out;
493
494         current_distance = abs(this_sector - conf->mirrors[disk].head_position);
495
496         /* Find the disk whose head is closest */
497
498         do {
499                 if (disk <= 0)
500                         disk = conf->raid_disks;
501                 disk--;
502
503                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
504
505                 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
506                     !test_bit(In_sync, &rdev->flags) ||
507                     test_bit(WriteMostly, &rdev->flags))
508                         continue;
509
510                 if (!atomic_read(&rdev->nr_pending)) {
511                         new_disk = disk;
512                         break;
513                 }
514                 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
515                 if (new_distance < current_distance) {
516                         current_distance = new_distance;
517                         new_disk = disk;
518                 }
519         } while (disk != conf->last_used);
520
521  rb_out:
522
523
524         if (new_disk >= 0) {
525                 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
526                 if (!rdev)
527                         goto retry;
528                 atomic_inc(&rdev->nr_pending);
529                 if (!test_bit(In_sync, &rdev->flags)) {
530                         /* cannot risk returning a device that failed
531                          * before we inc'ed nr_pending
532                          */
533                         atomic_dec(&rdev->nr_pending);
534                         goto retry;
535                 }
536                 conf->next_seq_sect = this_sector + sectors;
537                 conf->last_used = new_disk;
538         }
539         rcu_read_unlock();
540
541         return new_disk;
542 }
543
544 static void unplug_slaves(mddev_t *mddev)
545 {
546         conf_t *conf = mddev_to_conf(mddev);
547         int i;
548
549         rcu_read_lock();
550         for (i=0; i<mddev->raid_disks; i++) {
551                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
552                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
553                         request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
554
555                         atomic_inc(&rdev->nr_pending);
556                         rcu_read_unlock();
557
558                         if (r_queue->unplug_fn)
559                                 r_queue->unplug_fn(r_queue);
560
561                         rdev_dec_pending(rdev, mddev);
562                         rcu_read_lock();
563                 }
564         }
565         rcu_read_unlock();
566 }
567
568 static void raid1_unplug(request_queue_t *q)
569 {
570         mddev_t *mddev = q->queuedata;
571
572         unplug_slaves(mddev);
573         md_wakeup_thread(mddev->thread);
574 }
575
576 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
577                              sector_t *error_sector)
578 {
579         mddev_t *mddev = q->queuedata;
580         conf_t *conf = mddev_to_conf(mddev);
581         int i, ret = 0;
582
583         rcu_read_lock();
584         for (i=0; i<mddev->raid_disks && ret == 0; i++) {
585                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
586                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
587                         struct block_device *bdev = rdev->bdev;
588                         request_queue_t *r_queue = bdev_get_queue(bdev);
589
590                         if (!r_queue->issue_flush_fn)
591                                 ret = -EOPNOTSUPP;
592                         else {
593                                 atomic_inc(&rdev->nr_pending);
594                                 rcu_read_unlock();
595                                 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
596                                                               error_sector);
597                                 rdev_dec_pending(rdev, mddev);
598                                 rcu_read_lock();
599                         }
600                 }
601         }
602         rcu_read_unlock();
603         return ret;
604 }
605
606 /* Barriers....
607  * Sometimes we need to suspend IO while we do something else,
608  * either some resync/recovery, or reconfigure the array.
609  * To do this we raise a 'barrier'.
610  * The 'barrier' is a counter that can be raised multiple times
611  * to count how many activities are happening which preclude
612  * normal IO.
613  * We can only raise the barrier if there is no pending IO.
614  * i.e. if nr_pending == 0.
615  * We choose only to raise the barrier if no-one is waiting for the
616  * barrier to go down.  This means that as soon as an IO request
617  * is ready, no other operations which require a barrier will start
618  * until the IO request has had a chance.
619  *
620  * So: regular IO calls 'wait_barrier'.  When that returns there
621  *    is no backgroup IO happening,  It must arrange to call
622  *    allow_barrier when it has finished its IO.
623  * backgroup IO calls must call raise_barrier.  Once that returns
624  *    there is no normal IO happeing.  It must arrange to call
625  *    lower_barrier when the particular background IO completes.
626  */
627 #define RESYNC_DEPTH 32
628
629 static void raise_barrier(conf_t *conf)
630 {
631         spin_lock_irq(&conf->resync_lock);
632
633         /* Wait until no block IO is waiting */
634         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
635                             conf->resync_lock,
636                             raid1_unplug(conf->mddev->queue));
637
638         /* block any new IO from starting */
639         conf->barrier++;
640
641         /* No wait for all pending IO to complete */
642         wait_event_lock_irq(conf->wait_barrier,
643                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
644                             conf->resync_lock,
645                             raid1_unplug(conf->mddev->queue));
646
647         spin_unlock_irq(&conf->resync_lock);
648 }
649
650 static void lower_barrier(conf_t *conf)
651 {
652         unsigned long flags;
653         spin_lock_irqsave(&conf->resync_lock, flags);
654         conf->barrier--;
655         spin_unlock_irqrestore(&conf->resync_lock, flags);
656         wake_up(&conf->wait_barrier);
657 }
658
659 static void wait_barrier(conf_t *conf)
660 {
661         spin_lock_irq(&conf->resync_lock);
662         if (conf->barrier) {
663                 conf->nr_waiting++;
664                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
665                                     conf->resync_lock,
666                                     raid1_unplug(conf->mddev->queue));
667                 conf->nr_waiting--;
668         }
669         conf->nr_pending++;
670         spin_unlock_irq(&conf->resync_lock);
671 }
672
673 static void allow_barrier(conf_t *conf)
674 {
675         unsigned long flags;
676         spin_lock_irqsave(&conf->resync_lock, flags);
677         conf->nr_pending--;
678         spin_unlock_irqrestore(&conf->resync_lock, flags);
679         wake_up(&conf->wait_barrier);
680 }
681
682 static void freeze_array(conf_t *conf)
683 {
684         /* stop syncio and normal IO and wait for everything to
685          * go quite.
