2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/mutex.h>
18 #include <asm/atomic.h>
20 #define DM_MSG_PREFIX "table"
23 #define NODE_SIZE L1_CACHE_BYTES
24 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
25 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28 struct mapped_device *md;
33 unsigned int counts[MAX_DEPTH]; /* in nodes */
34 sector_t *index[MAX_DEPTH];
36 unsigned int num_targets;
37 unsigned int num_allocated;
39 struct dm_target *targets;
42 * Indicates the rw permissions for the new logical
43 * device. This should be a combination of FMODE_READ
48 /* a list of devices used by this table */
49 struct list_head devices;
52 * These are optimistic limits taken from all the
53 * targets, some targets will need smaller limits.
55 struct io_restrictions limits;
57 /* events get handed up using this callback */
58 void (*event_fn)(void *);
63 * Similar to ceiling(log_size(n))
65 static unsigned int int_log(unsigned int n, unsigned int base)
70 n = dm_div_up(n, base);
78 * Returns the minimum that is _not_ zero, unless both are zero.
80 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
83 * Combine two io_restrictions, always taking the lower value.
85 static void combine_restrictions_low(struct io_restrictions *lhs,
86 struct io_restrictions *rhs)
89 min_not_zero(lhs->max_sectors, rhs->max_sectors);
91 lhs->max_phys_segments =
92 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
94 lhs->max_hw_segments =
95 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
97 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size);
99 lhs->max_segment_size =
100 min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
102 lhs->max_hw_sectors =
103 min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors);
105 lhs->seg_boundary_mask =
106 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
108 lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn);
110 lhs->no_cluster |= rhs->no_cluster;
114 * Calculate the index of the child node of the n'th node k'th key.
116 static inline unsigned int get_child(unsigned int n, unsigned int k)
118 return (n * CHILDREN_PER_NODE) + k;
122 * Return the n'th node of level l from table t.
124 static inline sector_t *get_node(struct dm_table *t,
125 unsigned int l, unsigned int n)
127 return t->index[l] + (n * KEYS_PER_NODE);
131 * Return the highest key that you could lookup from the n'th
132 * node on level l of the btree.
134 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
136 for (; l < t->depth - 1; l++)
137 n = get_child(n, CHILDREN_PER_NODE - 1);
139 if (n >= t->counts[l])
140 return (sector_t) - 1;
142 return get_node(t, l, n)[KEYS_PER_NODE - 1];
146 * Fills in a level of the btree based on the highs of the level
149 static int setup_btree_index(unsigned int l, struct dm_table *t)
154 for (n = 0U; n < t->counts[l]; n++) {
155 node = get_node(t, l, n);
157 for (k = 0U; k < KEYS_PER_NODE; k++)
158 node[k] = high(t, l + 1, get_child(n, k));
164 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
170 * Check that we're not going to overflow.
172 if (nmemb > (ULONG_MAX / elem_size))
175 size = nmemb * elem_size;
176 addr = vmalloc(size);
178 memset(addr, 0, size);
184 * highs, and targets are managed as dynamic arrays during a
187 static int alloc_targets(struct dm_table *t, unsigned int num)
190 struct dm_target *n_targets;
191 int n = t->num_targets;
194 * Allocate both the target array and offset array at once.
195 * Append an empty entry to catch sectors beyond the end of
198 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
203 n_targets = (struct dm_target *) (n_highs + num);
206 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
207 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
210 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
213 t->num_allocated = num;
215 t->targets = n_targets;
220 int dm_table_create(struct dm_table **result, int mode,
221 unsigned num_targets, struct mapped_device *md)
223 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
228 INIT_LIST_HEAD(&t->devices);
229 atomic_set(&t->holders, 1);
232 num_targets = KEYS_PER_NODE;
234 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
236 if (alloc_targets(t, num_targets)) {
248 static void free_devices(struct list_head *devices)
250 struct list_head *tmp, *next;
252 list_for_each_safe(tmp, next, devices) {
253 struct dm_dev *dd = list_entry(tmp, struct dm_dev, list);
258 static void table_destroy(struct dm_table *t)
262 /* free the indexes (see dm_table_complete) */
264 vfree(t->index[t->depth - 2]);
266 /* free the targets */
267 for (i = 0; i < t->num_targets; i++) {
268 struct dm_target *tgt = t->targets + i;
273 dm_put_target_type(tgt->type);
278 /* free the device list */
279 if (t->devices.next != &t->devices) {
280 DMWARN("devices still present during destroy: "
281 "dm_table_remove_device calls missing");
283 free_devices(&t->devices);
289 void dm_table_get(struct dm_table *t)
291 atomic_inc(&t->holders);
294 void dm_table_put(struct dm_table *t)
299 if (atomic_dec_and_test(&t->holders))
304 * Checks to see if we need to extend highs or targets.
