]> err.no Git - linux-2.6/blob - drivers/kvm/mmu.c
KVM: MMU: Fix Wrong tlb flush order
[linux-2.6] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19 #include <linux/types.h>
20 #include <linux/string.h>
21 #include <asm/page.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/module.h>
25 #include <asm/cmpxchg.h>
26
27 #include "vmx.h"
28 #include "kvm.h"
29
30 #undef MMU_DEBUG
31
32 #undef AUDIT
33
34 #ifdef AUDIT
35 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
36 #else
37 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
38 #endif
39
40 #ifdef MMU_DEBUG
41
42 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
43 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
44
45 #else
46
47 #define pgprintk(x...) do { } while (0)
48 #define rmap_printk(x...) do { } while (0)
49
50 #endif
51
52 #if defined(MMU_DEBUG) || defined(AUDIT)
53 static int dbg = 1;
54 #endif
55
56 #ifndef MMU_DEBUG
57 #define ASSERT(x) do { } while (0)
58 #else
59 #define ASSERT(x)                                                       \
60         if (!(x)) {                                                     \
61                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
62                        __FILE__, __LINE__, #x);                         \
63         }
64 #endif
65
66 #define PT64_PT_BITS 9
67 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
68 #define PT32_PT_BITS 10
69 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
70
71 #define PT_WRITABLE_SHIFT 1
72
73 #define PT_PRESENT_MASK (1ULL << 0)
74 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
75 #define PT_USER_MASK (1ULL << 2)
76 #define PT_PWT_MASK (1ULL << 3)
77 #define PT_PCD_MASK (1ULL << 4)
78 #define PT_ACCESSED_MASK (1ULL << 5)
79 #define PT_DIRTY_MASK (1ULL << 6)
80 #define PT_PAGE_SIZE_MASK (1ULL << 7)
81 #define PT_PAT_MASK (1ULL << 7)
82 #define PT_GLOBAL_MASK (1ULL << 8)
83 #define PT64_NX_MASK (1ULL << 63)
84
85 #define PT_PAT_SHIFT 7
86 #define PT_DIR_PAT_SHIFT 12
87 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
88
89 #define PT32_DIR_PSE36_SIZE 4
90 #define PT32_DIR_PSE36_SHIFT 13
91 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
92
93
94 #define PT_FIRST_AVAIL_BITS_SHIFT 9
95 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
96
97 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
98
99 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
100
101 #define PT64_LEVEL_BITS 9
102
103 #define PT64_LEVEL_SHIFT(level) \
104                 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
105
106 #define PT64_LEVEL_MASK(level) \
107                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
108
109 #define PT64_INDEX(address, level)\
110         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
111
112
113 #define PT32_LEVEL_BITS 10
114
115 #define PT32_LEVEL_SHIFT(level) \
116                 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
117
118 #define PT32_LEVEL_MASK(level) \
119                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
120
121 #define PT32_INDEX(address, level)\
122         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
123
124
125 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
126 #define PT64_DIR_BASE_ADDR_MASK \
127         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
128
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132
133
134 #define PFERR_PRESENT_MASK (1U << 0)
135 #define PFERR_WRITE_MASK (1U << 1)
136 #define PFERR_USER_MASK (1U << 2)
137 #define PFERR_FETCH_MASK (1U << 4)
138
139 #define PT64_ROOT_LEVEL 4
140 #define PT32_ROOT_LEVEL 2
141 #define PT32E_ROOT_LEVEL 3
142
143 #define PT_DIRECTORY_LEVEL 2
144 #define PT_PAGE_TABLE_LEVEL 1
145
146 #define RMAP_EXT 4
147
148 struct kvm_rmap_desc {
149         u64 *shadow_ptes[RMAP_EXT];
150         struct kvm_rmap_desc *more;
151 };
152
153 static struct kmem_cache *pte_chain_cache;
154 static struct kmem_cache *rmap_desc_cache;
155 static struct kmem_cache *mmu_page_cache;
156 static struct kmem_cache *mmu_page_header_cache;
157
158 static int is_write_protection(struct kvm_vcpu *vcpu)
159 {
160         return vcpu->cr0 & CR0_WP_MASK;
161 }
162
163 static int is_cpuid_PSE36(void)
164 {
165         return 1;
166 }
167
168 static int is_nx(struct kvm_vcpu *vcpu)
169 {
170         return vcpu->shadow_efer & EFER_NX;
171 }
172
173 static int is_present_pte(unsigned long pte)
174 {
175         return pte & PT_PRESENT_MASK;
176 }
177
178 static int is_writeble_pte(unsigned long pte)
179 {
180         return pte & PT_WRITABLE_MASK;
181 }
182
183 static int is_io_pte(unsigned long pte)
184 {
185         return pte & PT_SHADOW_IO_MARK;
186 }
187
188 static int is_rmap_pte(u64 pte)
189 {
190         return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
191                 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
192 }
193
194 static void set_shadow_pte(u64 *sptep, u64 spte)
195 {
196 #ifdef CONFIG_X86_64
197         set_64bit((unsigned long *)sptep, spte);
198 #else
199         set_64bit((unsigned long long *)sptep, spte);
200 #endif
201 }
202
203 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
204                                   struct kmem_cache *base_cache, int min,
205                                   gfp_t gfp_flags)
206 {
207         void *obj;
208
209         if (cache->nobjs >= min)
210                 return 0;
211         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
212                 obj = kmem_cache_zalloc(base_cache, gfp_flags);
213                 if (!obj)
214                         return -ENOMEM;
215                 cache->objects[cache->nobjs++] = obj;
216         }
217         return 0;
218 }
219
220 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
221 {
222         while (mc->nobjs)
223                 kfree(mc->objects[--mc->nobjs]);
224 }
225
226 static int __mmu_topup_memory_caches(struct kvm_vcpu *vcpu, gfp_t gfp_flags)
227 {
228         int r;
229
230         r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
231                                    pte_chain_cache, 4, gfp_flags);
232         if (r)
233                 goto out;