686          * We increment barrier and nr_waiting, and then
687          * wait until barrier+nr_pending match nr_queued+2
688          */
689         spin_lock_irq(&conf->resync_lock);
690         conf->barrier++;
691         conf->nr_waiting++;
692         wait_event_lock_irq(conf->wait_barrier,
693                             conf->barrier+conf->nr_pending == conf->nr_queued+2,
694                             conf->resync_lock,
695                             raid1_unplug(conf->mddev->queue));
696         spin_unlock_irq(&conf->resync_lock);
697 }
698 static void unfreeze_array(conf_t *conf)
699 {
700         /* reverse the effect of the freeze */
701         spin_lock_irq(&conf->resync_lock);
702         conf->barrier--;
703         conf->nr_waiting--;
704         wake_up(&conf->wait_barrier);
705         spin_unlock_irq(&conf->resync_lock);
706 }
707
708
709 /* duplicate the data pages for behind I/O */
710 static struct page **alloc_behind_pages(struct bio *bio)
711 {
712         int i;
713         struct bio_vec *bvec;
714         struct page **pages = kmalloc(bio->bi_vcnt * sizeof(struct page *),
715                                         GFP_NOIO);
716         if (unlikely(!pages))
717                 goto do_sync_io;
718
719         memset(pages, 0, bio->bi_vcnt * sizeof(struct page *));
720
721         bio_for_each_segment(bvec, bio, i) {
722                 pages[i] = alloc_page(GFP_NOIO);
723                 if (unlikely(!pages[i]))
724                         goto do_sync_io;
725                 memcpy(kmap(pages[i]) + bvec->bv_offset,
726                         kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
727                 kunmap(pages[i]);
728                 kunmap(bvec->bv_page);
729         }
730
731         return pages;
732
733 do_sync_io:
734         if (pages)
735                 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
736                         __free_page(pages[i]);
737         kfree(pages);
738         PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
739         return NULL;
740 }
741
742 static int make_request(request_queue_t *q, struct bio * bio)
743 {
744         mddev_t *mddev = q->queuedata;
745         conf_t *conf = mddev_to_conf(mddev);
746         mirror_info_t *mirror;
747         r1bio_t *r1_bio;
748         struct bio *read_bio;
749         int i, targets = 0, disks;
750         mdk_rdev_t *rdev;
751         struct bitmap *bitmap = mddev->bitmap;
752         unsigned long flags;
753         struct bio_list bl;
754         struct page **behind_pages = NULL;
755         const int rw = bio_data_dir(bio);
756         int do_barriers;
757
758         if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
759                 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
760                 return 0;
761         }
762
763         /*
764          * Register the new request and wait if the reconstruction
765          * thread has put up a bar for new requests.
766          * Continue immediately if no resync is active currently.
767          */
768         md_write_start(mddev, bio); /* wait on superblock update early */
769
770         wait_barrier(conf);
771
772         disk_stat_inc(mddev->gendisk, ios[rw]);
773         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
774
775         /*
776          * make_request() can abort the operation when READA is being
777          * used and no empty request is available.
778          *
779          */
780         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
781
782         r1_bio->master_bio = bio;
783         r1_bio->sectors = bio->bi_size >> 9;
784         r1_bio->state = 0;
785         r1_bio->mddev = mddev;
786         r1_bio->sector = bio->bi_sector;
787
788         if (rw == READ) {
789                 /*
790                  * read balancing logic:
791                  */
792                 int rdisk = read_balance(conf, r1_bio);
793
794                 if (rdisk < 0) {
795                         /* couldn't find anywhere to read from */
796                         raid_end_bio_io(r1_bio);
797                         return 0;
798                 }
799                 mirror = conf->mirrors + rdisk;
800
801                 r1_bio->read_disk = rdisk;
802
803                 read_bio = bio_clone(bio, GFP_NOIO);
804
805                 r1_bio->bios[rdisk] = read_bio;
806
807                 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
808                 read_bio->bi_bdev = mirror->rdev->bdev;
809                 read_bio->bi_end_io = raid1_end_read_request;
810                 read_bio->bi_rw = READ;
811                 read_bio->bi_private = r1_bio;
812
813                 generic_make_request(read_bio);
814                 return 0;
815         }
816
817         /*
818          * WRITE:
819          */
820         /* first select target devices under spinlock and
821          * inc refcount on their rdev.  Record them by setting
822          * bios[x] to bio
823          */
824         disks = conf->raid_disks;
825 #if 0
826         { static int first=1;
827         if (first) printk("First Write sector %llu disks %d\n",
828                           (unsigned long long)r1_bio->sector, disks);
829         first = 0;
830         }
831 #endif
832         rcu_read_lock();
833         for (i = 0;  i < disks; i++) {
834                 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
835                     !test_bit(Faulty, &rdev->flags)) {
836                         atomic_inc(&rdev->nr_pending);
837                         if (test_bit(Faulty, &rdev->flags)) {
838                                 atomic_dec(&rdev->nr_pending);
839                                 r1_bio->bios[i] = NULL;
840                         } else
841                                 r1_bio->bios[i] = bio;
842                         targets++;
843                 } else
844                         r1_bio->bios[i] = NULL;
845         }
846         rcu_read_unlock();
847
848         BUG_ON(targets == 0); /* we never fail the last device */
849
850         if (targets < conf->raid_disks) {
851                 /* array is degraded, we will not clear the bitmap
852                  * on I/O completion (see raid1_end_write_request) */
853                 set_bit(R1BIO_Degraded, &r1_bio->state);
854         }
855
856         /* do behind I/O ? */
857         if (bitmap &&
858             atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
859             (behind_pages = alloc_behind_pages(bio)) != NULL)
860                 set_bit(R1BIO_BehindIO, &r1_bio->state);
861
862         atomic_set(&r1_bio->remaining, 0);
863         atomic_set(&r1_bio->behind_remaining, 0);
864
865         do_barriers = bio->bi_rw & BIO_RW_BARRIER;
866         if (do_barriers)
867                 set_bit(R1BIO_Barrier, &r1_bio->state);
868
869         bio_list_init(&bl);
870         for (i = 0; i < disks; i++) {
871                 struct bio *mbio;
872                 if (!r1_bio->bios[i])
873                         continue;
874
875                 mbio = bio_clone(bio, GFP_NOIO);
876                 r1_bio->bios[i] = mbio;
877
878                 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
879                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
880                 mbio->bi_end_io = raid1_end_write_request;
881                 mbio->bi_rw = WRITE | do_barriers;
882                 mbio->bi_private = r1_bio;
883
884                 if (behind_pages) {
885                         struct bio_vec *bvec;
886                         int j;
887
888                         /* Yes, I really want the '__' version so that
889                          * we clear any unused pointer in the io_vec, rather
890                          * than leave them unchanged.  This is important
891                          * because when we come to free the pages, we won't
892                          * know the originial bi_idx, so we just free
893                          * them all
894                          */
895                         __bio_for_each_segment(bvec, mbio, j, 0)
896                                 bvec->bv_page = behind_pages[j];
897                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
898                                 atomic_inc(&r1_bio->behind_remaining);
899                 }
900
901                 atomic_inc(&r1_bio->remaining);
902
903                 bio_list_add(&bl, mbio);
904         }
905         kfree(behind_pages); /* the behind pages are attached to the bios now */
906
907         bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
908                                 test_bit(R1BIO_BehindIO, &r1_bio->state));
909         spin_lock_irqsave(&conf->device_lock, flags);
910         bio_list_merge(&conf->pending_bio_list, &bl);
911         bio_list_init(&bl);
912
913         blk_plug_device(mddev->queue);
914         spin_unlock_irqrestore(&conf->device_lock, flags);
915
916 #if 0
917         while ((bio = bio_list_pop(&bl)) != NULL)
918                 generic_make_request(bio);
919 #endif
920
921         return 0;
922 }
923
924 static void status(struct seq_file *seq, mddev_t *mddev)
925 {
926         conf_t *conf = mddev_to_conf(mddev);
927         int i;
928
929         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
930                                                 conf->working_disks);
931         for (i = 0; i < conf->raid_disks; i++)
932                 seq_printf(seq, "%s",
933                               conf->mirrors[i].rdev &&
934                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
935         seq_printf(seq, "]");
936 }
937
938
939 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
940 {
941         char b[BDEVNAME_SIZE];
942         conf_t *conf = mddev_to_conf(mddev);
943
944         /*
945          * If it is not operational, then we have already marked it as dead
946          * else if it is the last working disks, ignore the error, let the
947          * next level up know.
