]> err.no Git - linux-2.6/blob - drivers/kvm/mmu.c
KVM: MMU: Move set_pte_common() to pte width dependent code
[linux-2.6] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19 #include <linux/types.h>
20 #include <linux/string.h>
21 #include <asm/page.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/module.h>
25
26 #include "vmx.h"
27 #include "kvm.h"
28
29 #undef MMU_DEBUG
30
31 #undef AUDIT
32
33 #ifdef AUDIT
34 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
35 #else
36 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
37 #endif
38
39 #ifdef MMU_DEBUG
40
41 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
42 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
43
44 #else
45
46 #define pgprintk(x...) do { } while (0)
47 #define rmap_printk(x...) do { } while (0)
48
49 #endif
50
51 #if defined(MMU_DEBUG) || defined(AUDIT)
52 static int dbg = 1;
53 #endif
54
55 #ifndef MMU_DEBUG
56 #define ASSERT(x) do { } while (0)
57 #else
58 #define ASSERT(x)                                                       \
59         if (!(x)) {                                                     \
60                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
61                        __FILE__, __LINE__, #x);                         \
62         }
63 #endif
64
65 #define PT64_PT_BITS 9
66 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
67 #define PT32_PT_BITS 10
68 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
69
70 #define PT_WRITABLE_SHIFT 1
71
72 #define PT_PRESENT_MASK (1ULL << 0)
73 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
74 #define PT_USER_MASK (1ULL << 2)
75 #define PT_PWT_MASK (1ULL << 3)
76 #define PT_PCD_MASK (1ULL << 4)
77 #define PT_ACCESSED_MASK (1ULL << 5)
78 #define PT_DIRTY_MASK (1ULL << 6)
79 #define PT_PAGE_SIZE_MASK (1ULL << 7)
80 #define PT_PAT_MASK (1ULL << 7)
81 #define PT_GLOBAL_MASK (1ULL << 8)
82 #define PT64_NX_MASK (1ULL << 63)
83
84 #define PT_PAT_SHIFT 7
85 #define PT_DIR_PAT_SHIFT 12
86 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
87
88 #define PT32_DIR_PSE36_SIZE 4
89 #define PT32_DIR_PSE36_SHIFT 13
90 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
91
92
93 #define PT32_PTE_COPY_MASK \
94         (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
95
96 #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
97
98 #define PT_FIRST_AVAIL_BITS_SHIFT 9
99 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
100
101 #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
102 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
103
104 #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
105 #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
106
107 #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
108 #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
109
110 #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
111
112 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
113
114 #define PT64_LEVEL_BITS 9
115
116 #define PT64_LEVEL_SHIFT(level) \
117                 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
118
119 #define PT64_LEVEL_MASK(level) \
120                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
121
122 #define PT64_INDEX(address, level)\
123         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
124
125
126 #define PT32_LEVEL_BITS 10
127
128 #define PT32_LEVEL_SHIFT(level) \
129                 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
130
131 #define PT32_LEVEL_MASK(level) \
132                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
133
134 #define PT32_INDEX(address, level)\
135         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
136
137
138 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
139 #define PT64_DIR_BASE_ADDR_MASK \
140         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
141
142 #define PT32_BASE_ADDR_MASK PAGE_MASK
143 #define PT32_DIR_BASE_ADDR_MASK \
144         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
145
146
147 #define PFERR_PRESENT_MASK (1U << 0)
148 #define PFERR_WRITE_MASK (1U << 1)
149 #define PFERR_USER_MASK (1U << 2)
150 #define PFERR_FETCH_MASK (1U << 4)
151
152 #define PT64_ROOT_LEVEL 4
153 #define PT32_ROOT_LEVEL 2
154 #define PT32E_ROOT_LEVEL 3
155
156 #define PT_DIRECTORY_LEVEL 2
157 #define PT_PAGE_TABLE_LEVEL 1
158
159 #define RMAP_EXT 4
160
161 struct kvm_rmap_desc {
162         u64 *shadow_ptes[RMAP_EXT];
163         struct kvm_rmap_desc *more;
164 };
165
166 static struct kmem_cache *pte_chain_cache;
167 static struct kmem_cache *rmap_desc_cache;
168 static struct kmem_cache *mmu_page_cache;
169 static struct kmem_cache *mmu_page_header_cache;
170
171 static int is_write_protection(struct kvm_vcpu *vcpu)
172 {
173         return vcpu->cr0 & CR0_WP_MASK;
174 }
175
176 static int is_cpuid_PSE36(void)
177 {
178         return 1;
179 }
180
181 static int is_nx(struct kvm_vcpu *vcpu)
182 {
183         return vcpu->shadow_efer & EFER_NX;
184 }
185
186 static int is_present_pte(unsigned long pte)
187 {
188         return pte & PT_PRESENT_MASK;
189 }
190
191 static int is_writeble_pte(unsigned long pte)
192 {
193         return pte & PT_WRITABLE_MASK;
194 }
195
196 static int is_io_pte(unsigned long pte)
197 {
198         return pte & PT_SHADOW_IO_MARK;
199 }
200
201 static int is_rmap_pte(u64 pte)
202 {
203         return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
204                 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
205 }
206
207 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
208                                   struct kmem_cache *base_cache, int min,
209                                   gfp_t gfp_flags)
210 {
211         void *obj;
212
213         if (cache->nobjs >= min)
214                 return 0;
215         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
216                 obj = kmem_cache_zalloc(base_cache, gfp_flags);
217                 if (!obj)
218                         return -ENOMEM;
219                 cache->objects[cache->nobjs++] = obj;
220         }
221         return 0;
222 }
223
224 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
225 {
226         while (mc->nobjs)
227                 kfree(mc->objects[--mc->nobjs]);
228 }
229
230 static int __mmu_topup_memory_caches(struct kvm_vcpu *vcpu, gfp_t gfp_flags)
231 {
232         int r;
233
234         r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
235                                    pte_chain_cache, 4, gfp_flags);
236         if (r)
237                 goto out;
238         r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
239                                    rmap_desc_cache, 1, gfp_flags);
240         if (r)
241                 goto out;
242         r = mmu_topup_memory_cache(&vcpu->mmu_page_cache,
243                                    mmu_page_cache, 4, gfp_flags);
244         if (r)
245                 goto out;
246         r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
247                                    mmu_page_header_cache, 4, gfp_flags);
248 out:
