]> err.no Git - linux-2.6/blob - drivers/kvm/mmu.c
[PATCH] KVM: MMU: If emulating an instruction fails, try unprotecting the page
[linux-2.6] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19 #include <linux/types.h>
20 #include <linux/string.h>
21 #include <asm/page.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/module.h>
25
26 #include "vmx.h"
27 #include "kvm.h"
28
29 #define pgprintk(x...) do { printk(x); } while (0)
30 #define rmap_printk(x...) do { printk(x); } while (0)
31
32 #define ASSERT(x)                                                       \
33         if (!(x)) {                                                     \
34                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
35                        __FILE__, __LINE__, #x);                         \
36         }
37
38 #define PT64_PT_BITS 9
39 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
40 #define PT32_PT_BITS 10
41 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
42
43 #define PT_WRITABLE_SHIFT 1
44
45 #define PT_PRESENT_MASK (1ULL << 0)
46 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
47 #define PT_USER_MASK (1ULL << 2)
48 #define PT_PWT_MASK (1ULL << 3)
49 #define PT_PCD_MASK (1ULL << 4)
50 #define PT_ACCESSED_MASK (1ULL << 5)
51 #define PT_DIRTY_MASK (1ULL << 6)
52 #define PT_PAGE_SIZE_MASK (1ULL << 7)
53 #define PT_PAT_MASK (1ULL << 7)
54 #define PT_GLOBAL_MASK (1ULL << 8)
55 #define PT64_NX_MASK (1ULL << 63)
56
57 #define PT_PAT_SHIFT 7
58 #define PT_DIR_PAT_SHIFT 12
59 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
60
61 #define PT32_DIR_PSE36_SIZE 4
62 #define PT32_DIR_PSE36_SHIFT 13
63 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
64
65
66 #define PT32_PTE_COPY_MASK \
67         (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
68
69 #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
70
71 #define PT_FIRST_AVAIL_BITS_SHIFT 9
72 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
73
74 #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
75 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
76
77 #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
78 #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
79
80 #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
81 #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
82
83 #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
84
85 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
86
87 #define PT64_LEVEL_BITS 9
88
89 #define PT64_LEVEL_SHIFT(level) \
90                 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
91
92 #define PT64_LEVEL_MASK(level) \
93                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
94
95 #define PT64_INDEX(address, level)\
96         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99 #define PT32_LEVEL_BITS 10
100
101 #define PT32_LEVEL_SHIFT(level) \
102                 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
103
104 #define PT32_LEVEL_MASK(level) \
105                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
106
107 #define PT32_INDEX(address, level)\
108         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
109
110
111 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK)
112 #define PT64_DIR_BASE_ADDR_MASK \
113         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
114
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118
119
120 #define PFERR_PRESENT_MASK (1U << 0)
121 #define PFERR_WRITE_MASK (1U << 1)
122 #define PFERR_USER_MASK (1U << 2)
123
124 #define PT64_ROOT_LEVEL 4
125 #define PT32_ROOT_LEVEL 2
126 #define PT32E_ROOT_LEVEL 3
127
128 #define PT_DIRECTORY_LEVEL 2
129 #define PT_PAGE_TABLE_LEVEL 1
130
131 #define RMAP_EXT 4
132
133 struct kvm_rmap_desc {
134         u64 *shadow_ptes[RMAP_EXT];
135         struct kvm_rmap_desc *more;
136 };
137
138 static int is_write_protection(struct kvm_vcpu *vcpu)
139 {
140         return vcpu->cr0 & CR0_WP_MASK;
141 }
142
143 static int is_cpuid_PSE36(void)
144 {
145         return 1;
146 }
147
148 static int is_present_pte(unsigned long pte)
149 {
150         return pte & PT_PRESENT_MASK;
151 }
152
153 static int is_writeble_pte(unsigned long pte)
154 {
155         return pte & PT_WRITABLE_MASK;
156 }
157
158 static int is_io_pte(unsigned long pte)
159 {
160         return pte & PT_SHADOW_IO_MARK;
161 }
162
163 static int is_rmap_pte(u64 pte)
164 {
165         return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
166                 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
167 }
168
169 /*
170  * Reverse mapping data structures:
171  *
172  * If page->private bit zero is zero, then page->private points to the
173  * shadow page table entry that points to page_address(page).
