]> err.no Git - linux-2.6/blob - drivers/macintosh/therm_pm72.c
usermodehelper: Tidy up waiting
[linux-2.6] / drivers / macintosh / therm_pm72.c
1 /*
2  * Device driver for the thermostats & fan controller of  the
3  * Apple G5 "PowerMac7,2" desktop machines.
4  *
5  * (c) Copyright IBM Corp. 2003-2004
6  *
7  * Maintained by: Benjamin Herrenschmidt
8  *                <benh@kernel.crashing.org>
9  * 
10  *
11  * The algorithm used is the PID control algorithm, used the same
12  * way the published Darwin code does, using the same values that
13  * are present in the Darwin 7.0 snapshot property lists.
14  *
15  * As far as the CPUs control loops are concerned, I use the
16  * calibration & PID constants provided by the EEPROM,
17  * I do _not_ embed any value from the property lists, as the ones
18  * provided by Darwin 7.0 seem to always have an older version that
19  * what I've seen on the actual computers.
20  * It would be interesting to verify that though. Darwin has a
21  * version code of 1.0.0d11 for all control loops it seems, while
22  * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
23  *
24  * Darwin doesn't provide source to all parts, some missing
25  * bits like the AppleFCU driver or the actual scale of some
26  * of the values returned by sensors had to be "guessed" some
27  * way... or based on what Open Firmware does.
28  *
29  * I didn't yet figure out how to get the slots power consumption
30  * out of the FCU, so that part has not been implemented yet and
31  * the slots fan is set to a fixed 50% PWM, hoping this value is
32  * safe enough ...
33  *
34  * Note: I have observed strange oscillations of the CPU control
35  * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36  * oscillates slowly (over several minutes) between the minimum
37  * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38  * this, it could be some incorrect constant or an error in the
39  * way I ported the algorithm, or it could be just normal. I
40  * don't have full understanding on the way Apple tweaked the PID
41  * algorithm for the CPU control, it is definitely not a standard
42  * implementation...
43  *
44  * TODO:  - Check MPU structure version/signature
45  *        - Add things like /sbin/overtemp for non-critical
46  *          overtemp conditions so userland can take some policy
47  *          decisions, like slewing down CPUs
48  *        - Deal with fan and i2c failures in a better way
49  *        - Maybe do a generic PID based on params used for
50  *          U3 and Drives ? Definitely need to factor code a bit
51  *          bettter... also make sensor detection more robust using
52  *          the device-tree to probe for them
53  *        - Figure out how to get the slots consumption and set the
54  *          slots fan accordingly
55  *
56  * History:
57  *
58  *  Nov. 13, 2003 : 0.5
59  *      - First release
60  *
61  *  Nov. 14, 2003 : 0.6
62  *      - Read fan speed from FCU, low level fan routines now deal
63  *        with errors & check fan status, though higher level don't
64  *        do much.
65  *      - Move a bunch of definitions to .h file
66  *
67  *  Nov. 18, 2003 : 0.7
68  *      - Fix build on ppc64 kernel
69  *      - Move back statics definitions to .c file
70  *      - Avoid calling schedule_timeout with a negative number
71  *
72  *  Dec. 18, 2003 : 0.8
73  *      - Fix typo when reading back fan speed on 2 CPU machines
74  *
75  *  Mar. 11, 2004 : 0.9
76  *      - Rework code accessing the ADC chips, make it more robust and
77  *        closer to the chip spec. Also make sure it is configured properly,
78  *        I've seen yet unexplained cases where on startup, I would have stale
79  *        values in the configuration register
80  *      - Switch back to use of target fan speed for PID, thus lowering
81  *        pressure on i2c
82  *
83  *  Oct. 20, 2004 : 1.1
84  *      - Add device-tree lookup for fan IDs, should detect liquid cooling
85  *        pumps when present
86  *      - Enable driver for PowerMac7,3 machines
87  *      - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88  *      - Add new CPU cooling algorithm for machines with liquid cooling
89  *      - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90  *      - Fix a signed/unsigned compare issue in some PID loops
91  *
92  *  Mar. 10, 2005 : 1.2
93  *      - Add basic support for Xserve G5
94  *      - Retreive pumps min/max from EEPROM image in device-tree (broken)
95  *      - Use min/max macros here or there
96  *      - Latest darwin updated U3H min fan speed to 20% PWM
97  *
98  *  July. 06, 2006 : 1.3
99  *      - Fix setting of RPM fans on Xserve G5 (they were going too fast)
100  *      - Add missing slots fan control loop for Xserve G5
101  *      - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
102  *        still can't properly implement the control loop for these, so let's
103  *        reduce the noise a little bit, it appears that 40% still gives us
104  *        a pretty good air flow
105  *      - Add code to "tickle" the FCU regulary so it doesn't think that
106  *        we are gone while in fact, the machine just didn't need any fan
107  *        speed change lately
108  *
109  */
110
111 #include <linux/types.h>
112 #include <linux/module.h>
113 #include <linux/errno.h>
114 #include <linux/kernel.h>
115 #include <linux/delay.h>
116 #include <linux/sched.h>
117 #include <linux/slab.h>
118 #include <linux/init.h>
119 #include <linux/spinlock.h>
120 #include <linux/wait.h>
121 #include <linux/reboot.h>
122 #include <linux/kmod.h>
123 #include <linux/i2c.h>
124 #include <asm/prom.h>
125 #include <asm/machdep.h>
126 #include <asm/io.h>
127 #include <asm/system.h>
128 #include <asm/sections.h>
129 #include <asm/of_device.h>
130 #include <asm/macio.h>
131 #include <asm/of_platform.h>
132
133 #include "therm_pm72.h"
134
135 #define VERSION "1.3"
136
137 #undef DEBUG
138
139 #ifdef DEBUG
140 #define DBG(args...)    printk(args)
141 #else
142 #define DBG(args...)    do { } while(0)
143 #endif
144
145
146 /*
147  * Driver statics
148  */
149
150 static struct of_device *               of_dev;
151 static struct i2c_adapter *             u3_0;
152 static struct i2c_adapter *             u3_1;
153 static struct i2c_adapter *             k2;
154 static struct i2c_client *              fcu;
155 static struct cpu_pid_state             cpu_state[2];
156 static struct basckside_pid_params      backside_params;
157 static struct backside_pid_state        backside_state;
158 static struct drives_pid_state          drives_state;
159 static struct dimm_pid_state            dimms_state;
160 static struct slots_pid_state           slots_state;
161 static int                              state;
162 static int                              cpu_count;
163 static int                              cpu_pid_type;
164 static pid_t                            ctrl_task;
165 static struct completion                ctrl_complete;
166 static int                              critical_state;
167 static int                              rackmac;
168 static s32                              dimm_output_clamp;
169 static int                              fcu_rpm_shift;
170 static int                              fcu_tickle_ticks;
171 static DECLARE_MUTEX(driver_lock);
172
173 /*
174  * We have 3 types of CPU PID control. One is "split" old style control
175  * for intake & exhaust fans, the other is "combined" control for both
176  * CPUs that also deals with the pumps when present. To be "compatible"
177  * with OS X at this point, we only use "COMBINED" on the machines that
178  * are identified as having the pumps (though that identification is at
179  * least dodgy). Ultimately, we could probably switch completely to this
180  * algorithm provided we hack it to deal with the UP case
181  */
182 #define CPU_PID_TYPE_SPLIT      0
183 #define CPU_PID_TYPE_COMBINED   1
184 #define CPU_PID_TYPE_RACKMAC    2
185
186 /*
187  * This table describes all fans in the FCU. The "id" and "type" values
188  * are defaults valid for all earlier machines. Newer machines will
189  * eventually override the table content based on the device-tree
190  */
191 struct fcu_fan_table
192 {
193         char*   loc;    /* location code */
194         int     type;   /* 0 = rpm, 1 = pwm, 2 = pump */
195         int     id;     /* id or -1 */
196 };
197
198 #define FCU_FAN_RPM             0
199 #define FCU_FAN_PWM             1
200
201 #define FCU_FAN_ABSENT_ID       -1
202
203 #define FCU_FAN_COUNT           ARRAY_SIZE(fcu_fans)
204
205 struct fcu_fan_table    fcu_fans[] = {
206         [BACKSIDE_FAN_PWM_INDEX] = {
207                 .loc    = "BACKSIDE,SYS CTRLR FAN",
208                 .type   = FCU_FAN_PWM,
209                 .id     = BACKSIDE_FAN_PWM_DEFAULT_ID,
210         },
211         [DRIVES_FAN_RPM_INDEX] = {
212                 .loc    = "DRIVE BAY",
213                 .type   = FCU_FAN_RPM,
214                 .id     = DRIVES_FAN_RPM_DEFAULT_ID,
215         },
216         [SLOTS_FAN_PWM_INDEX] = {
217                 .loc    = "SLOT,PCI FAN",
218                 .type   = FCU_FAN_PWM,
219                 .id     = SLOTS_FAN_PWM_DEFAULT_ID,
220         },
221         [CPUA_INTAKE_FAN_RPM_INDEX] = {
222                 .loc    = "CPU A INTAKE",
223                 .type   = FCU_FAN_RPM,
224                 .id     = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
225         },
226         [CPUA_EXHAUST_FAN_RPM_INDEX] = {
227                 .loc    = "CPU A EXHAUST",
228                 .type   = FCU_FAN_RPM,
229                 .id     = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
230         },
231         [CPUB_INTAKE_FAN_RPM_INDEX] = {
232                 .loc    = "CPU B INTAKE",
233                 .type   = FCU_FAN_RPM,
234                 .id     = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
235         },