249         return r;
250 }
251
252 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
253 {
254         int r;
255
256         r = __mmu_topup_memory_caches(vcpu, GFP_NOWAIT);
257         if (r < 0) {
258                 spin_unlock(&vcpu->kvm->lock);
259                 kvm_arch_ops->vcpu_put(vcpu);
260                 r = __mmu_topup_memory_caches(vcpu, GFP_KERNEL);
261                 kvm_arch_ops->vcpu_load(vcpu);
262                 spin_lock(&vcpu->kvm->lock);
263         }
264         return r;
265 }
266
267 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
268 {
269         mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
270         mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
271         mmu_free_memory_cache(&vcpu->mmu_page_cache);
272         mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
273 }
274
275 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
276                                     size_t size)
277 {
278         void *p;
279
280         BUG_ON(!mc->nobjs);
281         p = mc->objects[--mc->nobjs];
282         memset(p, 0, size);
283         return p;
284 }
285
286 static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
287 {
288         if (mc->nobjs < KVM_NR_MEM_OBJS)
289                 mc->objects[mc->nobjs++] = obj;
290         else
291                 kfree(obj);
292 }
293
294 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
295 {
296         return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
297                                       sizeof(struct kvm_pte_chain));
298 }
299
300 static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
301                                struct kvm_pte_chain *pc)
302 {
303         mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
304 }
305
306 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
307 {
308         return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
309                                       sizeof(struct kvm_rmap_desc));
310 }
311
312 static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
313                                struct kvm_rmap_desc *rd)
314 {
315         mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
316 }
317
318 /*
319  * Reverse mapping data structures:
320  *
321  * If page->private bit zero is zero, then page->private points to the
322  * shadow page table entry that points to page_address(page).
323  *
324  * If page->private bit zero is one, (then page->private & ~1) points
325  * to a struct kvm_rmap_desc containing more mappings.
326  */
327 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
328 {
329         struct page *page;
330         struct kvm_rmap_desc *desc;
331         int i;
332
333         if (!is_rmap_pte(*spte))
334                 return;
335         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
336         if (!page_private(page)) {
337                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
338                 set_page_private(page,(unsigned long)spte);
339         } else if (!(page_private(page) & 1)) {
340                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
341                 desc = mmu_alloc_rmap_desc(vcpu);
342                 desc->shadow_ptes[0] = (u64 *)page_private(page);
343                 desc->shadow_ptes[1] = spte;
344                 set_page_private(page,(unsigned long)desc | 1);
345         } else {
346                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
347                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
348                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
349                         desc = desc->more;
350                 if (desc->shadow_ptes[RMAP_EXT-1]) {
351                         desc->more = mmu_alloc_rmap_desc(vcpu);
352                         desc = desc->more;
353                 }
354                 for (i = 0; desc->shadow_ptes[i]; ++i)
355                         ;
356                 desc->shadow_ptes[i] = spte;
357         }
358 }
359
360 static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
361                                    struct page *page,
362                                    struct kvm_rmap_desc *desc,
363                                    int i,
364                                    struct kvm_rmap_desc *prev_desc)
365 {
366         int j;
367
368         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
369                 ;
370         desc->shadow_ptes[i] = desc->shadow_ptes[j];
371         desc->shadow_ptes[j] = NULL;
372         if (j != 0)
373                 return;
374         if (!prev_desc && !desc->more)
375                 set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
376         else
377                 if (prev_desc)
378                         prev_desc->more = desc->more;
379                 else
380                         set_page_private(page,(unsigned long)desc->more | 1);
381         mmu_free_rmap_desc(vcpu, desc);
382 }
383
384 static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
385 {
386         struct page *page;
387         struct kvm_rmap_desc *desc;
388         struct kvm_rmap_desc *prev_desc;
389         int i;
390
391         if (!is_rmap_pte(*spte))
392                 return;
393         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
394         if (!page_private(page)) {
395                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
396                 BUG();
397         } else if (!(page_private(page) & 1)) {
398                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
399                 if ((u64 *)page_private(page) != spte) {
400                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
401                                spte, *spte);
402                         BUG();
403                 }
404                 set_page_private(page,0);
405         } else {
406                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
407                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
408                 prev_desc = NULL;
409                 while (desc) {
410                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
411                                 if (desc->shadow_ptes[i] == spte) {
412                                         rmap_desc_remove_entry(vcpu, page,
413                                                                desc, i,
414                                                                prev_desc);
415                                         return;
416                                 }
417                         prev_desc = desc;
418                         desc = desc->more;
419                 }
420                 BUG();
421         }
422 }
423
424 static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
425 {
426         struct kvm *kvm = vcpu->kvm;
427         struct page *page;
428         struct kvm_rmap_desc *desc;
429         u64 *spte;
430
431         page = gfn_to_page(kvm, gfn);
432         BUG_ON(!page);
433
434         while (page_private(page)) {
