]> err.no Git - linux-2.6/blob - drivers/kvm/paging_tmpl.h
KVM: MMU: Fold fix_read_pf() into set_pte_common()
[linux-2.6] / drivers / kvm / paging_tmpl.h
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 /*
21  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22  * so the code in this file is compiled twice, once per pte size.
23  */
24
25 #if PTTYPE == 64
26         #define pt_element_t u64
27         #define guest_walker guest_walker64
28         #define FNAME(name) paging##64_##name
29         #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30         #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31         #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32         #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33         #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34         #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK
35         #ifdef CONFIG_X86_64
36         #define PT_MAX_FULL_LEVELS 4
37         #else
38         #define PT_MAX_FULL_LEVELS 2
39         #endif
40 #elif PTTYPE == 32
41         #define pt_element_t u32
42         #define guest_walker guest_walker32
43         #define FNAME(name) paging##32_##name
44         #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
45         #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
46         #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
47         #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
48         #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
49         #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK
50         #define PT_MAX_FULL_LEVELS 2
51 #else
52         #error Invalid PTTYPE value
53 #endif
54
55 /*
56  * The guest_walker structure emulates the behavior of the hardware page
57  * table walker.
58  */
59 struct guest_walker {
60         int level;
61         gfn_t table_gfn[PT_MAX_FULL_LEVELS];
62         pt_element_t *table;
63         pt_element_t *ptep;
64         pt_element_t inherited_ar;
65         gfn_t gfn;
66         u32 error_code;
67 };
68
69 /*
70  * Fetch a guest pte for a guest virtual address
71  */
72 static int FNAME(walk_addr)(struct guest_walker *walker,
73                             struct kvm_vcpu *vcpu, gva_t addr,
74                             int write_fault, int user_fault, int fetch_fault)
75 {
76         hpa_t hpa;
77         struct kvm_memory_slot *slot;
78         pt_element_t *ptep;
79         pt_element_t root;
80         gfn_t table_gfn;
81
82         pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
83         walker->level = vcpu->mmu.root_level;
84         walker->table = NULL;
85         root = vcpu->cr3;
86 #if PTTYPE == 64
87         if (!is_long_mode(vcpu)) {
88                 walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
89                 root = *walker->ptep;
90                 if (!(root & PT_PRESENT_MASK))
91                         goto not_present;
92                 --walker->level;
93         }
94 #endif
95         table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
96         walker->table_gfn[walker->level - 1] = table_gfn;
97         pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
98                  walker->level - 1, table_gfn);
99         slot = gfn_to_memslot(vcpu->kvm, table_gfn);
100         hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
101         walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
102
103         ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
104                (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0);
105
106         walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
107
108         for (;;) {
109                 int index = PT_INDEX(addr, walker->level);
110                 hpa_t paddr;
111
112                 ptep = &walker->table[index];
113                 ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
114                        ((unsigned long)ptep & PAGE_MASK));
115
116                 if (!is_present_pte(*ptep))
117                         goto not_present;
118
119                 if (write_fault && !is_writeble_pte(*ptep))
120                         if (user_fault || is_write_protection(vcpu))
121                                 goto access_error;
122
123                 if (user_fault && !(*ptep & PT_USER_MASK))
124                         goto access_error;
125
126 #if PTTYPE == 64
127                 if (fetch_fault && is_nx(vcpu) && (*ptep & PT64_NX_MASK))
128                         goto access_error;
129 #endif
130
131                 if (!(*ptep & PT_ACCESSED_MASK)) {
132                         mark_page_dirty(vcpu->kvm, table_gfn);
133                         *ptep |= PT_ACCESSED_MASK;
134                 }
135
136                 if (walker->level == PT_PAGE_TABLE_LEVEL) {
137                         walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
138                                 >> PAGE_SHIFT;
139                         break;
140                 }
141
142                 if (walker->level == PT_DIRECTORY_LEVEL
143                     && (*ptep & PT_PAGE_SIZE_MASK)
144                     && (PTTYPE == 64 || is_pse(vcpu))) {
145                         walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
146                                 >> PAGE_SHIFT;
147                         walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
148                         break;
149                 }
150
151                 walker->inherited_ar &= walker->table[index];
152                 table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
153                 paddr = safe_gpa_to_hpa(vcpu, *ptep & PT_BASE_ADDR_MASK);
154                 kunmap_atomic(walker->table, KM_USER0);
