]> err.no Git - linux-2.6/blob - drivers/kvm/svm.c
KVM: Remove arch specific components from the general code
[linux-2.6] / drivers / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16
17 #include "kvm_svm.h"
18 #include "x86_emulate.h"
19
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/vmalloc.h>
23 #include <linux/highmem.h>
24 #include <linux/profile.h>
25 #include <linux/sched.h>
26
27 #include <asm/desc.h>
28
29 MODULE_AUTHOR("Qumranet");
30 MODULE_LICENSE("GPL");
31
32 #define IOPM_ALLOC_ORDER 2
33 #define MSRPM_ALLOC_ORDER 1
34
35 #define DB_VECTOR 1
36 #define UD_VECTOR 6
37 #define GP_VECTOR 13
38
39 #define DR7_GD_MASK (1 << 13)
40 #define DR6_BD_MASK (1 << 13)
41
42 #define SEG_TYPE_LDT 2
43 #define SEG_TYPE_BUSY_TSS16 3
44
45 #define KVM_EFER_LMA (1 << 10)
46 #define KVM_EFER_LME (1 << 8)
47
48 #define SVM_FEATURE_NPT  (1 << 0)
49 #define SVM_FEATURE_LBRV (1 << 1)
50 #define SVM_DEATURE_SVML (1 << 2)
51
52 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
53 {
54         return (struct vcpu_svm*)vcpu->_priv;
55 }
56
57 unsigned long iopm_base;
58 unsigned long msrpm_base;
59
60 struct kvm_ldttss_desc {
61         u16 limit0;
62         u16 base0;
63         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
64         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
65         u32 base3;
66         u32 zero1;
67 } __attribute__((packed));
68
69 struct svm_cpu_data {
70         int cpu;
71
72         u64 asid_generation;
73         u32 max_asid;
74         u32 next_asid;
75         struct kvm_ldttss_desc *tss_desc;
76
77         struct page *save_area;
78 };
79
80 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
81 static uint32_t svm_features;
82
83 struct svm_init_data {
84         int cpu;
85         int r;
86 };
87
88 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
89
90 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
91 #define MSRS_RANGE_SIZE 2048
92 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
93
94 #define MAX_INST_SIZE 15
95
96 static inline u32 svm_has(u32 feat)
97 {
98         return svm_features & feat;
99 }
100
101 static unsigned get_addr_size(struct kvm_vcpu *vcpu)
102 {
103         struct vmcb_save_area *sa = &to_svm(vcpu)->vmcb->save;
104         u16 cs_attrib;
105
106         if (!(sa->cr0 & X86_CR0_PE) || (sa->rflags & X86_EFLAGS_VM))
107                 return 2;
108
109         cs_attrib = sa->cs.attrib;
110
111         return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
112                                 (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
113 }
114
115 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
116 {
117         int word_index = __ffs(vcpu->irq_summary);
118         int bit_index = __ffs(vcpu->irq_pending[word_index]);
119         int irq = word_index * BITS_PER_LONG + bit_index;
120
121         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
122         if (!vcpu->irq_pending[word_index])
123                 clear_bit(word_index, &vcpu->irq_summary);
124         return irq;
125 }
126
127 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
128 {
129         set_bit(irq, vcpu->irq_pending);
130         set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
131 }
132
133 static inline void clgi(void)
134 {
135         asm volatile (SVM_CLGI);
136 }
137
138 static inline void stgi(void)
139 {
140         asm volatile (SVM_STGI);
141 }
142
143 static inline void invlpga(unsigned long addr, u32 asid)
144 {
145         asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
146 }
147
148 static inline unsigned long kvm_read_cr2(void)
149 {
150         unsigned long cr2;
151
152         asm volatile ("mov %%cr2, %0" : "=r" (cr2));
153         return cr2;
154 }
155
156 static inline void kvm_write_cr2(unsigned long val)
157 {
158         asm volatile ("mov %0, %%cr2" :: "r" (val));
159 }
160
161 static inline unsigned long read_dr6(void)
162 {
163         unsigned long dr6;
164
165         asm volatile ("mov %%dr6, %0" : "=r" (dr6));
166         return dr6;
167 }
168
169 static inline void write_dr6(unsigned long val)
170 {
171         asm volatile ("mov %0, %%dr6" :: "r" (val));
172 }
173
174 static inline unsigned long read_dr7(void)
175 {
176         unsigned long dr7;
177
178         asm volatile ("mov %%dr7, %0" : "=r" (dr7));
179         return dr7;
180 }
181
182 static inline void write_dr7(unsigned long val)
183 {
184         asm volatile ("mov %0, %%dr7" :: "r" (val));
185 }
186
187 static inline void force_new_asid(struct kvm_vcpu *vcpu)
188 {
189         to_svm(vcpu)->asid_generation--;
190 }
191
192 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
193 {
194         force_new_asid(vcpu);
195 }
196
197 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
198 {
199         if (!(efer & KVM_EFER_LMA))
200                 efer &= ~KVM_EFER_LME;
201
202         to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
203         vcpu->shadow_efer = efer;
204 }
205
206 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
207 {
208         struct vcpu_svm *svm = to_svm(vcpu);
209
210         svm->vmcb->control.event_inj =          SVM_EVTINJ_VALID |
211                                                 SVM_EVTINJ_VALID_ERR |
212                                                 SVM_EVTINJ_TYPE_EXEPT |
213                                                 GP_VECTOR;
214         svm->vmcb->control.event_inj_err = error_code;
215 }
216
217 static void inject_ud(struct kvm_vcpu *vcpu)
218 {
219         to_svm(vcpu)->vmcb->control.event_inj = SVM_EVTINJ_VALID |
220                                                 SVM_EVTINJ_TYPE_EXEPT |
221                                                 UD_VECTOR;
222 }
223
224 static int is_page_fault(uint32_t info)
225 {
226         info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
227         return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
228 }
229
230 static int is_external_interrupt(u32 info)
231 {
232         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
233         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
234 }
235
236 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
237 {
238         struct vcpu_svm *svm = to_svm(vcpu);
239
240         if (!svm->next_rip) {
241                 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
242                 return;
243         }
244         if (svm->next_rip - svm->vmcb->save.rip > 15) {
245                 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
246                        __FUNCTION__,
247                        svm->vmcb->save.rip,
248                        svm->next_rip);
249         }
250
251         vcpu->rip = svm->vmcb->save.rip = svm->next_rip;
252         svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
253
254         vcpu->interrupt_window_open = 1;
255 }
256
257 static int has_svm(void)
258 {
259         uint32_t eax, ebx, ecx, edx;
260
261         if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
262                 printk(KERN_INFO "has_svm: not amd\n");
263                 return 0;
264         }
265
266         cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
267         if (eax < SVM_CPUID_FUNC) {
268                 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
269                 return 0;
270         }
271
272         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
273         if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
274                 printk(KERN_DEBUG "has_svm: svm not available\n");
275                 return 0;
276         }
277         return 1;
278 }
279
280 static void svm_hardware_disable(void *garbage)
281 {
282         struct svm_cpu_data *svm_data
283                 = per_cpu(svm_data, raw_smp_processor_id());
284
285         if (svm_data) {
286                 uint64_t efer;
287
288                 wrmsrl(MSR_VM_HSAVE_PA, 0);
289                 rdmsrl(MSR_EFER, efer);
290                 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
291                 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
292                 __free_page(svm_data->save_area);
293                 kfree(svm_data);
294         }
295 }
296
297 static void svm_hardware_enable(void *garbage)
298 {
299
300         struct svm_cpu_data *svm_data;
301         uint64_t efer;
302 #ifdef CONFIG_X86_64
303         struct desc_ptr gdt_descr;
304 #else
305         struct Xgt_desc_struct gdt_descr;
306 #endif
307         struct desc_struct *gdt;
308         int me = raw_smp_processor_id();
309
310         if (!has_svm()) {
311                 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
312                 return;
313         }
314         svm_data = per_cpu(svm_data, me);
315
316         if (!svm_data) {
317                 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
318                        me);
319                 return;
320         }
321
322         svm_data->asid_generation = 1;
323         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