435                 if (!(page_private(page) & 1))
436                         spte = (u64 *)page_private(page);
437                 else {
438                         desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
439                         spte = desc->shadow_ptes[0];
440                 }
441                 BUG_ON(!spte);
442                 BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
443                        != page_to_pfn(page));
444                 BUG_ON(!(*spte & PT_PRESENT_MASK));
445                 BUG_ON(!(*spte & PT_WRITABLE_MASK));
446                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
447                 rmap_remove(vcpu, spte);
448                 kvm_arch_ops->tlb_flush(vcpu);
449                 *spte &= ~(u64)PT_WRITABLE_MASK;
450         }
451 }
452
453 #ifdef MMU_DEBUG
454 static int is_empty_shadow_page(u64 *spt)
455 {
456         u64 *pos;
457         u64 *end;
458
459         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
460                 if (*pos != 0) {
461                         printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
462                                pos, *pos);
463                         return 0;
464                 }
465         return 1;
466 }
467 #endif
468
469 static void kvm_mmu_free_page(struct kvm_vcpu *vcpu,
470                               struct kvm_mmu_page *page_head)
471 {
472         ASSERT(is_empty_shadow_page(page_head->spt));
473         list_del(&page_head->link);
474         mmu_memory_cache_free(&vcpu->mmu_page_cache, page_head->spt);
475         mmu_memory_cache_free(&vcpu->mmu_page_header_cache, page_head);
476         ++vcpu->kvm->n_free_mmu_pages;
477 }
478
479 static unsigned kvm_page_table_hashfn(gfn_t gfn)
480 {
481         return gfn;
482 }
483
484 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
485                                                u64 *parent_pte)
486 {
487         struct kvm_mmu_page *page;
488
489         if (!vcpu->kvm->n_free_mmu_pages)
490                 return NULL;
491
492         page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
493                                       sizeof *page);
494         page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
495         set_page_private(virt_to_page(page->spt), (unsigned long)page);
496         list_add(&page->link, &vcpu->kvm->active_mmu_pages);
497         ASSERT(is_empty_shadow_page(page->spt));
498         page->slot_bitmap = 0;
499         page->multimapped = 0;
500         page->parent_pte = parent_pte;
501         --vcpu->kvm->n_free_mmu_pages;
502         return page;
503 }
504
505 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
506                                     struct kvm_mmu_page *page, u64 *parent_pte)
507 {
508         struct kvm_pte_chain *pte_chain;
509         struct hlist_node *node;
510         int i;
511
512         if (!parent_pte)
513                 return;
514         if (!page->multimapped) {
515                 u64 *old = page->parent_pte;
516
517                 if (!old) {
518                         page->parent_pte = parent_pte;
519                         return;
520                 }
521                 page->multimapped = 1;
522                 pte_chain = mmu_alloc_pte_chain(vcpu);
523                 INIT_HLIST_HEAD(&page->parent_ptes);
524                 hlist_add_head(&pte_chain->link, &page->parent_ptes);
525                 pte_chain->parent_ptes[0] = old;
526         }
527         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
528                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
529                         continue;
530                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
531                         if (!pte_chain->parent_ptes[i]) {
532                                 pte_chain->parent_ptes[i] = parent_pte;
533                                 return;
534                         }
535         }
536         pte_chain = mmu_alloc_pte_chain(vcpu);
537         BUG_ON(!pte_chain);
538         hlist_add_head(&pte_chain->link, &page->parent_ptes);
539         pte_chain->parent_ptes[0] = parent_pte;
540 }
541
542 static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
543                                        struct kvm_mmu_page *page,
544                                        u64 *parent_pte)
545 {
546         struct kvm_pte_chain *pte_chain;
547         struct hlist_node *node;
548         int i;
549
550         if (!page->multimapped) {
551                 BUG_ON(page->parent_pte != parent_pte);
552                 page->parent_pte = NULL;
553                 return;
554         }
555         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
556                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
557                         if (!pte_chain->parent_ptes[i])
558                                 break;
559                         if (pte_chain->parent_ptes[i] != parent_pte)
560                                 continue;
561                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
562                                 && pte_chain->parent_ptes[i + 1]) {
563                                 pte_chain->parent_ptes[i]
564                                         = pte_chain->parent_ptes[i + 1];
565                                 ++i;
566                         }
567                         pte_chain->parent_ptes[i] = NULL;
568                         if (i == 0) {
569                                 hlist_del(&pte_chain->link);
570                                 mmu_free_pte_chain(vcpu, pte_chain);
571                                 if (hlist_empty(&page->parent_ptes)) {
572                                         page->multimapped = 0;
573                                         page->parent_pte = NULL;
574                                 }
575                         }
576                         return;
577                 }
578         BUG();
579 }
580
581 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
582                                                 gfn_t gfn)
583 {
584         unsigned index;
585         struct hlist_head *bucket;
586         struct kvm_mmu_page *page;
587         struct hlist_node *node;
588
589         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
590         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
591         bucket = &vcpu->kvm->mmu_page_hash[index];
592         hlist_for_each_entry(page, node, bucket, hash_link)
593                 if (page->gfn == gfn && !page->role.metaphysical) {
594                         pgprintk("%s: found role %x\n",
595                                  __FUNCTION__, page->role.word);
596                         return page;
597                 }
598         return NULL;
599 }
600
601 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
602                                              gfn_t gfn,
603                                              gva_t gaddr,
604                                              unsigned level,