948          * else mark the drive as failed
949          */
950         if (test_bit(In_sync, &rdev->flags)
951             && conf->working_disks == 1)
952                 /*
953                  * Don't fail the drive, act as though we were just a
954                  * normal single drive
955                  */
956                 return;
957         if (test_bit(In_sync, &rdev->flags)) {
958                 mddev->degraded++;
959                 conf->working_disks--;
960                 /*
961                  * if recovery is running, make sure it aborts.
962                  */
963                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
964         }
965         clear_bit(In_sync, &rdev->flags);
966         set_bit(Faulty, &rdev->flags);
967         mddev->sb_dirty = 1;
968         printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
969                 "       Operation continuing on %d devices\n",
970                 bdevname(rdev->bdev,b), conf->working_disks);
971 }
972
973 static void print_conf(conf_t *conf)
974 {
975         int i;
976         mirror_info_t *tmp;
977
978         printk("RAID1 conf printout:\n");
979         if (!conf) {
980                 printk("(!conf)\n");
981                 return;
982         }
983         printk(" --- wd:%d rd:%d\n", conf->working_disks,
984                 conf->raid_disks);
985
986         for (i = 0; i < conf->raid_disks; i++) {
987                 char b[BDEVNAME_SIZE];
988                 tmp = conf->mirrors + i;
989                 if (tmp->rdev)
990                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
991                                 i, !test_bit(In_sync, &tmp->rdev->flags), !test_bit(Faulty, &tmp->rdev->flags),
992                                 bdevname(tmp->rdev->bdev,b));
993         }
994 }
995
996 static void close_sync(conf_t *conf)
997 {
998         wait_barrier(conf);
999         allow_barrier(conf);
1000
1001         mempool_destroy(conf->r1buf_pool);
1002         conf->r1buf_pool = NULL;
1003 }
1004
1005 static int raid1_spare_active(mddev_t *mddev)
1006 {
1007         int i;
1008         conf_t *conf = mddev->private;
1009         mirror_info_t *tmp;
1010
1011         /*
1012          * Find all failed disks within the RAID1 configuration 
1013          * and mark them readable
1014          */
1015         for (i = 0; i < conf->raid_disks; i++) {
1016                 tmp = conf->mirrors + i;
1017                 if (tmp->rdev 
1018                     && !test_bit(Faulty, &tmp->rdev->flags)
1019                     && !test_bit(In_sync, &tmp->rdev->flags)) {
1020                         conf->working_disks++;
1021                         mddev->degraded--;
1022                         set_bit(In_sync, &tmp->rdev->flags);
1023                 }
1024         }
1025
1026         print_conf(conf);
1027         return 0;
1028 }
1029
1030
1031 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1032 {
1033         conf_t *conf = mddev->private;
1034         int found = 0;
1035         int mirror = 0;
1036         mirror_info_t *p;
1037
1038         for (mirror=0; mirror < mddev->raid_disks; mirror++)
1039                 if ( !(p=conf->mirrors+mirror)->rdev) {
1040
1041                         blk_queue_stack_limits(mddev->queue,
1042                                                rdev->bdev->bd_disk->queue);
1043                         /* as we don't honour merge_bvec_fn, we must never risk
1044                          * violating it, so limit ->max_sector to one PAGE, as
1045                          * a one page request is never in violation.
1046                          */
1047                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1048                             mddev->queue->max_sectors > (PAGE_SIZE>>9))
1049                                 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1050
1051                         p->head_position = 0;
1052                         rdev->raid_disk = mirror;
1053                         found = 1;
1054                         /* As all devices are equivalent, we don't need a full recovery
1055                          * if this was recently any drive of the array
1056                          */
1057                         if (rdev->saved_raid_disk < 0)
1058                                 conf->fullsync = 1;
1059                         rcu_assign_pointer(p->rdev, rdev);
1060                         break;
1061                 }
1062
1063         print_conf(conf);
1064         return found;
1065 }
1066
1067 static int raid1_remove_disk(mddev_t *mddev, int number)
1068 {
1069         conf_t *conf = mddev->private;
1070         int err = 0;
1071         mdk_rdev_t *rdev;
1072         mirror_info_t *p = conf->mirrors+ number;
1073
1074         print_conf(conf);
1075         rdev = p->rdev;
1076         if (rdev) {
1077                 if (test_bit(In_sync, &rdev->flags) ||
1078                     atomic_read(&rdev->nr_pending)) {
1079                         err = -EBUSY;
1080                         goto abort;
1081                 }
1082                 p->rdev = NULL;
1083                 synchronize_rcu();
1084                 if (atomic_read(&rdev->nr_pending)) {
1085                         /* lost the race, try later */
1086                         err = -EBUSY;
1087                         p->rdev = rdev;
1088                 }
1089         }
1090 abort:
1091
1092         print_conf(conf);
1093         return err;
1094 }
1095
1096
1097 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1098 {
1099         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1100         int i;
1101
1102         if (bio->bi_size)
1103                 return 1;
1104
1105         for (i=r1_bio->mddev->raid_disks; i--; )
1106                 if (r1_bio->bios[i] == bio)
1107                         break;
1108         BUG_ON(i < 0);
1109         update_head_pos(i, r1_bio);
1110         /*
1111          * we have read a block, now it needs to be re-written,
1112          * or re-read if the read failed.