174  *
175  * If page->private bit zero is one, (then page->private & ~1) points
176  * to a struct kvm_rmap_desc containing more mappings.
177  */
178 static void rmap_add(struct kvm *kvm, u64 *spte)
179 {
180         struct page *page;
181         struct kvm_rmap_desc *desc;
182         int i;
183
184         if (!is_rmap_pte(*spte))
185                 return;
186         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
187         if (!page->private) {
188                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
189                 page->private = (unsigned long)spte;
190         } else if (!(page->private & 1)) {
191                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
192                 desc = kzalloc(sizeof *desc, GFP_NOWAIT);
193                 if (!desc)
194                         BUG(); /* FIXME: return error */
195                 desc->shadow_ptes[0] = (u64 *)page->private;
196                 desc->shadow_ptes[1] = spte;
197                 page->private = (unsigned long)desc | 1;
198         } else {
199                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
200                 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
201                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
202                         desc = desc->more;
203                 if (desc->shadow_ptes[RMAP_EXT-1]) {
204                         desc->more = kzalloc(sizeof *desc->more, GFP_NOWAIT);
205                         if (!desc->more)
206                                 BUG(); /* FIXME: return error */
207                         desc = desc->more;
208                 }
209                 for (i = 0; desc->shadow_ptes[i]; ++i)
210                         ;
211                 desc->shadow_ptes[i] = spte;
212         }
213 }
214
215 static void rmap_desc_remove_entry(struct page *page,
216                                    struct kvm_rmap_desc *desc,
217                                    int i,
218                                    struct kvm_rmap_desc *prev_desc)
219 {
220         int j;
221
222         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
223                 ;
224         desc->shadow_ptes[i] = desc->shadow_ptes[j];
225         desc->shadow_ptes[j] = 0;
226         if (j != 0)
227                 return;
228         if (!prev_desc && !desc->more)
229                 page->private = (unsigned long)desc->shadow_ptes[0];
230         else
231                 if (prev_desc)
232                         prev_desc->more = desc->more;
233                 else
234                         page->private = (unsigned long)desc->more | 1;
235         kfree(desc);
236 }
237
238 static void rmap_remove(struct kvm *kvm, u64 *spte)
239 {
240         struct page *page;
241         struct kvm_rmap_desc *desc;
242         struct kvm_rmap_desc *prev_desc;
243         int i;
244
245         if (!is_rmap_pte(*spte))
246                 return;
247         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
248         if (!page->private) {
249                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
250                 BUG();
251         } else if (!(page->private & 1)) {
252                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
253                 if ((u64 *)page->private != spte) {
254                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
255                                spte, *spte);
256                         BUG();
257                 }
258                 page->private = 0;
259         } else {
260                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
261                 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
262                 prev_desc = NULL;
263                 while (desc) {
264                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
265                                 if (desc->shadow_ptes[i] == spte) {
266                                         rmap_desc_remove_entry(page, desc, i,
267                                                                prev_desc);
268                                         return;
269                                 }
270                         prev_desc = desc;
271                         desc = desc->more;
272                 }
273                 BUG();
274         }
275 }
276
277 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
278 {
279         struct page *page;
280         struct kvm_memory_slot *slot;
281         struct kvm_rmap_desc *desc;
282         u64 *spte;
283
284         slot = gfn_to_memslot(kvm, gfn);
285         BUG_ON(!slot);
286         page = gfn_to_page(slot, gfn);
287
288         while (page->private) {
289                 if (!(page->private & 1))
290                         spte = (u64 *)page->private;
291                 else {
292                         desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
293                         spte = desc->shadow_ptes[0];
294                 }
295                 BUG_ON(!spte);
296                 BUG_ON((*spte & PT64_BASE_ADDR_MASK) !=
297                        page_to_pfn(page) << PAGE_SHIFT);
298                 BUG_ON(!(*spte & PT_PRESENT_MASK));
299                 BUG_ON(!(*spte & PT_WRITABLE_MASK));
300                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