605                                              int metaphysical,
606                                              unsigned hugepage_access,
607                                              u64 *parent_pte)
608 {
609         union kvm_mmu_page_role role;
610         unsigned index;
611         unsigned quadrant;
612         struct hlist_head *bucket;
613         struct kvm_mmu_page *page;
614         struct hlist_node *node;
615
616         role.word = 0;
617         role.glevels = vcpu->mmu.root_level;
618         role.level = level;
619         role.metaphysical = metaphysical;
620         role.hugepage_access = hugepage_access;
621         if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
622                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
623                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
624                 role.quadrant = quadrant;
625         }
626         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
627                  gfn, role.word);
628         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
629         bucket = &vcpu->kvm->mmu_page_hash[index];
630         hlist_for_each_entry(page, node, bucket, hash_link)
631                 if (page->gfn == gfn && page->role.word == role.word) {
632                         mmu_page_add_parent_pte(vcpu, page, parent_pte);
633                         pgprintk("%s: found\n", __FUNCTION__);
634                         return page;
635                 }
636         page = kvm_mmu_alloc_page(vcpu, parent_pte);
637         if (!page)
638                 return page;
639         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
640         page->gfn = gfn;
641         page->role = role;
642         hlist_add_head(&page->hash_link, bucket);
643         if (!metaphysical)
644                 rmap_write_protect(vcpu, gfn);
645         return page;
646 }
647
648 static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
649                                          struct kvm_mmu_page *page)
650 {
651         unsigned i;
652         u64 *pt;
653         u64 ent;
654
655         pt = page->spt;
656
657         if (page->role.level == PT_PAGE_TABLE_LEVEL) {
658                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
659                         if (pt[i] & PT_PRESENT_MASK)
660                                 rmap_remove(vcpu, &pt[i]);
661                         pt[i] = 0;
662                 }
663                 kvm_arch_ops->tlb_flush(vcpu);
664                 return;
665         }
666
667         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
668                 ent = pt[i];
669
670                 pt[i] = 0;
671                 if (!(ent & PT_PRESENT_MASK))
672                         continue;
673                 ent &= PT64_BASE_ADDR_MASK;
674                 mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
675         }
676 }
677
678 static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
679                              struct kvm_mmu_page *page,
680                              u64 *parent_pte)
681 {
682         mmu_page_remove_parent_pte(vcpu, page, parent_pte);
683 }
684
685 static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
686                              struct kvm_mmu_page *page)
687 {
688         u64 *parent_pte;
689
690         while (page->multimapped || page->parent_pte) {
691                 if (!page->multimapped)
692                         parent_pte = page->parent_pte;
693                 else {
694                         struct kvm_pte_chain *chain;
695
696                         chain = container_of(page->parent_ptes.first,
697                                              struct kvm_pte_chain, link);
698                         parent_pte = chain->parent_ptes[0];
699                 }
700                 BUG_ON(!parent_pte);
701                 kvm_mmu_put_page(vcpu, page, parent_pte);
702                 *parent_pte = 0;
703         }
704         kvm_mmu_page_unlink_children(vcpu, page);
705         if (!page->root_count) {
706                 hlist_del(&page->hash_link);
707                 kvm_mmu_free_page(vcpu, page);
708         } else
709                 list_move(&page->link, &vcpu->kvm->active_mmu_pages);
710 }
711
712 static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
713 {
714         unsigned index;
715         struct hlist_head *bucket;
716         struct kvm_mmu_page *page;
717         struct hlist_node *node, *n;
718         int r;
719
720         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
721         r = 0;
722         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
723         bucket = &vcpu->kvm->mmu_page_hash[index];
724         hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
725                 if (page->gfn == gfn && !page->role.metaphysical) {
726                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
727                                  page->role.word);
728                         kvm_mmu_zap_page(vcpu, page);
729                         r = 1;
730                 }
731         return r;
732 }
733
734 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
735 {
736         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
737         struct kvm_mmu_page *page_head = page_header(__pa(pte));
738
739         __set_bit(slot, &page_head->slot_bitmap);
740 }
741
742 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
743 {
744         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
745
746         return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
747 }
748
749 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
750 {
751         struct page *page;
752
753         ASSERT((gpa & HPA_ERR_MASK) == 0);
754         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
755         if (!page)
756                 return gpa | HPA_ERR_MASK;
757         return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
758                 | (gpa & (PAGE_SIZE-1));
759 }
760
761 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
762 {
763         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
764
765         if (gpa == UNMAPPED_GVA)
766                 return UNMAPPED_GVA;
767         return gpa_to_hpa(vcpu, gpa);
768 }
769
770 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
771 {
772         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
773
774         if (gpa == UNMAPPED_GVA)
775                 return NULL;
776         return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
777 }
778
779 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
780 {
781 }
782
783 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
784 {
785         int level = PT32E_ROOT_LEVEL;
786         hpa_t table_addr = vcpu->mmu.root_hpa;
787
788         for (; ; level--) {
789                 u32 index = PT64_INDEX(v, level);
790                 u64 *table;
791                 u64 pte;
792
793                 ASSERT(VALID_PAGE(table_addr));
794                 table = __va(table_addr);
795