324         svm_data->next_asid = svm_data->max_asid + 1;
325         svm_features = cpuid_edx(SVM_CPUID_FUNC);
326
327         asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
328         gdt = (struct desc_struct *)gdt_descr.address;
329         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
330
331         rdmsrl(MSR_EFER, efer);
332         wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
333
334         wrmsrl(MSR_VM_HSAVE_PA,
335                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
336 }
337
338 static int svm_cpu_init(int cpu)
339 {
340         struct svm_cpu_data *svm_data;
341         int r;
342
343         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
344         if (!svm_data)
345                 return -ENOMEM;
346         svm_data->cpu = cpu;
347         svm_data->save_area = alloc_page(GFP_KERNEL);
348         r = -ENOMEM;
349         if (!svm_data->save_area)
350                 goto err_1;
351
352         per_cpu(svm_data, cpu) = svm_data;
353
354         return 0;
355
356 err_1:
357         kfree(svm_data);
358         return r;
359
360 }
361
362 static int set_msr_interception(u32 *msrpm, unsigned msr,
363                                 int read, int write)
364 {
365         int i;
366
367         for (i = 0; i < NUM_MSR_MAPS; i++) {
368                 if (msr >= msrpm_ranges[i] &&
369                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
370                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
371                                           msrpm_ranges[i]) * 2;
372
373                         u32 *base = msrpm + (msr_offset / 32);
374                         u32 msr_shift = msr_offset % 32;
375                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
376                         *base = (*base & ~(0x3 << msr_shift)) |
377                                 (mask << msr_shift);
378                         return 1;
379                 }
380         }
381         printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
382         return 0;
383 }
384
385 static __init int svm_hardware_setup(void)
386 {
387         int cpu;
388         struct page *iopm_pages;
389         struct page *msrpm_pages;
390         void *iopm_va, *msrpm_va;
391         int r;
392
393         kvm_emulator_want_group7_invlpg();
394
395         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
396
397         if (!iopm_pages)
398                 return -ENOMEM;
399
400         iopm_va = page_address(iopm_pages);
401         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
402         clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
403         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
404
405
406         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
407
408         r = -ENOMEM;
409         if (!msrpm_pages)
410                 goto err_1;
411
412         msrpm_va = page_address(msrpm_pages);
413         memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
414         msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
415
416 #ifdef CONFIG_X86_64
417         set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
418         set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
419         set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
420         set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
421         set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
422         set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
423 #endif
424         set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
425         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
426         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
427         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
428
429         for_each_online_cpu(cpu) {
430                 r = svm_cpu_init(cpu);
431                 if (r)
432                         goto err_2;
433         }
434         return 0;
435
436 err_2:
437         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
438         msrpm_base = 0;
439 err_1:
440         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
441         iopm_base = 0;
442         return r;
443 }
444
445 static __exit void svm_hardware_unsetup(void)
446 {
447         __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
448         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
449         iopm_base = msrpm_base = 0;
450 }
451
452 static void init_seg(struct vmcb_seg *seg)
453 {
454         seg->selector = 0;
455         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
456                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
457         seg->limit = 0xffff;
458         seg->base = 0;
459 }
460
461 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
462 {
463         seg->selector = 0;
464         seg->attrib = SVM_SELECTOR_P_MASK | type;
465         seg->limit = 0xffff;
466         seg->base = 0;
467 }
468
469 static int svm_vcpu_setup(struct kvm_vcpu *vcpu)
470 {
471         return 0;
472 }
473
474 static void init_vmcb(struct vmcb *vmcb)
475 {
476         struct vmcb_control_area *control = &vmcb->control;
477         struct vmcb_save_area *save = &vmcb->save;
478
479         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
480                                         INTERCEPT_CR3_MASK |
481                                         INTERCEPT_CR4_MASK;
482
483         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
484                                         INTERCEPT_CR3_MASK |
485                                         INTERCEPT_CR4_MASK;
486
487         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
488                                         INTERCEPT_DR1_MASK |
489                                         INTERCEPT_DR2_MASK |
490                                         INTERCEPT_DR3_MASK;
491
492         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
493                                         INTERCEPT_DR1_MASK |
494                                         INTERCEPT_DR2_MASK |
495                                         INTERCEPT_DR3_MASK |
496                                         INTERCEPT_DR5_MASK |
497                                         INTERCEPT_DR7_MASK;
498
499         control->intercept_exceptions = 1 << PF_VECTOR;
500
501
502         control->intercept =    (1ULL << INTERCEPT_INTR) |
503                                 (1ULL << INTERCEPT_NMI) |
504                                 (1ULL << INTERCEPT_SMI) |
505                 /*
506                  * selective cr0 intercept bug?
507                  *      0:   0f 22 d8                mov    %eax,%cr3
508                  *      3:   0f 20 c0                mov    %cr0,%eax
509                  *      6:   0d 00 00 00 80          or     $0x80000000,%eax
510                  *      b:   0f 22 c0                mov    %eax,%cr0
511                  * set cr3 ->interception
512                  * get cr0 ->interception
513                  * set cr0 -> no interception
514                  */
515                 /*              (1ULL << INTERCEPT_SELECTIVE_CR0) | */
516                                 (1ULL << INTERCEPT_CPUID) |
517                                 (1ULL << INTERCEPT_HLT) |
518                                 (1ULL << INTERCEPT_INVLPGA) |
519                                 (1ULL << INTERCEPT_IOIO_PROT) |
520                                 (1ULL << INTERCEPT_MSR_PROT) |
521                                 (1ULL << INTERCEPT_TASK_SWITCH) |
522                                 (1ULL << INTERCEPT_SHUTDOWN) |
523                                 (1ULL << INTERCEPT_VMRUN) |
524                                 (1ULL << INTERCEPT_VMMCALL) |
525                                 (1ULL << INTERCEPT_VMLOAD) |
526                                 (1ULL << INTERCEPT_VMSAVE) |
527                                 (1ULL << INTERCEPT_STGI) |
528                                 (1ULL << INTERCEPT_CLGI) |
529                                 (1ULL << INTERCEPT_SKINIT) |
530                                 (1ULL << INTERCEPT_MONITOR) |
531                                 (1ULL << INTERCEPT_MWAIT);
532
533         control->iopm_base_pa = iopm_base;
534         control->msrpm_base_pa = msrpm_base;
535         control->tsc_offset = 0;
536         control->int_ctl = V_INTR_MASKING_MASK;
537
538         init_seg(&save->es);
539         init_seg(&save->ss);
540         init_seg(&save->ds);
541         init_seg(&save->fs);
542         init_seg(&save->gs);
543
544         save->cs.selector = 0xf000;
545         /* Executable/Readable Code Segment */
546         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
547                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
548         save->cs.limit = 0xffff;
549         /*
550          * cs.base should really be 0xffff0000, but vmx can't handle that, so
551          * be consistent with it.