301                 rmap_remove(kvm, spte);
302                 *spte &= ~(u64)PT_WRITABLE_MASK;
303         }
304 }
305
306 static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
307 {
308         struct kvm_mmu_page *page_head = page_header(page_hpa);
309
310         list_del(&page_head->link);
311         page_head->page_hpa = page_hpa;
312         list_add(&page_head->link, &vcpu->free_pages);
313 }
314
315 static int is_empty_shadow_page(hpa_t page_hpa)
316 {
317         u32 *pos;
318         u32 *end;
319         for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u32);
320                       pos != end; pos++)
321                 if (*pos != 0)
322                         return 0;
323         return 1;
324 }
325
326 static unsigned kvm_page_table_hashfn(gfn_t gfn)
327 {
328         return gfn;
329 }
330
331 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
332                                                u64 *parent_pte)
333 {
334         struct kvm_mmu_page *page;
335
336         if (list_empty(&vcpu->free_pages))
337                 return NULL;
338
339         page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
340         list_del(&page->link);
341         list_add(&page->link, &vcpu->kvm->active_mmu_pages);
342         ASSERT(is_empty_shadow_page(page->page_hpa));
343         page->slot_bitmap = 0;
344         page->global = 1;
345         page->multimapped = 0;
346         page->parent_pte = parent_pte;
347         return page;
348 }
349
350 static void mmu_page_add_parent_pte(struct kvm_mmu_page *page, u64 *parent_pte)
351 {
352         struct kvm_pte_chain *pte_chain;
353         struct hlist_node *node;
354         int i;
355
356         if (!parent_pte)
357                 return;
358         if (!page->multimapped) {
359                 u64 *old = page->parent_pte;
360
361                 if (!old) {
362                         page->parent_pte = parent_pte;
363                         return;
364                 }
365                 page->multimapped = 1;
366                 pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
367                 BUG_ON(!pte_chain);
368                 INIT_HLIST_HEAD(&page->parent_ptes);
369                 hlist_add_head(&pte_chain->link, &page->parent_ptes);
370                 pte_chain->parent_ptes[0] = old;
371         }
372         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
373                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
374                         continue;
375                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
376                         if (!pte_chain->parent_ptes[i]) {
377                                 pte_chain->parent_ptes[i] = parent_pte;
378                                 return;
379                         }
380         }
381         pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
382         BUG_ON(!pte_chain);
383         hlist_add_head(&pte_chain->link, &page->parent_ptes);
384         pte_chain->parent_ptes[0] = parent_pte;
385 }
386
387 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
388                                        u64 *parent_pte)
389 {
390         struct kvm_pte_chain *pte_chain;
391         struct hlist_node *node;
392         int i;
393
394         if (!page->multimapped) {
395                 BUG_ON(page->parent_pte != parent_pte);
396                 page->parent_pte = NULL;
397                 return;
398         }
399         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
400                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
401                         if (!pte_chain->parent_ptes[i])
402                                 break;
403                         if (pte_chain->parent_ptes[i] != parent_pte)
404                                 continue;
405                         while (i + 1 < NR_PTE_CHAIN_ENTRIES) {
406                                 pte_chain->parent_ptes[i]
407                                         = pte_chain->parent_ptes[i + 1];
408                                 ++i;
409                         }
410                         pte_chain->parent_ptes[i] = NULL;
411                         return;
412                 }
413         BUG();
414 }
415
416 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
417                                                 gfn_t gfn)
418 {
419         unsigned index;
420         struct hlist_head *bucket;
421         struct kvm_mmu_page *page;
422         struct hlist_node *node;
423
424         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
425         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
426         bucket = &vcpu->kvm->mmu_page_hash[index];
427         hlist_for_each_entry(page, node, bucket, hash_link)
428                 if (page->gfn == gfn && !page->role.metaphysical) {
429                         pgprintk("%s: found role %x\n",
430                                  __FUNCTION__, page->role.word);
431                         return page;
432                 }
433         return NULL;
434 }
435
436 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
437                                              gfn_t gfn,
438                                              gva_t gaddr,
439                                              unsigned level,
