]> err.no Git - linux-2.6/blob - drivers/kvm/vmx.c
7e61a560aab578823293425631c73eac9f45a02b
[linux-2.6] / drivers / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "x86.h"
20 #include "x86_emulate.h"
21 #include "irq.h"
22 #include "vmx.h"
23 #include "segment_descriptor.h"
24 #include "mmu.h"
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/moduleparam.h>
32
33 #include <asm/io.h>
34 #include <asm/desc.h>
35
36 MODULE_AUTHOR("Qumranet");
37 MODULE_LICENSE("GPL");
38
39 static int bypass_guest_pf = 1;
40 module_param(bypass_guest_pf, bool, 0);
41
42 struct vmcs {
43         u32 revision_id;
44         u32 abort;
45         char data[0];
46 };
47
48 struct vcpu_vmx {
49         struct kvm_vcpu       vcpu;
50         int                   launched;
51         u8                    fail;
52         u32                   idt_vectoring_info;
53         struct kvm_msr_entry *guest_msrs;
54         struct kvm_msr_entry *host_msrs;
55         int                   nmsrs;
56         int                   save_nmsrs;
57         int                   msr_offset_efer;
58 #ifdef CONFIG_X86_64
59         int                   msr_offset_kernel_gs_base;
60 #endif
61         struct vmcs          *vmcs;
62         struct {
63                 int           loaded;
64                 u16           fs_sel, gs_sel, ldt_sel;
65                 int           gs_ldt_reload_needed;
66                 int           fs_reload_needed;
67                 int           guest_efer_loaded;
68         } host_state;
69         struct {
70                 struct {
71                         bool pending;
72                         u8 vector;
73                         unsigned rip;
74                 } irq;
75         } rmode;
76 };
77
78 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
79 {
80         return container_of(vcpu, struct vcpu_vmx, vcpu);
81 }
82
83 static int init_rmode_tss(struct kvm *kvm);
84
85 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
86 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
87
88 static struct page *vmx_io_bitmap_a;
89 static struct page *vmx_io_bitmap_b;
90
91 static struct vmcs_config {
92         int size;
93         int order;
94         u32 revision_id;
95         u32 pin_based_exec_ctrl;
96         u32 cpu_based_exec_ctrl;
97         u32 cpu_based_2nd_exec_ctrl;
98         u32 vmexit_ctrl;
99         u32 vmentry_ctrl;
100 } vmcs_config;
101
102 #define VMX_SEGMENT_FIELD(seg)                                  \
103         [VCPU_SREG_##seg] = {                                   \
104                 .selector = GUEST_##seg##_SELECTOR,             \
105                 .base = GUEST_##seg##_BASE,                     \
106                 .limit = GUEST_##seg##_LIMIT,                   \
107                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
108         }
109
110 static struct kvm_vmx_segment_field {
111         unsigned selector;
112         unsigned base;
113         unsigned limit;
114         unsigned ar_bytes;
115 } kvm_vmx_segment_fields[] = {
116         VMX_SEGMENT_FIELD(CS),
117         VMX_SEGMENT_FIELD(DS),
118         VMX_SEGMENT_FIELD(ES),
119         VMX_SEGMENT_FIELD(FS),
120         VMX_SEGMENT_FIELD(GS),
121         VMX_SEGMENT_FIELD(SS),
122         VMX_SEGMENT_FIELD(TR),
123         VMX_SEGMENT_FIELD(LDTR),
124 };
125
126 /*
127  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
128  * away by decrementing the array size.
129  */
130 static const u32 vmx_msr_index[] = {
131 #ifdef CONFIG_X86_64
132         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
133 #endif
134         MSR_EFER, MSR_K6_STAR,
135 };
136 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
137
138 static void load_msrs(struct kvm_msr_entry *e, int n)
139 {
140         int i;
141
142         for (i = 0; i < n; ++i)
143                 wrmsrl(e[i].index, e[i].data);
144 }
145
146 static void save_msrs(struct kvm_msr_entry *e, int n)
147 {
148         int i;
149
150         for (i = 0; i < n; ++i)
151                 rdmsrl(e[i].index, e[i].data);
152 }
153
154 static inline int is_page_fault(u32 intr_info)
155 {
156         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
157                              INTR_INFO_VALID_MASK)) ==
158                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
159 }
160
161 static inline int is_no_device(u32 intr_info)
162 {
163         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
164                              INTR_INFO_VALID_MASK)) ==
165                 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
166 }
167
168 static inline int is_invalid_opcode(u32 intr_info)
169 {
170         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
171                              INTR_INFO_VALID_MASK)) ==
172                 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
173 }
174
175 static inline int is_external_interrupt(u32 intr_info)
176 {
177         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
178                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
179 }
180
181 static inline int cpu_has_vmx_tpr_shadow(void)
182 {
183         return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
184 }
185
186 static inline int vm_need_tpr_shadow(struct kvm *kvm)
187 {
188         return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
189 }
190
191 static inline int cpu_has_secondary_exec_ctrls(void)
192 {
193         return (vmcs_config.cpu_based_exec_ctrl &
194                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
195 }
196
197 static inline int cpu_has_vmx_virtualize_apic_accesses(void)
198 {
199         return (vmcs_config.cpu_based_2nd_exec_ctrl &
200                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
201 }
202
203 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
204 {
205         return ((cpu_has_vmx_virtualize_apic_accesses()) &&
206                 (irqchip_in_kernel(kvm)));
207 }
208
209 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
210 {
211         int i;
212
213         for (i = 0; i < vmx->nmsrs; ++i)
214                 if (vmx->guest_msrs[i].index == msr)
215                         return i;
216         return -1;
217 }
218
219 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
220 {
221         int i;
222
223         i = __find_msr_index(vmx, msr);
224         if (i >= 0)
225                 return &vmx->guest_msrs[i];
226         return NULL;
227 }
228
229 static void vmcs_clear(struct vmcs *vmcs)
230 {
231         u64 phys_addr = __pa(vmcs);
232         u8 error;
233
234         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
235                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
236                       : "cc", "memory");
237         if (error)
238                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
239                        vmcs, phys_addr);
240 }
241
242 static void __vcpu_clear(void *arg)
243 {
244         struct vcpu_vmx *vmx = arg;
245         int cpu = raw_smp_processor_id();
246
247         if (vmx->vcpu.cpu == cpu)
248                 vmcs_clear(vmx->vmcs);
249         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
250                 per_cpu(current_vmcs, cpu) = NULL;
251         rdtscll(vmx->vcpu.arch.host_tsc);
252 }
253
254 static void vcpu_clear(struct vcpu_vmx *vmx)
255 {
256         if (vmx->vcpu.cpu == -1)
257                 return;
258         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
259         vmx->launched = 0;
260 }
261
262 static unsigned long vmcs_readl(unsigned long field)
263 {
264         unsigned long value;
265
266         asm volatile (ASM_VMX_VMREAD_RDX_RAX
267                       : "=a"(value) : "d"(field) : "cc");
268         return value;
269 }
270
271 static u16 vmcs_read16(unsigned long field)
272 {
273         return vmcs_readl(field);
274 }
275
276 static u32 vmcs_read32(unsigned long field)
277 {
278         return vmcs_readl(field);
279 }
280
281 static u64 vmcs_read64(unsigned long field)
282 {
283 #ifdef CONFIG_X86_64
284         return vmcs_readl(field);
285 #else
286         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
287 #endif
288 }
289
290 static noinline void vmwrite_error(unsigned long field, unsigned long value)
291 {
292         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
293                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
294         dump_stack();
295 }
296
297 static void vmcs_writel(unsigned long field, unsigned long value)
298 {
299         u8 error;
300
301         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
302                        : "=q"(error) : "a"(value), "d"(field) : "cc");
303         if (unlikely(error))
304                 vmwrite_error(field, value);
305 }
306
307 static void vmcs_write16(unsigned long field, u16 value)
308 {
309         vmcs_writel(field, value);
310 }
311
312 static void vmcs_write32(unsigned long field, u32 value)
313 {
314         vmcs_writel(field, value);
315 }
316
317 static void vmcs_write64(unsigned long field, u64 value)
318 {
319 #ifdef CONFIG_X86_64
320         vmcs_writel(field, value);
321 #else
322         vmcs_writel(field, value);
323         asm volatile ("");
324         vmcs_writel(field+1, value >> 32);
325 #endif
326 }
327
328 static void vmcs_clear_bits(unsigned long field, u32 mask)
329 {
330         vmcs_writel(field, vmcs_readl(field) & ~mask);
331 }
332
333 static void vmcs_set_bits(unsigned long field, u32 mask)
334 {
335         vmcs_writel(field, vmcs_readl(field) | mask);
336 }
337
338 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
339 {
340         u32 eb;
341
342         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
343         if (!vcpu->fpu_active)
344                 eb |= 1u << NM_VECTOR;
345         if (vcpu->guest_debug.enabled)
346                 eb |= 1u << 1;
347         if (vcpu->arch.rmode.active)
348                 eb = ~0;
349         vmcs_write32(EXCEPTION_BITMAP, eb);
350 }
351
352 static void reload_tss(void)
353 {
354 #ifndef CONFIG_X86_64
355
356         /*
357          * VT restores TR but not its size.  Useless.
