]> err.no Git - linux-2.6/blob - drivers/macintosh/smu.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/torvalds/linux-2.6 into next
[linux-2.6] / drivers / macintosh / smu.c
1 /*
2  * PowerMac G5 SMU driver
3  *
4  * Copyright 2004 J. Mayer <l_indien@magic.fr>
5  * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
6  *
7  * Released under the term of the GNU GPL v2.
8  */
9
10 /*
11  * TODO:
12  *  - maybe add timeout to commands ?
13  *  - blocking version of time functions
14  *  - polling version of i2c commands (including timer that works with
15  *    interrupts off)
16  *  - maybe avoid some data copies with i2c by directly using the smu cmd
17  *    buffer and a lower level internal interface
18  *  - understand SMU -> CPU events and implement reception of them via
19  *    the userland interface
20  */
21
22 #include <linux/smp_lock.h>
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>
26 #include <linux/dmapool.h>
27 #include <linux/bootmem.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/jiffies.h>
31 #include <linux/interrupt.h>
32 #include <linux/rtc.h>
33 #include <linux/completion.h>
34 #include <linux/miscdevice.h>
35 #include <linux/delay.h>
36 #include <linux/sysdev.h>
37 #include <linux/poll.h>
38 #include <linux/mutex.h>
39 #include <linux/of_device.h>
40 #include <linux/of_platform.h>
41
42 #include <asm/byteorder.h>
43 #include <asm/io.h>
44 #include <asm/prom.h>
45 #include <asm/machdep.h>
46 #include <asm/pmac_feature.h>
47 #include <asm/smu.h>
48 #include <asm/sections.h>
49 #include <asm/abs_addr.h>
50 #include <asm/uaccess.h>
51
52 #define VERSION "0.7"
53 #define AUTHOR  "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
54
55 #undef DEBUG_SMU
56
57 #ifdef DEBUG_SMU
58 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
59 #else
60 #define DPRINTK(fmt, args...) do { } while (0)
61 #endif
62
63 /*
64  * This is the command buffer passed to the SMU hardware
65  */
66 #define SMU_MAX_DATA    254
67
68 struct smu_cmd_buf {
69         u8 cmd;
70         u8 length;
71         u8 data[SMU_MAX_DATA];
72 };
73
74 struct smu_device {
75         spinlock_t              lock;
76         struct device_node      *of_node;
77         struct of_device        *of_dev;
78         int                     doorbell;       /* doorbell gpio */
79         u32 __iomem             *db_buf;        /* doorbell buffer */
80         struct device_node      *db_node;
81         unsigned int            db_irq;
82         int                     msg;
83         struct device_node      *msg_node;
84         unsigned int            msg_irq;
85         struct smu_cmd_buf      *cmd_buf;       /* command buffer virtual */
86         u32                     cmd_buf_abs;    /* command buffer absolute */
87         struct list_head        cmd_list;
88         struct smu_cmd          *cmd_cur;       /* pending command */
89         int                     broken_nap;
90         struct list_head        cmd_i2c_list;
91         struct smu_i2c_cmd      *cmd_i2c_cur;   /* pending i2c command */
92         struct timer_list       i2c_timer;
93 };
94
95 /*
96  * I don't think there will ever be more than one SMU, so
97  * for now, just hard code that
98  */
99 static struct smu_device        *smu;
100 static DEFINE_MUTEX(smu_part_access);
101 static int smu_irq_inited;
102
103 static void smu_i2c_retry(unsigned long data);
104
105 /*
106  * SMU driver low level stuff
107  */
108
109 static void smu_start_cmd(void)
110 {
111         unsigned long faddr, fend;
112         struct smu_cmd *cmd;
113
114         if (list_empty(&smu->cmd_list))
115                 return;
116
117         /* Fetch first command in queue */
118         cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
119         smu->cmd_cur = cmd;
120         list_del(&cmd->link);
121
122         DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
123                 cmd->data_len);
124         DPRINTK("SMU: data buffer: %02x %02x %02x %02x %02x %02x %02x %02x\n",
125                 ((u8 *)cmd->data_buf)[0], ((u8 *)cmd->data_buf)[1],
126                 ((u8 *)cmd->data_buf)[2], ((u8 *)cmd->data_buf)[3],
127                 ((u8 *)cmd->data_buf)[4], ((u8 *)cmd->data_buf)[5],
128                 ((u8 *)cmd->data_buf)[6], ((u8 *)cmd->data_buf)[7]);
129
130         /* Fill the SMU command buffer */
131         smu->cmd_buf->cmd = cmd->cmd;
132         smu->cmd_buf->length = cmd->data_len;
133         memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
134
135         /* Flush command and data to RAM */
136         faddr = (unsigned long)smu->cmd_buf;
137         fend = faddr + smu->cmd_buf->length + 2;
138         flush_inval_dcache_range(faddr, fend);
139
140
141         /* We also disable NAP mode for the duration of the command
142          * on U3 based machines.
143          * This is slightly racy as it can be written back to 1 by a sysctl
144          * but that never happens in practice. There seem to be an issue with
145          * U3 based machines such as the iMac G5 where napping for the
146          * whole duration of the command prevents the SMU from fetching it
147          * from memory. This might be related to the strange i2c based
148          * mechanism the SMU uses to access memory.