1113          * We don't do much here, just schedule handling by raid1d
1114          */
1115         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1116                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1117
1118         if (atomic_dec_and_test(&r1_bio->remaining))
1119                 reschedule_retry(r1_bio);
1120         return 0;
1121 }
1122
1123 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1124 {
1125         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1126         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1127         mddev_t *mddev = r1_bio->mddev;
1128         conf_t *conf = mddev_to_conf(mddev);
1129         int i;
1130         int mirror=0;
1131
1132         if (bio->bi_size)
1133                 return 1;
1134
1135         for (i = 0; i < conf->raid_disks; i++)
1136                 if (r1_bio->bios[i] == bio) {
1137                         mirror = i;
1138                         break;
1139                 }
1140         if (!uptodate)
1141                 md_error(mddev, conf->mirrors[mirror].rdev);
1142
1143         update_head_pos(mirror, r1_bio);
1144
1145         if (atomic_dec_and_test(&r1_bio->remaining)) {
1146                 md_done_sync(mddev, r1_bio->sectors, uptodate);
1147                 put_buf(r1_bio);
1148         }
1149         return 0;
1150 }
1151
1152 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1153 {
1154         conf_t *conf = mddev_to_conf(mddev);
1155         int i;
1156         int disks = conf->raid_disks;
1157         struct bio *bio, *wbio;
1158
1159         bio = r1_bio->bios[r1_bio->read_disk];
1160
1161
1162         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1163                 /* We have read all readable devices.  If we haven't
1164                  * got the block, then there is no hope left.
1165                  * If we have, then we want to do a comparison
1166                  * and skip the write if everything is the same.
1167                  * If any blocks failed to read, then we need to
1168                  * attempt an over-write
1169                  */
1170                 int primary;
1171                 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1172                         for (i=0; i<mddev->raid_disks; i++)
1173                                 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1174                                         md_error(mddev, conf->mirrors[i].rdev);
1175
1176                         md_done_sync(mddev, r1_bio->sectors, 1);
1177                         put_buf(r1_bio);
1178                         return;
1179                 }
1180                 for (primary=0; primary<mddev->raid_disks; primary++)
1181                         if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1182                             test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1183                                 r1_bio->bios[primary]->bi_end_io = NULL;
1184                                 break;
1185                         }
1186                 r1_bio->read_disk = primary;
1187                 for (i=0; i<mddev->raid_disks; i++)
1188                         if (r1_bio->bios[i]->bi_end_io == end_sync_read &&
1189                             test_bit(BIO_UPTODATE, &r1_bio->bios[i]->bi_flags)) {
1190                                 int j;
1191                                 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1192                                 struct bio *pbio = r1_bio->bios[primary];
1193                                 struct bio *sbio = r1_bio->bios[i];
1194                                 for (j = vcnt; j-- ; )
1195                                         if (memcmp(page_address(pbio->bi_io_vec[j].bv_page),
1196                                                    page_address(sbio->bi_io_vec[j].bv_page),
1197                                                    PAGE_SIZE))
1198                                                 break;
1199                                 if (j >= 0)
1200                                         mddev->resync_mismatches += r1_bio->sectors;
1201                                 if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1202                                         sbio->bi_end_io = NULL;
1203                                 else {
1204                                         /* fixup the bio for reuse */
1205                                         sbio->bi_vcnt = vcnt;
1206                                         sbio->bi_size = r1_bio->sectors << 9;
1207                                         sbio->bi_idx = 0;
1208                                         sbio->bi_phys_segments = 0;
1209                                         sbio->bi_hw_segments = 0;
1210                                         sbio->bi_hw_front_size = 0;
1211                                         sbio->bi_hw_back_size = 0;
1212                                         sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1213                                         sbio->bi_flags |= 1 << BIO_UPTODATE;
1214                                         sbio->bi_next = NULL;
1215                                         sbio->bi_sector = r1_bio->sector +
1216                                                 conf->mirrors[i].rdev->data_offset;
1217                                         sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1218                                 }
1219                         }
1220         }
1221         if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1222                 /* ouch - failed to read all of that.
1223                  * Try some synchronous reads of other devices to get
1224                  * good data, much like with normal read errors.  Only
1225                  * read into the pages we already have so they we don't
1226                  * need to re-issue the read request.
1227                  * We don't need to freeze the array, because being in an
1228                  * active sync request, there is no normal IO, and
1229                  * no overlapping syncs.
1230                  */
1231                 sector_t sect = r1_bio->sector;
1232                 int sectors = r1_bio->sectors;
1233                 int idx = 0;
1234
1235                 while(sectors) {
1236                         int s = sectors;
1237                         int d = r1_bio->read_disk;
1238                         int success = 0;
1239                         mdk_rdev_t *rdev;
1240
1241                         if (s > (PAGE_SIZE>>9))
1242                                 s = PAGE_SIZE >> 9;
1243                         do {
1244                                 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1245                                         rdev = conf->mirrors[d].rdev;
1246                                         if (sync_page_io(rdev->bdev,
1247                                                          sect + rdev->data_offset,
1248                                                          s<<9,
1249                                                          bio->bi_io_vec[idx].bv_page,
1250                                                          READ)) {
1251                                                 success = 1;
1252                                                 break;
1253                                         }
1254                                 }
1255                                 d++;
1256                                 if (d == conf->raid_disks)
1257                                         d = 0;
1258                         } while (!success && d != r1_bio->read_disk);
1259
1260                         if (success) {
1261                                 /* write it back and re-read */
1262                                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1263                                 while (d != r1_bio->read_disk) {
1264                                         if (d == 0)
1265                                                 d = conf->raid_disks;
1266                                         d--;
1267                                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1268                                                 continue;
1269                                         rdev = conf->mirrors[d].rdev;
1270                                         if (sync_page_io(rdev->bdev,
1271                                                          sect + rdev->data_offset,
1272                                                          s<<9,
1273                                                          bio->bi_io_vec[idx].bv_page,
1274                                                          WRITE) == 0 ||
1275                                             sync_page_io(rdev->bdev,
1276                                                          sect + rdev->data_offset,
1277                                                          s<<9,
1278                                                          bio->bi_io_vec[idx].bv_page,
1279                                                          READ) == 0) {
1280                                                 md_error(mddev, rdev);
1281                                         }
1282                                 }
1283                         } else {
1284                                 char b[BDEVNAME_SIZE];
1285                                 /* Cannot read from anywhere, array is toast */
1286                                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1287                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1288                                        " for block %llu\n",
1289                                        bdevname(bio->bi_bdev,b),
1290                                        (unsigned long long)r1_bio->sector);
1291                                 md_done_sync(mddev, r1_bio->sectors, 0);
1292                                 put_buf(r1_bio);
1293                                 return;
1294                         }
1295                         sectors -= s;
1296                         sect += s;
1297                         idx ++;
1298                 }
1299         }
1300
1301         /*
1302          * schedule writes
1303          */
1304         atomic_set(&r1_bio->remaining, 1);
1305         for (i = 0; i < disks ; i++) {
1306                 wbio = r1_bio->bios[i];
1307                 if (wbio->bi_end_io == NULL ||
1308                     (wbio->bi_end_io == end_sync_read &&
1309                      (i == r1_bio->read_disk ||
1310                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1311                         continue;
1312
1313                 wbio->bi_rw = WRITE;
1314                 wbio->bi_end_io = end_sync_write;
1315                 atomic_inc(&r1_bio->remaining);
1316                 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1317
1318                 generic_make_request(wbio);
1319         }
1320
1321         if (atomic_dec_and_test(&r1_bio->remaining)) {
1322                 /* if we're here, all write(s) have completed, so clean up */
1323                 md_done_sync(mddev, r1_bio->sectors, 1);
1324                 put_buf(r1_bio);
1325         }
1326 }
1327
1328 /*
1329  * This is a kernel thread which:
1330  *
1331  *      1.      Retries failed read operations on working mirrors.