306 static inline int check_space(struct dm_table *t)
308 if (t->num_targets >= t->num_allocated)
309 return alloc_targets(t, t->num_allocated * 2);
315 * Convert a device path to a dev_t.
317 static int lookup_device(const char *path, dev_t *dev)
323 if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd)))
326 inode = nd.path.dentry->d_inode;
332 if (!S_ISBLK(inode->i_mode)) {
337 *dev = inode->i_rdev;
345 * See if we've already got a device in the list.
347 static struct dm_dev *find_device(struct list_head *l, dev_t dev)
351 list_for_each_entry (dd, l, list)
352 if (dd->bdev->bd_dev == dev)
359 * Open a device so we can use it as a map destination.
361 static int open_dev(struct dm_dev *d, dev_t dev, struct mapped_device *md)
363 static char *_claim_ptr = "I belong to device-mapper";
364 struct block_device *bdev;
370 bdev = open_by_devnum(dev, d->mode);
372 return PTR_ERR(bdev);
373 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
382 * Close a device that we've been using.
384 static void close_dev(struct dm_dev *d, struct mapped_device *md)
389 bd_release_from_disk(d->bdev, dm_disk(md));
395 * If possible, this checks an area of a destination device is valid.
397 static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len)
399 sector_t dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT;
404 return ((start < dev_size) && (len <= (dev_size - start)));
408 * This upgrades the mode on an already open dm_dev. Being
409 * careful to leave things as they were if we fail to reopen the
412 static int upgrade_mode(struct dm_dev *dd, int new_mode, struct mapped_device *md)
415 struct dm_dev dd_copy;
416 dev_t dev = dd->bdev->bd_dev;
420 dd->mode |= new_mode;
422 r = open_dev(dd, dev, md);
424 close_dev(&dd_copy, md);
432 * Add a device to the list, or just increment the usage count if
433 * it's already present.
435 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
436 const char *path, sector_t start, sector_t len,
437 int mode, struct dm_dev **result)
440 dev_t uninitialized_var(dev);
442 unsigned int major, minor;
446 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
447 /* Extract the major/minor numbers */
448 dev = MKDEV(major, minor);
449 if (MAJOR(dev) != major || MINOR(dev) != minor)
452 /* convert the path to a device */
453 if ((r = lookup_device(path, &dev)))
457 dd = find_device(&t->devices, dev);
459 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
466 if ((r = open_dev(dd, dev, t->md))) {
471 format_dev_t(dd->name, dev);
473 atomic_set(&dd->count, 0);
474 list_add(&dd->list, &t->devices);
476 } else if (dd->mode != (mode | dd->mode)) {
477 r = upgrade_mode(dd, mode, t->md);
481 atomic_inc(&dd->count);
483 if (!check_device_area(dd, start, len)) {
484 DMWARN("device %s too small for target", path);
485 dm_put_device(ti, dd);
494 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev)
496 struct request_queue *q = bdev_get_queue(bdev);
497 struct io_restrictions *rs = &ti->limits;
500 * Combine the device limits low.
502 * FIXME: if we move an io_restriction struct
503 * into q this would just be a call to
504 * combine_restrictions_low()
507 min_not_zero(rs->max_sectors, q->max_sectors);
510 * Check if merge fn is supported.
511 * If not we'll force DM to use PAGE_SIZE or
512 * smaller I/O, just to be safe.
515 if (q->merge_bvec_fn && !ti->type->merge)
517 min_not_zero(rs->max_sectors,
518 (unsigned int) (PAGE_SIZE >> 9));
520 rs->max_phys_segments =
521 min_not_zero(rs->max_phys_segments,
522 q->max_phys_segments);
524 rs->max_hw_segments =
525 min_not_zero(rs->max_hw_segments, q->max_hw_segments);
527 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size);
529 rs->max_segment_size =
530 min_not_zero(rs->max_segment_size, q->max_segment_size);
533 min_not_zero(rs->max_hw_sectors, q->max_hw_sectors);
535 rs->seg_boundary_mask =
536 min_not_zero(rs->seg_boundary_mask,
537 q->seg_boundary_mask);
539 rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn);
541 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
543 EXPORT_SYMBOL_GPL(dm_set_device_limits);
545 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
546 sector_t len, int mode, struct dm_dev **result)
548 int r = __table_get_device(ti->table, ti, path,
549 start, len, mode, result);
552 dm_set_device_limits(ti, (*result)->bdev);
558 * Decrement a devices use count and remove it if necessary.