358          */
359         struct descriptor_table gdt;
360         struct segment_descriptor *descs;
361
362         get_gdt(&gdt);
363         descs = (void *)gdt.base;
364         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
365         load_TR_desc();
366 #endif
367 }
368
369 static void load_transition_efer(struct vcpu_vmx *vmx)
370 {
371         int efer_offset = vmx->msr_offset_efer;
372         u64 host_efer = vmx->host_msrs[efer_offset].data;
373         u64 guest_efer = vmx->guest_msrs[efer_offset].data;
374         u64 ignore_bits;
375
376         if (efer_offset < 0)
377                 return;
378         /*
379          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
380          * outside long mode
381          */
382         ignore_bits = EFER_NX | EFER_SCE;
383 #ifdef CONFIG_X86_64
384         ignore_bits |= EFER_LMA | EFER_LME;
385         /* SCE is meaningful only in long mode on Intel */
386         if (guest_efer & EFER_LMA)
387                 ignore_bits &= ~(u64)EFER_SCE;
388 #endif
389         if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
390                 return;
391
392         vmx->host_state.guest_efer_loaded = 1;
393         guest_efer &= ~ignore_bits;
394         guest_efer |= host_efer & ignore_bits;
395         wrmsrl(MSR_EFER, guest_efer);
396         vmx->vcpu.stat.efer_reload++;
397 }
398
399 static void reload_host_efer(struct vcpu_vmx *vmx)
400 {
401         if (vmx->host_state.guest_efer_loaded) {
402                 vmx->host_state.guest_efer_loaded = 0;
403                 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
404         }
405 }
406
407 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
408 {
409         struct vcpu_vmx *vmx = to_vmx(vcpu);
410
411         if (vmx->host_state.loaded)
412                 return;
413
414         vmx->host_state.loaded = 1;
415         /*
416          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
417          * allow segment selectors with cpl > 0 or ti == 1.
418          */
419         vmx->host_state.ldt_sel = read_ldt();
420         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
421         vmx->host_state.fs_sel = read_fs();
422         if (!(vmx->host_state.fs_sel & 7)) {
423                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
424                 vmx->host_state.fs_reload_needed = 0;
425         } else {
426                 vmcs_write16(HOST_FS_SELECTOR, 0);
427                 vmx->host_state.fs_reload_needed = 1;
428         }
429         vmx->host_state.gs_sel = read_gs();
430         if (!(vmx->host_state.gs_sel & 7))
431                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
432         else {
433                 vmcs_write16(HOST_GS_SELECTOR, 0);
434                 vmx->host_state.gs_ldt_reload_needed = 1;
435         }
436
437 #ifdef CONFIG_X86_64
438         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
439         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
440 #else
441         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
442         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
443 #endif
444
445 #ifdef CONFIG_X86_64
446         if (is_long_mode(&vmx->vcpu))
447                 save_msrs(vmx->host_msrs +
448                           vmx->msr_offset_kernel_gs_base, 1);
449
450 #endif
451         load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
452         load_transition_efer(vmx);
453 }
454
455 static void vmx_load_host_state(struct vcpu_vmx *vmx)
456 {
457         unsigned long flags;
458
459         if (!vmx->host_state.loaded)
460                 return;
461
462         ++vmx->vcpu.stat.host_state_reload;
463         vmx->host_state.loaded = 0;
464         if (vmx->host_state.fs_reload_needed)
465                 load_fs(vmx->host_state.fs_sel);
466         if (vmx->host_state.gs_ldt_reload_needed) {
467                 load_ldt(vmx->host_state.ldt_sel);
468                 /*
469                  * If we have to reload gs, we must take care to
470                  * preserve our gs base.
471                  */
472                 local_irq_save(flags);
473                 load_gs(vmx->host_state.gs_sel);
474 #ifdef CONFIG_X86_64
475                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
476 #endif
477                 local_irq_restore(flags);
478         }
479         reload_tss();
480         save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
481         load_msrs(vmx->host_msrs, vmx->save_nmsrs);
482         reload_host_efer(vmx);
483 }
484
485 /*
486  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
487  * vcpu mutex is already taken.
488  */
489 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
490 {
491         struct vcpu_vmx *vmx = to_vmx(vcpu);
492         u64 phys_addr = __pa(vmx->vmcs);
493         u64 tsc_this, delta;
494
495         if (vcpu->cpu != cpu) {
496                 vcpu_clear(vmx);
497                 kvm_migrate_apic_timer(vcpu);
498         }
499
500         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
501                 u8 error;
502
503                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
504                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
505                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
506                               : "cc");
507                 if (error)
508                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
509                                vmx->vmcs, phys_addr);
510         }
511
512         if (vcpu->cpu != cpu) {
513                 struct descriptor_table dt;
514                 unsigned long sysenter_esp;
515
516                 vcpu->cpu = cpu;
517                 /*
518                  * Linux uses per-cpu TSS and GDT, so set these when switching
519                  * processors.
520                  */
521                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
522                 get_gdt(&dt);
523                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
524
525                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
526                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
527
528                 /*
529                  * Make sure the time stamp counter is monotonous.
530                  */
531                 rdtscll(tsc_this);
532                 delta = vcpu->arch.host_tsc - tsc_this;
533                 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
534         }
535 }
536
537 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
538 {
539         vmx_load_host_state(to_vmx(vcpu));
540 }
541
542 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
543 {
544         if (vcpu->fpu_active)
545                 return;
546         vcpu->fpu_active = 1;
547         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
548         if (vcpu->arch.cr0 & X86_CR0_TS)
549                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
550         update_exception_bitmap(vcpu);
551 }
552
553 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
554 {
555         if (!vcpu->fpu_active)
556                 return;
557         vcpu->fpu_active = 0;
558         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
559         update_exception_bitmap(vcpu);
560 }
561
562 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
563 {
564         vcpu_clear(to_vmx(vcpu));
565 }
566
567 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
568 {
569         return vmcs_readl(GUEST_RFLAGS);
570 }
571
572 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
573 {
574         if (vcpu->arch.rmode.active)
575                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
576         vmcs_writel(GUEST_RFLAGS, rflags);
577 }
578
579 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
580 {
581         unsigned long rip;
582         u32 interruptibility;
583
584         rip = vmcs_readl(GUEST_RIP);
585         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
586         vmcs_writel(GUEST_RIP, rip);
587
588         /*
589          * We emulated an instruction, so temporary interrupt blocking
590          * should be removed, if set.
591          */
592         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
593         if (interruptibility & 3)
594                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
595                              interruptibility & ~3);
596         vcpu->arch.interrupt_window_open = 1;
597 }
598
599 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
600                                 bool has_error_code, u32 error_code)
601 {
602         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
603                      nr | INTR_TYPE_EXCEPTION
604                      | (has_error_code ? INTR_INFO_DELIEVER_CODE_MASK : 0)
605                      | INTR_INFO_VALID_MASK);
606         if (has_error_code)
607                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
608 }
609
610 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
611 {
612         struct vcpu_vmx *vmx = to_vmx(vcpu);
613
614         return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
615 }
616
617 /*
618  * Swap MSR entry in host/guest MSR entry array.
619  */
620 #ifdef CONFIG_X86_64
621 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
622 {
623         struct kvm_msr_entry tmp;
624
625         tmp = vmx->guest_msrs[to];
626         vmx->guest_msrs[to] = vmx->guest_msrs[from];
627         vmx->guest_msrs[from] = tmp;
628         tmp = vmx->host_msrs[to];
629         vmx->host_msrs[to] = vmx->host_msrs[from];
630         vmx->host_msrs[from] = tmp;
631 }
632 #endif
633
634 /*
635  * Set up the vmcs to automatically save and restore system
636  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
637  * mode, as fiddling with msrs is very expensive.
638  */
639 static void setup_msrs(struct vcpu_vmx *vmx)
640 {
641         int save_nmsrs;
642
643         save_nmsrs = 0;
644 #ifdef CONFIG_X86_64
645         if (is_long_mode(&vmx->vcpu)) {
646                 int index;
647
648                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
649                 if (index >= 0)
650                         move_msr_up(vmx, index, save_nmsrs++);
651                 index = __find_msr_index(vmx, MSR_LSTAR);
652                 if (index >= 0)
653                         move_msr_up(vmx, index, save_nmsrs++);
654                 index = __find_msr_index(vmx, MSR_CSTAR);
655                 if (index >= 0)
656                         move_msr_up(vmx, index, save_nmsrs++);
657                 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
658                 if (index >= 0)
659                         move_msr_up(vmx, index, save_nmsrs++);
660                 /*
661                  * MSR_K6_STAR is only needed on long mode guests, and only
662                  * if efer.sce is enabled.
663                  */
664                 index = __find_msr_index(vmx, MSR_K6_STAR);
665                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
666                         move_msr_up(vmx, index, save_nmsrs++);
667         }
668 #endif
669         vmx->save_nmsrs = save_nmsrs;
670
671 #ifdef CONFIG_X86_64
672         vmx->msr_offset_kernel_gs_base =
673                 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
674 #endif
675         vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
676 }
677
678 /*
679  * reads and returns guest's timestamp counter "register"
680  * guest_tsc = host_tsc + tsc_offset    -- 21.3
681  */
682 static u64 guest_read_tsc(void)
683 {
684         u64 host_tsc, tsc_offset;
685
686         rdtscll(host_tsc);
687         tsc_offset = vmcs_read64(TSC_OFFSET);
688         return host_tsc + tsc_offset;
689 }
690
691 /*
692  * writes 'guest_tsc' into guest's timestamp counter "register"
693  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
694  */
695 static void guest_write_tsc(u64 guest_tsc)
696 {
697         u64 host_tsc;
698
699         rdtscll(host_tsc);
700         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
701 }
702
703 /*
704  * Reads an msr value (of 'msr_index') into 'pdata'.
705  * Returns 0 on success, non-0 otherwise.