796                 if (level == 1) {
797                         pte = table[index];
798                         if (is_present_pte(pte) && is_writeble_pte(pte))
799                                 return 0;
800                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
801                         page_header_update_slot(vcpu->kvm, table, v);
802                         table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
803                                                                 PT_USER_MASK;
804                         rmap_add(vcpu, &table[index]);
805                         return 0;
806                 }
807
808                 if (table[index] == 0) {
809                         struct kvm_mmu_page *new_table;
810                         gfn_t pseudo_gfn;
811
812                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
813                                 >> PAGE_SHIFT;
814                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
815                                                      v, level - 1,
816                                                      1, 0, &table[index]);
817                         if (!new_table) {
818                                 pgprintk("nonpaging_map: ENOMEM\n");
819                                 return -ENOMEM;
820                         }
821
822                         table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
823                                 | PT_WRITABLE_MASK | PT_USER_MASK;
824                 }
825                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
826         }
827 }
828
829 static void mmu_free_roots(struct kvm_vcpu *vcpu)
830 {
831         int i;
832         struct kvm_mmu_page *page;
833
834 #ifdef CONFIG_X86_64
835         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
836                 hpa_t root = vcpu->mmu.root_hpa;
837
838                 ASSERT(VALID_PAGE(root));
839                 page = page_header(root);
840                 --page->root_count;
841                 vcpu->mmu.root_hpa = INVALID_PAGE;
842                 return;
843         }
844 #endif
845         for (i = 0; i < 4; ++i) {
846                 hpa_t root = vcpu->mmu.pae_root[i];
847
848                 if (root) {
849                         ASSERT(VALID_PAGE(root));
850                         root &= PT64_BASE_ADDR_MASK;
851                         page = page_header(root);
852                         --page->root_count;
853                 }
854                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
855         }
856         vcpu->mmu.root_hpa = INVALID_PAGE;
857 }
858
859 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
860 {
861         int i;
862         gfn_t root_gfn;
863         struct kvm_mmu_page *page;
864
865         root_gfn = vcpu->cr3 >> PAGE_SHIFT;
866
867 #ifdef CONFIG_X86_64
868         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
869                 hpa_t root = vcpu->mmu.root_hpa;
870
871                 ASSERT(!VALID_PAGE(root));
872                 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
873                                         PT64_ROOT_LEVEL, 0, 0, NULL);
874                 root = __pa(page->spt);
875                 ++page->root_count;
876                 vcpu->mmu.root_hpa = root;
877                 return;
878         }
879 #endif
880         for (i = 0; i < 4; ++i) {
881                 hpa_t root = vcpu->mmu.pae_root[i];
882
883                 ASSERT(!VALID_PAGE(root));
884                 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
885                         if (!is_present_pte(vcpu->pdptrs[i])) {
886                                 vcpu->mmu.pae_root[i] = 0;
887                                 continue;
888                         }
889                         root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
890                 } else if (vcpu->mmu.root_level == 0)
891                         root_gfn = 0;
892                 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
893                                         PT32_ROOT_LEVEL, !is_paging(vcpu),
894                                         0, NULL);
895                 root = __pa(page->spt);
896                 ++page->root_count;
897                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
898         }
899         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
900 }
901
902 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
903 {
904         return vaddr;
905 }
906
907 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
908                                u32 error_code)
909 {
910         gpa_t addr = gva;
911         hpa_t paddr;
912         int r;
913
914         r = mmu_topup_memory_caches(vcpu);
915         if (r)
916                 return r;
917
918         ASSERT(vcpu);
919         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
920
921
922         paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
923
924         if (is_error_hpa(paddr))
925                 return 1;
926
927         return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
928 }
929
930 static void nonpaging_free(struct kvm_vcpu *vcpu)
931 {
932         mmu_free_roots(vcpu);
933 }
934
935 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
936 {
937         struct kvm_mmu *context = &vcpu->mmu;
938
939         context->new_cr3 = nonpaging_new_cr3;
940         context->page_fault = nonpaging_page_fault;
941         context->gva_to_gpa = nonpaging_gva_to_gpa;
942         context->free = nonpaging_free;
943         context->root_level = 0;
944         context->shadow_root_level = PT32E_ROOT_LEVEL;
945         mmu_alloc_roots(vcpu);
946         ASSERT(VALID_PAGE(context->root_hpa));
947         kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
948         return 0;
949 }
950
951 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
952 {
953         ++vcpu->stat.tlb_flush;
954         kvm_arch_ops->tlb_flush(vcpu);
955 }
956
957 static void paging_new_cr3(struct kvm_vcpu *vcpu)
958 {
959         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
960         mmu_free_roots(vcpu);
961         if (unlikely(vcpu->kvm->n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES))
962                 kvm_mmu_free_some_pages(vcpu);
963         mmu_alloc_roots(vcpu);
964         kvm_mmu_flush_tlb(vcpu);
965         kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
966 }
967
968 static void inject_page_fault(struct kvm_vcpu *vcpu,
969                               u64 addr,
970                               u32 err_code)
971 {
972         kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
973 }
974
975 static inline int fix_read_pf(u64 *shadow_ent)
976 {
977         if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
978             !(*shadow_ent & PT_USER_MASK)) {
979                 /*
980                  * If supervisor write protect is disabled, we shadow kernel
981                  * pages as user pages so we can trap the write access.