552          *
553          * Replace when we have real mode working for vmx.
554          */
555         save->cs.base = 0xf0000;
556
557         save->gdtr.limit = 0xffff;
558         save->idtr.limit = 0xffff;
559
560         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
561         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
562
563         save->efer = MSR_EFER_SVME_MASK;
564
565         save->dr6 = 0xffff0ff0;
566         save->dr7 = 0x400;
567         save->rflags = 2;
568         save->rip = 0x0000fff0;
569
570         /*
571          * cr0 val on cpu init should be 0x60000010, we enable cpu
572          * cache by default. the orderly way is to enable cache in bios.
573          */
574         save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
575         save->cr4 = X86_CR4_PAE;
576         /* rdx = ?? */
577 }
578
579 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
580 {
581         struct vcpu_svm *svm;
582         struct page *page;
583         int r;
584
585         r = -ENOMEM;
586         svm = kzalloc(sizeof *svm, GFP_KERNEL);
587         if (!svm)
588                 goto out1;
589         page = alloc_page(GFP_KERNEL);
590         if (!page)
591                 goto out2;
592
593         svm->vmcb = page_address(page);
594         clear_page(svm->vmcb);
595         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
596         svm->asid_generation = 0;
597         memset(svm->db_regs, 0, sizeof(svm->db_regs));
598         init_vmcb(svm->vmcb);
599
600         svm->vcpu   = vcpu;
601         vcpu->_priv = svm;
602
603         fx_init(vcpu);
604         vcpu->fpu_active = 1;
605         vcpu->apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
606         if (vcpu->vcpu_id == 0)
607                 vcpu->apic_base |= MSR_IA32_APICBASE_BSP;
608
609         return 0;
610
611 out2:
612         kfree(svm);
613 out1:
614         return r;
615 }
616
617 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
618 {
619         struct vcpu_svm *svm = to_svm(vcpu);
620
621         if (!svm)
622                 return;
623         if (svm->vmcb)
624                 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
625         kfree(svm);
626         vcpu->_priv = NULL;
627 }
628
629 static void svm_vcpu_load(struct kvm_vcpu *vcpu)
630 {
631         struct vcpu_svm *svm = to_svm(vcpu);
632         int cpu, i;
633
634         cpu = get_cpu();
635         if (unlikely(cpu != vcpu->cpu)) {
636                 u64 tsc_this, delta;
637
638                 /*
639                  * Make sure that the guest sees a monotonically
640                  * increasing TSC.
641                  */
642                 rdtscll(tsc_this);
643                 delta = vcpu->host_tsc - tsc_this;
644                 svm->vmcb->control.tsc_offset += delta;
645                 vcpu->cpu = cpu;
646         }
647
648         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
649                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
650 }
651
652 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
653 {
654         struct vcpu_svm *svm = to_svm(vcpu);
655         int i;
656
657         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
658                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
659
660         rdtscll(vcpu->host_tsc);
661         put_cpu();
662 }
663
664 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
665 {
666 }
667
668 static void svm_cache_regs(struct kvm_vcpu *vcpu)
669 {
670         struct vcpu_svm *svm = to_svm(vcpu);
671
672         vcpu->regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
673         vcpu->regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
674         vcpu->rip = svm->vmcb->save.rip;
675 }
676
677 static void svm_decache_regs(struct kvm_vcpu *vcpu)
678 {
679         struct vcpu_svm *svm = to_svm(vcpu);
680         svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
681         svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
682         svm->vmcb->save.rip = vcpu->rip;
683 }
684
685 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
686 {
687         return to_svm(vcpu)->vmcb->save.rflags;
688 }
689
690 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
691 {
692         to_svm(vcpu)->vmcb->save.rflags = rflags;
693 }
694
695 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
696 {
697         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
698
699         switch (seg) {
700         case VCPU_SREG_CS: return &save->cs;
701         case VCPU_SREG_DS: return &save->ds;
702         case VCPU_SREG_ES: return &save->es;
703         case VCPU_SREG_FS: return &save->fs;
704         case VCPU_SREG_GS: return &save->gs;
705         case VCPU_SREG_SS: return &save->ss;
706         case VCPU_SREG_TR: return &save->tr;
707         case VCPU_SREG_LDTR: return &save->ldtr;
708         }
709         BUG();
710         return NULL;
711 }
712
713 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
714 {
715         struct vmcb_seg *s = svm_seg(vcpu, seg);
716
717         return s->base;
718 }
719
720 static void svm_get_segment(struct kvm_vcpu *vcpu,
721                             struct kvm_segment *var, int seg)
722 {
723         struct vmcb_seg *s = svm_seg(vcpu, seg);
724
725         var->base = s->base;
726         var->limit = s->limit;
727         var->selector = s->selector;
728         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
729         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
730         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
731         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
732         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
733         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
734         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
735         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
736         var->unusable = !var->present;
737 }
738
739 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
740 {
741         struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
742
743         *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
744         *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
745 }
746
747 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
748 {
749         struct vcpu_svm *svm = to_svm(vcpu);
750
751         dt->limit = svm->vmcb->save.idtr.limit;
752         dt->base = svm->vmcb->save.idtr.base;
753 }
754
755 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
756 {
757         struct vcpu_svm *svm = to_svm(vcpu);
758
759         svm->vmcb->save.idtr.limit = dt->limit;
760         svm->vmcb->save.idtr.base = dt->base ;
761 }
762
763 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
764 {
765         struct vcpu_svm *svm = to_svm(vcpu);
766
767         dt->limit = svm->vmcb->save.gdtr.limit;
768         dt->base = svm->vmcb->save.gdtr.base;
769 }
770
771 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
772 {
773         struct vcpu_svm *svm = to_svm(vcpu);
774
775         svm->vmcb->save.gdtr.limit = dt->limit;
776         svm->vmcb->save.gdtr.base = dt->base ;
777 }
778
779 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
780 {
781 }
782
783 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
784 {
785         struct vcpu_svm *svm = to_svm(vcpu);
786
787 #ifdef CONFIG_X86_64
788         if (vcpu->shadow_efer & KVM_EFER_LME) {
789                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
790                         vcpu->shadow_efer |= KVM_EFER_LMA;
791                         svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
792                 }
793
794                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG) ) {
795                         vcpu->shadow_efer &= ~KVM_EFER_LMA;
796                         svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
797                 }
798         }
799 #endif
800         if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
801                 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
802                 vcpu->fpu_active = 1;
803         }
804
805         vcpu->cr0 = cr0;
806         cr0 |= X86_CR0_PG | X86_CR0_WP;
807         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
808         svm->vmcb->save.cr0 = cr0;
809 }
810
811 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
812 {
813        vcpu->cr4 = cr4;
814        to_svm(vcpu)->vmcb->save.cr4 = cr4 | X86_CR4_PAE;
815 }
816
817 static void svm_set_segment(struct kvm_vcpu *vcpu,
818                             struct kvm_segment *var, int seg)
819 {
820         struct vcpu_svm *svm = to_svm(vcpu);
821         struct vmcb_seg *s = svm_seg(vcpu, seg);
822
823         s->base = var->base;
824         s->limit = var->limit;
825         s->selector = var->selector;
826         if (var->unusable)
827                 s->attrib = 0;
828         else {
829                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
830                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
831                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
832                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
833                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
834                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
835                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
836                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
837         }
838         if (seg == VCPU_SREG_CS)
839                 svm->vmcb->save.cpl
840                         = (svm->vmcb->save.cs.attrib
841                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
842
843 }
844
845 /* FIXME:
846
847         svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK;
848         svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
849
850 */
851
852 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
853 {
854         return -EOPNOTSUPP;
855 }
856
857 static void load_host_msrs(struct kvm_vcpu *vcpu)
858 {
859 #ifdef CONFIG_X86_64
860         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
861 #endif
862 }
863
864 static void save_host_msrs(struct kvm_vcpu *vcpu)
865 {
866 #ifdef CONFIG_X86_64
867         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
868 #endif
869 }
870
871 static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
872 {
873         struct vcpu_svm *svm = to_svm(vcpu);
874
875         if (svm_data->next_asid > svm_data->max_asid) {
876                 ++svm_data->asid_generation;
877                 svm_data->next_asid = 1;
878                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
879         }
880
881         vcpu->cpu = svm_data->cpu;
882         svm->asid_generation = svm_data->asid_generation;
883         svm->vmcb->control.asid = svm_data->next_asid++;
884 }
885
886 static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
887 {
888         invlpga(address, to_svm(vcpu)->vmcb->control.asid); // is needed?