149          */
150         if (smu->broken_nap)
151                 powersave_nap = 0;
152
153         /* This isn't exactly a DMA mapping here, I suspect
154          * the SMU is actually communicating with us via i2c to the
155          * northbridge or the CPU to access RAM.
156          */
157         writel(smu->cmd_buf_abs, smu->db_buf);
158
159         /* Ring the SMU doorbell */
160         pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
161 }
162
163
164 static irqreturn_t smu_db_intr(int irq, void *arg)
165 {
166         unsigned long flags;
167         struct smu_cmd *cmd;
168         void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
169         void *misc = NULL;
170         u8 gpio;
171         int rc = 0;
172
173         /* SMU completed the command, well, we hope, let's make sure
174          * of it
175          */
176         spin_lock_irqsave(&smu->lock, flags);
177
178         gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
179         if ((gpio & 7) != 7) {
180                 spin_unlock_irqrestore(&smu->lock, flags);
181                 return IRQ_HANDLED;
182         }
183
184         cmd = smu->cmd_cur;
185         smu->cmd_cur = NULL;
186         if (cmd == NULL)
187                 goto bail;
188
189         if (rc == 0) {
190                 unsigned long faddr;
191                 int reply_len;
192                 u8 ack;
193
194                 /* CPU might have brought back the cache line, so we need
195                  * to flush again before peeking at the SMU response. We
196                  * flush the entire buffer for now as we haven't read the
197                  * reply length (it's only 2 cache lines anyway)
198                  */
199                 faddr = (unsigned long)smu->cmd_buf;
200                 flush_inval_dcache_range(faddr, faddr + 256);
201
202                 /* Now check ack */
203                 ack = (~cmd->cmd) & 0xff;
204                 if (ack != smu->cmd_buf->cmd) {
205                         DPRINTK("SMU: incorrect ack, want %x got %x\n",
206                                 ack, smu->cmd_buf->cmd);
207                         rc = -EIO;
208                 }
209                 reply_len = rc == 0 ? smu->cmd_buf->length : 0;
210                 DPRINTK("SMU: reply len: %d\n", reply_len);
211                 if (reply_len > cmd->reply_len) {
212                         printk(KERN_WARNING "SMU: reply buffer too small,"
213                                "got %d bytes for a %d bytes buffer\n",
214                                reply_len, cmd->reply_len);
215                         reply_len = cmd->reply_len;
216                 }
217                 cmd->reply_len = reply_len;
218                 if (cmd->reply_buf && reply_len)
219                         memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
220         }
221
222         /* Now complete the command. Write status last in order as we lost
223          * ownership of the command structure as soon as it's no longer -1
224          */
225         done = cmd->done;
226         misc = cmd->misc;
227         mb();
228         cmd->status = rc;
229
230         /* Re-enable NAP mode */
231         if (smu->broken_nap)
232                 powersave_nap = 1;
233  bail:
234         /* Start next command if any */
235         smu_start_cmd();
236         spin_unlock_irqrestore(&smu->lock, flags);
237
238         /* Call command completion handler if any */
239         if (done)
240                 done(cmd, misc);
241
242         /* It's an edge interrupt, nothing to do */
243         return IRQ_HANDLED;
244 }
245
246
247 static irqreturn_t smu_msg_intr(int irq, void *arg)
248 {
249         /* I don't quite know what to do with this one, we seem to never
250          * receive it, so I suspect we have to arm it someway in the SMU
251          * to start getting events that way.
252          */
253
254         printk(KERN_INFO "SMU: message interrupt !\n");
255
256         /* It's an edge interrupt, nothing to do */
257         return IRQ_HANDLED;
258 }
259
260
261 /*
262  * Queued command management.
263  *
264  */
265
266 int smu_queue_cmd(struct smu_cmd *cmd)
267 {
268         unsigned long flags;
269
270         if (smu == NULL)
271                 return -ENODEV;
272         if (cmd->data_len > SMU_MAX_DATA ||
273             cmd->reply_len > SMU_MAX_DATA)
274                 return -EINVAL;
275
276         cmd->status = 1;
277         spin_lock_irqsave(&smu->lock, flags);
278         list_add_tail(&cmd->link, &smu->cmd_list);
279         if (smu->cmd_cur == NULL)
280                 smu_start_cmd();
281         spin_unlock_irqrestore(&smu->lock, flags);
282
283         /* Workaround for early calls when irq isn't available */
284         if (!smu_irq_inited || smu->db_irq == NO_IRQ)
285                 smu_spinwait_cmd(cmd);
286
287         return 0;
288 }
289 EXPORT_SYMBOL(smu_queue_cmd);
290
291
292 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
293                      unsigned int data_len,
294                      void (*done)(struct smu_cmd *cmd, void *misc),
295                      void *misc, ...)