982                  */
983                 *shadow_ent |= PT_USER_MASK;
984                 *shadow_ent &= ~PT_WRITABLE_MASK;
985
986                 return 1;
987
988         }
989         return 0;
990 }
991
992 static void paging_free(struct kvm_vcpu *vcpu)
993 {
994         nonpaging_free(vcpu);
995 }
996
997 #define PTTYPE 64
998 #include "paging_tmpl.h"
999 #undef PTTYPE
1000
1001 #define PTTYPE 32
1002 #include "paging_tmpl.h"
1003 #undef PTTYPE
1004
1005 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1006 {
1007         struct kvm_mmu *context = &vcpu->mmu;
1008
1009         ASSERT(is_pae(vcpu));
1010         context->new_cr3 = paging_new_cr3;
1011         context->page_fault = paging64_page_fault;
1012         context->gva_to_gpa = paging64_gva_to_gpa;
1013         context->free = paging_free;
1014         context->root_level = level;
1015         context->shadow_root_level = level;
1016         mmu_alloc_roots(vcpu);
1017         ASSERT(VALID_PAGE(context->root_hpa));
1018         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1019                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1020         return 0;
1021 }
1022
1023 static int paging64_init_context(struct kvm_vcpu *vcpu)
1024 {
1025         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1026 }
1027
1028 static int paging32_init_context(struct kvm_vcpu *vcpu)
1029 {
1030         struct kvm_mmu *context = &vcpu->mmu;
1031
1032         context->new_cr3 = paging_new_cr3;
1033         context->page_fault = paging32_page_fault;
1034         context->gva_to_gpa = paging32_gva_to_gpa;
1035         context->free = paging_free;
1036         context->root_level = PT32_ROOT_LEVEL;
1037         context->shadow_root_level = PT32E_ROOT_LEVEL;
1038         mmu_alloc_roots(vcpu);
1039         ASSERT(VALID_PAGE(context->root_hpa));
1040         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1041                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1042         return 0;
1043 }
1044
1045 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1046 {
1047         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1048 }
1049
1050 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1051 {
1052         ASSERT(vcpu);
1053         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1054
1055         mmu_topup_memory_caches(vcpu);
1056         if (!is_paging(vcpu))
1057                 return nonpaging_init_context(vcpu);
1058         else if (is_long_mode(vcpu))
1059                 return paging64_init_context(vcpu);
1060         else if (is_pae(vcpu))
1061                 return paging32E_init_context(vcpu);
1062         else
1063                 return paging32_init_context(vcpu);
1064 }
1065
1066 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1067 {
1068         ASSERT(vcpu);
1069         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1070                 vcpu->mmu.free(vcpu);
1071                 vcpu->mmu.root_hpa = INVALID_PAGE;
1072         }
1073 }
1074
1075 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1076 {
1077         int r;
1078
1079         destroy_kvm_mmu(vcpu);
1080         r = init_kvm_mmu(vcpu);
1081         if (r < 0)
1082                 goto out;
1083         r = mmu_topup_memory_caches(vcpu);
1084 out:
1085         return r;
1086 }
1087
1088 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1089                                   struct kvm_mmu_page *page,
1090                                   u64 *spte)
1091 {
1092         u64 pte;
1093         struct kvm_mmu_page *child;
1094
1095         pte = *spte;
1096         if (is_present_pte(pte)) {
1097                 if (page->role.level == PT_PAGE_TABLE_LEVEL)
1098                         rmap_remove(vcpu, spte);
1099                 else {
1100                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1101                         mmu_page_remove_parent_pte(vcpu, child, spte);
1102                 }
1103         }
1104         *spte = 0;
1105 }
1106
1107 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1108                                   struct kvm_mmu_page *page,
1109                                   u64 *spte,
1110                                   const void *new, int bytes)
1111 {
1112         if (page->role.level != PT_PAGE_TABLE_LEVEL)
1113                 return;
1114
1115         if (page->role.glevels == PT32_ROOT_LEVEL)
1116                 paging32_update_pte(vcpu, page, spte, new, bytes);
1117         else
1118                 paging64_update_pte(vcpu, page, spte, new, bytes);
1119 }
1120
1121 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1122                        const u8 *old, const u8 *new, int bytes)
1123 {
1124         gfn_t gfn = gpa >> PAGE_SHIFT;
1125         struct kvm_mmu_page *page;
1126         struct hlist_node *node, *n;
1127         struct hlist_head *bucket;
1128         unsigned index;
1129         u64 *spte;
1130         unsigned offset = offset_in_page(gpa);
1131         unsigned pte_size;
1132         unsigned page_offset;
1133         unsigned misaligned;
1134         unsigned quadrant;
1135         int level;
1136         int flooded = 0;
1137         int npte;
1138
1139         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1140         if (gfn == vcpu->last_pt_write_gfn) {
1141                 ++vcpu->last_pt_write_count;
1142                 if (vcpu->last_pt_write_count >= 3)
1143                         flooded = 1;
1144         } else {
1145                 vcpu->last_pt_write_gfn = gfn;
1146                 vcpu->last_pt_write_count = 1;
1147         }
1148         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1149         bucket = &vcpu->kvm->mmu_page_hash[index];
1150         hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
1151                 if (page->gfn != gfn || page->role.metaphysical)
1152                         continue;
1153                 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1154                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1155                 misaligned |= bytes < 4;
1156                 if (misaligned || flooded) {
1157                         /*
1158                          * Misaligned accesses are too much trouble to fix
1159                          * up; also, they usually indicate a page is not used
1160                          * as a page table.