889 }
890
891 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
892 {
893         return to_svm(vcpu)->db_regs[dr];
894 }
895
896 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
897                        int *exception)
898 {
899         struct vcpu_svm *svm = to_svm(vcpu);
900
901         *exception = 0;
902
903         if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
904                 svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
905                 svm->vmcb->save.dr6 |= DR6_BD_MASK;
906                 *exception = DB_VECTOR;
907                 return;
908         }
909
910         switch (dr) {
911         case 0 ... 3:
912                 svm->db_regs[dr] = value;
913                 return;
914         case 4 ... 5:
915                 if (vcpu->cr4 & X86_CR4_DE) {
916                         *exception = UD_VECTOR;
917                         return;
918                 }
919         case 7: {
920                 if (value & ~((1ULL << 32) - 1)) {
921                         *exception = GP_VECTOR;
922                         return;
923                 }
924                 svm->vmcb->save.dr7 = value;
925                 return;
926         }
927         default:
928                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
929                        __FUNCTION__, dr);
930                 *exception = UD_VECTOR;
931                 return;
932         }
933 }
934
935 static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
936 {
937         struct vcpu_svm *svm = to_svm(vcpu);
938         u32 exit_int_info = svm->vmcb->control.exit_int_info;
939         u64 fault_address;
940         u32 error_code;
941         enum emulation_result er;
942         int r;
943
944         if (is_external_interrupt(exit_int_info))
945                 push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
946
947         spin_lock(&vcpu->kvm->lock);
948
949         fault_address  = svm->vmcb->control.exit_info_2;
950         error_code = svm->vmcb->control.exit_info_1;
951         r = kvm_mmu_page_fault(vcpu, fault_address, error_code);
952         if (r < 0) {
953                 spin_unlock(&vcpu->kvm->lock);
954                 return r;
955         }
956         if (!r) {
957                 spin_unlock(&vcpu->kvm->lock);
958                 return 1;
959         }
960         er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
961         spin_unlock(&vcpu->kvm->lock);
962
963         switch (er) {
964         case EMULATE_DONE:
965                 return 1;
966         case EMULATE_DO_MMIO:
967                 ++vcpu->stat.mmio_exits;
968                 return 0;
969         case EMULATE_FAIL:
970                 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
971                 break;
972         default:
973                 BUG();
974         }
975
976         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
977         return 0;
978 }
979
980 static int nm_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
981 {
982         struct vcpu_svm *svm = to_svm(vcpu);
983
984         svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
985         if (!(vcpu->cr0 & X86_CR0_TS))
986                 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
987         vcpu->fpu_active = 1;
988
989         return 1;
990 }
991
992 static int shutdown_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
993 {
994         struct vcpu_svm *svm = to_svm(vcpu);
995         /*
996          * VMCB is undefined after a SHUTDOWN intercept
997          * so reinitialize it.
998          */
999         clear_page(svm->vmcb);
1000         init_vmcb(svm->vmcb);
1001
1002         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1003         return 0;
1004 }
1005
1006 static int io_get_override(struct kvm_vcpu *vcpu,
1007                           struct vmcb_seg **seg,
1008                           int *addr_override)
1009 {
1010         struct vcpu_svm *svm = to_svm(vcpu);
1011         u8 inst[MAX_INST_SIZE];
1012         unsigned ins_length;
1013         gva_t rip;
1014         int i;
1015
1016         rip =  svm->vmcb->save.rip;
1017         ins_length = svm->next_rip - rip;
1018         rip += svm->vmcb->save.cs.base;
1019
1020         if (ins_length > MAX_INST_SIZE)
1021                 printk(KERN_DEBUG
1022                        "%s: inst length err, cs base 0x%llx rip 0x%llx "
1023                        "next rip 0x%llx ins_length %u\n",
1024                        __FUNCTION__,
1025                        svm->vmcb->save.cs.base,
1026                        svm->vmcb->save.rip,
1027                        svm->vmcb->control.exit_info_2,
1028                        ins_length);
1029
1030         if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
1031                 /* #PF */
1032                 return 0;
1033
1034         *addr_override = 0;
1035         *seg = NULL;
1036         for (i = 0; i < ins_length; i++)
1037                 switch (inst[i]) {
1038                 case 0xf0:
1039                 case 0xf2:
1040                 case 0xf3:
1041                 case 0x66:
1042                         continue;
1043                 case 0x67:
1044                         *addr_override = 1;
1045                         continue;
1046                 case 0x2e:
1047                         *seg = &svm->vmcb->save.cs;
1048                         continue;
1049                 case 0x36:
1050                         *seg = &svm->vmcb->save.ss;
1051                         continue;
1052                 case 0x3e:
1053                         *seg = &svm->vmcb->save.ds;
1054                         continue;
1055                 case 0x26:
1056                         *seg = &svm->vmcb->save.es;
1057                         continue;
1058                 case 0x64:
1059                         *seg = &svm->vmcb->save.fs;
1060                         continue;
1061                 case 0x65:
1062                         *seg = &svm->vmcb->save.gs;
1063                         continue;
1064                 default:
1065                         return 1;
1066                 }
1067         printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
1068         return 0;
1069 }
1070
1071 static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, gva_t *address)
1072 {
1073         unsigned long addr_mask;
1074         unsigned long *reg;
1075         struct vmcb_seg *seg;
1076         int addr_override;
1077         struct vcpu_svm *svm = to_svm(vcpu);
1078         struct vmcb_save_area *save_area = &svm->vmcb->save;
1079         u16 cs_attrib = save_area->cs.attrib;
1080         unsigned addr_size = get_addr_size(vcpu);
1081
1082         if (!io_get_override(vcpu, &seg, &addr_override))
1083                 return 0;
1084
1085         if (addr_override)
1086                 addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
1087
1088         if (ins) {
1089                 reg = &vcpu->regs[VCPU_REGS_RDI];
1090                 seg = &svm->vmcb->save.es;
1091         } else {
1092                 reg = &vcpu->regs[VCPU_REGS_RSI];
1093                 seg = (seg) ? seg : &svm->vmcb->save.ds;
1094         }
1095
1096         addr_mask = ~0ULL >> (64 - (addr_size * 8));
1097
1098         if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
1099             !(svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
1100                 *address = (*reg & addr_mask);
1101                 return addr_mask;
1102         }
1103
1104         if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
1105                 svm_inject_gp(vcpu, 0);
1106                 return 0;
1107         }
1108
1109         *address = (*reg & addr_mask) + seg->base;
1110         return addr_mask;
1111 }
1112
1113 static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1114 {
1115         struct vcpu_svm *svm = to_svm(vcpu);
1116         u32 io_info = svm->vmcb->control.exit_info_1; //address size bug?