296 {
297         struct smu_cmd *cmd = &scmd->cmd;
298         va_list list;
299         int i;
300
301         if (data_len > sizeof(scmd->buffer))
302                 return -EINVAL;
303
304         memset(scmd, 0, sizeof(*scmd));
305         cmd->cmd = command;
306         cmd->data_len = data_len;
307         cmd->data_buf = scmd->buffer;
308         cmd->reply_len = sizeof(scmd->buffer);
309         cmd->reply_buf = scmd->buffer;
310         cmd->done = done;
311         cmd->misc = misc;
312
313         va_start(list, misc);
314         for (i = 0; i < data_len; ++i)
315                 scmd->buffer[i] = (u8)va_arg(list, int);
316         va_end(list);
317
318         return smu_queue_cmd(cmd);
319 }
320 EXPORT_SYMBOL(smu_queue_simple);
321
322
323 void smu_poll(void)
324 {
325         u8 gpio;
326
327         if (smu == NULL)
328                 return;
329
330         gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
331         if ((gpio & 7) == 7)
332                 smu_db_intr(smu->db_irq, smu);
333 }
334 EXPORT_SYMBOL(smu_poll);
335
336
337 void smu_done_complete(struct smu_cmd *cmd, void *misc)
338 {
339         struct completion *comp = misc;
340
341         complete(comp);
342 }
343 EXPORT_SYMBOL(smu_done_complete);
344
345
346 void smu_spinwait_cmd(struct smu_cmd *cmd)
347 {
348         while(cmd->status == 1)
349                 smu_poll();
350 }
351 EXPORT_SYMBOL(smu_spinwait_cmd);
352
353
354 /* RTC low level commands */
355 static inline int bcd2hex (int n)
356 {
357         return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
358 }
359
360
361 static inline int hex2bcd (int n)
362 {
363         return ((n / 10) << 4) + (n % 10);
364 }
365
366
367 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
368                                         struct rtc_time *time)
369 {
370         cmd_buf->cmd = 0x8e;
371         cmd_buf->length = 8;
372         cmd_buf->data[0] = 0x80;
373         cmd_buf->data[1] = hex2bcd(time->tm_sec);
374         cmd_buf->data[2] = hex2bcd(time->tm_min);
375         cmd_buf->data[3] = hex2bcd(time->tm_hour);
376         cmd_buf->data[4] = time->tm_wday;
377         cmd_buf->data[5] = hex2bcd(time->tm_mday);
378         cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
379         cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
380 }
381
382
383 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
384 {
385         struct smu_simple_cmd cmd;
386         int rc;
387
388         if (smu == NULL)
389                 return -ENODEV;
390
391         memset(time, 0, sizeof(struct rtc_time));
392         rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
393                               SMU_CMD_RTC_GET_DATETIME);
394         if (rc)
395                 return rc;
396         smu_spinwait_simple(&cmd);
397
398         time->tm_sec = bcd2hex(cmd.buffer[0]);
399         time->tm_min = bcd2hex(cmd.buffer[1]);
400         time->tm_hour = bcd2hex(cmd.buffer[2]);
401         time->tm_wday = bcd2hex(cmd.buffer[3]);
402         time->tm_mday = bcd2hex(cmd.buffer[4]);
403         time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
404         time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
405
406         return 0;
407 }
408
409
410 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
411 {
412         struct smu_simple_cmd cmd;
413         int rc;
414
415         if (smu == NULL)
416                 return -ENODEV;
417
418         rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
419                               SMU_CMD_RTC_SET_DATETIME,
420                               hex2bcd(time->tm_sec),
421                               hex2bcd(time->tm_min),
422                               hex2bcd(time->tm_hour),
423                               time->tm_wday,
424                               hex2bcd(time->tm_mday),
425                               hex2bcd(time->tm_mon) + 1,
426                               hex2bcd(time->tm_year - 100));
427         if (rc)
428                 return rc;
429         smu_spinwait_simple(&cmd);
430
431         return 0;
432 }
433
434
435 void smu_shutdown(void)
436 {
437         struct smu_simple_cmd cmd;
438
439         if (smu == NULL)
440                 return;
441
442         if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
443                              'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
444                 return;
445         smu_spinwait_simple(&cmd);
446         for (;;)
447                 ;
448 }
449
450
451 void smu_restart(void)
452 {
453         struct smu_simple_cmd cmd;
454
455         if (smu == NULL)
456                 return;
457
458         if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
459                              'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
460                 return;
461         smu_spinwait_simple(&cmd);
462         for (;;)
463                 ;
464 }
465
466
467 int smu_present(void)
468 {
469         return smu != NULL;
470 }
471 EXPORT_SYMBOL(smu_present);
472
473
474 int __init smu_init (void)
475 {
476         struct device_node *np;
477         const u32 *data;
478         int ret = 0;
479
480         np = of_find_node_by_type(NULL, "smu");
481         if (np == NULL)
482                 return -ENODEV;
483
484         printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
485
486         if (smu_cmdbuf_abs == 0) {
487                 printk(KERN_ERR "SMU: Command buffer not allocated !\n");
488                 ret = -EINVAL;
489                 goto fail_np;
490         }
491
492         smu = alloc_bootmem(sizeof(struct smu_device));
493
494         spin_lock_init(&smu->lock);
495         INIT_LIST_HEAD(&smu->cmd_list);
496         INIT_LIST_HEAD(&smu->cmd_i2c_list);
497         smu->of_node = np;
498         smu->db_irq = NO_IRQ;
499         smu->msg_irq = NO_IRQ;
500
501         /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
502          * 32 bits value safely
503          */
504         smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
505         smu->cmd_buf = (struct smu_cmd_buf *)abs_to_virt(smu_cmdbuf_abs);
506
507         smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
508         if (smu->db_node == NULL) {
509                 printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
510                 ret = -ENXIO;
511                 goto fail_bootmem;
512         }
513         data = of_get_property(smu->db_node, "reg", NULL);
514         if (data == NULL) {
515                 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
516                 ret = -ENXIO;
517                 goto fail_db_node;
518         }
519
520         /* Current setup has one doorbell GPIO that does both doorbell
521          * and ack. GPIOs are at 0x50, best would be to find that out
522          * in the device-tree though.