1332  *      2.      Updates the raid superblock when problems encounter.
1333  *      3.      Performs writes following reads for array syncronising.
1334  */
1335
1336 static void raid1d(mddev_t *mddev)
1337 {
1338         r1bio_t *r1_bio;
1339         struct bio *bio;
1340         unsigned long flags;
1341         conf_t *conf = mddev_to_conf(mddev);
1342         struct list_head *head = &conf->retry_list;
1343         int unplug=0;
1344         mdk_rdev_t *rdev;
1345
1346         md_check_recovery(mddev);
1347         
1348         for (;;) {
1349                 char b[BDEVNAME_SIZE];
1350                 spin_lock_irqsave(&conf->device_lock, flags);
1351
1352                 if (conf->pending_bio_list.head) {
1353                         bio = bio_list_get(&conf->pending_bio_list);
1354                         blk_remove_plug(mddev->queue);
1355                         spin_unlock_irqrestore(&conf->device_lock, flags);
1356                         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1357                         if (bitmap_unplug(mddev->bitmap) != 0)
1358                                 printk("%s: bitmap file write failed!\n", mdname(mddev));
1359
1360                         while (bio) { /* submit pending writes */
1361                                 struct bio *next = bio->bi_next;
1362                                 bio->bi_next = NULL;
1363                                 generic_make_request(bio);
1364                                 bio = next;
1365                         }
1366                         unplug = 1;
1367
1368                         continue;
1369                 }
1370
1371                 if (list_empty(head))
1372                         break;
1373                 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1374                 list_del(head->prev);
1375                 conf->nr_queued--;
1376                 spin_unlock_irqrestore(&conf->device_lock, flags);
1377
1378                 mddev = r1_bio->mddev;
1379                 conf = mddev_to_conf(mddev);
1380                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1381                         sync_request_write(mddev, r1_bio);
1382                         unplug = 1;
1383                 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1384                         /* some requests in the r1bio were BIO_RW_BARRIER
1385                          * requests which failed with -ENOTSUPP.  Hohumm..
1386                          * Better resubmit without the barrier.
1387                          * We know which devices to resubmit for, because
1388                          * all others have had their bios[] entry cleared.
1389                          */
1390                         int i;
1391                         clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1392                         clear_bit(R1BIO_Barrier, &r1_bio->state);
1393                         for (i=0; i < conf->raid_disks; i++)
1394                                 if (r1_bio->bios[i]) {
1395                                         struct bio_vec *bvec;
1396                                         int j;
1397
1398                                         bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1399                                         /* copy pages from the failed bio, as
1400                                          * this might be a write-behind device */
1401                                         __bio_for_each_segment(bvec, bio, j, 0)
1402                                                 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1403                                         bio_put(r1_bio->bios[i]);
1404                                         bio->bi_sector = r1_bio->sector +
1405                                                 conf->mirrors[i].rdev->data_offset;
1406                                         bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1407                                         bio->bi_end_io = raid1_end_write_request;
1408                                         bio->bi_rw = WRITE;
1409                                         bio->bi_private = r1_bio;
1410                                         r1_bio->bios[i] = bio;
1411                                         generic_make_request(bio);
1412                                 }
1413                 } else {
1414                         int disk;
1415
1416                         /* we got a read error. Maybe the drive is bad.  Maybe just
1417                          * the block and we can fix it.
1418                          * We freeze all other IO, and try reading the block from
1419                          * other devices.  When we find one, we re-write
1420                          * and check it that fixes the read error.
1421                          * This is all done synchronously while the array is
1422                          * frozen
1423                          */
1424                         sector_t sect = r1_bio->sector;
1425                         int sectors = r1_bio->sectors;
1426                         freeze_array(conf);
1427                         if (mddev->ro == 0) while(sectors) {
1428                                 int s = sectors;
1429                                 int d = r1_bio->read_disk;
1430                                 int success = 0;
1431
1432                                 if (s > (PAGE_SIZE>>9))
1433                                         s = PAGE_SIZE >> 9;
1434
1435                                 do {
1436                                         rdev = conf->mirrors[d].rdev;
1437                                         if (rdev &&
1438                                             test_bit(In_sync, &rdev->flags) &&
1439                                             sync_page_io(rdev->bdev,
1440                                                          sect + rdev->data_offset,
1441                                                          s<<9,
1442                                                          conf->tmppage, READ))
1443                                                 success = 1;
1444                                         else {
1445                                                 d++;
1446                                                 if (d == conf->raid_disks)
1447                                                         d = 0;
1448                                         }
1449                                 } while (!success && d != r1_bio->read_disk);
1450
1451                                 if (success) {
1452                                         /* write it back and re-read */
1453                                         while (d != r1_bio->read_disk) {
1454                                                 if (d==0)
1455                                                         d = conf->raid_disks;
1456                                                 d--;
1457                                                 rdev = conf->mirrors[d].rdev;
1458                                                 if (rdev &&
1459                                                     test_bit(In_sync, &rdev->flags)) {
1460                                                         if (sync_page_io(rdev->bdev,
1461                                                                          sect + rdev->data_offset,
1462                                                                          s<<9, conf->tmppage, WRITE) == 0 ||
1463                                                             sync_page_io(rdev->bdev,
1464                                                                          sect + rdev->data_offset,
1465                                                                          s<<9, conf->tmppage, READ) == 0) {
1466                                                                 /* Well, this device is dead */
1467                                                                 md_error(mddev, rdev);
1468                                                         }
1469                                                 }
1470                                         }
1471                                 } else {
1472                                         /* Cannot read from anywhere -- bye bye array */
1473                                         md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1474                                         break;
1475                                 }
1476                                 sectors -= s;
1477                                 sect += s;
1478                         }
1479
1480                         unfreeze_array(conf);
1481
1482                         bio = r1_bio->bios[r1_bio->read_disk];
1483                         if ((disk=read_balance(conf, r1_bio)) == -1) {
1484                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1485                                        " read error for block %llu\n",
1486                                        bdevname(bio->bi_bdev,b),
1487                                        (unsigned long long)r1_bio->sector);
1488                                 raid_end_bio_io(r1_bio);
1489                         } else {
1490                                 r1_bio->bios[r1_bio->read_disk] =
1491                                         mddev->ro ? IO_BLOCKED : NULL;
1492                                 r1_bio->read_disk = disk;
1493                                 bio_put(bio);
1494                                 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1495                                 r1_bio->bios[r1_bio->read_disk] = bio;
1496                                 rdev = conf->mirrors[disk].rdev;
1497                                 if (printk_ratelimit())
1498                                         printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1499                                                " another mirror\n",
1500                                                bdevname(rdev->bdev,b),
1501                                                (unsigned long long)r1_bio->sector);
1502                                 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1503                                 bio->bi_bdev = rdev->bdev;
1504                                 bio->bi_end_io = raid1_end_read_request;
1505                                 bio->bi_rw = READ;
1506                                 bio->bi_private = r1_bio;
1507                                 unplug = 1;
1508                                 generic_make_request(bio);
1509                         }
1510                 }
1511         }
1512         spin_unlock_irqrestore(&conf->device_lock, flags);
1513         if (unplug)
1514                 unplug_slaves(mddev);
1515 }
1516
1517
1518 static int init_resync(conf_t *conf)
1519 {
1520         int buffs;
1521
1522         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1523         if (conf->r1buf_pool)
1524                 BUG();
1525         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1526                                           conf->poolinfo);
1527         if (!conf->r1buf_pool)
1528                 return -ENOMEM;
1529         conf->next_resync = 0;
1530         return 0;
1531 }
1532
1533 /*
1534  * perform a "sync" on one "block"
1535  *
1536  * We need to make sure that no normal I/O request - particularly write
1537  * requests - conflict with active sync requests.