1117         int size, down, in, string, rep;
1118         unsigned port;
1119         unsigned long count;
1120         gva_t address = 0;
1121
1122         ++vcpu->stat.io_exits;
1123
1124         svm->next_rip = svm->vmcb->control.exit_info_2;
1125
1126         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1127         port = io_info >> 16;
1128         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1129         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1130         rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1131         count = 1;
1132         down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1133
1134         if (string) {
1135                 unsigned addr_mask;
1136
1137                 addr_mask = io_adress(vcpu, in, &address);
1138                 if (!addr_mask) {
1139                         printk(KERN_DEBUG "%s: get io address failed\n",
1140                                __FUNCTION__);
1141                         return 1;
1142                 }
1143
1144                 if (rep)
1145                         count = vcpu->regs[VCPU_REGS_RCX] & addr_mask;
1146         }
1147         return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1148                              address, rep, port);
1149 }
1150
1151 static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1152 {
1153         return 1;
1154 }
1155
1156 static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1157 {
1158         struct vcpu_svm *svm = to_svm(vcpu);
1159
1160         svm->next_rip = svm->vmcb->save.rip + 1;
1161         skip_emulated_instruction(vcpu);
1162         return kvm_emulate_halt(vcpu);
1163 }
1164
1165 static int vmmcall_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1166 {
1167         struct vcpu_svm *svm = to_svm(vcpu);
1168
1169         svm->next_rip = svm->vmcb->save.rip + 3;
1170         skip_emulated_instruction(vcpu);
1171         return kvm_hypercall(vcpu, kvm_run);
1172 }
1173
1174 static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1175 {
1176         inject_ud(vcpu);
1177         return 1;
1178 }
1179
1180 static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1181 {
1182         printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
1183         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1184         return 0;
1185 }
1186
1187 static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1188 {
1189         struct vcpu_svm *svm = to_svm(vcpu);
1190
1191         svm->next_rip = svm->vmcb->save.rip + 2;
1192         kvm_emulate_cpuid(vcpu);
1193         return 1;
1194 }
1195
1196 static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1197 {
1198         if (emulate_instruction(vcpu, NULL, 0, 0) != EMULATE_DONE)
1199                 printk(KERN_ERR "%s: failed\n", __FUNCTION__);
1200         return 1;
1201 }
1202
1203 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1204 {
1205         struct vcpu_svm *svm = to_svm(vcpu);
1206
1207         switch (ecx) {
1208         case MSR_IA32_TIME_STAMP_COUNTER: {
1209                 u64 tsc;
1210
1211                 rdtscll(tsc);
1212                 *data = svm->vmcb->control.tsc_offset + tsc;
1213                 break;
1214         }
1215         case MSR_K6_STAR:
1216                 *data = svm->vmcb->save.star;
1217                 break;
1218 #ifdef CONFIG_X86_64
1219         case MSR_LSTAR:
1220                 *data = svm->vmcb->save.lstar;
1221                 break;
1222         case MSR_CSTAR:
1223                 *data = svm->vmcb->save.cstar;
1224                 break;
1225         case MSR_KERNEL_GS_BASE:
1226                 *data = svm->vmcb->save.kernel_gs_base;
1227                 break;
1228         case MSR_SYSCALL_MASK:
1229                 *data = svm->vmcb->save.sfmask;
1230                 break;
1231 #endif
1232         case MSR_IA32_SYSENTER_CS:
1233                 *data = svm->vmcb->save.sysenter_cs;
1234                 break;
1235         case MSR_IA32_SYSENTER_EIP:
1236                 *data = svm->vmcb->save.sysenter_eip;
1237                 break;
1238         case MSR_IA32_SYSENTER_ESP:
1239                 *data = svm->vmcb->save.sysenter_esp;
1240                 break;
1241         default:
1242                 return kvm_get_msr_common(vcpu, ecx, data);
1243         }
1244         return 0;
1245 }
1246
1247 static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1248 {
1249         struct vcpu_svm *svm = to_svm(vcpu);
1250         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1251         u64 data;
1252
1253         if (svm_get_msr(vcpu, ecx, &data))
1254                 svm_inject_gp(vcpu, 0);
1255         else {
1256                 svm->vmcb->save.rax = data & 0xffffffff;
1257                 vcpu->regs[VCPU_REGS_RDX] = data >> 32;
1258                 svm->next_rip = svm->vmcb->save.rip + 2;
1259                 skip_emulated_instruction(vcpu);
1260         }
1261         return 1;
1262 }
1263
1264 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1265 {
1266         struct vcpu_svm *svm = to_svm(vcpu);
1267
1268         switch (ecx) {
1269         case MSR_IA32_TIME_STAMP_COUNTER: {
1270                 u64 tsc;
1271
1272                 rdtscll(tsc);
1273                 svm->vmcb->control.tsc_offset = data - tsc;
1274                 break;
1275         }
1276         case MSR_K6_STAR:
1277                 svm->vmcb->save.star = data;
1278                 break;
1279 #ifdef CONFIG_X86_64
1280         case MSR_LSTAR:
1281                 svm->vmcb->save.lstar = data;
1282                 break;
1283         case MSR_CSTAR:
1284                 svm->vmcb->save.cstar = data;
1285                 break;
1286         case MSR_KERNEL_GS_BASE:
1287                 svm->vmcb->save.kernel_gs_base = data;
1288                 break;
1289         case MSR_SYSCALL_MASK:
1290                 svm->vmcb->save.sfmask = data;
1291                 break;
1292 #endif
1293         case MSR_IA32_SYSENTER_CS:
1294                 svm->vmcb->save.sysenter_cs = data;
1295                 break;
1296         case MSR_IA32_SYSENTER_EIP:
1297                 svm->vmcb->save.sysenter_eip = data;
1298                 break;
1299         case MSR_IA32_SYSENTER_ESP:
1300                 svm->vmcb->save.sysenter_esp = data;
1301                 break;
1302         default:
1303                 return kvm_set_msr_common(vcpu, ecx, data);
1304         }
1305         return 0;
1306 }
1307
1308 static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1309 {
1310         struct vcpu_svm *svm = to_svm(vcpu);
1311         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1312         u64 data = (svm->vmcb->save.rax & -1u)
1313                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1314         svm->next_rip = svm->vmcb->save.rip + 2;
1315         if (svm_set_msr(vcpu, ecx, data))
1316                 svm_inject_gp(vcpu, 0);
1317         else
1318                 skip_emulated_instruction(vcpu);
1319         return 1;
1320 }
1321
1322 static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1323 {
1324         if (to_svm(vcpu)->vmcb->control.exit_info_1)
1325                 return wrmsr_interception(vcpu, kvm_run);
1326         else
1327                 return rdmsr_interception(vcpu, kvm_run);
1328 }
1329
1330 static int interrupt_window_interception(struct kvm_vcpu *vcpu,
1331                                    struct kvm_run *kvm_run)
1332 {
1333         /*
1334          * If the user space waits to inject interrupts, exit as soon as
1335          * possible
1336          */
1337         if (kvm_run->request_interrupt_window &&
1338             !vcpu->irq_summary) {