523          */
524         smu->doorbell = *data;
525         if (smu->doorbell < 0x50)
526                 smu->doorbell += 0x50;
527
528         /* Now look for the smu-interrupt GPIO */
529         do {
530                 smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
531                 if (smu->msg_node == NULL)
532                         break;
533                 data = of_get_property(smu->msg_node, "reg", NULL);
534                 if (data == NULL) {
535                         of_node_put(smu->msg_node);
536                         smu->msg_node = NULL;
537                         break;
538                 }
539                 smu->msg = *data;
540                 if (smu->msg < 0x50)
541                         smu->msg += 0x50;
542         } while(0);
543
544         /* Doorbell buffer is currently hard-coded, I didn't find a proper
545          * device-tree entry giving the address. Best would probably to use
546          * an offset for K2 base though, but let's do it that way for now.
547          */
548         smu->db_buf = ioremap(0x8000860c, 0x1000);
549         if (smu->db_buf == NULL) {
550                 printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
551                 ret = -ENXIO;
552                 goto fail_msg_node;
553         }
554
555         /* U3 has an issue with NAP mode when issuing SMU commands */
556         smu->broken_nap = pmac_get_uninorth_variant() < 4;
557         if (smu->broken_nap)
558                 printk(KERN_INFO "SMU: using NAP mode workaround\n");
559
560         sys_ctrler = SYS_CTRLER_SMU;
561         return 0;
562
563 fail_msg_node:
564         if (smu->msg_node)
565                 of_node_put(smu->msg_node);
566 fail_db_node:
567         of_node_put(smu->db_node);
568 fail_bootmem:
569         free_bootmem((unsigned long)smu, sizeof(struct smu_device));
570         smu = NULL;
571 fail_np:
572         of_node_put(np);
573         return ret;
574 }
575
576
577 static int smu_late_init(void)
578 {
579         if (!smu)
580                 return 0;
581
582         init_timer(&smu->i2c_timer);
583         smu->i2c_timer.function = smu_i2c_retry;
584         smu->i2c_timer.data = (unsigned long)smu;
585
586         if (smu->db_node) {
587                 smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
588                 if (smu->db_irq == NO_IRQ)
589                         printk(KERN_ERR "smu: failed to map irq for node %s\n",
590                                smu->db_node->full_name);
591         }
592         if (smu->msg_node) {
593                 smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
594                 if (smu->msg_irq == NO_IRQ)
595                         printk(KERN_ERR "smu: failed to map irq for node %s\n",
596                                smu->msg_node->full_name);
597         }
598
599         /*
600          * Try to request the interrupts
601          */
602
603         if (smu->db_irq != NO_IRQ) {
604                 if (request_irq(smu->db_irq, smu_db_intr,
605                                 IRQF_SHARED, "SMU doorbell", smu) < 0) {
606                         printk(KERN_WARNING "SMU: can't "
607                                "request interrupt %d\n",
608                                smu->db_irq);
609                         smu->db_irq = NO_IRQ;
610                 }
611         }
612
613         if (smu->msg_irq != NO_IRQ) {
614                 if (request_irq(smu->msg_irq, smu_msg_intr,
615                                 IRQF_SHARED, "SMU message", smu) < 0) {
616                         printk(KERN_WARNING "SMU: can't "
617                                "request interrupt %d\n",
618                                smu->msg_irq);
619                         smu->msg_irq = NO_IRQ;
620                 }
621         }
622
623         smu_irq_inited = 1;
624         return 0;
625 }
626 /* This has to be before arch_initcall as the low i2c stuff relies on the
627  * above having been done before we reach arch_initcalls
628  */
629 core_initcall(smu_late_init);
630
631 /*
632  * sysfs visibility
633  */
634
635 static void smu_expose_childs(struct work_struct *unused)
636 {
637         struct device_node *np;
638
639         for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
640                 if (of_device_is_compatible(np, "smu-sensors"))
641                         of_platform_device_create(np, "smu-sensors",
642                                                   &smu->of_dev->dev);
643 }
644
645 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
646
647 static int smu_platform_probe(struct of_device* dev,
648                               const struct of_device_id *match)
649 {
650         if (!smu)
651                 return -ENODEV;
652         smu->of_dev = dev;
653
654         /*
655          * Ok, we are matched, now expose all i2c busses. We have to defer
656          * that unfortunately or it would deadlock inside the device model
657          */
658         schedule_work(&smu_expose_childs_work);
659
660         return 0;
661 }
662
663 static struct of_device_id smu_platform_match[] =
664 {
665         {
666                 .type           = "smu",
667         },
668         {},
669 };
670
671 static struct of_platform_driver smu_of_platform_driver =
672 {
673         .name           = "smu",
674         .match_table    = smu_platform_match,
675         .probe          = smu_platform_probe,
676 };
677
678 static int __init smu_init_sysfs(void)
679 {
680         /*
681          * Due to sysfs bogosity, a sysdev is not a real device, so
682          * we should in fact create both if we want sysdev semantics
683          * for power management.