706  * Assumes vcpu_load() was already called.
707  */
708 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
709 {
710         u64 data;
711         struct kvm_msr_entry *msr;
712
713         if (!pdata) {
714                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
715                 return -EINVAL;
716         }
717
718         switch (msr_index) {
719 #ifdef CONFIG_X86_64
720         case MSR_FS_BASE:
721                 data = vmcs_readl(GUEST_FS_BASE);
722                 break;
723         case MSR_GS_BASE:
724                 data = vmcs_readl(GUEST_GS_BASE);
725                 break;
726         case MSR_EFER:
727                 return kvm_get_msr_common(vcpu, msr_index, pdata);
728 #endif
729         case MSR_IA32_TIME_STAMP_COUNTER:
730                 data = guest_read_tsc();
731                 break;
732         case MSR_IA32_SYSENTER_CS:
733                 data = vmcs_read32(GUEST_SYSENTER_CS);
734                 break;
735         case MSR_IA32_SYSENTER_EIP:
736                 data = vmcs_readl(GUEST_SYSENTER_EIP);
737                 break;
738         case MSR_IA32_SYSENTER_ESP:
739                 data = vmcs_readl(GUEST_SYSENTER_ESP);
740                 break;
741         default:
742                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
743                 if (msr) {
744                         data = msr->data;
745                         break;
746                 }
747                 return kvm_get_msr_common(vcpu, msr_index, pdata);
748         }
749
750         *pdata = data;
751         return 0;
752 }
753
754 /*
755  * Writes msr value into into the appropriate "register".
756  * Returns 0 on success, non-0 otherwise.
757  * Assumes vcpu_load() was already called.
758  */
759 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
760 {
761         struct vcpu_vmx *vmx = to_vmx(vcpu);
762         struct kvm_msr_entry *msr;
763         int ret = 0;
764
765         switch (msr_index) {
766 #ifdef CONFIG_X86_64
767         case MSR_EFER:
768                 ret = kvm_set_msr_common(vcpu, msr_index, data);
769                 if (vmx->host_state.loaded) {
770                         reload_host_efer(vmx);
771                         load_transition_efer(vmx);
772                 }
773                 break;
774         case MSR_FS_BASE:
775                 vmcs_writel(GUEST_FS_BASE, data);
776                 break;
777         case MSR_GS_BASE:
778                 vmcs_writel(GUEST_GS_BASE, data);
779                 break;
780 #endif
781         case MSR_IA32_SYSENTER_CS:
782                 vmcs_write32(GUEST_SYSENTER_CS, data);
783                 break;
784         case MSR_IA32_SYSENTER_EIP:
785                 vmcs_writel(GUEST_SYSENTER_EIP, data);
786                 break;
787         case MSR_IA32_SYSENTER_ESP:
788                 vmcs_writel(GUEST_SYSENTER_ESP, data);
789                 break;
790         case MSR_IA32_TIME_STAMP_COUNTER:
791                 guest_write_tsc(data);
792                 break;
793         default:
794                 msr = find_msr_entry(vmx, msr_index);
795                 if (msr) {
796                         msr->data = data;
797                         if (vmx->host_state.loaded)
798                                 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
799                         break;
800                 }
801                 ret = kvm_set_msr_common(vcpu, msr_index, data);
802         }
803
804         return ret;
805 }
806
807 /*
808  * Sync the rsp and rip registers into the vcpu structure.  This allows
809  * registers to be accessed by indexing vcpu->arch.regs.
810  */
811 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
812 {
813         vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
814         vcpu->arch.rip = vmcs_readl(GUEST_RIP);
815 }
816
817 /*
818  * Syncs rsp and rip back into the vmcs.  Should be called after possible
819  * modification.
820  */
821 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
822 {
823         vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
824         vmcs_writel(GUEST_RIP, vcpu->arch.rip);
825 }
826
827 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
828 {
829         unsigned long dr7 = 0x400;
830         int old_singlestep;
831
832         old_singlestep = vcpu->guest_debug.singlestep;
833
834         vcpu->guest_debug.enabled = dbg->enabled;
835         if (vcpu->guest_debug.enabled) {
836                 int i;
837
838                 dr7 |= 0x200;  /* exact */
839                 for (i = 0; i < 4; ++i) {
840                         if (!dbg->breakpoints[i].enabled)
841                                 continue;
842                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
843                         dr7 |= 2 << (i*2);    /* global enable */
844                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
845                 }
846
847                 vcpu->guest_debug.singlestep = dbg->singlestep;
848         } else
849                 vcpu->guest_debug.singlestep = 0;
850
851         if (old_singlestep && !vcpu->guest_debug.singlestep) {
852                 unsigned long flags;
853
854                 flags = vmcs_readl(GUEST_RFLAGS);
855                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
856                 vmcs_writel(GUEST_RFLAGS, flags);
857         }
858
859         update_exception_bitmap(vcpu);
860         vmcs_writel(GUEST_DR7, dr7);
861
862         return 0;
863 }
864
865 static int vmx_get_irq(struct kvm_vcpu *vcpu)
866 {
867         struct vcpu_vmx *vmx = to_vmx(vcpu);
868         u32 idtv_info_field;
869
870         idtv_info_field = vmx->idt_vectoring_info;
871         if (idtv_info_field & INTR_INFO_VALID_MASK) {
872                 if (is_external_interrupt(idtv_info_field))
873                         return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
874                 else
875                         printk(KERN_DEBUG "pending exception: not handled yet\n");
876         }
877         return -1;
878 }
879
880 static __init int cpu_has_kvm_support(void)
881 {
882         unsigned long ecx = cpuid_ecx(1);
883         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
884 }
885
886 static __init int vmx_disabled_by_bios(void)
887 {
888         u64 msr;
889
890         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
891         return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
892                        MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
893             == MSR_IA32_FEATURE_CONTROL_LOCKED;
894         /* locked but not enabled */
895 }
896
897 static void hardware_enable(void *garbage)
898 {
899         int cpu = raw_smp_processor_id();
900         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
901         u64 old;
902
903         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
904         if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
905                     MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
906             != (MSR_IA32_FEATURE_CONTROL_LOCKED |
907                 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
908                 /* enable and lock */
909                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
910                        MSR_IA32_FEATURE_CONTROL_LOCKED |
911                        MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
912         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
913         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
914                       : "memory", "cc");
915 }
916
917 static void hardware_disable(void *garbage)
918 {
919         asm volatile (ASM_VMX_VMXOFF : : : "cc");
920 }
921
922 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
923                                       u32 msr, u32 *result)
924 {
925         u32 vmx_msr_low, vmx_msr_high;
926         u32 ctl = ctl_min | ctl_opt;
927
928         rdmsr(msr, vmx_msr_low, vmx_msr_high);
929
930         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
931         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
932
933         /* Ensure minimum (required) set of control bits are supported. */
934         if (ctl_min & ~ctl)
935                 return -EIO;
936
937         *result = ctl;
938         return 0;
939 }
940
941 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
942 {
943         u32 vmx_msr_low, vmx_msr_high;
944         u32 min, opt;
945         u32 _pin_based_exec_control = 0;
946         u32 _cpu_based_exec_control = 0;
947         u32 _cpu_based_2nd_exec_control = 0;
948         u32 _vmexit_control = 0;
949         u32 _vmentry_control = 0;
950
951         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
952         opt = 0;
953         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
954                                 &_pin_based_exec_control) < 0)
955                 return -EIO;
956
957         min = CPU_BASED_HLT_EXITING |
958 #ifdef CONFIG_X86_64
959               CPU_BASED_CR8_LOAD_EXITING |
960               CPU_BASED_CR8_STORE_EXITING |
961 #endif
962               CPU_BASED_USE_IO_BITMAPS |
963               CPU_BASED_MOV_DR_EXITING |
964               CPU_BASED_USE_TSC_OFFSETING;
965         opt = CPU_BASED_TPR_SHADOW |
966               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
967         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
968                                 &_cpu_based_exec_control) < 0)
969                 return -EIO;
970 #ifdef CONFIG_X86_64
971         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
972                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
973                                            ~CPU_BASED_CR8_STORE_EXITING;
974 #endif
975         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
976                 min = 0;
977                 opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
978                         SECONDARY_EXEC_WBINVD_EXITING;
979                 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
980                                         &_cpu_based_2nd_exec_control) < 0)
981                         return -EIO;
982         }
983 #ifndef CONFIG_X86_64
984         if (!(_cpu_based_2nd_exec_control &
985                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
986                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
987 #endif
988
989         min = 0;
990 #ifdef CONFIG_X86_64
991         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
992 #endif
993         opt = 0;
994         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
995                                 &_vmexit_control) < 0)
996                 return -EIO;
997
998         min = opt = 0;
999         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1000                                 &_vmentry_control) < 0)
1001                 return -EIO;
1002
1003         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1004
1005         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1006         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1007                 return -EIO;
1008
1009 #ifdef CONFIG_X86_64
1010         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1011         if (vmx_msr_high & (1u<<16))
1012                 return -EIO;
1013 #endif
1014
1015         /* Require Write-Back (WB) memory type for VMCS accesses. */
1016         if (((vmx_msr_high >> 18) & 15) != 6)
1017                 return -EIO;
1018
1019         vmcs_conf->size = vmx_msr_high & 0x1fff;
1020         vmcs_conf->order = get_order(vmcs_config.size);
1021         vmcs_conf->revision_id = vmx_msr_low;
1022
1023         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1024         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1025         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1026         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1027         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1028
1029         return 0;
1030 }
1031
1032 static struct vmcs *alloc_vmcs_cpu(int cpu)
1033 {
1034         int node = cpu_to_node(cpu);
1035         struct page *pages;
1036         struct vmcs *vmcs;
1037
1038         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1039         if (!pages)
1040                 return NULL;
1041         vmcs = page_address(pages);
1042         memset(vmcs, 0, vmcs_config.size);