236         [CPUB_EXHAUST_FAN_RPM_INDEX] = {
237                 .loc    = "CPU B EXHAUST",
238                 .type   = FCU_FAN_RPM,
239                 .id     = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
240         },
241         /* pumps aren't present by default, have to be looked up in the
242          * device-tree
243          */
244         [CPUA_PUMP_RPM_INDEX] = {
245                 .loc    = "CPU A PUMP",
246                 .type   = FCU_FAN_RPM,          
247                 .id     = FCU_FAN_ABSENT_ID,
248         },
249         [CPUB_PUMP_RPM_INDEX] = {
250                 .loc    = "CPU B PUMP",
251                 .type   = FCU_FAN_RPM,
252                 .id     = FCU_FAN_ABSENT_ID,
253         },
254         /* Xserve fans */
255         [CPU_A1_FAN_RPM_INDEX] = {
256                 .loc    = "CPU A 1",
257                 .type   = FCU_FAN_RPM,
258                 .id     = FCU_FAN_ABSENT_ID,
259         },
260         [CPU_A2_FAN_RPM_INDEX] = {
261                 .loc    = "CPU A 2",
262                 .type   = FCU_FAN_RPM,
263                 .id     = FCU_FAN_ABSENT_ID,
264         },
265         [CPU_A3_FAN_RPM_INDEX] = {
266                 .loc    = "CPU A 3",
267                 .type   = FCU_FAN_RPM,
268                 .id     = FCU_FAN_ABSENT_ID,
269         },
270         [CPU_B1_FAN_RPM_INDEX] = {
271                 .loc    = "CPU B 1",
272                 .type   = FCU_FAN_RPM,
273                 .id     = FCU_FAN_ABSENT_ID,
274         },
275         [CPU_B2_FAN_RPM_INDEX] = {
276                 .loc    = "CPU B 2",
277                 .type   = FCU_FAN_RPM,
278                 .id     = FCU_FAN_ABSENT_ID,
279         },
280         [CPU_B3_FAN_RPM_INDEX] = {
281                 .loc    = "CPU B 3",
282                 .type   = FCU_FAN_RPM,
283                 .id     = FCU_FAN_ABSENT_ID,
284         },
285 };
286
287 /*
288  * i2c_driver structure to attach to the host i2c controller
289  */
290
291 static int therm_pm72_attach(struct i2c_adapter *adapter);
292 static int therm_pm72_detach(struct i2c_adapter *adapter);
293
294 static struct i2c_driver therm_pm72_driver =
295 {
296         .driver = {
297                 .name   = "therm_pm72",
298         },
299         .attach_adapter = therm_pm72_attach,
300         .detach_adapter = therm_pm72_detach,
301 };
302
303 /*
304  * Utility function to create an i2c_client structure and
305  * attach it to one of u3 adapters
306  */
307 static struct i2c_client *attach_i2c_chip(int id, const char *name)
308 {
309         struct i2c_client *clt;
310         struct i2c_adapter *adap;
311
312         if (id & 0x200)
313                 adap = k2;
314         else if (id & 0x100)
315                 adap = u3_1;
316         else
317                 adap = u3_0;
318         if (adap == NULL)
319                 return NULL;
320
321         clt = kmalloc(sizeof(struct i2c_client), GFP_KERNEL);
322         if (clt == NULL)
323                 return NULL;
324         memset(clt, 0, sizeof(struct i2c_client));
325
326         clt->addr = (id >> 1) & 0x7f;
327         clt->adapter = adap;
328         clt->driver = &therm_pm72_driver;
329         strncpy(clt->name, name, I2C_NAME_SIZE-1);
330
331         if (i2c_attach_client(clt)) {
332                 printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
333                 kfree(clt);
334                 return NULL;
335         }
336         return clt;
337 }
338
339 /*
340  * Utility function to get rid of the i2c_client structure
341  * (will also detach from the adapter hopepfully)
342  */
343 static void detach_i2c_chip(struct i2c_client *clt)
344 {
345         i2c_detach_client(clt);
346         kfree(clt);
347 }
348
349 /*
350  * Here are the i2c chip access wrappers
351  */
352
353 static void initialize_adc(struct cpu_pid_state *state)
354 {
355         int rc;
356         u8 buf[2];
357
358         /* Read ADC the configuration register and cache it. We
359          * also make sure Config2 contains proper values, I've seen
360          * cases where we got stale grabage in there, thus preventing
361          * proper reading of conv. values
362          */
363
364         /* Clear Config2 */
365         buf[0] = 5;
366         buf[1] = 0;
367         i2c_master_send(state->monitor, buf, 2);
368
369         /* Read & cache Config1 */
370         buf[0] = 1;
371         rc = i2c_master_send(state->monitor, buf, 1);
372         if (rc > 0) {
373                 rc = i2c_master_recv(state->monitor, buf, 1);
374                 if (rc > 0) {
375                         state->adc_config = buf[0];
376                         DBG("ADC config reg: %02x\n", state->adc_config);
377                         /* Disable shutdown mode */
378                         state->adc_config &= 0xfe;
379                         buf[0] = 1;
380                         buf[1] = state->adc_config;
381                         rc = i2c_master_send(state->monitor, buf, 2);
382                 }
383         }
384         if (rc <= 0)
385                 printk(KERN_ERR "therm_pm72: Error reading ADC config"
386                        " register !\n");
387 }
388
389 static int read_smon_adc(struct cpu_pid_state *state, int chan)
390 {
391         int rc, data, tries = 0;
392         u8 buf[2];
393
394         for (;;) {
395                 /* Set channel */
396                 buf[0] = 1;
397                 buf[1] = (state->adc_config & 0x1f) | (chan << 5);
398                 rc = i2c_master_send(state->monitor, buf, 2);
399                 if (rc <= 0)
400                         goto error;
401                 /* Wait for convertion */
402                 msleep(1);
403                 /* Switch to data register */
404                 buf[0] = 4;
405                 rc = i2c_master_send(state->monitor, buf, 1);
406                 if (rc <= 0)
407                         goto error;
408                 /* Read result */
409                 rc = i2c_master_recv(state->monitor, buf, 2);
410                 if (rc < 0)
411                         goto error;
412                 data = ((u16)buf[0]) << 8 | (u16)buf[1];
413                 return data >> 6;
414         error:
415                 DBG("Error reading ADC, retrying...\n");
416                 if (++tries > 10) {
417                         printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
418                         return -1;
419                 }
420                 msleep(10);
421         }
422 }
423
424 static int read_lm87_reg(struct i2c_client * chip, int reg)
425 {
426         int rc, tries = 0;
427         u8 buf;
428
429         for (;;) {
430                 /* Set address */
431                 buf = (u8)reg;
432                 rc = i2c_master_send(chip, &buf, 1);
433                 if (rc <= 0)
434                         goto error;
435                 rc = i2c_master_recv(chip, &buf, 1);
436                 if (rc <= 0)
437                         goto error;
438                 return (int)buf;
439         error:
440                 DBG("Error reading LM87, retrying...\n");
441                 if (++tries > 10) {
442                         printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
443                         return -1;
444                 }
445                 msleep(10);
446         }
447 }
448
449 static int fan_read_reg(int reg, unsigned char *buf, int nb)
450 {
451         int tries, nr, nw;
452
453         buf[0] = reg;
454         tries = 0;
455         for (;;) {
456                 nw = i2c_master_send(fcu, buf, 1);
457                 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
458                         break;
459                 msleep(10);
460                 ++tries;
461         }
462         if (nw <= 0) {
463                 printk(KERN_ERR "Failure writing address to FCU: %d", nw);
464                 return -EIO;
465         }
466         tries = 0;
467         for (;;) {
468                 nr = i2c_master_recv(fcu, buf, nb);
469                 if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
470                         break;
471                 msleep(10);
472                 ++tries;
473         }
474         if (nr <= 0)
475                 printk(KERN_ERR "Failure reading data from FCU: %d", nw);
476         return nr;
477 }
478
479 static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
480 {
481         int tries, nw;
482         unsigned char buf[16];
483
484         buf[0] = reg;
485         memcpy(buf+1, ptr, nb);
486         ++nb;
487         tries = 0;
488         for (;;) {
489                 nw = i2c_master_send(fcu, buf, nb);
490                 if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
491                         break;
492                 msleep(10);
493                 ++tries;
494         }
495         if (nw < 0)
496                 printk(KERN_ERR "Failure writing to FCU: %d", nw);
497         return nw;
498 }
499
500 static int start_fcu(void)
501 {
502         unsigned char buf = 0xff;
503         int rc;
504
505         rc = fan_write_reg(0xe, &buf, 1);
506         if (rc < 0)
507                 return -EIO;
508         rc = fan_write_reg(0x2e, &buf, 1);
509         if (rc < 0)
510                 return -EIO;
511         rc = fan_read_reg(0, &buf, 1);
512         if (rc < 0)
513                 return -EIO;
514         fcu_rpm_shift = (buf == 1) ? 2 : 3;
515         printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
516                fcu_rpm_shift);
517
518         return 0;
519 }
520
521 static int set_rpm_fan(int fan_index, int rpm)
522 {
523         unsigned char buf[2];
524         int rc, id, min, max;
525
526         if (fcu_fans[fan_index].type != FCU_FAN_RPM)
527                 return -EINVAL;
528         id = fcu_fans[fan_index].id; 
529         if (id == FCU_FAN_ABSENT_ID)
530                 return -EINVAL;
531
532         min = 2400 >> fcu_rpm_shift;