155                 walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
156                                             KM_USER0);
157                 --walker->level;
158                 walker->table_gfn[walker->level - 1 ] = table_gfn;
159                 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
160                          walker->level - 1, table_gfn);
161         }
162         walker->ptep = ptep;
163         pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
164         return 1;
165
166 not_present:
167         walker->error_code = 0;
168         goto err;
169
170 access_error:
171         walker->error_code = PFERR_PRESENT_MASK;
172
173 err:
174         if (write_fault)
175                 walker->error_code |= PFERR_WRITE_MASK;
176         if (user_fault)
177                 walker->error_code |= PFERR_USER_MASK;
178         if (fetch_fault)
179                 walker->error_code |= PFERR_FETCH_MASK;
180         return 0;
181 }
182
183 static void FNAME(release_walker)(struct guest_walker *walker)
184 {
185         if (walker->table)
186                 kunmap_atomic(walker->table, KM_USER0);
187 }
188
189 static void FNAME(mark_pagetable_dirty)(struct kvm *kvm,
190                                         struct guest_walker *walker)
191 {
192         mark_page_dirty(kvm, walker->table_gfn[walker->level - 1]);
193 }
194
195 static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
196                                   u64 *shadow_pte,
197                                   gpa_t gaddr,
198                                   pt_element_t *gpte,
199                                   u64 access_bits,
200                                   int write_fault,
201                                   gfn_t gfn)
202 {
203         hpa_t paddr;
204         int dirty = *gpte & PT_DIRTY_MASK;
205
206         *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
207         if (!dirty)
208                 access_bits &= ~PT_WRITABLE_MASK;
209
210         paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
211
212         *shadow_pte |= access_bits;
213
214         if (is_error_hpa(paddr)) {
215                 *shadow_pte |= gaddr;
216                 *shadow_pte |= PT_SHADOW_IO_MARK;
217                 *shadow_pte &= ~PT_PRESENT_MASK;
218                 return;
219         }
220
221         *shadow_pte |= paddr;
222
223         if (!write_fault && (*shadow_pte & PT_SHADOW_USER_MASK) &&
224             !(*shadow_pte & PT_USER_MASK)) {
225                 /*
226                  * If supervisor write protect is disabled, we shadow kernel
227                  * pages as user pages so we can trap the write access.
228                  */
229                 *shadow_pte |= PT_USER_MASK;
230                 *shadow_pte &= ~PT_WRITABLE_MASK;
231                 access_bits &= ~PT_WRITABLE_MASK;
232         }
233
234         if (access_bits & PT_WRITABLE_MASK) {
235                 struct kvm_mmu_page *shadow;
236
237                 shadow = kvm_mmu_lookup_page(vcpu, gfn);
238                 if (shadow) {
239                         pgprintk("%s: found shadow page for %lx, marking ro\n",
240                                  __FUNCTION__, gfn);
241                         access_bits &= ~PT_WRITABLE_MASK;
242                         if (is_writeble_pte(*shadow_pte)) {
243                                     *shadow_pte &= ~PT_WRITABLE_MASK;
244                                     kvm_arch_ops->tlb_flush(vcpu);
245                         }
246                 }
247         }
248
249         if (access_bits & PT_WRITABLE_MASK)
250                 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
251
252         page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
253         rmap_add(vcpu, shadow_pte);
254 }
255
256 static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t *gpte,
257                            u64 *shadow_pte, u64 access_bits,
258                            int write_fault, gfn_t gfn)
259 {
260         ASSERT(*shadow_pte == 0);
261         access_bits &= *gpte;
262         *shadow_pte = (*gpte & PT_PTE_COPY_MASK);
263         FNAME(set_pte_common)(vcpu, shadow_pte, *gpte & PT_BASE_ADDR_MASK,
264                               gpte, access_bits, write_fault, gfn);
265 }
266
267 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
268                               u64 *spte, const void *pte, int bytes)
269 {
270         pt_element_t gpte;
271
272         if (bytes < sizeof(pt_element_t))
273                 return;
274         gpte = *(const pt_element_t *)pte;
275         if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK))
276                 return;
277         pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
278         FNAME(set_pte)(vcpu, &gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
279                        (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
280 }
281
282 static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t *gpde,
283                            u64 *shadow_pte, u64 access_bits, int write_fault,
284                            gfn_t gfn)
285 {
286         gpa_t gaddr;
287
288         ASSERT(*shadow_pte == 0);
289         access_bits &= *gpde;
290         gaddr = (gpa_t)gfn << PAGE_SHIFT;
291         if (PTTYPE == 32 && is_cpuid_PSE36())
292                 gaddr |= (*gpde & PT32_DIR_PSE36_MASK) <<
293                         (32 - PT32_DIR_PSE36_SHIFT);
294         *shadow_pte = *gpde & PT_PTE_COPY_MASK;
295         FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
296                               gpde, access_bits, write_fault, gfn);
297 }
298
299 /*
300  * Fetch a shadow pte for a specific level in the paging hierarchy.