440                                              int metaphysical,
441                                              u64 *parent_pte)
442 {
443         union kvm_mmu_page_role role;
444         unsigned index;
445         unsigned quadrant;
446         struct hlist_head *bucket;
447         struct kvm_mmu_page *page;
448         struct hlist_node *node;
449
450         role.word = 0;
451         role.glevels = vcpu->mmu.root_level;
452         role.level = level;
453         role.metaphysical = metaphysical;
454         if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
455                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
456                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
457                 role.quadrant = quadrant;
458         }
459         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
460                  gfn, role.word);
461         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
462         bucket = &vcpu->kvm->mmu_page_hash[index];
463         hlist_for_each_entry(page, node, bucket, hash_link)
464                 if (page->gfn == gfn && page->role.word == role.word) {
465                         mmu_page_add_parent_pte(page, parent_pte);
466                         pgprintk("%s: found\n", __FUNCTION__);
467                         return page;
468                 }
469         page = kvm_mmu_alloc_page(vcpu, parent_pte);
470         if (!page)
471                 return page;
472         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
473         page->gfn = gfn;
474         page->role = role;
475         hlist_add_head(&page->hash_link, bucket);
476         if (!metaphysical)
477                 rmap_write_protect(vcpu->kvm, gfn);
478         return page;
479 }
480
481 static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
482                                          struct kvm_mmu_page *page)
483 {
484         BUG();
485 }
486
487 static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
488                              struct kvm_mmu_page *page,
489                              u64 *parent_pte)
490 {
491         mmu_page_remove_parent_pte(page, parent_pte);
492         if (page->role.level > PT_PAGE_TABLE_LEVEL)
493                 kvm_mmu_page_unlink_children(vcpu, page);
494         hlist_del(&page->hash_link);
495         list_del(&page->link);
496         list_add(&page->link, &vcpu->free_pages);
497 }
498
499 static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
500                              struct kvm_mmu_page *page)
501 {
502         u64 *parent_pte;
503
504         while (page->multimapped || page->parent_pte) {
505                 if (!page->multimapped)
506                         parent_pte = page->parent_pte;
507                 else {
508                         struct kvm_pte_chain *chain;
509
510                         chain = container_of(page->parent_ptes.first,
511                                              struct kvm_pte_chain, link);
512                         parent_pte = chain->parent_ptes[0];
513                 }
514                 kvm_mmu_put_page(vcpu, page, parent_pte);
515                 *parent_pte = 0;
516         }
517 }
518
519 static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
520 {
521         unsigned index;
522         struct hlist_head *bucket;
523         struct kvm_mmu_page *page;
524         struct hlist_node *node, *n;
525         int r;
526
527         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
528         r = 0;
529         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
530         bucket = &vcpu->kvm->mmu_page_hash[index];
531         hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
532                 if (page->gfn == gfn && !page->role.metaphysical) {
533                         kvm_mmu_zap_page(vcpu, page);
534                         r = 1;
535                 }
536         return r;
537 }
538
539 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
540 {
541         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
542         struct kvm_mmu_page *page_head = page_header(__pa(pte));
543
544         __set_bit(slot, &page_head->slot_bitmap);
545 }
546
547 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
548 {
549         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
550
551         return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
552 }
553
554 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
555 {
556         struct kvm_memory_slot *slot;
557         struct page *page;
558
559         ASSERT((gpa & HPA_ERR_MASK) == 0);
560         slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
561         if (!slot)
562                 return gpa | HPA_ERR_MASK;
563         page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
564         return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
565                 | (gpa & (PAGE_SIZE-1));
566 }
567
568 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
569 {
570         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
571
572         if (gpa == UNMAPPED_GVA)
573                 return UNMAPPED_GVA;
574         return gpa_to_hpa(vcpu, gpa);
575 }
576
577
578 static void release_pt_page_64(struct kvm_vcpu *vcpu, hpa_t page_hpa,
579                                int level)