1339                 ++vcpu->stat.irq_window_exits;
1340                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1341                 return 0;
1342         }
1343
1344         return 1;
1345 }
1346
1347 static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
1348                                       struct kvm_run *kvm_run) = {
1349         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
1350         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
1351         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
1352         /* for now: */
1353         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
1354         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
1355         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
1356         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
1357         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
1358         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
1359         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
1360         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
1361         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
1362         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
1363         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
1364         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
1365         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
1366         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
1367         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
1368         [SVM_EXIT_INTR]                         = nop_on_interception,
1369         [SVM_EXIT_NMI]                          = nop_on_interception,
1370         [SVM_EXIT_SMI]                          = nop_on_interception,
1371         [SVM_EXIT_INIT]                         = nop_on_interception,
1372         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
1373         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
1374         [SVM_EXIT_CPUID]                        = cpuid_interception,
1375         [SVM_EXIT_HLT]                          = halt_interception,
1376         [SVM_EXIT_INVLPG]                       = emulate_on_interception,
1377         [SVM_EXIT_INVLPGA]                      = invalid_op_interception,
1378         [SVM_EXIT_IOIO]                         = io_interception,
1379         [SVM_EXIT_MSR]                          = msr_interception,
1380         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
1381         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
1382         [SVM_EXIT_VMRUN]                        = invalid_op_interception,
1383         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
1384         [SVM_EXIT_VMLOAD]                       = invalid_op_interception,
1385         [SVM_EXIT_VMSAVE]                       = invalid_op_interception,
1386         [SVM_EXIT_STGI]                         = invalid_op_interception,
1387         [SVM_EXIT_CLGI]                         = invalid_op_interception,
1388         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
1389         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
1390         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
1391 };
1392
1393
1394 static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1395 {
1396         struct vcpu_svm *svm = to_svm(vcpu);
1397         u32 exit_code = svm->vmcb->control.exit_code;
1398
1399         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1400             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1401                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1402                        "exit_code 0x%x\n",
1403                        __FUNCTION__, svm->vmcb->control.exit_int_info,
1404                        exit_code);
1405
1406         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1407             || svm_exit_handlers[exit_code] == 0) {
1408                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1409                 kvm_run->hw.hardware_exit_reason = exit_code;
1410                 return 0;
1411         }
1412
1413         return svm_exit_handlers[exit_code](vcpu, kvm_run);
1414 }
1415
1416 static void reload_tss(struct kvm_vcpu *vcpu)
1417 {
1418         int cpu = raw_smp_processor_id();
1419
1420         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1421         svm_data->tss_desc->type = 9; //available 32/64-bit TSS
1422         load_TR_desc();
1423 }
1424
1425 static void pre_svm_run(struct kvm_vcpu *vcpu)
1426 {
1427         struct vcpu_svm *svm = to_svm(vcpu);
1428         int cpu = raw_smp_processor_id();
1429
1430         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1431
1432         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1433         if (vcpu->cpu != cpu ||
1434             svm->asid_generation != svm_data->asid_generation)
1435                 new_asid(vcpu, svm_data);
1436 }
1437
1438
1439 static inline void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1440 {
1441         struct vmcb_control_area *control;
1442
1443         control = &to_svm(vcpu)->vmcb->control;
1444         control->int_vector = pop_irq(vcpu);
1445         control->int_ctl &= ~V_INTR_PRIO_MASK;
1446         control->int_ctl |= V_IRQ_MASK |
1447                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1448 }
1449
1450 static void kvm_reput_irq(struct kvm_vcpu *vcpu)
1451 {
1452         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
1453
1454         if (control->int_ctl & V_IRQ_MASK) {
1455                 control->int_ctl &= ~V_IRQ_MASK;
1456                 push_irq(vcpu, control->int_vector);
1457         }
1458
1459         vcpu->interrupt_window_open =
1460                 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1461 }
1462
1463 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1464                                        struct kvm_run *kvm_run)
1465 {
1466         struct vcpu_svm *svm = to_svm(vcpu);
1467         struct vmcb_control_area *control = &svm->vmcb->control;
1468
1469         vcpu->interrupt_window_open =
1470                 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1471                  (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1472
1473         if (vcpu->interrupt_window_open && vcpu->irq_summary)
1474                 /*
1475                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1476                  */
1477                 kvm_do_inject_irq(vcpu);
1478
1479         /*
1480          * Interrupts blocked.  Wait for unblock.
1481          */
1482         if (!vcpu->interrupt_window_open &&
1483             (vcpu->irq_summary || kvm_run->request_interrupt_window)) {
1484                 control->intercept |= 1ULL << INTERCEPT_VINTR;
1485         } else
1486                 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1487 }
1488
1489 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1490                               struct kvm_run *kvm_run)
1491 {
1492         struct vcpu_svm *svm = to_svm(vcpu);
1493
1494         kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1495                                                   vcpu->irq_summary == 0);
1496         kvm_run->if_flag = (svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
1497         kvm_run->cr8 = vcpu->cr8;
1498         kvm_run->apic_base = vcpu->apic_base;
1499 }
1500
1501 /*
1502  * Check if userspace requested an interrupt window, and that the
1503  * interrupt window is open.
1504  *
1505  * No need to exit to userspace if we already have an interrupt queued.