1538  *
1539  * This is achieved by tracking pending requests and a 'barrier' concept
1540  * that can be installed to exclude normal IO requests.
1541  */
1542
1543 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1544 {
1545         conf_t *conf = mddev_to_conf(mddev);
1546         r1bio_t *r1_bio;
1547         struct bio *bio;
1548         sector_t max_sector, nr_sectors;
1549         int disk = -1;
1550         int i;
1551         int wonly = -1;
1552         int write_targets = 0, read_targets = 0;
1553         int sync_blocks;
1554         int still_degraded = 0;
1555
1556         if (!conf->r1buf_pool)
1557         {
1558 /*
1559                 printk("sync start - bitmap %p\n", mddev->bitmap);
1560 */
1561                 if (init_resync(conf))
1562                         return 0;
1563         }
1564
1565         max_sector = mddev->size << 1;
1566         if (sector_nr >= max_sector) {
1567                 /* If we aborted, we need to abort the
1568                  * sync on the 'current' bitmap chunk (there will
1569                  * only be one in raid1 resync.
1570                  * We can find the current addess in mddev->curr_resync
1571                  */
1572                 if (mddev->curr_resync < max_sector) /* aborted */
1573                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1574                                                 &sync_blocks, 1);
1575                 else /* completed sync */
1576                         conf->fullsync = 0;
1577
1578                 bitmap_close_sync(mddev->bitmap);
1579                 close_sync(conf);
1580                 return 0;
1581         }
1582
1583         /* before building a request, check if we can skip these blocks..
1584          * This call the bitmap_start_sync doesn't actually record anything
1585          */
1586         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1587             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1588                 /* We can skip this block, and probably several more */
1589                 *skipped = 1;
1590                 return sync_blocks;
1591         }
1592         /*
1593          * If there is non-resync activity waiting for a turn,
1594          * and resync is going fast enough,
1595          * then let it though before starting on this new sync request.
1596          */
1597         if (!go_faster && conf->nr_waiting)
1598                 msleep_interruptible(1000);
1599
1600         raise_barrier(conf);
1601
1602         conf->next_resync = sector_nr;
1603
1604         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1605         rcu_read_lock();
1606         /*
1607          * If we get a correctably read error during resync or recovery,
1608          * we might want to read from a different device.  So we
1609          * flag all drives that could conceivably be read from for READ,
1610          * and any others (which will be non-In_sync devices) for WRITE.
1611          * If a read fails, we try reading from something else for which READ
1612          * is OK.
1613          */
1614
1615         r1_bio->mddev = mddev;
1616         r1_bio->sector = sector_nr;
1617         r1_bio->state = 0;
1618         set_bit(R1BIO_IsSync, &r1_bio->state);
1619
1620         for (i=0; i < conf->raid_disks; i++) {
1621                 mdk_rdev_t *rdev;
1622                 bio = r1_bio->bios[i];
1623
1624                 /* take from bio_init */
1625                 bio->bi_next = NULL;
1626                 bio->bi_flags |= 1 << BIO_UPTODATE;
1627                 bio->bi_rw = 0;
1628                 bio->bi_vcnt = 0;
1629                 bio->bi_idx = 0;
1630                 bio->bi_phys_segments = 0;
1631                 bio->bi_hw_segments = 0;
1632                 bio->bi_size = 0;
1633                 bio->bi_end_io = NULL;
1634                 bio->bi_private = NULL;
1635
1636                 rdev = rcu_dereference(conf->mirrors[i].rdev);
1637                 if (rdev == NULL ||
1638                            test_bit(Faulty, &rdev->flags)) {
1639                         still_degraded = 1;
1640                         continue;
1641                 } else if (!test_bit(In_sync, &rdev->flags)) {
1642                         bio->bi_rw = WRITE;
1643                         bio->bi_end_io = end_sync_write;
1644                         write_targets ++;
1645                 } else {
1646                         /* may need to read from here */
1647                         bio->bi_rw = READ;
1648                         bio->bi_end_io = end_sync_read;
1649                         if (test_bit(WriteMostly, &rdev->flags)) {
1650                                 if (wonly < 0)
1651                                         wonly = i;
1652                         } else {
1653                                 if (disk < 0)
1654                                         disk = i;
1655                         }
1656                         read_targets++;
1657                 }
1658                 atomic_inc(&rdev->nr_pending);
1659                 bio->bi_sector = sector_nr + rdev->data_offset;
1660                 bio->bi_bdev = rdev->bdev;
1661                 bio->bi_private = r1_bio;
1662         }
1663         rcu_read_unlock();
1664         if (disk < 0)
1665                 disk = wonly;
1666         r1_bio->read_disk = disk;
1667
1668         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1669                 /* extra read targets are also write targets */
1670                 write_targets += read_targets-1;
1671
1672         if (write_targets == 0 || read_targets == 0) {
1673                 /* There is nowhere to write, so all non-sync
1674                  * drives must be failed - so we are finished
1675                  */
1676                 sector_t rv = max_sector - sector_nr;
1677                 *skipped = 1;
1678                 put_buf(r1_bio);
1679                 return rv;
1680         }
1681
1682         nr_sectors = 0;
1683         sync_blocks = 0;
1684         do {
1685                 struct page *page;
1686                 int len = PAGE_SIZE;
1687                 if (sector_nr + (len>>9) > max_sector)
1688                         len = (max_sector - sector_nr) << 9;
1689                 if (len == 0)
1690                         break;
1691                 if (sync_blocks == 0) {
1692                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1693                                                &sync_blocks, still_degraded) &&
1694                             !conf->fullsync &&
1695                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1696                                 break;
1697                         if (sync_blocks < (PAGE_SIZE>>9))
1698                                 BUG();