301  */
302 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
303                          struct guest_walker *walker, int write_fault)
304 {
305         hpa_t shadow_addr;
306         int level;
307         u64 *shadow_ent;
308         u64 *prev_shadow_ent = NULL;
309         pt_element_t *guest_ent = walker->ptep;
310
311         if (!is_present_pte(*guest_ent))
312                 return NULL;
313
314         shadow_addr = vcpu->mmu.root_hpa;
315         level = vcpu->mmu.shadow_root_level;
316         if (level == PT32E_ROOT_LEVEL) {
317                 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
318                 shadow_addr &= PT64_BASE_ADDR_MASK;
319                 --level;
320         }
321
322         for (; ; level--) {
323                 u32 index = SHADOW_PT_INDEX(addr, level);
324                 struct kvm_mmu_page *shadow_page;
325                 u64 shadow_pte;
326                 int metaphysical;
327                 gfn_t table_gfn;
328                 unsigned hugepage_access = 0;
329
330                 shadow_ent = ((u64 *)__va(shadow_addr)) + index;
331                 if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
332                         if (level == PT_PAGE_TABLE_LEVEL)
333                                 return shadow_ent;
334                         shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
335                         prev_shadow_ent = shadow_ent;
336                         continue;
337                 }
338
339                 if (level == PT_PAGE_TABLE_LEVEL)
340                         break;
341
342                 if (level - 1 == PT_PAGE_TABLE_LEVEL
343                     && walker->level == PT_DIRECTORY_LEVEL) {
344                         metaphysical = 1;
345                         hugepage_access = *guest_ent;
346                         hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
347                         hugepage_access >>= PT_WRITABLE_SHIFT;
348                         table_gfn = (*guest_ent & PT_BASE_ADDR_MASK)
349                                 >> PAGE_SHIFT;
350                 } else {
351                         metaphysical = 0;
352                         table_gfn = walker->table_gfn[level - 2];
353                 }
354                 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
355                                                metaphysical, hugepage_access,
356                                                shadow_ent);
357                 shadow_addr = __pa(shadow_page->spt);
358                 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
359                         | PT_WRITABLE_MASK | PT_USER_MASK;
360                 *shadow_ent = shadow_pte;
361                 prev_shadow_ent = shadow_ent;
362         }
363
364         if (walker->level == PT_DIRECTORY_LEVEL) {
365                 if (prev_shadow_ent)
366                         *prev_shadow_ent |= PT_SHADOW_PS_MARK;
367                 FNAME(set_pde)(vcpu, guest_ent, shadow_ent,
368                                walker->inherited_ar, write_fault, walker->gfn);
369         } else {
370                 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
371                 FNAME(set_pte)(vcpu, guest_ent, shadow_ent,
372                                walker->inherited_ar,
373                                write_fault, walker->gfn);
374         }
375         return shadow_ent;
376 }
377
378 /*
379  * The guest faulted for write.  We need to
380  *
381  * - check write permissions
382  * - update the guest pte dirty bit
383  * - update our own dirty page tracking structures
384  */
385 static int FNAME(fix_write_pf)(struct kvm_vcpu *vcpu,
386                                u64 *shadow_ent,
387                                struct guest_walker *walker,
388                                gva_t addr,
389                                int user,
390                                int *write_pt)
391 {
392         pt_element_t *guest_ent;
393         int writable_shadow;
394         gfn_t gfn;
395         struct kvm_mmu_page *page;
396
397         if (is_writeble_pte(*shadow_ent))
398                 return !user || (*shadow_ent & PT_USER_MASK);
399
400         writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK;
401         if (user) {
402                 /*
403                  * User mode access.  Fail if it's a kernel page or a read-only
404                  * page.
405                  */
406                 if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow)
407                         return 0;
408                 ASSERT(*shadow_ent & PT_USER_MASK);
409         } else
410                 /*
411                  * Kernel mode access.  Fail if it's a read-only page and
412                  * supervisor write protection is enabled.
413                  */
414                 if (!writable_shadow) {
415                         if (is_write_protection(vcpu))
416                                 return 0;
417                         *shadow_ent &= ~PT_USER_MASK;
418                 }
419
420         guest_ent = walker->ptep;
421
422         if (!is_present_pte(*guest_ent)) {
423                 *shadow_ent = 0;
424                 return 0;
425         }
426
427         gfn = walker->gfn;
428
429         if (user) {
430                 /*
431                  * Usermode page faults won't be for page table updates.