1043         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1044         return vmcs;
1045 }
1046
1047 static struct vmcs *alloc_vmcs(void)
1048 {
1049         return alloc_vmcs_cpu(raw_smp_processor_id());
1050 }
1051
1052 static void free_vmcs(struct vmcs *vmcs)
1053 {
1054         free_pages((unsigned long)vmcs, vmcs_config.order);
1055 }
1056
1057 static void free_kvm_area(void)
1058 {
1059         int cpu;
1060
1061         for_each_online_cpu(cpu)
1062                 free_vmcs(per_cpu(vmxarea, cpu));
1063 }
1064
1065 static __init int alloc_kvm_area(void)
1066 {
1067         int cpu;
1068
1069         for_each_online_cpu(cpu) {
1070                 struct vmcs *vmcs;
1071
1072                 vmcs = alloc_vmcs_cpu(cpu);
1073                 if (!vmcs) {
1074                         free_kvm_area();
1075                         return -ENOMEM;
1076                 }
1077
1078                 per_cpu(vmxarea, cpu) = vmcs;
1079         }
1080         return 0;
1081 }
1082
1083 static __init int hardware_setup(void)
1084 {
1085         if (setup_vmcs_config(&vmcs_config) < 0)
1086                 return -EIO;
1087         return alloc_kvm_area();
1088 }
1089
1090 static __exit void hardware_unsetup(void)
1091 {
1092         free_kvm_area();
1093 }
1094
1095 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1096 {
1097         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1098
1099         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1100                 vmcs_write16(sf->selector, save->selector);
1101                 vmcs_writel(sf->base, save->base);
1102                 vmcs_write32(sf->limit, save->limit);
1103                 vmcs_write32(sf->ar_bytes, save->ar);
1104         } else {
1105                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1106                         << AR_DPL_SHIFT;
1107                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1108         }
1109 }
1110
1111 static void enter_pmode(struct kvm_vcpu *vcpu)
1112 {
1113         unsigned long flags;
1114
1115         vcpu->arch.rmode.active = 0;
1116
1117         vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1118         vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1119         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1120
1121         flags = vmcs_readl(GUEST_RFLAGS);
1122         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1123         flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1124         vmcs_writel(GUEST_RFLAGS, flags);
1125
1126         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1127                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1128
1129         update_exception_bitmap(vcpu);
1130
1131         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1132         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1133         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1134         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1135
1136         vmcs_write16(GUEST_SS_SELECTOR, 0);
1137         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1138
1139         vmcs_write16(GUEST_CS_SELECTOR,
1140                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1141         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1142 }
1143
1144 static gva_t rmode_tss_base(struct kvm *kvm)
1145 {
1146         if (!kvm->arch.tss_addr) {
1147                 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1148                                  kvm->memslots[0].npages - 3;
1149                 return base_gfn << PAGE_SHIFT;
1150         }
1151         return kvm->arch.tss_addr;
1152 }
1153
1154 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1155 {
1156         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1157
1158         save->selector = vmcs_read16(sf->selector);
1159         save->base = vmcs_readl(sf->base);
1160         save->limit = vmcs_read32(sf->limit);
1161         save->ar = vmcs_read32(sf->ar_bytes);
1162         vmcs_write16(sf->selector, save->base >> 4);
1163         vmcs_write32(sf->base, save->base & 0xfffff);
1164         vmcs_write32(sf->limit, 0xffff);
1165         vmcs_write32(sf->ar_bytes, 0xf3);
1166 }
1167
1168 static void enter_rmode(struct kvm_vcpu *vcpu)
1169 {
1170         unsigned long flags;
1171
1172         vcpu->arch.rmode.active = 1;
1173
1174         vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1175         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1176
1177         vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1178         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1179
1180         vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1181         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1182
1183         flags = vmcs_readl(GUEST_RFLAGS);
1184         vcpu->arch.rmode.save_iopl
1185                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1186
1187         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1188
1189         vmcs_writel(GUEST_RFLAGS, flags);
1190         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1191         update_exception_bitmap(vcpu);
1192
1193         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1194         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1195         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1196
1197         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1198         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1199         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1200                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1201         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1202
1203         fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1204         fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1205         fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1206         fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1207
1208         kvm_mmu_reset_context(vcpu);
1209         init_rmode_tss(vcpu->kvm);
1210 }
1211
1212 #ifdef CONFIG_X86_64
1213
1214 static void enter_lmode(struct kvm_vcpu *vcpu)
1215 {
1216         u32 guest_tr_ar;
1217
1218         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1219         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1220                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1221                        __FUNCTION__);
1222                 vmcs_write32(GUEST_TR_AR_BYTES,
1223                              (guest_tr_ar & ~AR_TYPE_MASK)
1224                              | AR_TYPE_BUSY_64_TSS);
1225         }
1226
1227         vcpu->arch.shadow_efer |= EFER_LMA;
1228
1229         find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1230         vmcs_write32(VM_ENTRY_CONTROLS,
1231                      vmcs_read32(VM_ENTRY_CONTROLS)
1232                      | VM_ENTRY_IA32E_MODE);
1233 }
1234
1235 static void exit_lmode(struct kvm_vcpu *vcpu)
1236 {
1237         vcpu->arch.shadow_efer &= ~EFER_LMA;
1238
1239         vmcs_write32(VM_ENTRY_CONTROLS,
1240                      vmcs_read32(VM_ENTRY_CONTROLS)
1241                      & ~VM_ENTRY_IA32E_MODE);
1242 }
1243
1244 #endif
1245
1246 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1247 {
1248         vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1249         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1250 }
1251
1252 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1253 {
1254         vmx_fpu_deactivate(vcpu);
1255
1256         if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1257                 enter_pmode(vcpu);
1258
1259         if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1260                 enter_rmode(vcpu);
1261
1262 #ifdef CONFIG_X86_64
1263         if (vcpu->arch.shadow_efer & EFER_LME) {
1264                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1265                         enter_lmode(vcpu);
1266                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1267                         exit_lmode(vcpu);
1268         }
1269 #endif
1270
1271         vmcs_writel(CR0_READ_SHADOW, cr0);
1272         vmcs_writel(GUEST_CR0,
1273                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1274         vcpu->arch.cr0 = cr0;
1275
1276         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1277                 vmx_fpu_activate(vcpu);
1278 }
1279
1280 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1281 {
1282         vmcs_writel(GUEST_CR3, cr3);
1283         if (vcpu->arch.cr0 & X86_CR0_PE)
1284                 vmx_fpu_deactivate(vcpu);
1285 }
1286
1287 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1288 {
1289         vmcs_writel(CR4_READ_SHADOW, cr4);
1290         vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ?
1291                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1292         vcpu->arch.cr4 = cr4;
1293 }
1294
1295 #ifdef CONFIG_X86_64
1296
1297 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1298 {
1299         struct vcpu_vmx *vmx = to_vmx(vcpu);
1300         struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1301
1302         vcpu->arch.shadow_efer = efer;
1303         if (efer & EFER_LMA) {
1304                 vmcs_write32(VM_ENTRY_CONTROLS,
1305                                      vmcs_read32(VM_ENTRY_CONTROLS) |
1306                                      VM_ENTRY_IA32E_MODE);
1307                 msr->data = efer;
1308
1309         } else {
1310                 vmcs_write32(VM_ENTRY_CONTROLS,
1311                                      vmcs_read32(VM_ENTRY_CONTROLS) &
1312                                      ~VM_ENTRY_IA32E_MODE);
1313
1314                 msr->data = efer & ~EFER_LME;
1315         }
1316         setup_msrs(vmx);
1317 }
1318
1319 #endif
1320
1321 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1322 {
1323         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1324
1325         return vmcs_readl(sf->base);
1326 }
1327
1328 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1329                             struct kvm_segment *var, int seg)
1330 {
1331         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1332         u32 ar;
1333
1334         var->base = vmcs_readl(sf->base);
1335         var->limit = vmcs_read32(sf->limit);
1336         var->selector = vmcs_read16(sf->selector);
1337         ar = vmcs_read32(sf->ar_bytes);
1338         if (ar & AR_UNUSABLE_MASK)
1339                 ar = 0;
1340         var->type = ar & 15;
1341         var->s = (ar >> 4) & 1;
1342         var->dpl = (ar >> 5) & 3;
1343         var->present = (ar >> 7) & 1;
1344         var->avl = (ar >> 12) & 1;
1345         var->l = (ar >> 13) & 1;
1346         var->db = (ar >> 14) & 1;
1347         var->g = (ar >> 15) & 1;
1348         var->unusable = (ar >> 16) & 1;
1349 }
1350
1351 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1352 {
1353         u32 ar;
1354
1355         if (var->unusable)
1356                 ar = 1 << 16;
1357         else {
1358                 ar = var->type & 15;
1359                 ar |= (var->s & 1) << 4;
1360                 ar |= (var->dpl & 3) << 5;
1361                 ar |= (var->present & 1) << 7;
1362                 ar |= (var->avl & 1) << 12;
1363                 ar |= (var->l & 1) << 13;
1364                 ar |= (var->db & 1) << 14;
1365                 ar |= (var->g & 1) << 15;
1366         }
1367         if (ar == 0) /* a 0 value means unusable */
1368                 ar = AR_UNUSABLE_MASK;
1369
1370         return ar;
1371 }
1372
1373 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1374                             struct kvm_segment *var, int seg)
1375 {
1376         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1377         u32 ar;
1378
1379         if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1380                 vcpu->arch.rmode.tr.selector = var->selector;
1381                 vcpu->arch.rmode.tr.base = var->base;
1382                 vcpu->arch.rmode.tr.limit = var->limit;
1383                 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1384                 return;
1385         }
1386         vmcs_writel(sf->base, var->base);
1387         vmcs_write32(sf->limit, var->limit);
1388         vmcs_write16(sf->selector, var->selector);
1389         if (vcpu->arch.rmode.active && var->s) {
1390                 /*
1391                  * Hack real-mode segments into vm86 compatibility.