560 void dm_put_device(struct dm_target *ti, struct dm_dev *dd)
562 if (atomic_dec_and_test(&dd->count)) {
563 close_dev(dd, ti->table->md);
570 * Checks to see if the target joins onto the end of the table.
572 static int adjoin(struct dm_table *table, struct dm_target *ti)
574 struct dm_target *prev;
576 if (!table->num_targets)
579 prev = &table->targets[table->num_targets - 1];
580 return (ti->begin == (prev->begin + prev->len));
584 * Used to dynamically allocate the arg array.
586 static char **realloc_argv(unsigned *array_size, char **old_argv)
591 new_size = *array_size ? *array_size * 2 : 64;
592 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
594 memcpy(argv, old_argv, *array_size * sizeof(*argv));
595 *array_size = new_size;
603 * Destructively splits up the argument list to pass to ctr.
605 int dm_split_args(int *argc, char ***argvp, char *input)
607 char *start, *end = input, *out, **argv = NULL;
608 unsigned array_size = 0;
617 argv = realloc_argv(&array_size, argv);
624 /* Skip whitespace */
625 while (*start && isspace(*start))
629 break; /* success, we hit the end */
631 /* 'out' is used to remove any back-quotes */
634 /* Everything apart from '\0' can be quoted */
635 if (*end == '\\' && *(end + 1)) {
642 break; /* end of token */
647 /* have we already filled the array ? */
648 if ((*argc + 1) > array_size) {
649 argv = realloc_argv(&array_size, argv);
654 /* we know this is whitespace */
658 /* terminate the string and put it in the array */
668 static void check_for_valid_limits(struct io_restrictions *rs)
670 if (!rs->max_sectors)
671 rs->max_sectors = SAFE_MAX_SECTORS;
672 if (!rs->max_hw_sectors)
673 rs->max_hw_sectors = SAFE_MAX_SECTORS;
674 if (!rs->max_phys_segments)
675 rs->max_phys_segments = MAX_PHYS_SEGMENTS;
676 if (!rs->max_hw_segments)
677 rs->max_hw_segments = MAX_HW_SEGMENTS;
678 if (!rs->hardsect_size)
679 rs->hardsect_size = 1 << SECTOR_SHIFT;
680 if (!rs->max_segment_size)
681 rs->max_segment_size = MAX_SEGMENT_SIZE;
682 if (!rs->seg_boundary_mask)
683 rs->seg_boundary_mask = -1;
688 int dm_table_add_target(struct dm_table *t, const char *type,
689 sector_t start, sector_t len, char *params)
691 int r = -EINVAL, argc;
693 struct dm_target *tgt;
695 if ((r = check_space(t)))
698 tgt = t->targets + t->num_targets;
699 memset(tgt, 0, sizeof(*tgt));
702 DMERR("%s: zero-length target", dm_device_name(t->md));
706 tgt->type = dm_get_target_type(type);
708 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
716 tgt->error = "Unknown error";
719 * Does this target adjoin the previous one ?
721 if (!adjoin(t, tgt)) {
722 tgt->error = "Gap in table";
727 r = dm_split_args(&argc, &argv, params);
729 tgt->error = "couldn't split parameters (insufficient memory)";
733 r = tgt->type->ctr(tgt, argc, argv);
738 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
740 /* FIXME: the plan is to combine high here and then have
741 * the merge fn apply the target level restrictions. */
742 combine_restrictions_low(&t->limits, &tgt->limits);
746 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
747 dm_put_target_type(tgt->type);
751 static int setup_indexes(struct dm_table *t)
754 unsigned int total = 0;
757 /* allocate the space for *all* the indexes */
758 for (i = t->depth - 2; i >= 0; i--) {
759 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
760 total += t->counts[i];
763 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
767 /* set up internal nodes, bottom-up */
768 for (i = t->depth - 2; i >= 0; i--) {
769 t->index[i] = indexes;
770 indexes += (KEYS_PER_NODE * t->counts[i]);
771 setup_btree_index(i, t);
778 * Builds the btree to index the map.