533         max = 56000 >> fcu_rpm_shift;
534
535         if (rpm < min)
536                 rpm = min;
537         else if (rpm > max)
538                 rpm = max;
539         buf[0] = rpm >> (8 - fcu_rpm_shift);
540         buf[1] = rpm << fcu_rpm_shift;
541         rc = fan_write_reg(0x10 + (id * 2), buf, 2);
542         if (rc < 0)
543                 return -EIO;
544         return 0;
545 }
546
547 static int get_rpm_fan(int fan_index, int programmed)
548 {
549         unsigned char failure;
550         unsigned char active;
551         unsigned char buf[2];
552         int rc, id, reg_base;
553
554         if (fcu_fans[fan_index].type != FCU_FAN_RPM)
555                 return -EINVAL;
556         id = fcu_fans[fan_index].id; 
557         if (id == FCU_FAN_ABSENT_ID)
558                 return -EINVAL;
559
560         rc = fan_read_reg(0xb, &failure, 1);
561         if (rc != 1)
562                 return -EIO;
563         if ((failure & (1 << id)) != 0)
564                 return -EFAULT;
565         rc = fan_read_reg(0xd, &active, 1);
566         if (rc != 1)
567                 return -EIO;
568         if ((active & (1 << id)) == 0)
569                 return -ENXIO;
570
571         /* Programmed value or real current speed */
572         reg_base = programmed ? 0x10 : 0x11;
573         rc = fan_read_reg(reg_base + (id * 2), buf, 2);
574         if (rc != 2)
575                 return -EIO;
576
577         return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
578 }
579
580 static int set_pwm_fan(int fan_index, int pwm)
581 {
582         unsigned char buf[2];
583         int rc, id;
584
585         if (fcu_fans[fan_index].type != FCU_FAN_PWM)
586                 return -EINVAL;
587         id = fcu_fans[fan_index].id; 
588         if (id == FCU_FAN_ABSENT_ID)
589                 return -EINVAL;
590
591         if (pwm < 10)
592                 pwm = 10;
593         else if (pwm > 100)
594                 pwm = 100;
595         pwm = (pwm * 2559) / 1000;
596         buf[0] = pwm;
597         rc = fan_write_reg(0x30 + (id * 2), buf, 1);
598         if (rc < 0)
599                 return rc;
600         return 0;
601 }
602
603 static int get_pwm_fan(int fan_index)
604 {
605         unsigned char failure;
606         unsigned char active;
607         unsigned char buf[2];
608         int rc, id;
609
610         if (fcu_fans[fan_index].type != FCU_FAN_PWM)
611                 return -EINVAL;
612         id = fcu_fans[fan_index].id; 
613         if (id == FCU_FAN_ABSENT_ID)
614                 return -EINVAL;
615
616         rc = fan_read_reg(0x2b, &failure, 1);
617         if (rc != 1)
618                 return -EIO;
619         if ((failure & (1 << id)) != 0)
620                 return -EFAULT;
621         rc = fan_read_reg(0x2d, &active, 1);
622         if (rc != 1)
623                 return -EIO;
624         if ((active & (1 << id)) == 0)
625                 return -ENXIO;
626
627         /* Programmed value or real current speed */
628         rc = fan_read_reg(0x30 + (id * 2), buf, 1);
629         if (rc != 1)
630                 return -EIO;
631
632         return (buf[0] * 1000) / 2559;
633 }
634
635 static void tickle_fcu(void)
636 {
637         int pwm;
638
639         pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
640
641         DBG("FCU Tickle, slots fan is: %d\n", pwm);
642         if (pwm < 0)
643                 pwm = 100;
644
645         if (!rackmac) {
646                 pwm = SLOTS_FAN_DEFAULT_PWM;
647         } else if (pwm < SLOTS_PID_OUTPUT_MIN)
648                 pwm = SLOTS_PID_OUTPUT_MIN;
649
650         /* That is hopefully enough to make the FCU happy */
651         set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
652 }
653
654
655 /*
656  * Utility routine to read the CPU calibration EEPROM data
657  * from the device-tree
658  */
659 static int read_eeprom(int cpu, struct mpu_data *out)
660 {
661         struct device_node *np;
662         char nodename[64];
663         const u8 *data;
664         int len;
665
666         /* prom.c routine for finding a node by path is a bit brain dead
667          * and requires exact @xxx unit numbers. This is a bit ugly but
668          * will work for these machines
669          */
670         sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
671         np = of_find_node_by_path(nodename);
672         if (np == NULL) {
673                 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
674                 return -ENODEV;
675         }
676         data = of_get_property(np, "cpuid", &len);
677         if (data == NULL) {
678                 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
679                 of_node_put(np);
680                 return -ENODEV;
681         }
682         memcpy(out, data, sizeof(struct mpu_data));
683         of_node_put(np);
684         
685         return 0;
686 }
687
688 static void fetch_cpu_pumps_minmax(void)
689 {
690         struct cpu_pid_state *state0 = &cpu_state[0];
691         struct cpu_pid_state *state1 = &cpu_state[1];
692         u16 pump_min = 0, pump_max = 0xffff;
693         u16 tmp[4];
694
695         /* Try to fetch pumps min/max infos from eeprom */
696
697         memcpy(&tmp, &state0->mpu.processor_part_num, 8);
698         if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
699                 pump_min = max(pump_min, tmp[0]);
700                 pump_max = min(pump_max, tmp[1]);
701         }
702         if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
703                 pump_min = max(pump_min, tmp[2]);
704                 pump_max = min(pump_max, tmp[3]);
705         }
706
707         /* Double check the values, this _IS_ needed as the EEPROM on
708          * some dual 2.5Ghz G5s seem, at least, to have both min & max
709          * same to the same value ... (grrrr)
710          */
711         if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
712                 pump_min = CPU_PUMP_OUTPUT_MIN;
713                 pump_max = CPU_PUMP_OUTPUT_MAX;
714         }
715
716         state0->pump_min = state1->pump_min = pump_min;
717         state0->pump_max = state1->pump_max = pump_max;
718 }
719
720 /* 
721  * Now, unfortunately, sysfs doesn't give us a nice void * we could
722  * pass around to the attribute functions, so we don't really have
723  * choice but implement a bunch of them...
724  *
725  * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
726  * the input twice... I accept patches :)
727  */
728 #define BUILD_SHOW_FUNC_FIX(name, data)                         \
729 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
730 {                                                               \
731         ssize_t r;                                              \
732         down(&driver_lock);                                     \
733         r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));        \
734         up(&driver_lock);                                       \
735         return r;                                               \
736 }
737 #define BUILD_SHOW_FUNC_INT(name, data)                         \
738 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
739 {                                                               \
740         return sprintf(buf, "%d", data);                        \
741 }
742
743 BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
744 BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
745 BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
746 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
747 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)
748
749 BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
750 BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
751 BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
752 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
753 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)
754
755 BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
756 BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
757
758 BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
759 BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
760
761 BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
762 BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
763
764 BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
765
766 static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
767 static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
768 static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
769 static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
770 static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
771
772 static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
773 static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
774 static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
775 static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
776 static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
777
778 static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
779 static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
780
781 static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
782 static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
783
784 static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
785 static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
786
787 static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
788
789 /*
790  * CPUs fans control loop
791  */
792
793 static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
794 {
795         s32 ltemp, volts, amps;
796         int index, rc = 0;
797
798         /* Default (in case of error) */
799         *temp = state->cur_temp;
800         *power = state->cur_power;
801
802         if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
803                 index = (state->index == 0) ?