1506  */
1507 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1508                                           struct kvm_run *kvm_run)
1509 {
1510         return (!vcpu->irq_summary &&
1511                 kvm_run->request_interrupt_window &&
1512                 vcpu->interrupt_window_open &&
1513                 (to_svm(vcpu)->vmcb->save.rflags & X86_EFLAGS_IF));
1514 }
1515
1516 static void save_db_regs(unsigned long *db_regs)
1517 {
1518         asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1519         asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1520         asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1521         asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1522 }
1523
1524 static void load_db_regs(unsigned long *db_regs)
1525 {
1526         asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1527         asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1528         asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1529         asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1530 }
1531
1532 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1533 {
1534         force_new_asid(vcpu);
1535 }
1536
1537 static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1538 {
1539         struct vcpu_svm *svm = to_svm(vcpu);
1540         u16 fs_selector;
1541         u16 gs_selector;
1542         u16 ldt_selector;
1543         int r;
1544
1545 again:
1546         r = kvm_mmu_reload(vcpu);
1547         if (unlikely(r))
1548                 return r;
1549
1550         if (!vcpu->mmio_read_completed)
1551                 do_interrupt_requests(vcpu, kvm_run);
1552
1553         clgi();
1554
1555         vcpu->guest_mode = 1;
1556         if (vcpu->requests)
1557                 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
1558                     svm_flush_tlb(vcpu);
1559
1560         pre_svm_run(vcpu);
1561
1562         save_host_msrs(vcpu);
1563         fs_selector = read_fs();
1564         gs_selector = read_gs();
1565         ldt_selector = read_ldt();
1566         svm->host_cr2 = kvm_read_cr2();
1567         svm->host_dr6 = read_dr6();
1568         svm->host_dr7 = read_dr7();
1569         svm->vmcb->save.cr2 = vcpu->cr2;
1570
1571         if (svm->vmcb->save.dr7 & 0xff) {
1572                 write_dr7(0);
1573                 save_db_regs(svm->host_db_regs);
1574                 load_db_regs(svm->db_regs);
1575         }
1576
1577         if (vcpu->fpu_active) {
1578                 fx_save(vcpu->host_fx_image);
1579                 fx_restore(vcpu->guest_fx_image);
1580         }
1581
1582         asm volatile (
1583 #ifdef CONFIG_X86_64
1584                 "push %%rbx; push %%rcx; push %%rdx;"
1585                 "push %%rsi; push %%rdi; push %%rbp;"
1586                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1587                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1588 #else
1589                 "push %%ebx; push %%ecx; push %%edx;"
1590                 "push %%esi; push %%edi; push %%ebp;"
1591 #endif
1592
1593 #ifdef CONFIG_X86_64
1594                 "mov %c[rbx](%[vcpu]), %%rbx \n\t"
1595                 "mov %c[rcx](%[vcpu]), %%rcx \n\t"
1596                 "mov %c[rdx](%[vcpu]), %%rdx \n\t"
1597                 "mov %c[rsi](%[vcpu]), %%rsi \n\t"
1598                 "mov %c[rdi](%[vcpu]), %%rdi \n\t"
1599                 "mov %c[rbp](%[vcpu]), %%rbp \n\t"
1600                 "mov %c[r8](%[vcpu]),  %%r8  \n\t"
1601                 "mov %c[r9](%[vcpu]),  %%r9  \n\t"
1602                 "mov %c[r10](%[vcpu]), %%r10 \n\t"
1603                 "mov %c[r11](%[vcpu]), %%r11 \n\t"
1604                 "mov %c[r12](%[vcpu]), %%r12 \n\t"
1605                 "mov %c[r13](%[vcpu]), %%r13 \n\t"
1606                 "mov %c[r14](%[vcpu]), %%r14 \n\t"
1607                 "mov %c[r15](%[vcpu]), %%r15 \n\t"
1608 #else
1609                 "mov %c[rbx](%[vcpu]), %%ebx \n\t"
1610                 "mov %c[rcx](%[vcpu]), %%ecx \n\t"
1611                 "mov %c[rdx](%[vcpu]), %%edx \n\t"
1612                 "mov %c[rsi](%[vcpu]), %%esi \n\t"
1613                 "mov %c[rdi](%[vcpu]), %%edi \n\t"
1614                 "mov %c[rbp](%[vcpu]), %%ebp \n\t"
1615 #endif
1616
1617 #ifdef CONFIG_X86_64
1618                 /* Enter guest mode */
1619                 "push %%rax \n\t"
1620                 "mov %c[svm](%[vcpu]), %%rax \n\t"
1621                 "mov %c[vmcb](%%rax), %%rax \n\t"
1622                 SVM_VMLOAD "\n\t"
1623                 SVM_VMRUN "\n\t"
1624                 SVM_VMSAVE "\n\t"
1625                 "pop %%rax \n\t"
1626 #else
1627                 /* Enter guest mode */
1628                 "push %%eax \n\t"
1629                 "mov %c[svm](%[vcpu]), %%eax \n\t"
1630                 "mov %c[vmcb](%%eax), %%eax \n\t"
1631                 SVM_VMLOAD "\n\t"
1632                 SVM_VMRUN "\n\t"
1633                 SVM_VMSAVE "\n\t"
1634                 "pop %%eax \n\t"
1635 #endif
1636
1637                 /* Save guest registers, load host registers */
1638 #ifdef CONFIG_X86_64
1639                 "mov %%rbx, %c[rbx](%[vcpu]) \n\t"
1640                 "mov %%rcx, %c[rcx](%[vcpu]) \n\t"
1641                 "mov %%rdx, %c[rdx](%[vcpu]) \n\t"
1642                 "mov %%rsi, %c[rsi](%[vcpu]) \n\t"
1643                 "mov %%rdi, %c[rdi](%[vcpu]) \n\t"
1644                 "mov %%rbp, %c[rbp](%[vcpu]) \n\t"
1645                 "mov %%r8,  %c[r8](%[vcpu]) \n\t"
1646                 "mov %%r9,  %c[r9](%[vcpu]) \n\t"
1647                 "mov %%r10, %c[r10](%[vcpu]) \n\t"
1648                 "mov %%r11, %c[r11](%[vcpu]) \n\t"
1649                 "mov %%r12, %c[r12](%[vcpu]) \n\t"
1650                 "mov %%r13, %c[r13](%[vcpu]) \n\t"
1651                 "mov %%r14, %c[r14](%[vcpu]) \n\t"
1652                 "mov %%r15, %c[r15](%[vcpu]) \n\t"
1653
1654                 "pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1655                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1656                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1657                 "pop  %%rdx; pop  %%rcx; pop  %%rbx; \n\t"
1658 #else
1659                 "mov %%ebx, %c[rbx](%[vcpu]) \n\t"
1660                 "mov %%ecx, %c[rcx](%[vcpu]) \n\t"
1661                 "mov %%edx, %c[rdx](%[vcpu]) \n\t"
1662                 "mov %%esi, %c[rsi](%[vcpu]) \n\t"
1663                 "mov %%edi, %c[rdi](%[vcpu]) \n\t"
1664                 "mov %%ebp, %c[rbp](%[vcpu]) \n\t"
1665
1666                 "pop  %%ebp; pop  %%edi; pop  %%esi;"
1667                 "pop  %%edx; pop  %%ecx; pop  %%ebx; \n\t"
1668 #endif
1669                 :
1670                 : [vcpu]"a"(vcpu),
1671                   [svm]"i"(offsetof(struct kvm_vcpu, _priv)),
1672                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1673                   [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1674                   [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1675                   [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1676                   [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1677                   [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1678                   [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP]))
1679 #ifdef CONFIG_X86_64