580 {
581         u64 *pos;
582         u64 *end;
583
584         ASSERT(vcpu);
585         ASSERT(VALID_PAGE(page_hpa));
586         ASSERT(level <= PT64_ROOT_LEVEL && level > 0);
587
588         for (pos = __va(page_hpa), end = pos + PT64_ENT_PER_PAGE;
589              pos != end; pos++) {
590                 u64 current_ent = *pos;
591
592                 if (is_present_pte(current_ent)) {
593                         if (level != 1)
594                                 release_pt_page_64(vcpu,
595                                                   current_ent &
596                                                   PT64_BASE_ADDR_MASK,
597                                                   level - 1);
598                         else
599                                 rmap_remove(vcpu->kvm, pos);
600                 }
601                 *pos = 0;
602         }
603         kvm_mmu_free_page(vcpu, page_hpa);
604 }
605
606 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
607 {
608 }
609
610 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
611 {
612         int level = PT32E_ROOT_LEVEL;
613         hpa_t table_addr = vcpu->mmu.root_hpa;
614
615         for (; ; level--) {
616                 u32 index = PT64_INDEX(v, level);
617                 u64 *table;
618                 u64 pte;
619
620                 ASSERT(VALID_PAGE(table_addr));
621                 table = __va(table_addr);
622
623                 if (level == 1) {
624                         pte = table[index];
625                         if (is_present_pte(pte) && is_writeble_pte(pte))
626                                 return 0;
627                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
628                         page_header_update_slot(vcpu->kvm, table, v);
629                         table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
630                                                                 PT_USER_MASK;
631                         rmap_add(vcpu->kvm, &table[index]);
632                         return 0;
633                 }
634
635                 if (table[index] == 0) {
636                         struct kvm_mmu_page *new_table;
637                         gfn_t pseudo_gfn;
638
639                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
640                                 >> PAGE_SHIFT;
641                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
642                                                      v, level - 1,
643                                                      1, &table[index]);
644                         if (!new_table) {
645                                 pgprintk("nonpaging_map: ENOMEM\n");
646                                 return -ENOMEM;
647                         }
648
649                         table[index] = new_table->page_hpa | PT_PRESENT_MASK
650                                 | PT_WRITABLE_MASK | PT_USER_MASK;
651                 }
652                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
653         }
654 }
655
656 static void mmu_free_roots(struct kvm_vcpu *vcpu)
657 {
658         int i;
659
660 #ifdef CONFIG_X86_64
661         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
662                 hpa_t root = vcpu->mmu.root_hpa;
663
664                 ASSERT(VALID_PAGE(root));
665                 vcpu->mmu.root_hpa = INVALID_PAGE;
666                 return;
667         }
668 #endif
669         for (i = 0; i < 4; ++i) {
670                 hpa_t root = vcpu->mmu.pae_root[i];
671
672                 ASSERT(VALID_PAGE(root));
673                 root &= PT64_BASE_ADDR_MASK;
674                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
675         }
676         vcpu->mmu.root_hpa = INVALID_PAGE;
677 }
678
679 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
680 {
681         int i;
682         gfn_t root_gfn;
683         root_gfn = vcpu->cr3 >> PAGE_SHIFT;
684
685 #ifdef CONFIG_X86_64
686         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
687                 hpa_t root = vcpu->mmu.root_hpa;
688
689                 ASSERT(!VALID_PAGE(root));
690                 root = kvm_mmu_get_page(vcpu, root_gfn, 0,
691                                         PT64_ROOT_LEVEL, 0, NULL)->page_hpa;
692                 vcpu->mmu.root_hpa = root;
693                 return;
694         }
695 #endif
696         for (i = 0; i < 4; ++i) {
697                 hpa_t root = vcpu->mmu.pae_root[i];
698
699                 ASSERT(!VALID_PAGE(root));
700                 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL)
701                         root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
702                 else if (vcpu->mmu.root_level == 0)
703                         root_gfn = 0;
704                 root = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
705                                         PT32_ROOT_LEVEL, !is_paging(vcpu),
706                                         NULL)->page_hpa;
707                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
708         }
709         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
710 }
711
712 static void nonpaging_flush(struct kvm_vcpu *vcpu)
713 {
714         hpa_t root = vcpu->mmu.root_hpa;
715
716         ++kvm_stat.tlb_flush;