684          * For now, we don't power manage machines with an SMU chip,
685          * I'm a bit too far from figuring out how that works with those
686          * new chipsets, but that will come back and bite us
687          */
688         of_register_platform_driver(&smu_of_platform_driver);
689         return 0;
690 }
691
692 device_initcall(smu_init_sysfs);
693
694 struct of_device *smu_get_ofdev(void)
695 {
696         if (!smu)
697                 return NULL;
698         return smu->of_dev;
699 }
700
701 EXPORT_SYMBOL_GPL(smu_get_ofdev);
702
703 /*
704  * i2c interface
705  */
706
707 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
708 {
709         void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
710         void *misc = cmd->misc;
711         unsigned long flags;
712
713         /* Check for read case */
714         if (!fail && cmd->read) {
715                 if (cmd->pdata[0] < 1)
716                         fail = 1;
717                 else
718                         memcpy(cmd->info.data, &cmd->pdata[1],
719                                cmd->info.datalen);
720         }
721
722         DPRINTK("SMU: completing, success: %d\n", !fail);
723
724         /* Update status and mark no pending i2c command with lock
725          * held so nobody comes in while we dequeue an eventual
726          * pending next i2c command
727          */
728         spin_lock_irqsave(&smu->lock, flags);
729         smu->cmd_i2c_cur = NULL;
730         wmb();
731         cmd->status = fail ? -EIO : 0;
732
733         /* Is there another i2c command waiting ? */
734         if (!list_empty(&smu->cmd_i2c_list)) {
735                 struct smu_i2c_cmd *newcmd;
736
737                 /* Fetch it, new current, remove from list */
738                 newcmd = list_entry(smu->cmd_i2c_list.next,
739                                     struct smu_i2c_cmd, link);
740                 smu->cmd_i2c_cur = newcmd;
741                 list_del(&cmd->link);
742
743                 /* Queue with low level smu */
744                 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
745                 if (smu->cmd_cur == NULL)
746                         smu_start_cmd();
747         }
748         spin_unlock_irqrestore(&smu->lock, flags);
749
750         /* Call command completion handler if any */
751         if (done)
752                 done(cmd, misc);
753
754 }
755
756
757 static void smu_i2c_retry(unsigned long data)
758 {
759         struct smu_i2c_cmd      *cmd = smu->cmd_i2c_cur;
760
761         DPRINTK("SMU: i2c failure, requeuing...\n");
762
763         /* requeue command simply by resetting reply_len */
764         cmd->pdata[0] = 0xff;
765         cmd->scmd.reply_len = sizeof(cmd->pdata);
766         smu_queue_cmd(&cmd->scmd);
767 }
768
769
770 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
771 {
772         struct smu_i2c_cmd      *cmd = misc;
773         int                     fail = 0;
774
775         DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
776                 cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
777
778         /* Check for possible status */
779         if (scmd->status < 0)
780                 fail = 1;
781         else if (cmd->read) {
782                 if (cmd->stage == 0)
783                         fail = cmd->pdata[0] != 0;
784                 else
785                         fail = cmd->pdata[0] >= 0x80;
786         } else {
787                 fail = cmd->pdata[0] != 0;
788         }
789
790         /* Handle failures by requeuing command, after 5ms interval
791          */
792         if (fail && --cmd->retries > 0) {
793                 DPRINTK("SMU: i2c failure, starting timer...\n");
794                 BUG_ON(cmd != smu->cmd_i2c_cur);
795                 if (!smu_irq_inited) {
796                         mdelay(5);
797                         smu_i2c_retry(0);
798                         return;
799                 }
800                 mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
801                 return;
802         }
803
804         /* If failure or stage 1, command is complete */
805         if (fail || cmd->stage != 0) {
806                 smu_i2c_complete_command(cmd, fail);
807                 return;
808         }
809
810         DPRINTK("SMU: going to stage 1\n");
811
812         /* Ok, initial command complete, now poll status */
813         scmd->reply_buf = cmd->pdata;
814         scmd->reply_len = sizeof(cmd->pdata);
815         scmd->data_buf = cmd->pdata;
816         scmd->data_len = 1;
817         cmd->pdata[0] = 0;
818         cmd->stage = 1;
819         cmd->retries = 20;
820         smu_queue_cmd(scmd);
821 }
822
823
824 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
825 {
826         unsigned long flags;
827
828         if (smu == NULL)
829                 return -ENODEV;
830
831         /* Fill most fields of scmd */
832         cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
833         cmd->scmd.done = smu_i2c_low_completion;
834         cmd->scmd.misc = cmd;
835         cmd->scmd.reply_buf = cmd->pdata;
836         cmd->scmd.reply_len = sizeof(cmd->pdata);
837         cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
838         cmd->scmd.status = 1;
839         cmd->stage = 0;
840         cmd->pdata[0] = 0xff;
841         cmd->retries = 20;
842         cmd->status = 1;
843
844         /* Check transfer type, sanitize some "info" fields
845          * based on transfer type and do more checking
846          */
847         cmd->info.caddr = cmd->info.devaddr;
848         cmd->read = cmd->info.devaddr & 0x01;
849         switch(cmd->info.type) {
850         case SMU_I2C_TRANSFER_SIMPLE:
851                 memset(&cmd->info.sublen, 0, 4);