804                         CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
805         else
806                 index = (state->index == 0) ?
807                         CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
808
809         /* Read current fan status */
810         rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
811         if (rc < 0) {
812                 /* XXX What do we do now ? Nothing for now, keep old value, but
813                  * return error upstream
814                  */
815                 DBG("  cpu %d, fan reading error !\n", state->index);
816         } else {
817                 state->rpm = rc;
818                 DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
819         }
820
821         /* Get some sensor readings and scale it */
822         ltemp = read_smon_adc(state, 1);
823         if (ltemp == -1) {
824                 /* XXX What do we do now ? */
825                 state->overtemp++;
826                 if (rc == 0)
827                         rc = -EIO;
828                 DBG("  cpu %d, temp reading error !\n", state->index);
829         } else {
830                 /* Fixup temperature according to diode calibration
831                  */
832                 DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
833                     state->index,
834                     ltemp, state->mpu.mdiode, state->mpu.bdiode);
835                 *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
836                 state->last_temp = *temp;
837                 DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
838         }
839
840         /*
841          * Read voltage & current and calculate power
842          */
843         volts = read_smon_adc(state, 3);
844         amps = read_smon_adc(state, 4);
845
846         /* Scale voltage and current raw sensor values according to fixed scales
847          * obtained in Darwin and calculate power from I and V
848          */
849         volts *= ADC_CPU_VOLTAGE_SCALE;
850         amps *= ADC_CPU_CURRENT_SCALE;
851         *power = (((u64)volts) * ((u64)amps)) >> 16;
852         state->voltage = volts;
853         state->current_a = amps;
854         state->last_power = *power;
855
856         DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
857             state->index, FIX32TOPRINT(state->current_a),
858             FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
859
860         return 0;
861 }
862
863 static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
864 {
865         s32 power_target, integral, derivative, proportional, adj_in_target, sval;
866         s64 integ_p, deriv_p, prop_p, sum; 
867         int i;
868
869         /* Calculate power target value (could be done once for all)
870          * and convert to a 16.16 fp number
871          */
872         power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
873         DBG("  power target: %d.%03d, error: %d.%03d\n",
874             FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
875
876         /* Store temperature and power in history array */
877         state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
878         state->temp_history[state->cur_temp] = temp;
879         state->cur_power = (state->cur_power + 1) % state->count_power;
880         state->power_history[state->cur_power] = power;
881         state->error_history[state->cur_power] = power_target - power;
882         
883         /* If first loop, fill the history table */
884         if (state->first) {
885                 for (i = 0; i < (state->count_power - 1); i++) {
886                         state->cur_power = (state->cur_power + 1) % state->count_power;
887                         state->power_history[state->cur_power] = power;
888                         state->error_history[state->cur_power] = power_target - power;
889                 }
890                 for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
891                         state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
892                         state->temp_history[state->cur_temp] = temp;                    
893                 }
894                 state->first = 0;
895         }
896
897         /* Calculate the integral term normally based on the "power" values */
898         sum = 0;
899         integral = 0;
900         for (i = 0; i < state->count_power; i++)
901                 integral += state->error_history[i];
902         integral *= CPU_PID_INTERVAL;
903         DBG("  integral: %08x\n", integral);
904
905         /* Calculate the adjusted input (sense value).
906          *   G_r is 12.20
907          *   integ is 16.16
908          *   so the result is 28.36
909          *
910          * input target is mpu.ttarget, input max is mpu.tmax
911          */
912         integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
913         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
914         sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
915         adj_in_target = (state->mpu.ttarget << 16);
916         if (adj_in_target > sval)
917                 adj_in_target = sval;
918         DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
919             state->mpu.ttarget);
920
921         /* Calculate the derivative term */
922         derivative = state->temp_history[state->cur_temp] -
923                 state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
924                                     % CPU_TEMP_HISTORY_SIZE];
925         derivative /= CPU_PID_INTERVAL;
926         deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
927         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
928         sum += deriv_p;
929
930         /* Calculate the proportional term */
931         proportional = temp - adj_in_target;
932         prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
933         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
934         sum += prop_p;
935
936         /* Scale sum */
937         sum >>= 36;
938
939         DBG("   sum: %d\n", (int)sum);
940         state->rpm += (s32)sum;
941 }
942
943 static void do_monitor_cpu_combined(void)
944 {
945         struct cpu_pid_state *state0 = &cpu_state[0];
946         struct cpu_pid_state *state1 = &cpu_state[1];
947         s32 temp0, power0, temp1, power1;
948         s32 temp_combi, power_combi;
949         int rc, intake, pump;
950
951         rc = do_read_one_cpu_values(state0, &temp0, &power0);
952         if (rc < 0) {
953                 /* XXX What do we do now ? */
954         }
955         state1->overtemp = 0;
956         rc = do_read_one_cpu_values(state1, &temp1, &power1);
957         if (rc < 0) {
958                 /* XXX What do we do now ? */
959         }
960         if (state1->overtemp)
961                 state0->overtemp++;
962
963         temp_combi = max(temp0, temp1);
964         power_combi = max(power0, power1);
965
966         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
967          * full blown immediately and try to trigger a shutdown
968          */
969         if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
970                 printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
971                        temp_combi >> 16);
972                 state0->overtemp += CPU_MAX_OVERTEMP / 4;
973         } else if (temp_combi > (state0->mpu.tmax << 16))
974                 state0->overtemp++;
975         else
976                 state0->overtemp = 0;
977         if (state0->overtemp >= CPU_MAX_OVERTEMP)
978                 critical_state = 1;
979         if (state0->overtemp > 0) {
980                 state0->rpm = state0->mpu.rmaxn_exhaust_fan;
981                 state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
982                 pump = state0->pump_max;
983                 goto do_set_fans;
984         }
985
986         /* Do the PID */
987         do_cpu_pid(state0, temp_combi, power_combi);
988
989         /* Range check */
990         state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
991         state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
992
993         /* Calculate intake fan speed */
994         intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
995         intake = max(intake, (int)state0->mpu.rminn_intake_fan);
996         intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
997         state0->intake_rpm = intake;
998
999         /* Calculate pump speed */
1000         pump = (state0->rpm * state0->pump_max) /
1001                 state0->mpu.rmaxn_exhaust_fan;
1002         pump = min(pump, state0->pump_max);
1003         pump = max(pump, state0->pump_min);
1004         
1005  do_set_fans:
1006         /* We copy values from state 0 to state 1 for /sysfs */
1007         state1->rpm = state0->rpm;
1008         state1->intake_rpm = state0->intake_rpm;
1009
1010         DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
1011             state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
1012
1013         /* We should check for errors, shouldn't we ? But then, what
1014          * do we do once the error occurs ? For FCU notified fan
1015          * failures (-EFAULT) we probably want to notify userland
1016          * some way...
1017          */
1018         set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1019         set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1020         set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1021         set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1022
1023         if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1024                 set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
1025         if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1026                 set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
1027 }
1028
1029 static void do_monitor_cpu_split(struct cpu_pid_state *state)
1030 {
1031         s32 temp, power;
1032         int rc, intake;
1033
1034         /* Read current fan status */
1035         rc = do_read_one_cpu_values(state, &temp, &power);
1036         if (rc < 0) {
1037                 /* XXX What do we do now ? */
1038         }
1039
1040         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1041          * full blown immediately and try to trigger a shutdown
1042          */
1043         if (temp >= ((state->mpu.tmax + 8) << 16)) {
1044                 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1045                        " (%d) !\n",
1046                        state->index, temp >> 16);
1047                 state->overtemp += CPU_MAX_OVERTEMP / 4;
1048         } else if (temp > (state->mpu.tmax << 16))
1049                 state->overtemp++;
1050         else
1051                 state->overtemp = 0;
1052         if (state->overtemp >= CPU_MAX_OVERTEMP)
1053                 critical_state = 1;
1054         if (state->overtemp > 0) {
1055                 state->rpm = state->mpu.rmaxn_exhaust_fan;
1056                 state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1057                 goto do_set_fans;
1058         }
1059
1060         /* Do the PID */
1061         do_cpu_pid(state, temp, power);
1062
1063         /* Range check */
1064         state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1065         state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1066
1067         /* Calculate intake fan */
1068         intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1069         intake = max(intake, (int)state->mpu.rminn_intake_fan);
1070         intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1071         state->intake_rpm = intake;
1072
1073  do_set_fans:
1074         DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1075             state->index, (int)state->rpm, intake, state->overtemp);
1076
1077         /* We should check for errors, shouldn't we ? But then, what
1078          * do we do once the error occurs ? For FCU notified fan
1079          * failures (-EFAULT) we probably want to notify userland
1080          * some way...