1680                   ,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1681                   [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1682                   [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1683                   [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1684                   [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1685                   [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1686                   [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1687                   [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15]))
1688 #endif
1689                 : "cc", "memory" );
1690
1691         vcpu->guest_mode = 0;
1692
1693         if (vcpu->fpu_active) {
1694                 fx_save(vcpu->guest_fx_image);
1695                 fx_restore(vcpu->host_fx_image);
1696         }
1697
1698         if ((svm->vmcb->save.dr7 & 0xff))
1699                 load_db_regs(svm->host_db_regs);
1700
1701         vcpu->cr2 = svm->vmcb->save.cr2;
1702
1703         write_dr6(svm->host_dr6);
1704         write_dr7(svm->host_dr7);
1705         kvm_write_cr2(svm->host_cr2);
1706
1707         load_fs(fs_selector);
1708         load_gs(gs_selector);
1709         load_ldt(ldt_selector);
1710         load_host_msrs(vcpu);
1711
1712         reload_tss(vcpu);
1713
1714         /*
1715          * Profile KVM exit RIPs:
1716          */
1717         if (unlikely(prof_on == KVM_PROFILING))
1718                 profile_hit(KVM_PROFILING,
1719                         (void *)(unsigned long)svm->vmcb->save.rip);
1720
1721         stgi();
1722
1723         kvm_reput_irq(vcpu);
1724
1725         svm->next_rip = 0;
1726
1727         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1728                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1729                 kvm_run->fail_entry.hardware_entry_failure_reason
1730                         = svm->vmcb->control.exit_code;
1731                 post_kvm_run_save(vcpu, kvm_run);
1732                 return 0;
1733         }
1734
1735         r = handle_exit(vcpu, kvm_run);
1736         if (r > 0) {
1737                 if (signal_pending(current)) {
1738                         ++vcpu->stat.signal_exits;
1739                         post_kvm_run_save(vcpu, kvm_run);
1740                         kvm_run->exit_reason = KVM_EXIT_INTR;
1741                         return -EINTR;
1742                 }
1743
1744                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1745                         ++vcpu->stat.request_irq_exits;
1746                         post_kvm_run_save(vcpu, kvm_run);
1747                         kvm_run->exit_reason = KVM_EXIT_INTR;
1748                         return -EINTR;
1749                 }
1750                 kvm_resched(vcpu);
1751                 goto again;
1752         }
1753         post_kvm_run_save(vcpu, kvm_run);
1754         return r;
1755 }
1756
1757 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1758 {
1759         struct vcpu_svm *svm = to_svm(vcpu);
1760
1761         svm->vmcb->save.cr3 = root;
1762         force_new_asid(vcpu);
1763
1764         if (vcpu->fpu_active) {
1765                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1766                 svm->vmcb->save.cr0 |= X86_CR0_TS;
1767                 vcpu->fpu_active = 0;
1768         }
1769 }
1770
1771 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1772                                   unsigned long  addr,
1773                                   uint32_t err_code)
1774 {
1775         struct vcpu_svm *svm = to_svm(vcpu);
1776         uint32_t exit_int_info = svm->vmcb->control.exit_int_info;
1777
1778         ++vcpu->stat.pf_guest;
1779
1780         if (is_page_fault(exit_int_info)) {
1781
1782                 svm->vmcb->control.event_inj_err = 0;
1783                 svm->vmcb->control.event_inj =  SVM_EVTINJ_VALID |
1784                                                 SVM_EVTINJ_VALID_ERR |
1785                                                 SVM_EVTINJ_TYPE_EXEPT |
1786                                                 DF_VECTOR;
1787                 return;
1788         }
1789         vcpu->cr2 = addr;
1790         svm->vmcb->save.cr2 = addr;
1791         svm->vmcb->control.event_inj =  SVM_EVTINJ_VALID |
1792                                         SVM_EVTINJ_VALID_ERR |
1793                                         SVM_EVTINJ_TYPE_EXEPT |
1794                                         PF_VECTOR;
1795         svm->vmcb->control.event_inj_err = err_code;
1796 }
1797
1798
1799 static int is_disabled(void)
1800 {
1801         u64 vm_cr;
1802
1803         rdmsrl(MSR_VM_CR, vm_cr);
1804         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1805                 return 1;
1806
1807         return 0;
1808 }
1809
1810 static void
1811 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1812 {
1813         /*
1814          * Patch in the VMMCALL instruction:
1815          */
1816         hypercall[0] = 0x0f;
1817         hypercall[1] = 0x01;
1818         hypercall[2] = 0xd9;
1819         hypercall[3] = 0xc3;
1820 }
1821
1822 static struct kvm_arch_ops svm_arch_ops = {
1823         .cpu_has_kvm_support = has_svm,
1824         .disabled_by_bios = is_disabled,
1825         .hardware_setup = svm_hardware_setup,
1826         .hardware_unsetup = svm_hardware_unsetup,
1827         .hardware_enable = svm_hardware_enable,
1828         .hardware_disable = svm_hardware_disable,
1829
1830         .vcpu_create = svm_create_vcpu,
1831         .vcpu_free = svm_free_vcpu,
1832
1833         .vcpu_load = svm_vcpu_load,
1834         .vcpu_put = svm_vcpu_put,
1835         .vcpu_decache = svm_vcpu_decache,
1836
1837         .set_guest_debug = svm_guest_debug,
1838         .get_msr = svm_get_msr,
1839         .set_msr = svm_set_msr,
1840         .get_segment_base = svm_get_segment_base,
1841         .get_segment = svm_get_segment,
1842         .set_segment = svm_set_segment,
1843         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
1844         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1845         .set_cr0 = svm_set_cr0,
1846         .set_cr3 = svm_set_cr3,
1847         .set_cr4 = svm_set_cr4,
1848         .set_efer = svm_set_efer,
1849         .get_idt = svm_get_idt,
1850         .set_idt = svm_set_idt,
1851         .get_gdt = svm_get_gdt,
1852         .set_gdt = svm_set_gdt,
1853         .get_dr = svm_get_dr,
1854         .set_dr = svm_set_dr,
1855         .cache_regs = svm_cache_regs,
1856         .decache_regs = svm_decache_regs,
1857         .get_rflags = svm_get_rflags,
1858         .set_rflags = svm_set_rflags,
1859
1860         .invlpg = svm_invlpg,
1861         .tlb_flush = svm_flush_tlb,
1862         .inject_page_fault = svm_inject_page_fault,
1863
1864         .inject_gp = svm_inject_gp,
1865
1866         .run = svm_vcpu_run,
1867         .skip_emulated_instruction = skip_emulated_instruction,
1868         .vcpu_setup = svm_vcpu_setup,
1869         .patch_hypercall = svm_patch_hypercall,
1870 };
1871
1872 static int __init svm_init(void)
1873 {
1874         return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
1875 }
1876
1877 static void __exit svm_exit(void)
1878 {
1879         kvm_exit_arch();
1880 }
1881
1882 module_init(svm_init)
1883 module_exit(svm_exit)