852                 break;
853         case SMU_I2C_TRANSFER_COMBINED:
854                 cmd->info.devaddr &= 0xfe;
855         case SMU_I2C_TRANSFER_STDSUB:
856                 if (cmd->info.sublen > 3)
857                         return -EINVAL;
858                 break;
859         default:
860                 return -EINVAL;
861         }
862
863         /* Finish setting up command based on transfer direction
864          */
865         if (cmd->read) {
866                 if (cmd->info.datalen > SMU_I2C_READ_MAX)
867                         return -EINVAL;
868                 memset(cmd->info.data, 0xff, cmd->info.datalen);
869                 cmd->scmd.data_len = 9;
870         } else {
871                 if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
872                         return -EINVAL;
873                 cmd->scmd.data_len = 9 + cmd->info.datalen;
874         }
875
876         DPRINTK("SMU: i2c enqueuing command\n");
877         DPRINTK("SMU:   %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
878                 cmd->read ? "read" : "write", cmd->info.datalen,
879                 cmd->info.bus, cmd->info.caddr,
880                 cmd->info.subaddr[0], cmd->info.type);
881
882
883         /* Enqueue command in i2c list, and if empty, enqueue also in
884          * main command list
885          */
886         spin_lock_irqsave(&smu->lock, flags);
887         if (smu->cmd_i2c_cur == NULL) {
888                 smu->cmd_i2c_cur = cmd;
889                 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
890                 if (smu->cmd_cur == NULL)
891                         smu_start_cmd();
892         } else
893                 list_add_tail(&cmd->link, &smu->cmd_i2c_list);
894         spin_unlock_irqrestore(&smu->lock, flags);
895
896         return 0;
897 }
898
899 /*
900  * Handling of "partitions"
901  */
902
903 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
904 {
905         DECLARE_COMPLETION_ONSTACK(comp);
906         unsigned int chunk;
907         struct smu_cmd cmd;
908         int rc;
909         u8 params[8];
910
911         /* We currently use a chunk size of 0xe. We could check the
912          * SMU firmware version and use bigger sizes though
913          */
914         chunk = 0xe;
915
916         while (len) {
917                 unsigned int clen = min(len, chunk);
918
919                 cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
920                 cmd.data_len = 7;
921                 cmd.data_buf = params;
922                 cmd.reply_len = chunk;
923                 cmd.reply_buf = dest;
924                 cmd.done = smu_done_complete;
925                 cmd.misc = &comp;
926                 params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
927                 params[1] = 0x4;
928                 *((u32 *)&params[2]) = addr;
929                 params[6] = clen;
930
931                 rc = smu_queue_cmd(&cmd);
932                 if (rc)
933                         return rc;
934                 wait_for_completion(&comp);
935                 if (cmd.status != 0)
936                         return rc;
937                 if (cmd.reply_len != clen) {
938                         printk(KERN_DEBUG "SMU: short read in "
939                                "smu_read_datablock, got: %d, want: %d\n",
940                                cmd.reply_len, clen);
941                         return -EIO;
942                 }
943                 len -= clen;
944                 addr += clen;
945                 dest += clen;
946         }
947         return 0;
948 }
949
950 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
951 {
952         DECLARE_COMPLETION_ONSTACK(comp);
953         struct smu_simple_cmd cmd;
954         unsigned int addr, len, tlen;
955         struct smu_sdbp_header *hdr;
956         struct property *prop;
957
958         /* First query the partition info */
959         DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
960         smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
961                          smu_done_complete, &comp,
962                          SMU_CMD_PARTITION_LATEST, id);
963         wait_for_completion(&comp);
964         DPRINTK("SMU: done, status: %d, reply_len: %d\n",
965                 cmd.cmd.status, cmd.cmd.reply_len);
966
967         /* Partition doesn't exist (or other error) */
968         if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
969                 return NULL;
970
971         /* Fetch address and length from reply */
972         addr = *((u16 *)cmd.buffer);
973         len = cmd.buffer[3] << 2;
974         /* Calucluate total length to allocate, including the 17 bytes
975          * for "sdb-partition-XX" that we append at the end of the buffer
976          */
977         tlen = sizeof(struct property) + len + 18;
978
979         prop = kzalloc(tlen, GFP_KERNEL);
980         if (prop == NULL)
981                 return NULL;
982         hdr = (struct smu_sdbp_header *)(prop + 1);
983         prop->name = ((char *)prop) + tlen - 18;
984         sprintf(prop->name, "sdb-partition-%02x", id);
985         prop->length = len;
986         prop->value = hdr;
987         prop->next = NULL;
988
989         /* Read the datablock */
990         if (smu_read_datablock((u8 *)hdr, addr, len)) {
991                 printk(KERN_DEBUG "SMU: datablock read failed while reading "
992                        "partition %02x !\n", id);
993                 goto failure;
994         }
995
996         /* Got it, check a few things and create the property */
997         if (hdr->id != id) {
998                 printk(KERN_DEBUG "SMU: Reading partition %02x and got "