1392                  */
1393                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1394                         vmcs_writel(sf->base, 0xf0000);
1395                 ar = 0xf3;
1396         } else
1397                 ar = vmx_segment_access_rights(var);
1398         vmcs_write32(sf->ar_bytes, ar);
1399 }
1400
1401 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1402 {
1403         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1404
1405         *db = (ar >> 14) & 1;
1406         *l = (ar >> 13) & 1;
1407 }
1408
1409 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1410 {
1411         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1412         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1413 }
1414
1415 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1416 {
1417         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1418         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1419 }
1420
1421 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1422 {
1423         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1424         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1425 }
1426
1427 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1428 {
1429         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1430         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1431 }
1432
1433 static int init_rmode_tss(struct kvm *kvm)
1434 {
1435         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1436         u16 data = 0;
1437         int r;
1438
1439         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1440         if (r < 0)
1441                 return 0;
1442         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1443         r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1444         if (r < 0)
1445                 return 0;
1446         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1447         if (r < 0)
1448                 return 0;
1449         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1450         if (r < 0)
1451                 return 0;
1452         data = ~0;
1453         r = kvm_write_guest_page(kvm, fn, &data, RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1454                         sizeof(u8));
1455         if (r < 0)
1456                 return 0;
1457         return 1;
1458 }
1459
1460 static void seg_setup(int seg)
1461 {
1462         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1463
1464         vmcs_write16(sf->selector, 0);
1465         vmcs_writel(sf->base, 0);
1466         vmcs_write32(sf->limit, 0xffff);
1467         vmcs_write32(sf->ar_bytes, 0x93);
1468 }
1469
1470 static int alloc_apic_access_page(struct kvm *kvm)
1471 {
1472         struct kvm_userspace_memory_region kvm_userspace_mem;
1473         int r = 0;
1474
1475         mutex_lock(&kvm->lock);
1476         if (kvm->arch.apic_access_page)
1477                 goto out;
1478         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1479         kvm_userspace_mem.flags = 0;
1480         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1481         kvm_userspace_mem.memory_size = PAGE_SIZE;
1482         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1483         if (r)
1484                 goto out;
1485         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
1486 out:
1487         mutex_unlock(&kvm->lock);
1488         return r;
1489 }
1490
1491 /*
1492  * Sets up the vmcs for emulated real mode.
1493  */
1494 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1495 {
1496         u32 host_sysenter_cs;
1497         u32 junk;
1498         unsigned long a;
1499         struct descriptor_table dt;
1500         int i;
1501         unsigned long kvm_vmx_return;
1502         u32 exec_control;
1503
1504         /* I/O */
1505         vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1506         vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1507
1508         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1509
1510         /* Control */
1511         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1512                 vmcs_config.pin_based_exec_ctrl);
1513
1514         exec_control = vmcs_config.cpu_based_exec_ctrl;
1515         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1516                 exec_control &= ~CPU_BASED_TPR_SHADOW;
1517 #ifdef CONFIG_X86_64
1518                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1519                                 CPU_BASED_CR8_LOAD_EXITING;
1520 #endif
1521         }
1522         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1523
1524         if (cpu_has_secondary_exec_ctrls()) {
1525                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1526                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1527                         exec_control &=
1528                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1529                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1530         }
1531
1532         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1533         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1534         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1535
1536         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1537         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1538         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1539
1540         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1541         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1542         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1543         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1544         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1545         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1546 #ifdef CONFIG_X86_64
1547         rdmsrl(MSR_FS_BASE, a);
1548         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1549         rdmsrl(MSR_GS_BASE, a);
1550         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1551 #else
1552         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1553         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1554 #endif
1555
1556         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1557
1558         get_idt(&dt);
1559         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1560
1561         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1562         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1563         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1564         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1565         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1566
1567         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1568         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1569         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1570         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1571         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1572         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1573
1574         for (i = 0; i < NR_VMX_MSR; ++i) {
1575                 u32 index = vmx_msr_index[i];
1576                 u32 data_low, data_high;
1577                 u64 data;
1578                 int j = vmx->nmsrs;
1579
1580                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1581                         continue;
1582                 if (wrmsr_safe(index, data_low, data_high) < 0)
1583                         continue;
1584                 data = data_low | ((u64)data_high << 32);
1585                 vmx->host_msrs[j].index = index;
1586                 vmx->host_msrs[j].reserved = 0;
1587                 vmx->host_msrs[j].data = data;
1588                 vmx->guest_msrs[j] = vmx->host_msrs[j];
1589                 ++vmx->nmsrs;
1590         }
1591
1592         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1593
1594         /* 22.2.1, 20.8.1 */
1595         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1596
1597         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1598         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1599
1600         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1601                 if (alloc_apic_access_page(vmx->vcpu.kvm) != 0)
1602                         return -ENOMEM;
1603
1604         return 0;
1605 }
1606
1607 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1608 {
1609         struct vcpu_vmx *vmx = to_vmx(vcpu);
1610         u64 msr;
1611         int ret;
1612
1613         if (!init_rmode_tss(vmx->vcpu.kvm)) {
1614                 ret = -ENOMEM;
1615                 goto out;
1616         }
1617
1618         vmx->vcpu.arch.rmode.active = 0;
1619
1620         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1621         set_cr8(&vmx->vcpu, 0);
1622         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1623         if (vmx->vcpu.vcpu_id == 0)
1624                 msr |= MSR_IA32_APICBASE_BSP;
1625         kvm_set_apic_base(&vmx->vcpu, msr);
1626
1627         fx_init(&vmx->vcpu);
1628
1629         /*
1630          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1631          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
1632          */
1633         if (vmx->vcpu.vcpu_id == 0) {
1634                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1635                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1636         } else {
1637                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
1638                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
1639         }
1640         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1641         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1642
1643         seg_setup(VCPU_SREG_DS);
1644         seg_setup(VCPU_SREG_ES);
1645         seg_setup(VCPU_SREG_FS);
1646         seg_setup(VCPU_SREG_GS);
1647         seg_setup(VCPU_SREG_SS);
1648
1649         vmcs_write16(GUEST_TR_SELECTOR, 0);
1650         vmcs_writel(GUEST_TR_BASE, 0);
1651         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1652         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1653
1654         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1655         vmcs_writel(GUEST_LDTR_BASE, 0);
1656         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1657         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1658
1659         vmcs_write32(GUEST_SYSENTER_CS, 0);
1660         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1661         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1662
1663         vmcs_writel(GUEST_RFLAGS, 0x02);
1664         if (vmx->vcpu.vcpu_id == 0)
1665                 vmcs_writel(GUEST_RIP, 0xfff0);
1666         else
1667                 vmcs_writel(GUEST_RIP, 0);
1668         vmcs_writel(GUEST_RSP, 0);
1669
1670         /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
1671         vmcs_writel(GUEST_DR7, 0x400);
1672
1673         vmcs_writel(GUEST_GDTR_BASE, 0);
1674         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1675
1676         vmcs_writel(GUEST_IDTR_BASE, 0);
1677         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1678
1679         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1680         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1681         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1682
1683         guest_write_tsc(0);
1684
1685         /* Special registers */
1686         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1687
1688         setup_msrs(vmx);
1689
1690         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1691
1692         if (cpu_has_vmx_tpr_shadow()) {
1693                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1694                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1695                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1696                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
1697                 vmcs_write32(TPR_THRESHOLD, 0);
1698         }
1699
1700         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1701                 vmcs_write64(APIC_ACCESS_ADDR,
1702                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
1703
1704         vmx->vcpu.arch.cr0 = 0x60000010;
1705         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
1706         vmx_set_cr4(&vmx->vcpu, 0);
1707 #ifdef CONFIG_X86_64
1708         vmx_set_efer(&vmx->vcpu, 0);
1709 #endif
1710         vmx_fpu_activate(&vmx->vcpu);
1711         update_exception_bitmap(&vmx->vcpu);
1712
1713         return 0;
1714
1715 out:
1716         return ret;
1717 }
1718
1719 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1720 {
1721         struct vcpu_vmx *vmx = to_vmx(vcpu);
1722
1723         if (vcpu->arch.rmode.active) {
1724                 vmx->rmode.irq.pending = true;
1725                 vmx->rmode.irq.vector = irq;
1726                 vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
1727                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1728                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
1729                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
1730                 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
1731                 return;
1732         }
1733         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1734                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1735 }
1736
1737 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1738 {
1739         int word_index = __ffs(vcpu->arch.irq_summary);
1740         int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
1741         int irq = word_index * BITS_PER_LONG + bit_index;
1742
1743         clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
1744         if (!vcpu->arch.irq_pending[word_index])
1745                 clear_bit(word_index, &vcpu->arch.irq_summary);
1746         vmx_inject_irq(vcpu, irq);
1747 }
1748
1749
1750 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1751                                        struct kvm_run *kvm_run)
1752 {
1753         u32 cpu_based_vm_exec_control;
1754
1755         vcpu->arch.interrupt_window_open =
1756                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1757                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1758
1759         if (vcpu->arch.interrupt_window_open &&
1760             vcpu->arch.irq_summary &&
1761             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1762                 /*
1763                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1764                  */
1765                 kvm_do_inject_irq(vcpu);
1766
1767         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1768         if (!vcpu->arch.interrupt_window_open &&
1769             (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
1770                 /*
1771                  * Interrupts blocked.  Wait for unblock.