1081          */
1082         if (state->index == 0) {
1083                 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1084                 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1085         } else {
1086                 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1087                 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1088         }
1089 }
1090
1091 static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1092 {
1093         s32 temp, power, fan_min;
1094         int rc;
1095
1096         /* Read current fan status */
1097         rc = do_read_one_cpu_values(state, &temp, &power);
1098         if (rc < 0) {
1099                 /* XXX What do we do now ? */
1100         }
1101
1102         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1103          * full blown immediately and try to trigger a shutdown
1104          */
1105         if (temp >= ((state->mpu.tmax + 8) << 16)) {
1106                 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1107                        " (%d) !\n",
1108                        state->index, temp >> 16);
1109                 state->overtemp = CPU_MAX_OVERTEMP / 4;
1110         } else if (temp > (state->mpu.tmax << 16))
1111                 state->overtemp++;
1112         else
1113                 state->overtemp = 0;
1114         if (state->overtemp >= CPU_MAX_OVERTEMP)
1115                 critical_state = 1;
1116         if (state->overtemp > 0) {
1117                 state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1118                 goto do_set_fans;
1119         }
1120
1121         /* Do the PID */
1122         do_cpu_pid(state, temp, power);
1123
1124         /* Check clamp from dimms */
1125         fan_min = dimm_output_clamp;
1126         fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1127
1128         DBG(" CPU min mpu = %d, min dimm = %d\n",
1129             state->mpu.rminn_intake_fan, dimm_output_clamp);
1130
1131         state->rpm = max(state->rpm, (int)fan_min);
1132         state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1133         state->intake_rpm = state->rpm;
1134
1135  do_set_fans:
1136         DBG("** CPU %d RPM: %d overtemp: %d\n",
1137             state->index, (int)state->rpm, state->overtemp);
1138
1139         /* We should check for errors, shouldn't we ? But then, what
1140          * do we do once the error occurs ? For FCU notified fan
1141          * failures (-EFAULT) we probably want to notify userland
1142          * some way...
1143          */
1144         if (state->index == 0) {
1145                 set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1146                 set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1147                 set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1148         } else {
1149                 set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1150                 set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1151                 set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1152         }
1153 }
1154
1155 /*
1156  * Initialize the state structure for one CPU control loop
1157  */
1158 static int init_cpu_state(struct cpu_pid_state *state, int index)
1159 {
1160         state->index = index;
1161         state->first = 1;
1162         state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1163         state->overtemp = 0;
1164         state->adc_config = 0x00;
1165
1166
1167         if (index == 0)
1168                 state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1169         else if (index == 1)
1170                 state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1171         if (state->monitor == NULL)
1172                 goto fail;
1173
1174         if (read_eeprom(index, &state->mpu))
1175                 goto fail;
1176
1177         state->count_power = state->mpu.tguardband;
1178         if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1179                 printk(KERN_WARNING "Warning ! too many power history slots\n");
1180                 state->count_power = CPU_POWER_HISTORY_SIZE;
1181         }
1182         DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1183
1184         if (index == 0) {
1185                 device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1186                 device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1187                 device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1188                 device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1189                 device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1190         } else {
1191                 device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1192                 device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1193                 device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1194                 device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1195                 device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1196         }
1197
1198         return 0;
1199  fail:
1200         if (state->monitor)
1201                 detach_i2c_chip(state->monitor);
1202         state->monitor = NULL;
1203         
1204         return -ENODEV;
1205 }
1206
1207 /*
1208  * Dispose of the state data for one CPU control loop
1209  */
1210 static void dispose_cpu_state(struct cpu_pid_state *state)
1211 {
1212         if (state->monitor == NULL)
1213                 return;
1214
1215         if (state->index == 0) {
1216                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1217                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1218                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1219                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1220                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1221         } else {
1222                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1223                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1224                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1225                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1226                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1227         }
1228
1229         detach_i2c_chip(state->monitor);
1230         state->monitor = NULL;
1231 }
1232
1233 /*
1234  * Motherboard backside & U3 heatsink fan control loop
1235  */
1236 static void do_monitor_backside(struct backside_pid_state *state)
1237 {
1238         s32 temp, integral, derivative, fan_min;
1239         s64 integ_p, deriv_p, prop_p, sum; 
1240         int i, rc;
1241
1242         if (--state->ticks != 0)
1243                 return;
1244         state->ticks = backside_params.interval;
1245
1246         DBG("backside:\n");
1247
1248         /* Check fan status */
1249         rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1250         if (rc < 0) {
1251                 printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1252                 /* XXX What do we do now ? */
1253         } else
1254                 state->pwm = rc;
1255         DBG("  current pwm: %d\n", state->pwm);
1256
1257         /* Get some sensor readings */
1258         temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1259         state->last_temp = temp;
1260         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1261             FIX32TOPRINT(backside_params.input_target));
1262
1263         /* Store temperature and error in history array */
1264         state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1265         state->sample_history[state->cur_sample] = temp;
1266         state->error_history[state->cur_sample] = temp - backside_params.input_target;
1267         
1268         /* If first loop, fill the history table */
1269         if (state->first) {
1270                 for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1271                         state->cur_sample = (state->cur_sample + 1) %
1272                                 BACKSIDE_PID_HISTORY_SIZE;
1273                         state->sample_history[state->cur_sample] = temp;
1274                         state->error_history[state->cur_sample] =
1275                                 temp - backside_params.input_target;
1276                 }
1277                 state->first = 0;
1278         }
1279
1280         /* Calculate the integral term */
1281         sum = 0;
1282         integral = 0;
1283         for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1284                 integral += state->error_history[i];
1285         integral *= backside_params.interval;
1286         DBG("  integral: %08x\n", integral);
1287         integ_p = ((s64)backside_params.G_r) * (s64)integral;
1288         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1289         sum += integ_p;
1290
1291         /* Calculate the derivative term */
1292         derivative = state->error_history[state->cur_sample] -
1293                 state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1294                                     % BACKSIDE_PID_HISTORY_SIZE];
1295         derivative /= backside_params.interval;
1296         deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1297         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1298         sum += deriv_p;
1299
1300         /* Calculate the proportional term */
1301         prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1302         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1303         sum += prop_p;
1304
1305         /* Scale sum */
1306         sum >>= 36;
1307
1308         DBG("   sum: %d\n", (int)sum);
1309         if (backside_params.additive)
1310                 state->pwm += (s32)sum;
1311         else
1312                 state->pwm = sum;
1313
1314         /* Check for clamp */
1315         fan_min = (dimm_output_clamp * 100) / 14000;
1316         fan_min = max(fan_min, backside_params.output_min);
1317
1318         state->pwm = max(state->pwm, fan_min);
1319         state->pwm = min(state->pwm, backside_params.output_max);
1320
1321         DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1322         set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1323 }
1324
1325 /*
1326  * Initialize the state structure for the backside fan control loop
1327  */
1328 static int init_backside_state(struct backside_pid_state *state)
1329 {
1330         struct device_node *u3;
1331         int u3h = 1; /* conservative by default */
1332
1333         /*
1334          * There are different PID params for machines with U3 and machines
1335          * with U3H, pick the right ones now
1336          */
1337         u3 = of_find_node_by_path("/u3@0,f8000000");
1338         if (u3 != NULL) {
1339                 const u32 *vers = of_get_property(u3, "device-rev", NULL);
1340                 if (vers)
1341                         if (((*vers) & 0x3f) < 0x34)
1342                                 u3h = 0;
1343                 of_node_put(u3);
1344         }
1345
1346         if (rackmac) {
1347                 backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1348                 backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1349                 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1350                 backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1351                 backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1352                 backside_params.G_r = BACKSIDE_PID_G_r;
1353                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1354                 backside_params.additive = 0;
1355         } else if (u3h) {
1356                 backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1357                 backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1358                 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1359                 backside_params.interval = BACKSIDE_PID_INTERVAL;
1360                 backside_params.G_p = BACKSIDE_PID_G_p;
1361                 backside_params.G_r = BACKSIDE_PID_G_r;
1362                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1363                 backside_params.additive = 1;
1364         } else {
1365                 backside_params.G_d = BACKSIDE_PID_U3_G_d;
1366                 backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1367                 backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1368                 backside_params.interval = BACKSIDE_PID_INTERVAL;
1369                 backside_params.G_p = BACKSIDE_PID_G_p;
1370                 backside_params.G_r = BACKSIDE_PID_G_r;