717         pgprintk("nonpaging_flush\n");
718         mmu_free_roots(vcpu);
719         mmu_alloc_roots(vcpu);
720         kvm_arch_ops->set_cr3(vcpu, root);
721         kvm_arch_ops->tlb_flush(vcpu);
722 }
723
724 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
725 {
726         return vaddr;
727 }
728
729 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
730                                u32 error_code)
731 {
732         int ret;
733         gpa_t addr = gva;
734
735         ASSERT(vcpu);
736         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
737
738         for (;;) {
739              hpa_t paddr;
740
741              paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
742
743              if (is_error_hpa(paddr))
744                      return 1;
745
746              ret = nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
747              if (ret) {
748                      nonpaging_flush(vcpu);
749                      continue;
750              }
751              break;
752         }
753         return ret;
754 }
755
756 static void nonpaging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
757 {
758 }
759
760 static void nonpaging_free(struct kvm_vcpu *vcpu)
761 {
762         mmu_free_roots(vcpu);
763 }
764
765 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
766 {
767         struct kvm_mmu *context = &vcpu->mmu;
768
769         context->new_cr3 = nonpaging_new_cr3;
770         context->page_fault = nonpaging_page_fault;
771         context->inval_page = nonpaging_inval_page;
772         context->gva_to_gpa = nonpaging_gva_to_gpa;
773         context->free = nonpaging_free;
774         context->root_level = 0;
775         context->shadow_root_level = PT32E_ROOT_LEVEL;
776         mmu_alloc_roots(vcpu);
777         ASSERT(VALID_PAGE(context->root_hpa));
778         kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
779         return 0;
780 }
781
782 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
783 {
784         ++kvm_stat.tlb_flush;
785         kvm_arch_ops->tlb_flush(vcpu);
786 }
787
788 static void paging_new_cr3(struct kvm_vcpu *vcpu)
789 {
790         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
791         mmu_free_roots(vcpu);
792         mmu_alloc_roots(vcpu);
793         kvm_mmu_flush_tlb(vcpu);
794         kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
795 }
796
797 static void mark_pagetable_nonglobal(void *shadow_pte)
798 {
799         page_header(__pa(shadow_pte))->global = 0;
800 }
801
802 static inline void set_pte_common(struct kvm_vcpu *vcpu,
803                              u64 *shadow_pte,
804                              gpa_t gaddr,
805                              int dirty,
806                              u64 access_bits,
807                              gfn_t gfn)
808 {
809         hpa_t paddr;
810
811         *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
812         if (!dirty)
813                 access_bits &= ~PT_WRITABLE_MASK;
814
815         paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
816
817         *shadow_pte |= access_bits;
818
819         if (!(*shadow_pte & PT_GLOBAL_MASK))
820                 mark_pagetable_nonglobal(shadow_pte);
821
822         if (is_error_hpa(paddr)) {
823                 *shadow_pte |= gaddr;
824                 *shadow_pte |= PT_SHADOW_IO_MARK;
825                 *shadow_pte &= ~PT_PRESENT_MASK;
826                 return;
827         }
828
829         *shadow_pte |= paddr;
830
831         if (access_bits & PT_WRITABLE_MASK) {
832                 struct kvm_mmu_page *shadow;
833
834                 shadow = kvm_mmu_lookup_page(vcpu, gfn);
835                 if (shadow) {
836                         pgprintk("%s: found shadow page for %lx, marking ro\n",
837                                  __FUNCTION__, gfn);
838                         access_bits &= ~PT_WRITABLE_MASK;
839                         *shadow_pte &= ~PT_WRITABLE_MASK;
840                 }
841         }
842
843         if (access_bits & PT_WRITABLE_MASK)
844                 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
845
846         page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
847         rmap_add(vcpu->kvm, shadow_pte);
848 }
849
850 static void inject_page_fault(struct kvm_vcpu *vcpu,
851                               u64 addr,
852                               u32 err_code)
853 {
854         kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
855 }
856
857 static inline int fix_read_pf(u64 *shadow_ent)
858 {
859         if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
860             !(*shadow_ent & PT_USER_MASK)) {
861                 /*
862                  * If supervisor write protect is disabled, we shadow kernel
863                  * pages as user pages so we can trap the write access.
864                  */
865                 *shadow_ent |= PT_USER_MASK;
866                 *shadow_ent &= ~PT_WRITABLE_MASK;
867
868                 return 1;
869
870         }
871         return 0;
872 }
873
874 static int may_access(u64 pte, int write, int user)
875 {
876
877         if (user && !(pte & PT_USER_MASK))
878                 return 0;
879         if (write && !(pte & PT_WRITABLE_MASK))
880                 return 0;
881         return 1;
882 }
883
884 /*
885  * Remove a shadow pte.