432                  */
433                 while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
434                         pgprintk("%s: zap %lx %x\n",
435                                  __FUNCTION__, gfn, page->role.word);
436                         kvm_mmu_zap_page(vcpu, page);
437                 }
438         } else if (kvm_mmu_lookup_page(vcpu, gfn)) {
439                 pgprintk("%s: found shadow page for %lx, marking ro\n",
440                          __FUNCTION__, gfn);
441                 mark_page_dirty(vcpu->kvm, gfn);
442                 FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
443                 *guest_ent |= PT_DIRTY_MASK;
444                 *write_pt = 1;
445                 return 0;
446         }
447         mark_page_dirty(vcpu->kvm, gfn);
448         *shadow_ent |= PT_WRITABLE_MASK;
449         FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
450         *guest_ent |= PT_DIRTY_MASK;
451         rmap_add(vcpu, shadow_ent);
452
453         return 1;
454 }
455
456 /*
457  * Page fault handler.  There are several causes for a page fault:
458  *   - there is no shadow pte for the guest pte
459  *   - write access through a shadow pte marked read only so that we can set
460  *     the dirty bit
461  *   - write access to a shadow pte marked read only so we can update the page
462  *     dirty bitmap, when userspace requests it
463  *   - mmio access; in this case we will never install a present shadow pte
464  *   - normal guest page fault due to the guest pte marked not present, not
465  *     writable, or not executable
466  *
467  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
468  *           a negative value on error.
469  */
470 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
471                                u32 error_code)
472 {
473         int write_fault = error_code & PFERR_WRITE_MASK;
474         int user_fault = error_code & PFERR_USER_MASK;
475         int fetch_fault = error_code & PFERR_FETCH_MASK;
476         struct guest_walker walker;
477         u64 *shadow_pte;
478         int fixed;
479         int write_pt = 0;
480         int r;
481
482         pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
483         kvm_mmu_audit(vcpu, "pre page fault");
484
485         r = mmu_topup_memory_caches(vcpu);
486         if (r)
487                 return r;
488
489         /*
490          * Look up the shadow pte for the faulting address.
491          */
492         r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
493                              fetch_fault);
494
495         /*
496          * The page is not mapped by the guest.  Let the guest handle it.
497          */
498         if (!r) {
499                 pgprintk("%s: guest page fault\n", __FUNCTION__);
500                 inject_page_fault(vcpu, addr, walker.error_code);
501                 FNAME(release_walker)(&walker);
502                 vcpu->last_pt_write_count = 0; /* reset fork detector */
503                 return 0;
504         }
505
506         shadow_pte = FNAME(fetch)(vcpu, addr, &walker, write_fault);
507         pgprintk("%s: shadow pte %p %llx\n", __FUNCTION__,
508                  shadow_pte, *shadow_pte);
509
510         /*
511          * Update the shadow pte.
512          */
513         if (write_fault)
514                 fixed = FNAME(fix_write_pf)(vcpu, shadow_pte, &walker, addr,
515                                             user_fault, &write_pt);
516
517         pgprintk("%s: updated shadow pte %p %llx\n", __FUNCTION__,
518                  shadow_pte, *shadow_pte);
519
520         FNAME(release_walker)(&walker);
521
522         if (!write_pt)
523                 vcpu->last_pt_write_count = 0; /* reset fork detector */
524
525         /*
526          * mmio: emulate if accessible, otherwise its a guest fault.
527          */
528         if (is_io_pte(*shadow_pte))
529                 return 1;
530
531         ++vcpu->stat.pf_fixed;
532         kvm_mmu_audit(vcpu, "post page fault (fixed)");
533
534         return write_pt;
535 }
536
537 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
538 {
539         struct guest_walker walker;
540         gpa_t gpa = UNMAPPED_GVA;
541         int r;
542
543         r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
544
545         if (r) {
546                 gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
547                 gpa |= vaddr & ~PAGE_MASK;
548         }
549
550         FNAME(release_walker)(&walker);
551         return gpa;
552 }
553
554 #undef pt_element_t
555 #undef guest_walker
556 #undef FNAME
557 #undef PT_BASE_ADDR_MASK
558 #undef PT_INDEX
559 #undef SHADOW_PT_INDEX
560 #undef PT_LEVEL_MASK
561 #undef PT_PTE_COPY_MASK
562 #undef PT_NON_PTE_COPY_MASK
563 #undef PT_DIR_BASE_ADDR_MASK
564 #undef PT_MAX_FULL_LEVELS