1371                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1372                 backside_params.additive = 1;
1373         }
1374
1375         state->ticks = 1;
1376         state->first = 1;
1377         state->pwm = 50;
1378
1379         state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1380         if (state->monitor == NULL)
1381                 return -ENODEV;
1382
1383         device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1384         device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1385
1386         return 0;
1387 }
1388
1389 /*
1390  * Dispose of the state data for the backside control loop
1391  */
1392 static void dispose_backside_state(struct backside_pid_state *state)
1393 {
1394         if (state->monitor == NULL)
1395                 return;
1396
1397         device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1398         device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1399
1400         detach_i2c_chip(state->monitor);
1401         state->monitor = NULL;
1402 }
1403  
1404 /*
1405  * Drives bay fan control loop
1406  */
1407 static void do_monitor_drives(struct drives_pid_state *state)
1408 {
1409         s32 temp, integral, derivative;
1410         s64 integ_p, deriv_p, prop_p, sum; 
1411         int i, rc;
1412
1413         if (--state->ticks != 0)
1414                 return;
1415         state->ticks = DRIVES_PID_INTERVAL;
1416
1417         DBG("drives:\n");
1418
1419         /* Check fan status */
1420         rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1421         if (rc < 0) {
1422                 printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1423                 /* XXX What do we do now ? */
1424         } else
1425                 state->rpm = rc;
1426         DBG("  current rpm: %d\n", state->rpm);
1427
1428         /* Get some sensor readings */
1429         temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1430                                                     DS1775_TEMP)) << 8;
1431         state->last_temp = temp;
1432         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1433             FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1434
1435         /* Store temperature and error in history array */
1436         state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1437         state->sample_history[state->cur_sample] = temp;
1438         state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1439         
1440         /* If first loop, fill the history table */
1441         if (state->first) {
1442                 for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1443                         state->cur_sample = (state->cur_sample + 1) %
1444                                 DRIVES_PID_HISTORY_SIZE;
1445                         state->sample_history[state->cur_sample] = temp;
1446                         state->error_history[state->cur_sample] =
1447                                 temp - DRIVES_PID_INPUT_TARGET;
1448                 }
1449                 state->first = 0;
1450         }
1451
1452         /* Calculate the integral term */
1453         sum = 0;
1454         integral = 0;
1455         for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1456                 integral += state->error_history[i];
1457         integral *= DRIVES_PID_INTERVAL;
1458         DBG("  integral: %08x\n", integral);
1459         integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1460         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1461         sum += integ_p;
1462
1463         /* Calculate the derivative term */
1464         derivative = state->error_history[state->cur_sample] -
1465                 state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1466                                     % DRIVES_PID_HISTORY_SIZE];
1467         derivative /= DRIVES_PID_INTERVAL;
1468         deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1469         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1470         sum += deriv_p;
1471
1472         /* Calculate the proportional term */
1473         prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1474         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1475         sum += prop_p;
1476
1477         /* Scale sum */
1478         sum >>= 36;
1479
1480         DBG("   sum: %d\n", (int)sum);
1481         state->rpm += (s32)sum;
1482
1483         state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1484         state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1485
1486         DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1487         set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1488 }
1489
1490 /*
1491  * Initialize the state structure for the drives bay fan control loop
1492  */
1493 static int init_drives_state(struct drives_pid_state *state)
1494 {
1495         state->ticks = 1;
1496         state->first = 1;
1497         state->rpm = 1000;
1498
1499         state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1500         if (state->monitor == NULL)
1501                 return -ENODEV;
1502
1503         device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1504         device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1505
1506         return 0;
1507 }
1508
1509 /*
1510  * Dispose of the state data for the drives control loop
1511  */
1512 static void dispose_drives_state(struct drives_pid_state *state)
1513 {
1514         if (state->monitor == NULL)
1515                 return;
1516
1517         device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1518         device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1519
1520         detach_i2c_chip(state->monitor);
1521         state->monitor = NULL;
1522 }
1523
1524 /*
1525  * DIMMs temp control loop
1526  */
1527 static void do_monitor_dimms(struct dimm_pid_state *state)
1528 {
1529         s32 temp, integral, derivative, fan_min;
1530         s64 integ_p, deriv_p, prop_p, sum;
1531         int i;
1532
1533         if (--state->ticks != 0)
1534                 return;
1535         state->ticks = DIMM_PID_INTERVAL;
1536
1537         DBG("DIMM:\n");
1538
1539         DBG("  current value: %d\n", state->output);
1540
1541         temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1542         if (temp < 0)
1543                 return;
1544         temp <<= 16;
1545         state->last_temp = temp;
1546         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1547             FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1548
1549         /* Store temperature and error in history array */
1550         state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1551         state->sample_history[state->cur_sample] = temp;
1552         state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1553
1554         /* If first loop, fill the history table */
1555         if (state->first) {
1556                 for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1557                         state->cur_sample = (state->cur_sample + 1) %
1558                                 DIMM_PID_HISTORY_SIZE;
1559                         state->sample_history[state->cur_sample] = temp;
1560                         state->error_history[state->cur_sample] =
1561                                 temp - DIMM_PID_INPUT_TARGET;
1562                 }
1563                 state->first = 0;
1564         }
1565
1566         /* Calculate the integral term */
1567         sum = 0;
1568         integral = 0;
1569         for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1570                 integral += state->error_history[i];
1571         integral *= DIMM_PID_INTERVAL;
1572         DBG("  integral: %08x\n", integral);
1573         integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1574         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1575         sum += integ_p;
1576
1577         /* Calculate the derivative term */
1578         derivative = state->error_history[state->cur_sample] -
1579                 state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1580                                     % DIMM_PID_HISTORY_SIZE];
1581         derivative /= DIMM_PID_INTERVAL;
1582         deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1583         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1584         sum += deriv_p;
1585
1586         /* Calculate the proportional term */
1587         prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1588         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1589         sum += prop_p;
1590
1591         /* Scale sum */
1592         sum >>= 36;
1593
1594         DBG("   sum: %d\n", (int)sum);
1595         state->output = (s32)sum;
1596         state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1597         state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1598         dimm_output_clamp = state->output;
1599
1600         DBG("** DIMM clamp value: %d\n", (int)state->output);
1601
1602         /* Backside PID is only every 5 seconds, force backside fan clamping now */
1603         fan_min = (dimm_output_clamp * 100) / 14000;
1604         fan_min = max(fan_min, backside_params.output_min);
1605         if (backside_state.pwm < fan_min) {
1606                 backside_state.pwm = fan_min;
1607                 DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
1608                 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1609         }
1610 }
1611
1612 /*
1613  * Initialize the state structure for the DIMM temp control loop
1614  */
1615 static int init_dimms_state(struct dimm_pid_state *state)
1616 {
1617         state->ticks = 1;
1618         state->first = 1;
1619         state->output = 4000;
1620
1621         state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1622         if (state->monitor == NULL)
1623                 return -ENODEV;
1624
1625         device_create_file(&of_dev->dev, &dev_attr_dimms_temperature);
1626
1627         return 0;
1628 }
1629
1630 /*
1631  * Dispose of the state data for the DIMM control loop
1632  */
1633 static void dispose_dimms_state(struct dimm_pid_state *state)
1634 {
1635         if (state->monitor == NULL)
1636                 return;
1637
1638         device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1639
1640         detach_i2c_chip(state->monitor);
1641         state->monitor = NULL;
1642 }
1643
1644 /*
1645  * Slots fan control loop
1646  */
1647 static void do_monitor_slots(struct slots_pid_state *state)
1648 {
1649         s32 temp, integral, derivative;
1650         s64 integ_p, deriv_p, prop_p, sum;
1651         int i, rc;
1652
1653         if (--state->ticks != 0)
1654                 return;
1655         state->ticks = SLOTS_PID_INTERVAL;
1656
1657         DBG("slots:\n");
1658
1659         /* Check fan status */
1660         rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
1661         if (rc < 0) {
1662                 printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
1663                 /* XXX What do we do now ? */
1664         } else
1665                 state->pwm = rc;
1666         DBG("  current pwm: %d\n", state->pwm);
1667
1668         /* Get some sensor readings */
1669         temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1670                                                     DS1775_TEMP)) << 8;
1671         state->last_temp = temp;
1672         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1673             FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
1674
1675         /* Store temperature and error in history array */
1676         state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
1677         state->sample_history[state->cur_sample] = temp;
1678         state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
1679
1680         /* If first loop, fill the history table */
1681         if (state->first) {
1682                 for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
1683                         state->cur_sample = (state->cur_sample + 1) %
1684                                 SLOTS_PID_HISTORY_SIZE;
1685                         state->sample_history[state->cur_sample] = temp;
1686                         state->error_history[state->cur_sample] =
1687                                 temp - SLOTS_PID_INPUT_TARGET;
1688                 }
1689                 state->first = 0;
1690         }
1691
1692         /* Calculate the integral term */
1693         sum = 0;
1694         integral = 0;
1695         for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
1696                 integral += state->error_history[i];