1772                  */
1773                 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1774         else
1775                 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1776         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1777 }
1778
1779 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
1780 {
1781         int ret;
1782         struct kvm_userspace_memory_region tss_mem = {
1783                 .slot = 8,
1784                 .guest_phys_addr = addr,
1785                 .memory_size = PAGE_SIZE * 3,
1786                 .flags = 0,
1787         };
1788
1789         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
1790         if (ret)
1791                 return ret;
1792         kvm->arch.tss_addr = addr;
1793         return 0;
1794 }
1795
1796 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1797 {
1798         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1799
1800         set_debugreg(dbg->bp[0], 0);
1801         set_debugreg(dbg->bp[1], 1);
1802         set_debugreg(dbg->bp[2], 2);
1803         set_debugreg(dbg->bp[3], 3);
1804
1805         if (dbg->singlestep) {
1806                 unsigned long flags;
1807
1808                 flags = vmcs_readl(GUEST_RFLAGS);
1809                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1810                 vmcs_writel(GUEST_RFLAGS, flags);
1811         }
1812 }
1813
1814 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1815                                   int vec, u32 err_code)
1816 {
1817         if (!vcpu->arch.rmode.active)
1818                 return 0;
1819
1820         /*
1821          * Instruction with address size override prefix opcode 0x67
1822          * Cause the #SS fault with 0 error code in VM86 mode.
1823          */
1824         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1825                 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
1826                         return 1;
1827         return 0;
1828 }
1829
1830 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1831 {
1832         struct vcpu_vmx *vmx = to_vmx(vcpu);
1833         u32 intr_info, error_code;
1834         unsigned long cr2, rip;
1835         u32 vect_info;
1836         enum emulation_result er;
1837
1838         vect_info = vmx->idt_vectoring_info;
1839         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1840
1841         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1842                                                 !is_page_fault(intr_info))
1843                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1844                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1845
1846         if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
1847                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1848                 set_bit(irq, vcpu->arch.irq_pending);
1849                 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1850         }
1851
1852         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
1853                 return 1;  /* already handled by vmx_vcpu_run() */
1854
1855         if (is_no_device(intr_info)) {
1856                 vmx_fpu_activate(vcpu);
1857                 return 1;
1858         }
1859
1860         if (is_invalid_opcode(intr_info)) {
1861                 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
1862                 if (er != EMULATE_DONE)
1863                         kvm_queue_exception(vcpu, UD_VECTOR);
1864                 return 1;
1865         }
1866
1867         error_code = 0;
1868         rip = vmcs_readl(GUEST_RIP);
1869         if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1870                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1871         if (is_page_fault(intr_info)) {
1872                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1873                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
1874         }
1875
1876         if (vcpu->arch.rmode.active &&
1877             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1878                                                                 error_code)) {
1879                 if (vcpu->arch.halt_request) {
1880                         vcpu->arch.halt_request = 0;
1881                         return kvm_emulate_halt(vcpu);
1882                 }
1883                 return 1;
1884         }
1885
1886         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
1887             (INTR_TYPE_EXCEPTION | 1)) {
1888                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1889                 return 0;
1890         }
1891         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1892         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1893         kvm_run->ex.error_code = error_code;
1894         return 0;
1895 }
1896
1897 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1898                                      struct kvm_run *kvm_run)
1899 {
1900         ++vcpu->stat.irq_exits;
1901         return 1;
1902 }
1903
1904 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1905 {
1906         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1907         return 0;
1908 }
1909
1910 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1911 {
1912         unsigned long exit_qualification;
1913         int size, down, in, string, rep;
1914         unsigned port;
1915
1916         ++vcpu->stat.io_exits;
1917         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1918         string = (exit_qualification & 16) != 0;
1919
1920         if (string) {
1921                 if (emulate_instruction(vcpu,
1922                                         kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1923                         return 0;
1924                 return 1;
1925         }
1926
1927         size = (exit_qualification & 7) + 1;
1928         in = (exit_qualification & 8) != 0;
1929         down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1930         rep = (exit_qualification & 32) != 0;
1931         port = exit_qualification >> 16;
1932
1933         return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
1934 }
1935
1936 static void
1937 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1938 {
1939         /*
1940          * Patch in the VMCALL instruction:
1941          */
1942         hypercall[0] = 0x0f;
1943         hypercall[1] = 0x01;
1944         hypercall[2] = 0xc1;
1945 }
1946
1947 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1948 {
1949         unsigned long exit_qualification;
1950         int cr;
1951         int reg;
1952
1953         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1954         cr = exit_qualification & 15;
1955         reg = (exit_qualification >> 8) & 15;
1956         switch ((exit_qualification >> 4) & 3) {
1957         case 0: /* mov to cr */
1958                 switch (cr) {
1959                 case 0:
1960                         vcpu_load_rsp_rip(vcpu);
1961                         set_cr0(vcpu, vcpu->arch.regs[reg]);
1962                         skip_emulated_instruction(vcpu);
1963                         return 1;
1964                 case 3:
1965                         vcpu_load_rsp_rip(vcpu);
1966                         set_cr3(vcpu, vcpu->arch.regs[reg]);
1967                         skip_emulated_instruction(vcpu);
1968                         return 1;
1969                 case 4:
1970                         vcpu_load_rsp_rip(vcpu);
1971                         set_cr4(vcpu, vcpu->arch.regs[reg]);
1972                         skip_emulated_instruction(vcpu);
1973                         return 1;
1974                 case 8:
1975                         vcpu_load_rsp_rip(vcpu);
1976                         set_cr8(vcpu, vcpu->arch.regs[reg]);
1977                         skip_emulated_instruction(vcpu);
1978                         if (irqchip_in_kernel(vcpu->kvm))
1979                                 return 1;
1980                         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1981                         return 0;
1982                 };
1983                 break;
1984         case 2: /* clts */
1985                 vcpu_load_rsp_rip(vcpu);
1986                 vmx_fpu_deactivate(vcpu);
1987                 vcpu->arch.cr0 &= ~X86_CR0_TS;
1988                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1989                 vmx_fpu_activate(vcpu);
1990                 skip_emulated_instruction(vcpu);
1991                 return 1;
1992         case 1: /*mov from cr*/
1993                 switch (cr) {
1994                 case 3:
1995                         vcpu_load_rsp_rip(vcpu);
1996                         vcpu->arch.regs[reg] = vcpu->arch.cr3;
1997                         vcpu_put_rsp_rip(vcpu);
1998                         skip_emulated_instruction(vcpu);
1999                         return 1;
2000                 case 8:
2001                         vcpu_load_rsp_rip(vcpu);
2002                         vcpu->arch.regs[reg] = get_cr8(vcpu);
2003                         vcpu_put_rsp_rip(vcpu);
2004                         skip_emulated_instruction(vcpu);
2005                         return 1;
2006                 }
2007                 break;
2008         case 3: /* lmsw */
2009                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2010
2011                 skip_emulated_instruction(vcpu);
2012                 return 1;
2013         default:
2014                 break;
2015         }
2016         kvm_run->exit_reason = 0;
2017         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2018                (int)(exit_qualification >> 4) & 3, cr);
2019         return 0;
2020 }
2021
2022 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2023 {
2024         unsigned long exit_qualification;
2025         unsigned long val;
2026         int dr, reg;
2027
2028         /*
2029          * FIXME: this code assumes the host is debugging the guest.
2030          *        need to deal with guest debugging itself too.