886  */
887 static void paging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
888 {
889         hpa_t page_addr = vcpu->mmu.root_hpa;
890         int level = vcpu->mmu.shadow_root_level;
891
892         ++kvm_stat.invlpg;
893
894         for (; ; level--) {
895                 u32 index = PT64_INDEX(addr, level);
896                 u64 *table = __va(page_addr);
897
898                 if (level == PT_PAGE_TABLE_LEVEL ) {
899                         rmap_remove(vcpu->kvm, &table[index]);
900                         table[index] = 0;
901                         return;
902                 }
903
904                 if (!is_present_pte(table[index]))
905                         return;
906
907                 page_addr = table[index] & PT64_BASE_ADDR_MASK;
908
909                 if (level == PT_DIRECTORY_LEVEL &&
910                           (table[index] & PT_SHADOW_PS_MARK)) {
911                         table[index] = 0;
912                         release_pt_page_64(vcpu, page_addr, PT_PAGE_TABLE_LEVEL);
913
914                         kvm_arch_ops->tlb_flush(vcpu);
915                         return;
916                 }
917         }
918 }
919
920 static void paging_free(struct kvm_vcpu *vcpu)
921 {
922         nonpaging_free(vcpu);
923 }
924
925 #define PTTYPE 64
926 #include "paging_tmpl.h"
927 #undef PTTYPE
928
929 #define PTTYPE 32
930 #include "paging_tmpl.h"
931 #undef PTTYPE
932
933 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
934 {
935         struct kvm_mmu *context = &vcpu->mmu;
936
937         ASSERT(is_pae(vcpu));
938         context->new_cr3 = paging_new_cr3;
939         context->page_fault = paging64_page_fault;
940         context->inval_page = paging_inval_page;
941         context->gva_to_gpa = paging64_gva_to_gpa;
942         context->free = paging_free;
943         context->root_level = level;
944         context->shadow_root_level = level;
945         mmu_alloc_roots(vcpu);
946         ASSERT(VALID_PAGE(context->root_hpa));
947         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
948                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
949         return 0;
950 }
951
952 static int paging64_init_context(struct kvm_vcpu *vcpu)
953 {
954         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
955 }
956
957 static int paging32_init_context(struct kvm_vcpu *vcpu)
958 {
959         struct kvm_mmu *context = &vcpu->mmu;
960
961         context->new_cr3 = paging_new_cr3;
962         context->page_fault = paging32_page_fault;
963         context->inval_page = paging_inval_page;
964         context->gva_to_gpa = paging32_gva_to_gpa;
965         context->free = paging_free;
966         context->root_level = PT32_ROOT_LEVEL;
967         context->shadow_root_level = PT32E_ROOT_LEVEL;
968         mmu_alloc_roots(vcpu);
969         ASSERT(VALID_PAGE(context->root_hpa));
970         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
971                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
972         return 0;
973 }
974
975 static int paging32E_init_context(struct kvm_vcpu *vcpu)
976 {
977         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
978 }
979
980 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
981 {
982         ASSERT(vcpu);
983         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
984
985         if (!is_paging(vcpu))
986                 return nonpaging_init_context(vcpu);
987         else if (is_long_mode(vcpu))
988                 return paging64_init_context(vcpu);
989         else if (is_pae(vcpu))
990                 return paging32E_init_context(vcpu);
991         else
992                 return paging32_init_context(vcpu);
993 }
994
995 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
996 {
997         ASSERT(vcpu);
998         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
999                 vcpu->mmu.free(vcpu);
1000                 vcpu->mmu.root_hpa = INVALID_PAGE;
1001         }
1002 }
1003
1004 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1005 {
1006         destroy_kvm_mmu(vcpu);
1007         return init_kvm_mmu(vcpu);
1008 }
1009
1010 void kvm_mmu_pre_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1011 {
1012         gfn_t gfn = gpa >> PAGE_SHIFT;
1013         struct kvm_mmu_page *page;
1014         struct kvm_mmu_page *child;
1015         struct hlist_node *node;
1016         struct hlist_head *bucket;
1017         unsigned index;
1018         u64 *spte;
1019         u64 pte;
1020         unsigned offset = offset_in_page(gpa);
1021         unsigned page_offset;
1022         int level;
1023
1024         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1025         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1026         bucket = &vcpu->kvm->mmu_page_hash[index];
1027         hlist_for_each_entry(page, node, bucket, hash_link) {