999                        "%02x !\n", id, hdr->id);
1000                 goto failure;
1001         }
1002         if (prom_add_property(smu->of_node, prop)) {
1003                 printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1004                        "property !\n", id);
1005                 goto failure;
1006         }
1007
1008         return hdr;
1009  failure:
1010         kfree(prop);
1011         return NULL;
1012 }
1013
1014 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
1015  * when interruptible is 1
1016  */
1017 const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1018                 unsigned int *size, int interruptible)
1019 {
1020         char pname[32];
1021         const struct smu_sdbp_header *part;
1022
1023         if (!smu)
1024                 return NULL;
1025
1026         sprintf(pname, "sdb-partition-%02x", id);
1027
1028         DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1029
1030         if (interruptible) {
1031                 int rc;
1032                 rc = mutex_lock_interruptible(&smu_part_access);
1033                 if (rc)
1034                         return ERR_PTR(rc);
1035         } else
1036                 mutex_lock(&smu_part_access);
1037
1038         part = of_get_property(smu->of_node, pname, size);
1039         if (part == NULL) {
1040                 DPRINTK("trying to extract from SMU ...\n");
1041                 part = smu_create_sdb_partition(id);
1042                 if (part != NULL && size)
1043                         *size = part->len << 2;
1044         }
1045         mutex_unlock(&smu_part_access);
1046         return part;
1047 }
1048
1049 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1050 {
1051         return __smu_get_sdb_partition(id, size, 0);
1052 }
1053 EXPORT_SYMBOL(smu_get_sdb_partition);
1054
1055
1056 /*
1057  * Userland driver interface
1058  */
1059
1060
1061 static LIST_HEAD(smu_clist);
1062 static DEFINE_SPINLOCK(smu_clist_lock);
1063
1064 enum smu_file_mode {
1065         smu_file_commands,
1066         smu_file_events,
1067         smu_file_closing
1068 };
1069
1070 struct smu_private
1071 {
1072         struct list_head        list;
1073         enum smu_file_mode      mode;
1074         int                     busy;
1075         struct smu_cmd          cmd;
1076         spinlock_t              lock;
1077         wait_queue_head_t       wait;
1078         u8                      buffer[SMU_MAX_DATA];
1079 };
1080
1081
1082 static int smu_open(struct inode *inode, struct file *file)
1083 {
1084         struct smu_private *pp;
1085         unsigned long flags;
1086
1087         pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1088         if (pp == 0)
1089                 return -ENOMEM;
1090         spin_lock_init(&pp->lock);
1091         pp->mode = smu_file_commands;
1092         init_waitqueue_head(&pp->wait);
1093
1094         lock_kernel();
1095         spin_lock_irqsave(&smu_clist_lock, flags);
1096         list_add(&pp->list, &smu_clist);
1097         spin_unlock_irqrestore(&smu_clist_lock, flags);
1098         file->private_data = pp;
1099         unlock_kernel();
1100
1101         return 0;
1102 }
1103
1104
1105 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1106 {
1107         struct smu_private *pp = misc;
1108
1109         wake_up_all(&pp->wait);
1110 }
1111
1112
1113 static ssize_t smu_write(struct file *file, const char __user *buf,
1114                          size_t count, loff_t *ppos)
1115 {
1116         struct smu_private *pp = file->private_data;
1117         unsigned long flags;
1118         struct smu_user_cmd_hdr hdr;
1119         int rc = 0;
1120
1121         if (pp->busy)
1122                 return -EBUSY;
1123         else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1124                 return -EFAULT;
1125         else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1126                 pp->mode = smu_file_events;
1127                 return 0;
1128         } else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1129                 const struct smu_sdbp_header *part;
1130                 part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1131                 if (part == NULL)
1132                         return -EINVAL;
1133                 else if (IS_ERR(part))
1134                         return PTR_ERR(part);
1135                 return 0;
1136         } else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1137                 return -EINVAL;
1138         else if (pp->mode != smu_file_commands)
1139                 return -EBADFD;
1140         else if (hdr.data_len > SMU_MAX_DATA)
1141                 return -EINVAL;
1142
1143         spin_lock_irqsave(&pp->lock, flags);
1144         if (pp->busy) {
1145                 spin_unlock_irqrestore(&pp->lock, flags);
1146                 return -EBUSY;
1147         }
1148         pp->busy = 1;
1149         pp->cmd.status = 1;
1150         spin_unlock_irqrestore(&pp->lock, flags);
1151
1152         if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1153                 pp->busy = 0;
1154                 return -EFAULT;
1155         }
1156
1157         pp->cmd.cmd = hdr.cmd;
1158         pp->cmd.data_len = hdr.data_len;
1159         pp->cmd.reply_len = SMU_MAX_DATA;
1160         pp->cmd.data_buf = pp->buffer;
1161         pp->cmd.reply_buf = pp->buffer;
1162         pp->cmd.done = smu_user_cmd_done;
1163         pp->cmd.misc = pp;
1164         rc = smu_queue_cmd(&pp->cmd);
1165         if (rc < 0)
1166                 return rc;
1167         return count;
1168 }
1169
1170
1171 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1172                                 char __user *buf, size_t count)
1173 {