2031          */
2032         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2033         dr = exit_qualification & 7;
2034         reg = (exit_qualification >> 8) & 15;
2035         vcpu_load_rsp_rip(vcpu);
2036         if (exit_qualification & 16) {
2037                 /* mov from dr */
2038                 switch (dr) {
2039                 case 6:
2040                         val = 0xffff0ff0;
2041                         break;
2042                 case 7:
2043                         val = 0x400;
2044                         break;
2045                 default:
2046                         val = 0;
2047                 }
2048                 vcpu->arch.regs[reg] = val;
2049         } else {
2050                 /* mov to dr */
2051         }
2052         vcpu_put_rsp_rip(vcpu);
2053         skip_emulated_instruction(vcpu);
2054         return 1;
2055 }
2056
2057 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2058 {
2059         kvm_emulate_cpuid(vcpu);
2060         return 1;
2061 }
2062
2063 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2064 {
2065         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2066         u64 data;
2067
2068         if (vmx_get_msr(vcpu, ecx, &data)) {
2069                 kvm_inject_gp(vcpu, 0);
2070                 return 1;
2071         }
2072
2073         /* FIXME: handling of bits 32:63 of rax, rdx */
2074         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2075         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2076         skip_emulated_instruction(vcpu);
2077         return 1;
2078 }
2079
2080 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2081 {
2082         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2083         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2084                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2085
2086         if (vmx_set_msr(vcpu, ecx, data) != 0) {
2087                 kvm_inject_gp(vcpu, 0);
2088                 return 1;
2089         }
2090
2091         skip_emulated_instruction(vcpu);
2092         return 1;
2093 }
2094
2095 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2096                                       struct kvm_run *kvm_run)
2097 {
2098         return 1;
2099 }
2100
2101 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2102                                    struct kvm_run *kvm_run)
2103 {
2104         u32 cpu_based_vm_exec_control;
2105
2106         /* clear pending irq */
2107         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2108         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2109         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2110         /*
2111          * If the user space waits to inject interrupts, exit as soon as
2112          * possible
2113          */
2114         if (kvm_run->request_interrupt_window &&
2115             !vcpu->arch.irq_summary) {
2116                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2117                 ++vcpu->stat.irq_window_exits;
2118                 return 0;
2119         }
2120         return 1;
2121 }
2122
2123 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2124 {
2125         skip_emulated_instruction(vcpu);
2126         return kvm_emulate_halt(vcpu);
2127 }
2128
2129 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2130 {
2131         skip_emulated_instruction(vcpu);
2132         kvm_emulate_hypercall(vcpu);
2133         return 1;
2134 }
2135
2136 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2137 {
2138         skip_emulated_instruction(vcpu);
2139         /* TODO: Add support for VT-d/pass-through device */
2140         return 1;
2141 }
2142
2143 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2144 {
2145         u64 exit_qualification;
2146         enum emulation_result er;
2147         unsigned long offset;
2148
2149         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2150         offset = exit_qualification & 0xffful;
2151
2152         er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2153
2154         if (er !=  EMULATE_DONE) {
2155                 printk(KERN_ERR
2156                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2157                        offset);
2158                 return -ENOTSUPP;
2159         }
2160         return 1;
2161 }
2162
2163 /*
2164  * The exit handlers return 1 if the exit was handled fully and guest execution
2165  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
2166  * to be done to userspace and return 0.
2167  */
2168 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2169                                       struct kvm_run *kvm_run) = {
2170         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
2171         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
2172         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
2173         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
2174         [EXIT_REASON_CR_ACCESS]               = handle_cr,
2175         [EXIT_REASON_DR_ACCESS]               = handle_dr,
2176         [EXIT_REASON_CPUID]                   = handle_cpuid,
2177         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
2178         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
2179         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
2180         [EXIT_REASON_HLT]                     = handle_halt,
2181         [EXIT_REASON_VMCALL]                  = handle_vmcall,
2182         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
2183         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
2184         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
2185 };
2186
2187 static const int kvm_vmx_max_exit_handlers =
2188         ARRAY_SIZE(kvm_vmx_exit_handlers);
2189
2190 /*
2191  * The guest has exited.  See if we can fix it or if we need userspace
2192  * assistance.
2193  */
2194 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2195 {
2196         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2197         struct vcpu_vmx *vmx = to_vmx(vcpu);
2198         u32 vectoring_info = vmx->idt_vectoring_info;
2199
2200         if (unlikely(vmx->fail)) {
2201                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2202                 kvm_run->fail_entry.hardware_entry_failure_reason
2203                         = vmcs_read32(VM_INSTRUCTION_ERROR);
2204                 return 0;
2205         }
2206
2207         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2208                                 exit_reason != EXIT_REASON_EXCEPTION_NMI)
2209                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2210                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2211         if (exit_reason < kvm_vmx_max_exit_handlers
2212             && kvm_vmx_exit_handlers[exit_reason])
2213                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2214         else {
2215                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2216                 kvm_run->hw.hardware_exit_reason = exit_reason;
2217         }
2218         return 0;
2219 }
2220
2221 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2222 {
2223 }
2224
2225 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2226 {
2227         int max_irr, tpr;
2228
2229         if (!vm_need_tpr_shadow(vcpu->kvm))
2230                 return;
2231
2232         if (!kvm_lapic_enabled(vcpu) ||
2233             ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2234                 vmcs_write32(TPR_THRESHOLD, 0);
2235                 return;
2236         }
2237
2238         tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2239         vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2240 }
2241
2242 static void enable_irq_window(struct kvm_vcpu *vcpu)
2243 {
2244         u32 cpu_based_vm_exec_control;
2245
2246         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2247         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2248         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2249 }
2250
2251 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2252 {
2253         struct vcpu_vmx *vmx = to_vmx(vcpu);
2254         u32 idtv_info_field, intr_info_field;
2255         int has_ext_irq, interrupt_window_open;
2256         int vector;
2257
2258         update_tpr_threshold(vcpu);
2259
2260         has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2261         intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2262         idtv_info_field = vmx->idt_vectoring_info;
2263         if (intr_info_field & INTR_INFO_VALID_MASK) {
2264                 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2265                         /* TODO: fault when IDT_Vectoring */
2266                         printk(KERN_ERR "Fault when IDT_Vectoring\n");
2267                 }
2268                 if (has_ext_irq)
2269                         enable_irq_window(vcpu);
2270                 return;
2271         }
2272         if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2273                 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2274                     == INTR_TYPE_EXT_INTR
2275                     && vcpu->arch.rmode.active) {
2276                         u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
2277
2278                         vmx_inject_irq(vcpu, vect);
2279                         if (unlikely(has_ext_irq))
2280                                 enable_irq_window(vcpu);
2281                         return;
2282                 }
2283
2284                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2285                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2286                                 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2287
2288                 if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
2289                         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2290                                 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2291                 if (unlikely(has_ext_irq))
2292                         enable_irq_window(vcpu);
2293                 return;
2294         }
2295         if (!has_ext_irq)
2296                 return;
2297         interrupt_window_open =
2298                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2299                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2300         if (interrupt_window_open) {
2301                 vector = kvm_cpu_get_interrupt(vcpu);
2302                 vmx_inject_irq(vcpu, vector);
2303                 kvm_timer_intr_post(vcpu, vector);
2304         } else
2305                 enable_irq_window(vcpu);
2306 }
2307
2308 /*
2309  * Failure to inject an interrupt should give us the information
2310  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
2311  * when fetching the interrupt redirection bitmap in the real-mode
2312  * tss, this doesn't happen.  So we do it ourselves.
2313  */
2314 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2315 {
2316         vmx->rmode.irq.pending = 0;
2317         if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
2318                 return;
2319         vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
2320         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2321                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2322                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2323                 return;
2324         }
2325         vmx->idt_vectoring_info =
2326                 VECTORING_INFO_VALID_MASK
2327                 | INTR_TYPE_EXT_INTR
2328                 | vmx->rmode.irq.vector;
2329 }
2330
2331 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2332 {
2333         struct vcpu_vmx *vmx = to_vmx(vcpu);
2334         u32 intr_info;
2335
2336         /*
2337          * Loading guest fpu may have cleared host cr0.ts
2338          */
2339         vmcs_writel(HOST_CR0, read_cr0());
2340
2341         asm(
2342                 /* Store host registers */
2343 #ifdef CONFIG_X86_64
2344                 "push %%rdx; push %%rbp;"
2345                 "push %%rcx \n\t"
2346 #else
2347                 "push %%edx; push %%ebp;"
2348                 "push %%ecx \n\t"
2349 #endif
2350                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2351                 /* Check if vmlaunch of vmresume is needed */