1699                         if (len > (sync_blocks<<9))
1700                                 len = sync_blocks<<9;
1701                 }
1702
1703                 for (i=0 ; i < conf->raid_disks; i++) {
1704                         bio = r1_bio->bios[i];
1705                         if (bio->bi_end_io) {
1706                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1707                                 if (bio_add_page(bio, page, len, 0) == 0) {
1708                                         /* stop here */
1709                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1710                                         while (i > 0) {
1711                                                 i--;
1712                                                 bio = r1_bio->bios[i];
1713                                                 if (bio->bi_end_io==NULL)
1714                                                         continue;
1715                                                 /* remove last page from this bio */
1716                                                 bio->bi_vcnt--;
1717                                                 bio->bi_size -= len;
1718                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1719                                         }
1720                                         goto bio_full;
1721                                 }
1722                         }
1723                 }
1724                 nr_sectors += len>>9;
1725                 sector_nr += len>>9;
1726                 sync_blocks -= (len>>9);
1727         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1728  bio_full:
1729         r1_bio->sectors = nr_sectors;
1730
1731         /* For a user-requested sync, we read all readable devices and do a
1732          * compare
1733          */
1734         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1735                 atomic_set(&r1_bio->remaining, read_targets);
1736                 for (i=0; i<conf->raid_disks; i++) {
1737                         bio = r1_bio->bios[i];
1738                         if (bio->bi_end_io == end_sync_read) {
1739                                 md_sync_acct(conf->mirrors[i].rdev->bdev, nr_sectors);
1740                                 generic_make_request(bio);
1741                         }
1742                 }
1743         } else {
1744                 atomic_set(&r1_bio->remaining, 1);
1745                 bio = r1_bio->bios[r1_bio->read_disk];
1746                 md_sync_acct(conf->mirrors[r1_bio->read_disk].rdev->bdev,
1747                              nr_sectors);
1748                 generic_make_request(bio);
1749
1750         }
1751
1752         return nr_sectors;
1753 }
1754
1755 static int run(mddev_t *mddev)
1756 {
1757         conf_t *conf;
1758         int i, j, disk_idx;
1759         mirror_info_t *disk;
1760         mdk_rdev_t *rdev;
1761         struct list_head *tmp;
1762
1763         if (mddev->level != 1) {
1764                 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1765                        mdname(mddev), mddev->level);
1766                 goto out;
1767         }
1768         /*
1769          * copy the already verified devices into our private RAID1
1770          * bookkeeping area. [whatever we allocate in run(),
1771          * should be freed in stop()]
1772          */
1773         conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1774         mddev->private = conf;
1775         if (!conf)
1776                 goto out_no_mem;
1777
1778         memset(conf, 0, sizeof(*conf));
1779         conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks, 
1780                                  GFP_KERNEL);
1781         if (!conf->mirrors)
1782                 goto out_no_mem;
1783
1784         memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1785
1786         conf->tmppage = alloc_page(GFP_KERNEL);
1787         if (!conf->tmppage)
1788                 goto out_no_mem;
1789
1790         conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1791         if (!conf->poolinfo)
1792                 goto out_no_mem;
1793         conf->poolinfo->mddev = mddev;
1794         conf->poolinfo->raid_disks = mddev->raid_disks;
1795         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1796                                           r1bio_pool_free,
1797                                           conf->poolinfo);
1798         if (!conf->r1bio_pool)
1799                 goto out_no_mem;
1800
1801         ITERATE_RDEV(mddev, rdev, tmp) {
1802                 disk_idx = rdev->raid_disk;
1803                 if (disk_idx >= mddev->raid_disks
1804                     || disk_idx < 0)
1805                         continue;
1806                 disk = conf->mirrors + disk_idx;
1807
1808                 disk->rdev = rdev;
1809
1810                 blk_queue_stack_limits(mddev->queue,
1811                                        rdev->bdev->bd_disk->queue);
1812                 /* as we don't honour merge_bvec_fn, we must never risk
1813                  * violating it, so limit ->max_sector to one PAGE, as
1814                  * a one page request is never in violation.
1815                  */
1816                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1817                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
1818                         blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1819
1820                 disk->head_position = 0;
1821                 if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags))
1822                         conf->working_disks++;
1823         }
1824         conf->raid_disks = mddev->raid_disks;
1825         conf->mddev = mddev;
1826         spin_lock_init(&conf->device_lock);
1827         INIT_LIST_HEAD(&conf->retry_list);
1828         if (conf->working_disks == 1)
1829                 mddev->recovery_cp = MaxSector;
1830
1831         spin_lock_init(&conf->resync_lock);
1832         init_waitqueue_head(&conf->wait_barrier);
1833
1834         bio_list_init(&conf->pending_bio_list);
1835         bio_list_init(&conf->flushing_bio_list);
1836
1837         if (!conf->working_disks) {
1838                 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1839                         mdname(mddev));
1840                 goto out_free_conf;
1841         }
1842
1843         mddev->degraded = 0;
1844         for (i = 0; i < conf->raid_disks; i++) {
1845
1846                 disk = conf->mirrors + i;
1847
1848                 if (!disk->rdev) {
1849                         disk->head_position = 0;
1850                         mddev->degraded++;
1851                 }
1852         }
1853
1854         /*
1855          * find the first working one and use it as a starting point
1856          * to read balancing.