1697         integral *= SLOTS_PID_INTERVAL;
1698         DBG("  integral: %08x\n", integral);
1699         integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
1700         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1701         sum += integ_p;
1702
1703         /* Calculate the derivative term */
1704         derivative = state->error_history[state->cur_sample] -
1705                 state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
1706                                     % SLOTS_PID_HISTORY_SIZE];
1707         derivative /= SLOTS_PID_INTERVAL;
1708         deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
1709         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1710         sum += deriv_p;
1711
1712         /* Calculate the proportional term */
1713         prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1714         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1715         sum += prop_p;
1716
1717         /* Scale sum */
1718         sum >>= 36;
1719
1720         DBG("   sum: %d\n", (int)sum);
1721         state->pwm = (s32)sum;
1722
1723         state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
1724         state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
1725
1726         DBG("** DRIVES PWM: %d\n", (int)state->pwm);
1727         set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
1728 }
1729
1730 /*
1731  * Initialize the state structure for the slots bay fan control loop
1732  */
1733 static int init_slots_state(struct slots_pid_state *state)
1734 {
1735         state->ticks = 1;
1736         state->first = 1;
1737         state->pwm = 50;
1738
1739         state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
1740         if (state->monitor == NULL)
1741                 return -ENODEV;
1742
1743         device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
1744         device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1745
1746         return 0;
1747 }
1748
1749 /*
1750  * Dispose of the state data for the slots control loop
1751  */
1752 static void dispose_slots_state(struct slots_pid_state *state)
1753 {
1754         if (state->monitor == NULL)
1755                 return;
1756
1757         device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
1758         device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1759
1760         detach_i2c_chip(state->monitor);
1761         state->monitor = NULL;
1762 }
1763
1764
1765 static int call_critical_overtemp(void)
1766 {
1767         char *argv[] = { critical_overtemp_path, NULL };
1768         static char *envp[] = { "HOME=/",
1769                                 "TERM=linux",
1770                                 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1771                                 NULL };
1772
1773         return call_usermodehelper(critical_overtemp_path,
1774                                    argv, envp, UMH_WAIT_EXEC);
1775 }
1776
1777
1778 /*
1779  * Here's the kernel thread that calls the various control loops
1780  */
1781 static int main_control_loop(void *x)
1782 {
1783         daemonize("kfand");
1784
1785         DBG("main_control_loop started\n");
1786
1787         down(&driver_lock);
1788
1789         if (start_fcu() < 0) {
1790                 printk(KERN_ERR "kfand: failed to start FCU\n");
1791                 up(&driver_lock);
1792                 goto out;
1793         }
1794
1795         /* Set the PCI fan once for now on non-RackMac */
1796         if (!rackmac)
1797                 set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1798
1799         /* Initialize ADCs */
1800         initialize_adc(&cpu_state[0]);
1801         if (cpu_state[1].monitor != NULL)
1802                 initialize_adc(&cpu_state[1]);
1803
1804         fcu_tickle_ticks = FCU_TICKLE_TICKS;
1805
1806         up(&driver_lock);
1807
1808         while (state == state_attached) {
1809                 unsigned long elapsed, start;
1810
1811                 start = jiffies;
1812
1813                 down(&driver_lock);
1814
1815                 /* Tickle the FCU just in case */
1816                 if (--fcu_tickle_ticks < 0) {
1817                         fcu_tickle_ticks = FCU_TICKLE_TICKS;
1818                         tickle_fcu();
1819                 }
1820
1821                 /* First, we always calculate the new DIMMs state on an Xserve */
1822                 if (rackmac)
1823                         do_monitor_dimms(&dimms_state);
1824
1825                 /* Then, the CPUs */
1826                 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1827                         do_monitor_cpu_combined();
1828                 else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1829                         do_monitor_cpu_rack(&cpu_state[0]);
1830                         if (cpu_state[1].monitor != NULL)
1831                                 do_monitor_cpu_rack(&cpu_state[1]);
1832                         // better deal with UP
1833                 } else {
1834                         do_monitor_cpu_split(&cpu_state[0]);
1835                         if (cpu_state[1].monitor != NULL)
1836                                 do_monitor_cpu_split(&cpu_state[1]);
1837                         // better deal with UP
1838                 }
1839                 /* Then, the rest */
1840                 do_monitor_backside(&backside_state);
1841                 if (rackmac)
1842                         do_monitor_slots(&slots_state);
1843                 else
1844                         do_monitor_drives(&drives_state);
1845                 up(&driver_lock);
1846
1847                 if (critical_state == 1) {
1848                         printk(KERN_WARNING "Temperature control detected a critical condition\n");
1849                         printk(KERN_WARNING "Attempting to shut down...\n");
1850                         if (call_critical_overtemp()) {
1851                                 printk(KERN_WARNING "Can't call %s, power off now!\n",
1852                                        critical_overtemp_path);
1853                                 machine_power_off();
1854                         }
1855                 }
1856                 if (critical_state > 0)
1857                         critical_state++;
1858                 if (critical_state > MAX_CRITICAL_STATE) {
1859                         printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1860                         machine_power_off();
1861                 }
1862
1863                 // FIXME: Deal with signals
1864                 elapsed = jiffies - start;
1865                 if (elapsed < HZ)
1866                         schedule_timeout_interruptible(HZ - elapsed);
1867         }
1868
1869  out:
1870         DBG("main_control_loop ended\n");
1871
1872         ctrl_task = 0;
1873         complete_and_exit(&ctrl_complete, 0);
1874 }
1875
1876 /*
1877  * Dispose the control loops when tearing down
1878  */
1879 static void dispose_control_loops(void)
1880 {
1881         dispose_cpu_state(&cpu_state[0]);
1882         dispose_cpu_state(&cpu_state[1]);
1883         dispose_backside_state(&backside_state);
1884         dispose_drives_state(&drives_state);
1885         dispose_slots_state(&slots_state);
1886         dispose_dimms_state(&dimms_state);
1887 }
1888
1889 /*
1890  * Create the control loops. U3-0 i2c bus is up, so we can now
1891  * get to the various sensors
1892  */
1893 static int create_control_loops(void)
1894 {
1895         struct device_node *np;
1896
1897         /* Count CPUs from the device-tree, we don't care how many are
1898          * actually used by Linux
1899          */
1900         cpu_count = 0;
1901         for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1902                 cpu_count++;
1903
1904         DBG("counted %d CPUs in the device-tree\n", cpu_count);
1905
1906         /* Decide the type of PID algorithm to use based on the presence of
1907          * the pumps, though that may not be the best way, that is good enough
1908          * for now
1909          */
1910         if (rackmac)
1911                 cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1912         else if (machine_is_compatible("PowerMac7,3")
1913             && (cpu_count > 1)
1914             && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1915             && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1916                 printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1917                 cpu_pid_type = CPU_PID_TYPE_COMBINED;
1918         } else
1919                 cpu_pid_type = CPU_PID_TYPE_SPLIT;
1920
1921         /* Create control loops for everything. If any fail, everything
1922          * fails
1923          */
1924         if (init_cpu_state(&cpu_state[0], 0))
1925                 goto fail;
1926         if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1927                 fetch_cpu_pumps_minmax();
1928
1929         if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
1930                 goto fail;
1931         if (init_backside_state(&backside_state))
1932                 goto fail;
1933         if (rackmac && init_dimms_state(&dimms_state))
1934                 goto fail;
1935         if (rackmac && init_slots_state(&slots_state))
1936                 goto fail;
1937         if (!rackmac && init_drives_state(&drives_state))
1938                 goto fail;
1939
1940         DBG("all control loops up !\n");
1941
1942         return 0;
1943         
1944  fail:
1945         DBG("failure creating control loops, disposing\n");
1946
1947         dispose_control_loops();
1948
1949         return -ENODEV;
1950 }
1951
1952 /*
1953  * Start the control loops after everything is up, that is create
1954  * the thread that will make them run
1955  */
1956 static void start_control_loops(void)
1957 {
1958         init_completion(&ctrl_complete);
1959
1960         ctrl_task = kernel_thread(main_control_loop, NULL, SIGCHLD | CLONE_KERNEL);
1961 }
1962
1963 /*
1964  * Stop the control loops when tearing down
1965  */
1966 static void stop_control_loops(void)
1967 {
1968         if (ctrl_task != 0)
1969                 wait_for_completion(&ctrl_complete);
1970 }
1971
1972 /*
1973  * Attach to the i2c FCU after detecting U3-1 bus
1974  */
1975 static int attach_fcu(void)
1976 {
1977         fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1978         if (fcu == NULL)
1979                 return -ENODEV;
1980
1981         DBG("FCU attached\n");
1982
1983         return 0;
1984 }
1985
1986 /*
1987  * Detach from the i2c FCU when tearing down
1988  */
1989 static void detach_fcu(void)
1990 {
1991         if (fcu)
1992                 detach_i2c_chip(fcu);
1993         fcu = NULL;
1994 }
1995
1996 /*
1997  * Attach to the i2c controller. We probe the various chips based
1998  * on the device-tree nodes and build everything for the driver to
1999  * run, we then kick the driver monitoring thread
2000  */
2001 static int therm_pm72_attach(struct i2c_adapter *adapter)
2002 {
2003         down(&driver_lock);
2004
2005         /* Check state */
2006         if (state == state_detached)
2007                 state = state_attaching;
2008         if (state != state_attaching) {
2009                 up(&driver_lock);
2010                 return 0;
2011         }
2012
2013         /* Check if we are looking for one of these */
2014         if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
2015                 u3_0 = adapter;
2016                 DBG("found U3-0\n");
2017                 if (k2 || !rackmac)
2018                         if (create_control_loops())
2019                                 u3_0 = NULL;
2020         } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
2021                 u3_1 = adapter;
2022                 DBG("found U3-1, attaching FCU\n");
2023                 if (attach_fcu())
2024                         u3_1 = NULL;
2025         } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
2026                 k2 = adapter;
2027                 DBG("Found K2\n");
2028                 if (u3_0 && rackmac)
2029                         if (create_control_loops())
2030                                 k2 = NULL;
2031         }
2032         /* We got all we need, start control loops */
2033         if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
2034                 DBG("everything up, starting control loops\n");
2035                 state = state_attached;
2036                 start_control_loops();
2037         }
2038         up(&driver_lock);
2039
2040         return 0;
2041 }
2042
2043 /*
2044  * Called on every adapter when the driver or the i2c controller
2045  * is going away.