1028                 if (page->gfn != gfn || page->role.metaphysical)
1029                         continue;
1030                 page_offset = offset;
1031                 level = page->role.level;
1032                 if (page->role.glevels == PT32_ROOT_LEVEL) {
1033                         page_offset <<= 1;          /* 32->64 */
1034                         page_offset &= ~PAGE_MASK;
1035                 }
1036                 spte = __va(page->page_hpa);
1037                 spte += page_offset / sizeof(*spte);
1038                 pte = *spte;
1039                 if (is_present_pte(pte)) {
1040                         if (level == PT_PAGE_TABLE_LEVEL)
1041                                 rmap_remove(vcpu->kvm, spte);
1042                         else {
1043                                 child = page_header(pte & PT64_BASE_ADDR_MASK);
1044                                 mmu_page_remove_parent_pte(child, spte);
1045                         }
1046                 }
1047                 *spte = 0;
1048         }
1049 }
1050
1051 void kvm_mmu_post_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1052 {
1053 }
1054
1055 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1056 {
1057         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1058
1059         return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1060 }
1061
1062 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1063 {
1064         while (!list_empty(&vcpu->free_pages)) {
1065                 struct kvm_mmu_page *page;
1066
1067                 page = list_entry(vcpu->free_pages.next,
1068                                   struct kvm_mmu_page, link);
1069                 list_del(&page->link);
1070                 __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
1071                 page->page_hpa = INVALID_PAGE;
1072         }
1073         free_page((unsigned long)vcpu->mmu.pae_root);
1074 }
1075
1076 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1077 {
1078         struct page *page;
1079         int i;
1080
1081         ASSERT(vcpu);
1082
1083         for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
1084                 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
1085
1086                 INIT_LIST_HEAD(&page_header->link);
1087                 if ((page = alloc_page(GFP_KERNEL)) == NULL)
1088                         goto error_1;
1089                 page->private = (unsigned long)page_header;
1090                 page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
1091                 memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
1092                 list_add(&page_header->link, &vcpu->free_pages);
1093         }
1094
1095         /*
1096          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1097          * Therefore we need to allocate shadow page tables in the first
1098          * 4GB of memory, which happens to fit the DMA32 zone.
1099          */
1100         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1101         if (!page)
1102                 goto error_1;
1103         vcpu->mmu.pae_root = page_address(page);
1104         for (i = 0; i < 4; ++i)
1105                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1106
1107         return 0;
1108
1109 error_1:
1110         free_mmu_pages(vcpu);
1111         return -ENOMEM;
1112 }
1113
1114 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1115 {
1116         ASSERT(vcpu);
1117         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1118         ASSERT(list_empty(&vcpu->free_pages));
1119
1120         return alloc_mmu_pages(vcpu);
1121 }
1122
1123 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1124 {
1125         ASSERT(vcpu);
1126         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1127         ASSERT(!list_empty(&vcpu->free_pages));
1128
1129         return init_kvm_mmu(vcpu);
1130 }
1131
1132 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1133 {
1134         ASSERT(vcpu);
1135
1136         destroy_kvm_mmu(vcpu);
1137         free_mmu_pages(vcpu);
1138 }
1139
1140 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1141 {
1142         struct kvm_mmu_page *page;
1143
1144         list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1145                 int i;
1146                 u64 *pt;
1147
1148                 if (!test_bit(slot, &page->slot_bitmap))
1149                         continue;
1150
1151                 pt = __va(page->page_hpa);
1152                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1153                         /* avoid RMW */
1154                         if (pt[i] & PT_WRITABLE_MASK) {
1155                                 rmap_remove(kvm, &pt[i]);
1156                                 pt[i] &= ~PT_WRITABLE_MASK;
1157                         }
1158         }
1159 }