1174         DECLARE_WAITQUEUE(wait, current);
1175         struct smu_user_reply_hdr hdr;
1176         unsigned long flags;
1177         int size, rc = 0;
1178
1179         if (!pp->busy)
1180                 return 0;
1181         if (count < sizeof(struct smu_user_reply_hdr))
1182                 return -EOVERFLOW;
1183         spin_lock_irqsave(&pp->lock, flags);
1184         if (pp->cmd.status == 1) {
1185                 if (file->f_flags & O_NONBLOCK)
1186                         return -EAGAIN;
1187                 add_wait_queue(&pp->wait, &wait);
1188                 for (;;) {
1189                         set_current_state(TASK_INTERRUPTIBLE);
1190                         rc = 0;
1191                         if (pp->cmd.status != 1)
1192                                 break;
1193                         rc = -ERESTARTSYS;
1194                         if (signal_pending(current))
1195                                 break;
1196                         spin_unlock_irqrestore(&pp->lock, flags);
1197                         schedule();
1198                         spin_lock_irqsave(&pp->lock, flags);
1199                 }
1200                 set_current_state(TASK_RUNNING);
1201                 remove_wait_queue(&pp->wait, &wait);
1202         }
1203         spin_unlock_irqrestore(&pp->lock, flags);
1204         if (rc)
1205                 return rc;
1206         if (pp->cmd.status != 0)
1207                 pp->cmd.reply_len = 0;
1208         size = sizeof(hdr) + pp->cmd.reply_len;
1209         if (count < size)
1210                 size = count;
1211         rc = size;
1212         hdr.status = pp->cmd.status;
1213         hdr.reply_len = pp->cmd.reply_len;
1214         if (copy_to_user(buf, &hdr, sizeof(hdr)))
1215                 return -EFAULT;
1216         size -= sizeof(hdr);
1217         if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1218                 return -EFAULT;
1219         pp->busy = 0;
1220
1221         return rc;
1222 }
1223
1224
1225 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1226                                char __user *buf, size_t count)
1227 {
1228         /* Not implemented */
1229         msleep_interruptible(1000);
1230         return 0;
1231 }
1232
1233
1234 static ssize_t smu_read(struct file *file, char __user *buf,
1235                         size_t count, loff_t *ppos)
1236 {
1237         struct smu_private *pp = file->private_data;
1238
1239         if (pp->mode == smu_file_commands)
1240                 return smu_read_command(file, pp, buf, count);
1241         if (pp->mode == smu_file_events)
1242                 return smu_read_events(file, pp, buf, count);
1243
1244         return -EBADFD;
1245 }
1246
1247 static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1248 {
1249         struct smu_private *pp = file->private_data;
1250         unsigned int mask = 0;
1251         unsigned long flags;
1252
1253         if (pp == 0)
1254                 return 0;
1255
1256         if (pp->mode == smu_file_commands) {
1257                 poll_wait(file, &pp->wait, wait);
1258
1259                 spin_lock_irqsave(&pp->lock, flags);
1260                 if (pp->busy && pp->cmd.status != 1)
1261                         mask |= POLLIN;
1262                 spin_unlock_irqrestore(&pp->lock, flags);
1263         } if (pp->mode == smu_file_events) {
1264                 /* Not yet implemented */
1265         }
1266         return mask;
1267 }
1268
1269 static int smu_release(struct inode *inode, struct file *file)
1270 {
1271         struct smu_private *pp = file->private_data;
1272         unsigned long flags;
1273         unsigned int busy;
1274
1275         if (pp == 0)
1276                 return 0;
1277
1278         file->private_data = NULL;
1279
1280         /* Mark file as closing to avoid races with new request */
1281         spin_lock_irqsave(&pp->lock, flags);
1282         pp->mode = smu_file_closing;
1283         busy = pp->busy;
1284
1285         /* Wait for any pending request to complete */
1286         if (busy && pp->cmd.status == 1) {
1287                 DECLARE_WAITQUEUE(wait, current);
1288
1289                 add_wait_queue(&pp->wait, &wait);
1290                 for (;;) {
1291                         set_current_state(TASK_UNINTERRUPTIBLE);
1292                         if (pp->cmd.status != 1)
1293                                 break;
1294                         spin_unlock_irqrestore(&pp->lock, flags);
1295                         schedule();
1296                         spin_lock_irqsave(&pp->lock, flags);
1297                 }
1298                 set_current_state(TASK_RUNNING);
1299                 remove_wait_queue(&pp->wait, &wait);
1300         }
1301         spin_unlock_irqrestore(&pp->lock, flags);
1302
1303         spin_lock_irqsave(&smu_clist_lock, flags);
1304         list_del(&pp->list);
1305         spin_unlock_irqrestore(&smu_clist_lock, flags);
1306         kfree(pp);
1307
1308         return 0;
1309 }
1310
1311
1312 static const struct file_operations smu_device_fops = {
1313         .llseek         = no_llseek,
1314         .read           = smu_read,
1315         .write          = smu_write,
1316         .poll           = smu_fpoll,
1317         .open           = smu_open,
1318         .release        = smu_release,
1319 };
1320
1321 static struct miscdevice pmu_device = {
1322         MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1323 };
1324
1325 static int smu_device_init(void)
1326 {
1327         if (!smu)
1328                 return -ENODEV;
1329         if (misc_register(&pmu_device) < 0)
1330                 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1331         return 0;
1332 }
1333 device_initcall(smu_device_init);