1857          */
1858         for (j = 0; j < conf->raid_disks &&
1859                      (!conf->mirrors[j].rdev ||
1860                       !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1861                 /* nothing */;
1862         conf->last_used = j;
1863
1864
1865         mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1866         if (!mddev->thread) {
1867                 printk(KERN_ERR
1868                        "raid1: couldn't allocate thread for %s\n",
1869                        mdname(mddev));
1870                 goto out_free_conf;
1871         }
1872
1873         printk(KERN_INFO 
1874                 "raid1: raid set %s active with %d out of %d mirrors\n",
1875                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
1876                 mddev->raid_disks);
1877         /*
1878          * Ok, everything is just fine now
1879          */
1880         mddev->array_size = mddev->size;
1881
1882         mddev->queue->unplug_fn = raid1_unplug;
1883         mddev->queue->issue_flush_fn = raid1_issue_flush;
1884
1885         return 0;
1886
1887 out_no_mem:
1888         printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1889                mdname(mddev));
1890
1891 out_free_conf:
1892         if (conf) {
1893                 if (conf->r1bio_pool)
1894                         mempool_destroy(conf->r1bio_pool);
1895                 kfree(conf->mirrors);
1896                 __free_page(conf->tmppage);
1897                 kfree(conf->poolinfo);
1898                 kfree(conf);
1899                 mddev->private = NULL;
1900         }
1901 out:
1902         return -EIO;
1903 }
1904
1905 static int stop(mddev_t *mddev)
1906 {
1907         conf_t *conf = mddev_to_conf(mddev);
1908         struct bitmap *bitmap = mddev->bitmap;
1909         int behind_wait = 0;
1910
1911         /* wait for behind writes to complete */
1912         while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
1913                 behind_wait++;
1914                 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
1915                 set_current_state(TASK_UNINTERRUPTIBLE);
1916                 schedule_timeout(HZ); /* wait a second */
1917                 /* need to kick something here to make sure I/O goes? */
1918         }
1919
1920         md_unregister_thread(mddev->thread);
1921         mddev->thread = NULL;
1922         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1923         if (conf->r1bio_pool)
1924                 mempool_destroy(conf->r1bio_pool);
1925         kfree(conf->mirrors);
1926         kfree(conf->poolinfo);
1927         kfree(conf);
1928         mddev->private = NULL;
1929         return 0;
1930 }
1931
1932 static int raid1_resize(mddev_t *mddev, sector_t sectors)
1933 {
1934         /* no resync is happening, and there is enough space
1935          * on all devices, so we can resize.
1936          * We need to make sure resync covers any new space.
1937          * If the array is shrinking we should possibly wait until
1938          * any io in the removed space completes, but it hardly seems
1939          * worth it.
1940          */
1941         mddev->array_size = sectors>>1;
1942         set_capacity(mddev->gendisk, mddev->array_size << 1);
1943         mddev->changed = 1;
1944         if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
1945                 mddev->recovery_cp = mddev->size << 1;
1946                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1947         }
1948         mddev->size = mddev->array_size;
1949         mddev->resync_max_sectors = sectors;
1950         return 0;
1951 }
1952
1953 static int raid1_reshape(mddev_t *mddev, int raid_disks)
1954 {
1955         /* We need to:
1956          * 1/ resize the r1bio_pool
1957          * 2/ resize conf->mirrors
1958          *
1959          * We allocate a new r1bio_pool if we can.
1960          * Then raise a device barrier and wait until all IO stops.
1961          * Then resize conf->mirrors and swap in the new r1bio pool.
1962          *
1963          * At the same time, we "pack" the devices so that all the missing
1964          * devices have the higher raid_disk numbers.
1965          */
1966         mempool_t *newpool, *oldpool;
1967         struct pool_info *newpoolinfo;
1968         mirror_info_t *newmirrors;
1969         conf_t *conf = mddev_to_conf(mddev);
1970         int cnt;
1971
1972         int d, d2;
1973
1974         if (raid_disks < conf->raid_disks) {
1975                 cnt=0;
1976                 for (d= 0; d < conf->raid_disks; d++)
1977                         if (conf->mirrors[d].rdev)
1978                                 cnt++;
1979                 if (cnt > raid_disks)
1980                         return -EBUSY;
1981         }
1982
1983         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
1984         if (!newpoolinfo)
1985                 return -ENOMEM;
1986         newpoolinfo->mddev = mddev;
1987         newpoolinfo->raid_disks = raid_disks;
1988
1989         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1990                                  r1bio_pool_free, newpoolinfo);
1991         if (!newpool) {
1992                 kfree(newpoolinfo);
1993                 return -ENOMEM;
1994         }
1995         newmirrors = kmalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1996         if (!newmirrors) {
1997                 kfree(newpoolinfo);
1998                 mempool_destroy(newpool);
1999                 return -ENOMEM;
2000         }
2001         memset(newmirrors, 0, sizeof(struct mirror_info)*raid_disks);
2002
2003         raise_barrier(conf);
2004
2005         /* ok, everything is stopped */
2006         oldpool = conf->r1bio_pool;
2007         conf->r1bio_pool = newpool;
2008
2009         for (d=d2=0; d < conf->raid_disks; d++)
2010                 if (conf->mirrors[d].rdev) {
2011                         conf->mirrors[d].rdev->raid_disk = d2;
2012                         newmirrors[d2++].rdev = conf->mirrors[d].rdev;
2013                 }
2014         kfree(conf->mirrors);
2015         conf->mirrors = newmirrors;
2016         kfree(conf->poolinfo);
2017         conf->poolinfo = newpoolinfo;
2018
2019         mddev->degraded += (raid_disks - conf->raid_disks);
2020         conf->raid_disks = mddev->raid_disks = raid_disks;
2021
2022         conf->last_used = 0; /* just make sure it is in-range */
2023         lower_barrier(conf);
2024
2025         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2026         md_wakeup_thread(mddev->thread);
2027
2028         mempool_destroy(oldpool);
2029         return 0;
2030 }
2031
2032 static void raid1_quiesce(mddev_t *mddev, int state)
2033 {
2034         conf_t *conf = mddev_to_conf(mddev);
2035
2036         switch(state) {
2037         case 1:
2038                 raise_barrier(conf);
2039                 break;
2040         case 0:
2041                 lower_barrier(conf);
2042                 break;
2043         }
2044 }
2045
2046
2047 static mdk_personality_t raid1_personality =
2048 {
2049         .name           = "raid1",
2050         .owner          = THIS_MODULE,
2051         .make_request   = make_request,
2052         .run            = run,
2053         .stop           = stop,
2054         .status         = status,
2055         .error_handler  = error,
2056         .hot_add_disk   = raid1_add_disk,
2057         .hot_remove_disk= raid1_remove_disk,
2058         .spare_active   = raid1_spare_active,
2059         .sync_request   = sync_request,
2060         .resize         = raid1_resize,
2061         .reshape        = raid1_reshape,
2062         .quiesce        = raid1_quiesce,
2063 };
2064
2065 static int __init raid_init(void)
2066 {
2067         return register_md_personality(RAID1, &raid1_personality);
2068 }
2069
2070 static void raid_exit(void)
2071 {
2072         unregister_md_personality(RAID1);
2073 }
2074
2075 module_init(raid_init);
2076 module_exit(raid_exit);
2077 MODULE_LICENSE("GPL");
2078 MODULE_ALIAS("md-personality-3"); /* RAID1 */