2046  */
2047 static int therm_pm72_detach(struct i2c_adapter *adapter)
2048 {
2049         down(&driver_lock);
2050
2051         if (state != state_detached)
2052                 state = state_detaching;
2053
2054         /* Stop control loops if any */
2055         DBG("stopping control loops\n");
2056         up(&driver_lock);
2057         stop_control_loops();
2058         down(&driver_lock);
2059
2060         if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
2061                 DBG("lost U3-0, disposing control loops\n");
2062                 dispose_control_loops();
2063                 u3_0 = NULL;
2064         }
2065         
2066         if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
2067                 DBG("lost U3-1, detaching FCU\n");
2068                 detach_fcu();
2069                 u3_1 = NULL;
2070         }
2071         if (u3_0 == NULL && u3_1 == NULL)
2072                 state = state_detached;
2073
2074         up(&driver_lock);
2075
2076         return 0;
2077 }
2078
2079 static int fan_check_loc_match(const char *loc, int fan)
2080 {
2081         char    tmp[64];
2082         char    *c, *e;
2083
2084         strlcpy(tmp, fcu_fans[fan].loc, 64);
2085
2086         c = tmp;
2087         for (;;) {
2088                 e = strchr(c, ',');
2089                 if (e)
2090                         *e = 0;
2091                 if (strcmp(loc, c) == 0)
2092                         return 1;
2093                 if (e == NULL)
2094                         break;
2095                 c = e + 1;
2096         }
2097         return 0;
2098 }
2099
2100 static void fcu_lookup_fans(struct device_node *fcu_node)
2101 {
2102         struct device_node *np = NULL;
2103         int i;
2104
2105         /* The table is filled by default with values that are suitable
2106          * for the old machines without device-tree informations. We scan
2107          * the device-tree and override those values with whatever is
2108          * there
2109          */
2110
2111         DBG("Looking up FCU controls in device-tree...\n");
2112
2113         while ((np = of_get_next_child(fcu_node, np)) != NULL) {
2114                 int type = -1;
2115                 const char *loc;
2116                 const u32 *reg;
2117
2118                 DBG(" control: %s, type: %s\n", np->name, np->type);
2119
2120                 /* Detect control type */
2121                 if (!strcmp(np->type, "fan-rpm-control") ||
2122                     !strcmp(np->type, "fan-rpm"))
2123                         type = FCU_FAN_RPM;
2124                 if (!strcmp(np->type, "fan-pwm-control") ||
2125                     !strcmp(np->type, "fan-pwm"))
2126                         type = FCU_FAN_PWM;
2127                 /* Only care about fans for now */
2128                 if (type == -1)
2129                         continue;
2130
2131                 /* Lookup for a matching location */
2132                 loc = of_get_property(np, "location", NULL);
2133                 reg = of_get_property(np, "reg", NULL);
2134                 if (loc == NULL || reg == NULL)
2135                         continue;
2136                 DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
2137
2138                 for (i = 0; i < FCU_FAN_COUNT; i++) {
2139                         int fan_id;
2140
2141                         if (!fan_check_loc_match(loc, i))
2142                                 continue;
2143                         DBG(" location match, index: %d\n", i);
2144                         fcu_fans[i].id = FCU_FAN_ABSENT_ID;
2145                         if (type != fcu_fans[i].type) {
2146                                 printk(KERN_WARNING "therm_pm72: Fan type mismatch "
2147                                        "in device-tree for %s\n", np->full_name);
2148                                 break;
2149                         }
2150                         if (type == FCU_FAN_RPM)
2151                                 fan_id = ((*reg) - 0x10) / 2;
2152                         else
2153                                 fan_id = ((*reg) - 0x30) / 2;
2154                         if (fan_id > 7) {
2155                                 printk(KERN_WARNING "therm_pm72: Can't parse "
2156                                        "fan ID in device-tree for %s\n", np->full_name);
2157                                 break;
2158                         }
2159                         DBG(" fan id -> %d, type -> %d\n", fan_id, type);
2160                         fcu_fans[i].id = fan_id;
2161                 }
2162         }
2163
2164         /* Now dump the array */
2165         printk(KERN_INFO "Detected fan controls:\n");
2166         for (i = 0; i < FCU_FAN_COUNT; i++) {
2167                 if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
2168                         continue;
2169                 printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
2170                        fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
2171                        fcu_fans[i].id, fcu_fans[i].loc);
2172         }
2173 }
2174
2175 static int fcu_of_probe(struct of_device* dev, const struct of_device_id *match)
2176 {
2177         state = state_detached;
2178
2179         /* Lookup the fans in the device tree */
2180         fcu_lookup_fans(dev->node);
2181
2182         /* Add the driver */
2183         return i2c_add_driver(&therm_pm72_driver);
2184 }
2185
2186 static int fcu_of_remove(struct of_device* dev)
2187 {
2188         i2c_del_driver(&therm_pm72_driver);
2189
2190         return 0;
2191 }
2192
2193 static struct of_device_id fcu_match[] = 
2194 {
2195         {
2196         .type           = "fcu",
2197         },
2198         {},
2199 };
2200
2201 static struct of_platform_driver fcu_of_platform_driver = 
2202 {
2203         .name           = "temperature",
2204         .match_table    = fcu_match,
2205         .probe          = fcu_of_probe,
2206         .remove         = fcu_of_remove
2207 };
2208
2209 /*
2210  * Check machine type, attach to i2c controller
2211  */
2212 static int __init therm_pm72_init(void)
2213 {
2214         struct device_node *np;
2215
2216         rackmac = machine_is_compatible("RackMac3,1");
2217
2218         if (!machine_is_compatible("PowerMac7,2") &&
2219             !machine_is_compatible("PowerMac7,3") &&
2220             !rackmac)
2221                 return -ENODEV;
2222
2223         printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);
2224
2225         np = of_find_node_by_type(NULL, "fcu");
2226         if (np == NULL) {
2227                 /* Some machines have strangely broken device-tree */
2228                 np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2229                 if (np == NULL) {
2230                             printk(KERN_ERR "Can't find FCU in device-tree !\n");
2231                             return -ENODEV;
2232                 }
2233         }
2234         of_dev = of_platform_device_create(np, "temperature", NULL);
2235         if (of_dev == NULL) {
2236                 printk(KERN_ERR "Can't register FCU platform device !\n");
2237                 return -ENODEV;
2238         }
2239
2240         of_register_platform_driver(&fcu_of_platform_driver);
2241         
2242         return 0;
2243 }
2244
2245 static void __exit therm_pm72_exit(void)
2246 {
2247         of_unregister_platform_driver(&fcu_of_platform_driver);
2248
2249         if (of_dev)
2250                 of_device_unregister(of_dev);
2251 }
2252
2253 module_init(therm_pm72_init);
2254 module_exit(therm_pm72_exit);
2255
2256 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2257 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2258 MODULE_LICENSE("GPL");
2259