1161                          *
1162                          * If we're seeing too many writes to a page,
1163                          * it may no longer be a page table, or we may be
1164                          * forking, in which case it is better to unmap the
1165                          * page.
1166                          */
1167                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1168                                  gpa, bytes, page->role.word);
1169                         kvm_mmu_zap_page(vcpu, page);
1170                         continue;
1171                 }
1172                 page_offset = offset;
1173                 level = page->role.level;
1174                 npte = 1;
1175                 if (page->role.glevels == PT32_ROOT_LEVEL) {
1176                         page_offset <<= 1;      /* 32->64 */
1177                         /*
1178                          * A 32-bit pde maps 4MB while the shadow pdes map
1179                          * only 2MB.  So we need to double the offset again
1180                          * and zap two pdes instead of one.
1181                          */
1182                         if (level == PT32_ROOT_LEVEL) {
1183                                 page_offset &= ~7; /* kill rounding error */
1184                                 page_offset <<= 1;
1185                                 npte = 2;
1186                         }
1187                         quadrant = page_offset >> PAGE_SHIFT;
1188                         page_offset &= ~PAGE_MASK;
1189                         if (quadrant != page->role.quadrant)
1190                                 continue;
1191                 }
1192                 spte = &page->spt[page_offset / sizeof(*spte)];
1193                 while (npte--) {
1194                         mmu_pte_write_zap_pte(vcpu, page, spte);
1195                         mmu_pte_write_new_pte(vcpu, page, spte, new, bytes);
1196                         ++spte;
1197                 }
1198         }
1199 }
1200
1201 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1202 {
1203         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1204
1205         return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1206 }
1207
1208 void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1209 {
1210         while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1211                 struct kvm_mmu_page *page;
1212
1213                 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1214                                     struct kvm_mmu_page, link);
1215                 kvm_mmu_zap_page(vcpu, page);
1216         }
1217 }
1218 EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
1219
1220 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1221 {
1222         struct kvm_mmu_page *page;
1223
1224         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1225                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1226                                     struct kvm_mmu_page, link);
1227                 kvm_mmu_zap_page(vcpu, page);
1228         }
1229         free_page((unsigned long)vcpu->mmu.pae_root);
1230 }
1231
1232 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1233 {
1234         struct page *page;
1235         int i;
1236
1237         ASSERT(vcpu);
1238
1239         vcpu->kvm->n_free_mmu_pages = KVM_NUM_MMU_PAGES;
1240
1241         /*
1242          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1243          * Therefore we need to allocate shadow page tables in the first
1244          * 4GB of memory, which happens to fit the DMA32 zone.
1245          */
1246         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1247         if (!page)
1248                 goto error_1;
1249         vcpu->mmu.pae_root = page_address(page);
1250         for (i = 0; i < 4; ++i)
1251                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1252
1253         return 0;
1254
1255 error_1:
1256         free_mmu_pages(vcpu);
1257         return -ENOMEM;
1258 }
1259
1260 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1261 {
1262         ASSERT(vcpu);
1263         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1264
1265         return alloc_mmu_pages(vcpu);
1266 }
1267
1268 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1269 {
1270         ASSERT(vcpu);
1271         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1272
1273         return init_kvm_mmu(vcpu);
1274 }
1275
1276 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1277 {
1278         ASSERT(vcpu);
1279
1280         destroy_kvm_mmu(vcpu);
1281         free_mmu_pages(vcpu);
1282         mmu_free_memory_caches(vcpu);
1283 }
1284
1285 void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
1286 {
1287         struct kvm *kvm = vcpu->kvm;
1288         struct kvm_mmu_page *page;
1289
1290         list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1291                 int i;
1292                 u64 *pt;
1293
1294                 if (!test_bit(slot, &page->slot_bitmap))
1295                         continue;
1296
1297                 pt = page->spt;
1298                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1299                         /* avoid RMW */
1300                         if (pt[i] & PT_WRITABLE_MASK) {
1301                                 rmap_remove(vcpu, &pt[i]);
1302                                 pt[i] &= ~PT_WRITABLE_MASK;
1303                         }
1304         }
1305 }
1306
1307 void kvm_mmu_zap_all(struct kvm_vcpu *vcpu)
1308 {
1309         destroy_kvm_mmu(vcpu);
1310
1311         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1312                 struct kvm_mmu_page *page;
1313
1314                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1315                                     struct kvm_mmu_page, link);
1316                 kvm_mmu_zap_page(vcpu, page);
1317         }
1318
1319         mmu_free_memory_caches(vcpu);
1320         kvm_arch_ops->tlb_flush(vcpu);
1321         init_kvm_mmu(vcpu);
1322 }
1323
1324 void kvm_mmu_module_exit(void)
1325 {
1326         if (pte_chain_cache)
1327                 kmem_cache_destroy(pte_chain_cache);
1328         if (rmap_desc_cache)
1329                 kmem_cache_destroy(rmap_desc_cache);
1330         if (mmu_page_cache)
1331                 kmem_cache_destroy(mmu_page_cache);
1332         if (mmu_page_header_cache)
1333                 kmem_cache_destroy(mmu_page_header_cache);
1334 }
1335
1336 int kvm_mmu_module_init(void)
1337 {
1338         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1339                                             sizeof(struct kvm_pte_chain),
1340                                             0, 0, NULL, NULL);
1341         if (!pte_chain_cache)
1342                 goto nomem;