780 int dm_table_complete(struct dm_table *t)
783 unsigned int leaf_nodes;
785 check_for_valid_limits(&t->limits);
787 /* how many indexes will the btree have ? */
788 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
789 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
791 /* leaf layer has already been set up */
792 t->counts[t->depth - 1] = leaf_nodes;
793 t->index[t->depth - 1] = t->highs;
796 r = setup_indexes(t);
801 static DEFINE_MUTEX(_event_lock);
802 void dm_table_event_callback(struct dm_table *t,
803 void (*fn)(void *), void *context)
805 mutex_lock(&_event_lock);
807 t->event_context = context;
808 mutex_unlock(&_event_lock);
811 void dm_table_event(struct dm_table *t)
814 * You can no longer call dm_table_event() from interrupt
815 * context, use a bottom half instead.
817 BUG_ON(in_interrupt());
819 mutex_lock(&_event_lock);
821 t->event_fn(t->event_context);
822 mutex_unlock(&_event_lock);
825 sector_t dm_table_get_size(struct dm_table *t)
827 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
830 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
832 if (index >= t->num_targets)
835 return t->targets + index;
839 * Search the btree for the correct target.
841 * Caller should check returned pointer with dm_target_is_valid()
842 * to trap I/O beyond end of device.
844 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
846 unsigned int l, n = 0, k = 0;
849 for (l = 0; l < t->depth; l++) {
851 node = get_node(t, l, n);
853 for (k = 0; k < KEYS_PER_NODE; k++)
854 if (node[k] >= sector)
858 return &t->targets[(KEYS_PER_NODE * n) + k];
861 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
864 * Make sure we obey the optimistic sub devices
867 blk_queue_max_sectors(q, t->limits.max_sectors);
868 q->max_phys_segments = t->limits.max_phys_segments;
869 q->max_hw_segments = t->limits.max_hw_segments;
870 q->hardsect_size = t->limits.hardsect_size;
871 q->max_segment_size = t->limits.max_segment_size;
872 q->max_hw_sectors = t->limits.max_hw_sectors;
873 q->seg_boundary_mask = t->limits.seg_boundary_mask;
874 q->bounce_pfn = t->limits.bounce_pfn;
876 if (t->limits.no_cluster)
877 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
879 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q);
883 unsigned int dm_table_get_num_targets(struct dm_table *t)
885 return t->num_targets;
888 struct list_head *dm_table_get_devices(struct dm_table *t)
893 int dm_table_get_mode(struct dm_table *t)
898 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
900 int i = t->num_targets;
901 struct dm_target *ti = t->targets;
905 if (ti->type->postsuspend)
906 ti->type->postsuspend(ti);
907 } else if (ti->type->presuspend)
908 ti->type->presuspend(ti);
914 void dm_table_presuspend_targets(struct dm_table *t)
919 suspend_targets(t, 0);
922 void dm_table_postsuspend_targets(struct dm_table *t)
927 suspend_targets(t, 1);
930 int dm_table_resume_targets(struct dm_table *t)
934 for (i = 0; i < t->num_targets; i++) {
935 struct dm_target *ti = t->targets + i;
937 if (!ti->type->preresume)
940 r = ti->type->preresume(ti);
945 for (i = 0; i < t->num_targets; i++) {
946 struct dm_target *ti = t->targets + i;
948 if (ti->type->resume)
949 ti->type->resume(ti);
955 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
958 struct list_head *devices = dm_table_get_devices(t);
961 list_for_each_entry(dd, devices, list) {
962 struct request_queue *q = bdev_get_queue(dd->bdev);
963 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
969 void dm_table_unplug_all(struct dm_table *t)
972 struct list_head *devices = dm_table_get_devices(t);
974 list_for_each_entry(dd, devices, list) {
975 struct request_queue *q = bdev_get_queue(dd->bdev);
981 struct mapped_device *dm_table_get_md(struct dm_table *t)
988 EXPORT_SYMBOL(dm_vcalloc);
989 EXPORT_SYMBOL(dm_get_device);
990 EXPORT_SYMBOL(dm_put_device);
991 EXPORT_SYMBOL(dm_table_event);
992 EXPORT_SYMBOL(dm_table_get_size);
993 EXPORT_SYMBOL(dm_table_get_mode);
994 EXPORT_SYMBOL(dm_table_get_md);
995 EXPORT_SYMBOL(dm_table_put);
996 EXPORT_SYMBOL(dm_table_get);
997 EXPORT_SYMBOL(dm_table_unplug_all);