2352                 "cmpl $0, %c[launched](%0) \n\t"
2353                 /* Load guest registers.  Don't clobber flags. */
2354 #ifdef CONFIG_X86_64
2355                 "mov %c[cr2](%0), %%rax \n\t"
2356                 "mov %%rax, %%cr2 \n\t"
2357                 "mov %c[rax](%0), %%rax \n\t"
2358                 "mov %c[rbx](%0), %%rbx \n\t"
2359                 "mov %c[rdx](%0), %%rdx \n\t"
2360                 "mov %c[rsi](%0), %%rsi \n\t"
2361                 "mov %c[rdi](%0), %%rdi \n\t"
2362                 "mov %c[rbp](%0), %%rbp \n\t"
2363                 "mov %c[r8](%0),  %%r8  \n\t"
2364                 "mov %c[r9](%0),  %%r9  \n\t"
2365                 "mov %c[r10](%0), %%r10 \n\t"
2366                 "mov %c[r11](%0), %%r11 \n\t"
2367                 "mov %c[r12](%0), %%r12 \n\t"
2368                 "mov %c[r13](%0), %%r13 \n\t"
2369                 "mov %c[r14](%0), %%r14 \n\t"
2370                 "mov %c[r15](%0), %%r15 \n\t"
2371                 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2372 #else
2373                 "mov %c[cr2](%0), %%eax \n\t"
2374                 "mov %%eax,   %%cr2 \n\t"
2375                 "mov %c[rax](%0), %%eax \n\t"
2376                 "mov %c[rbx](%0), %%ebx \n\t"
2377                 "mov %c[rdx](%0), %%edx \n\t"
2378                 "mov %c[rsi](%0), %%esi \n\t"
2379                 "mov %c[rdi](%0), %%edi \n\t"
2380                 "mov %c[rbp](%0), %%ebp \n\t"
2381                 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2382 #endif
2383                 /* Enter guest mode */
2384                 "jne .Llaunched \n\t"
2385                 ASM_VMX_VMLAUNCH "\n\t"
2386                 "jmp .Lkvm_vmx_return \n\t"
2387                 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2388                 ".Lkvm_vmx_return: "
2389                 /* Save guest registers, load host registers, keep flags */
2390 #ifdef CONFIG_X86_64
2391                 "xchg %0,     (%%rsp) \n\t"
2392                 "mov %%rax, %c[rax](%0) \n\t"
2393                 "mov %%rbx, %c[rbx](%0) \n\t"
2394                 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2395                 "mov %%rdx, %c[rdx](%0) \n\t"
2396                 "mov %%rsi, %c[rsi](%0) \n\t"
2397                 "mov %%rdi, %c[rdi](%0) \n\t"
2398                 "mov %%rbp, %c[rbp](%0) \n\t"
2399                 "mov %%r8,  %c[r8](%0) \n\t"
2400                 "mov %%r9,  %c[r9](%0) \n\t"
2401                 "mov %%r10, %c[r10](%0) \n\t"
2402                 "mov %%r11, %c[r11](%0) \n\t"
2403                 "mov %%r12, %c[r12](%0) \n\t"
2404                 "mov %%r13, %c[r13](%0) \n\t"
2405                 "mov %%r14, %c[r14](%0) \n\t"
2406                 "mov %%r15, %c[r15](%0) \n\t"
2407                 "mov %%cr2, %%rax   \n\t"
2408                 "mov %%rax, %c[cr2](%0) \n\t"
2409
2410                 "pop  %%rbp; pop  %%rbp; pop  %%rdx \n\t"
2411 #else
2412                 "xchg %0, (%%esp) \n\t"
2413                 "mov %%eax, %c[rax](%0) \n\t"
2414                 "mov %%ebx, %c[rbx](%0) \n\t"
2415                 "pushl (%%esp); popl %c[rcx](%0) \n\t"
2416                 "mov %%edx, %c[rdx](%0) \n\t"
2417                 "mov %%esi, %c[rsi](%0) \n\t"
2418                 "mov %%edi, %c[rdi](%0) \n\t"
2419                 "mov %%ebp, %c[rbp](%0) \n\t"
2420                 "mov %%cr2, %%eax  \n\t"
2421                 "mov %%eax, %c[cr2](%0) \n\t"
2422
2423                 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
2424 #endif
2425                 "setbe %c[fail](%0) \n\t"
2426               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
2427                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
2428                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2429                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
2430                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
2431                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
2432                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
2433                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
2434                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
2435                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
2436 #ifdef CONFIG_X86_64
2437                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
2438                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
2439                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
2440                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
2441                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
2442                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
2443                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
2444                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
2445 #endif
2446                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
2447               : "cc", "memory"
2448 #ifdef CONFIG_X86_64
2449                 , "rbx", "rdi", "rsi"
2450                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2451 #else
2452                 , "ebx", "edi", "rsi"
2453 #endif
2454               );
2455
2456         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2457         if (vmx->rmode.irq.pending)
2458                 fixup_rmode_irq(vmx);
2459
2460         vcpu->arch.interrupt_window_open =
2461                 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2462
2463         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2464         vmx->launched = 1;
2465
2466         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2467
2468         /* We need to handle NMIs before interrupts are enabled */
2469         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2470                 asm("int $2");
2471 }
2472
2473 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2474 {
2475         struct vcpu_vmx *vmx = to_vmx(vcpu);
2476
2477         if (vmx->vmcs) {
2478                 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2479                 free_vmcs(vmx->vmcs);
2480                 vmx->vmcs = NULL;
2481         }
2482 }
2483
2484 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2485 {
2486         struct vcpu_vmx *vmx = to_vmx(vcpu);
2487
2488         vmx_free_vmcs(vcpu);
2489         kfree(vmx->host_msrs);
2490         kfree(vmx->guest_msrs);
2491         kvm_vcpu_uninit(vcpu);
2492         kmem_cache_free(kvm_vcpu_cache, vmx);
2493 }
2494
2495 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2496 {
2497         int err;
2498         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2499         int cpu;
2500
2501         if (!vmx)
2502                 return ERR_PTR(-ENOMEM);
2503
2504         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2505         if (err)
2506                 goto free_vcpu;
2507
2508         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2509         if (!vmx->guest_msrs) {
2510                 err = -ENOMEM;
2511                 goto uninit_vcpu;
2512         }
2513
2514         vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2515         if (!vmx->host_msrs)
2516                 goto free_guest_msrs;
2517
2518         vmx->vmcs = alloc_vmcs();
2519         if (!vmx->vmcs)
2520                 goto free_msrs;
2521
2522         vmcs_clear(vmx->vmcs);
2523
2524         cpu = get_cpu();
2525         vmx_vcpu_load(&vmx->vcpu, cpu);
2526         err = vmx_vcpu_setup(vmx);
2527         vmx_vcpu_put(&vmx->vcpu);
2528         put_cpu();
2529         if (err)
2530                 goto free_vmcs;
2531
2532         return &vmx->vcpu;
2533
2534 free_vmcs:
2535         free_vmcs(vmx->vmcs);
2536 free_msrs:
2537         kfree(vmx->host_msrs);
2538 free_guest_msrs:
2539         kfree(vmx->guest_msrs);
2540 uninit_vcpu:
2541         kvm_vcpu_uninit(&vmx->vcpu);
2542 free_vcpu:
2543         kmem_cache_free(kvm_vcpu_cache, vmx);
2544         return ERR_PTR(err);
2545 }
2546
2547 static void __init vmx_check_processor_compat(void *rtn)
2548 {
2549         struct vmcs_config vmcs_conf;
2550
2551         *(int *)rtn = 0;
2552         if (setup_vmcs_config(&vmcs_conf) < 0)
2553                 *(int *)rtn = -EIO;
2554         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2555                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2556                                 smp_processor_id());
2557                 *(int *)rtn = -EIO;
2558         }
2559 }
2560
2561 static struct kvm_x86_ops vmx_x86_ops = {
2562         .cpu_has_kvm_support = cpu_has_kvm_support,
2563         .disabled_by_bios = vmx_disabled_by_bios,
2564         .hardware_setup = hardware_setup,
2565         .hardware_unsetup = hardware_unsetup,
2566         .check_processor_compatibility = vmx_check_processor_compat,
2567         .hardware_enable = hardware_enable,
2568         .hardware_disable = hardware_disable,
2569
2570         .vcpu_create = vmx_create_vcpu,
2571         .vcpu_free = vmx_free_vcpu,
2572         .vcpu_reset = vmx_vcpu_reset,
2573
2574         .prepare_guest_switch = vmx_save_host_state,
2575         .vcpu_load = vmx_vcpu_load,
2576         .vcpu_put = vmx_vcpu_put,
2577         .vcpu_decache = vmx_vcpu_decache,
2578
2579         .set_guest_debug = set_guest_debug,
2580         .guest_debug_pre = kvm_guest_debug_pre,
2581         .get_msr = vmx_get_msr,
2582         .set_msr = vmx_set_msr,
2583         .get_segment_base = vmx_get_segment_base,
2584         .get_segment = vmx_get_segment,
2585         .set_segment = vmx_set_segment,
2586         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2587         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2588         .set_cr0 = vmx_set_cr0,
2589         .set_cr3 = vmx_set_cr3,
2590         .set_cr4 = vmx_set_cr4,
2591 #ifdef CONFIG_X86_64
2592         .set_efer = vmx_set_efer,
2593 #endif
2594         .get_idt = vmx_get_idt,
2595         .set_idt = vmx_set_idt,
2596         .get_gdt = vmx_get_gdt,
2597         .set_gdt = vmx_set_gdt,
2598         .cache_regs = vcpu_load_rsp_rip,
2599         .decache_regs = vcpu_put_rsp_rip,
2600         .get_rflags = vmx_get_rflags,
2601         .set_rflags = vmx_set_rflags,
2602
2603         .tlb_flush = vmx_flush_tlb,
2604
2605         .run = vmx_vcpu_run,
2606         .handle_exit = kvm_handle_exit,
2607         .skip_emulated_instruction = skip_emulated_instruction,
2608         .patch_hypercall = vmx_patch_hypercall,
2609         .get_irq = vmx_get_irq,
2610         .set_irq = vmx_inject_irq,
2611         .queue_exception = vmx_queue_exception,
2612         .exception_injected = vmx_exception_injected,
2613         .inject_pending_irq = vmx_intr_assist,
2614         .inject_pending_vectors = do_interrupt_requests,
2615
2616         .set_tss_addr = vmx_set_tss_addr,
2617 };
2618
2619 static int __init vmx_init(void)
2620 {
2621         void *iova;
2622         int r;
2623
2624         vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2625         if (!vmx_io_bitmap_a)
2626                 return -ENOMEM;
2627
2628         vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2629         if (!vmx_io_bitmap_b) {
2630                 r = -ENOMEM;
2631                 goto out;
2632         }
2633
2634         /*
2635          * Allow direct access to the PC debug port (it is often used for I/O
2636          * delays, but the vmexits simply slow things down).
2637          */
2638         iova = kmap(vmx_io_bitmap_a);
2639         memset(iova, 0xff, PAGE_SIZE);
2640         clear_bit(0x80, iova);
2641         kunmap(vmx_io_bitmap_a);
2642
2643         iova = kmap(vmx_io_bitmap_b);
2644         memset(iova, 0xff, PAGE_SIZE);
2645         kunmap(vmx_io_bitmap_b);
2646
2647         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2648         if (r)
2649                 goto out1;
2650
2651         if (bypass_guest_pf)
2652                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
2653
2654         return 0;
2655
2656 out1:
2657         __free_page(vmx_io_bitmap_b);
2658 out:
2659         __free_page(vmx_io_bitmap_a);
2660         return r;
2661 }
2662
2663 static void __exit vmx_exit(void)
2664 {
2665         __free_page(vmx_io_bitmap_b);
2666         __free_page(vmx_io_bitmap_a);
2667
2668         kvm_exit();
2669 }
2670
2671 module_init(vmx_init)
2672 module_exit(vmx_exit)