1343         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1344                                             sizeof(struct kvm_rmap_desc),
1345                                             0, 0, NULL, NULL);
1346         if (!rmap_desc_cache)
1347                 goto nomem;
1348
1349         mmu_page_cache = kmem_cache_create("kvm_mmu_page",
1350                                            PAGE_SIZE,
1351                                            PAGE_SIZE, 0, NULL, NULL);
1352         if (!mmu_page_cache)
1353                 goto nomem;
1354
1355         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1356                                                   sizeof(struct kvm_mmu_page),
1357                                                   0, 0, NULL, NULL);
1358         if (!mmu_page_header_cache)
1359                 goto nomem;
1360
1361         return 0;
1362
1363 nomem:
1364         kvm_mmu_module_exit();
1365         return -ENOMEM;
1366 }
1367
1368 #ifdef AUDIT
1369
1370 static const char *audit_msg;
1371
1372 static gva_t canonicalize(gva_t gva)
1373 {
1374 #ifdef CONFIG_X86_64
1375         gva = (long long)(gva << 16) >> 16;
1376 #endif
1377         return gva;
1378 }
1379
1380 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1381                                 gva_t va, int level)
1382 {
1383         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1384         int i;
1385         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1386
1387         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1388                 u64 ent = pt[i];
1389
1390                 if (!(ent & PT_PRESENT_MASK))
1391                         continue;
1392
1393                 va = canonicalize(va);
1394                 if (level > 1)
1395                         audit_mappings_page(vcpu, ent, va, level - 1);
1396                 else {
1397                         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1398                         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1399
1400                         if ((ent & PT_PRESENT_MASK)
1401                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
1402                                 printk(KERN_ERR "audit error: (%s) levels %d"
1403                                        " gva %lx gpa %llx hpa %llx ent %llx\n",
1404                                        audit_msg, vcpu->mmu.root_level,
1405                                        va, gpa, hpa, ent);
1406                 }
1407         }
1408 }
1409
1410 static void audit_mappings(struct kvm_vcpu *vcpu)
1411 {
1412         unsigned i;
1413
1414         if (vcpu->mmu.root_level == 4)
1415                 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1416         else
1417                 for (i = 0; i < 4; ++i)
1418                         if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1419                                 audit_mappings_page(vcpu,
1420                                                     vcpu->mmu.pae_root[i],
1421                                                     i << 30,
1422                                                     2);
1423 }
1424
1425 static int count_rmaps(struct kvm_vcpu *vcpu)
1426 {
1427         int nmaps = 0;
1428         int i, j, k;
1429
1430         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1431                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1432                 struct kvm_rmap_desc *d;
1433
1434                 for (j = 0; j < m->npages; ++j) {
1435                         struct page *page = m->phys_mem[j];
1436
1437                         if (!page->private)
1438                                 continue;
1439                         if (!(page->private & 1)) {
1440                                 ++nmaps;
1441                                 continue;
1442                         }
1443                         d = (struct kvm_rmap_desc *)(page->private & ~1ul);
1444                         while (d) {
1445                                 for (k = 0; k < RMAP_EXT; ++k)
1446                                         if (d->shadow_ptes[k])
1447                                                 ++nmaps;
1448                                         else
1449                                                 break;
1450                                 d = d->more;
1451                         }
1452                 }
1453         }
1454         return nmaps;
1455 }
1456
1457 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1458 {
1459         int nmaps = 0;
1460         struct kvm_mmu_page *page;
1461         int i;
1462
1463         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1464                 u64 *pt = page->spt;
1465
1466                 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1467                         continue;
1468
1469                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1470                         u64 ent = pt[i];
1471
1472                         if (!(ent & PT_PRESENT_MASK))
1473                                 continue;
1474                         if (!(ent & PT_WRITABLE_MASK))
1475                                 continue;
1476                         ++nmaps;
1477                 }
1478         }
1479         return nmaps;
1480 }
1481
1482 static void audit_rmap(struct kvm_vcpu *vcpu)
1483 {
1484         int n_rmap = count_rmaps(vcpu);
1485         int n_actual = count_writable_mappings(vcpu);
1486
1487         if (n_rmap != n_actual)
1488                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1489                        __FUNCTION__, audit_msg, n_rmap, n_actual);
1490 }
1491
1492 static void audit_write_protection(struct kvm_vcpu *vcpu)
1493 {
1494         struct kvm_mmu_page *page;
1495
1496         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1497                 hfn_t hfn;
1498                 struct page *pg;
1499
1500                 if (page->role.metaphysical)
1501                         continue;
1502
1503                 hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
1504                         >> PAGE_SHIFT;
1505                 pg = pfn_to_page(hfn);
1506                 if (pg->private)
1507                         printk(KERN_ERR "%s: (%s) shadow page has writable"
1508                                " mappings: gfn %lx role %x\n",
1509                                __FUNCTION__, audit_msg, page->gfn,
1510                                page->role.word);
1511         }
1512 }
1513
1514 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1515 {
1516         int olddbg = dbg;
1517
1518         dbg = 0;
1519         audit_msg = msg;
1520         audit_rmap(vcpu);
1521         audit_write_protection(vcpu);
1522         audit_mappings(vcpu);
1523         dbg = olddbg;
1524 }
1525
1526 #endif