234         r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
235                                    rmap_desc_cache, 1, gfp_flags);
236         if (r)
237                 goto out;
238         r = mmu_topup_memory_cache(&vcpu->mmu_page_cache,
239                                    mmu_page_cache, 4, gfp_flags);
240         if (r)
241                 goto out;
242         r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
243                                    mmu_page_header_cache, 4, gfp_flags);
244 out:
245         return r;
246 }
247
248 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
249 {
250         int r;
251
252         r = __mmu_topup_memory_caches(vcpu, GFP_NOWAIT);
253         if (r < 0) {
254                 spin_unlock(&vcpu->kvm->lock);
255                 kvm_arch_ops->vcpu_put(vcpu);
256                 r = __mmu_topup_memory_caches(vcpu, GFP_KERNEL);
257                 kvm_arch_ops->vcpu_load(vcpu);
258                 spin_lock(&vcpu->kvm->lock);
259         }
260         return r;
261 }
262
263 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
264 {
265         mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
266         mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
267         mmu_free_memory_cache(&vcpu->mmu_page_cache);
268         mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
269 }
270
271 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
272                                     size_t size)
273 {
274         void *p;
275
276         BUG_ON(!mc->nobjs);
277         p = mc->objects[--mc->nobjs];
278         memset(p, 0, size);
279         return p;
280 }
281
282 static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
283 {
284         if (mc->nobjs < KVM_NR_MEM_OBJS)
285                 mc->objects[mc->nobjs++] = obj;
286         else
287                 kfree(obj);
288 }
289
290 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
291 {
292         return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
293                                       sizeof(struct kvm_pte_chain));
294 }
295
296 static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
297                                struct kvm_pte_chain *pc)
298 {
299         mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
300 }
301
302 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
303 {
304         return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
305                                       sizeof(struct kvm_rmap_desc));
306 }
307
308 static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
309                                struct kvm_rmap_desc *rd)
310 {
311         mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
312 }
313
314 /*
315  * Reverse mapping data structures:
316  *
317  * If page->private bit zero is zero, then page->private points to the
318  * shadow page table entry that points to page_address(page).
319  *
320  * If page->private bit zero is one, (then page->private & ~1) points
321  * to a struct kvm_rmap_desc containing more mappings.
322  */
323 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
324 {
325         struct page *page;
326         struct kvm_rmap_desc *desc;
327         int i;
328
329         if (!is_rmap_pte(*spte))
330                 return;
331         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
332         if (!page_private(page)) {
333                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
334                 set_page_private(page,(unsigned long)spte);
335         } else if (!(page_private(page) & 1)) {
336                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
337                 desc = mmu_alloc_rmap_desc(vcpu);
338                 desc->shadow_ptes[0] = (u64 *)page_private(page);
339                 desc->shadow_ptes[1] = spte;
340                 set_page_private(page,(unsigned long)desc | 1);
341         } else {
342                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
343                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
344                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
345                         desc = desc->more;
346                 if (desc->shadow_ptes[RMAP_EXT-1]) {
347                         desc->more = mmu_alloc_rmap_desc(vcpu);
348                         desc = desc->more;
349                 }
350                 for (i = 0; desc->shadow_ptes[i]; ++i)
351                         ;
352                 desc->shadow_ptes[i] = spte;
353         }
354 }
355
356 static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
357                                    struct page *page,
358                                    struct kvm_rmap_desc *desc,
359                                    int i,
360                                    struct kvm_rmap_desc *prev_desc)
361 {
362         int j;
363
364         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
365                 ;
366         desc->shadow_ptes[i] = desc->shadow_ptes[j];
367         desc->shadow_ptes[j] = NULL;
368         if (j != 0)
369                 return;
370         if (!prev_desc && !desc->more)
371                 set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
372         else
373                 if (prev_desc)
374                         prev_desc->more = desc->more;
375                 else
376                         set_page_private(page,(unsigned long)desc->more | 1);
377         mmu_free_rmap_desc(vcpu, desc);
378 }
379
380 static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
381 {
382         struct page *page;
383         struct kvm_rmap_desc *desc;
384         struct kvm_rmap_desc *prev_desc;
385         int i;
386
387         if (!is_rmap_pte(*spte))
388                 return;
389         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
390         if (!page_private(page)) {
391                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
392                 BUG();
393         } else if (!(page_private(page) & 1)) {
394                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
395                 if ((u64 *)page_private(page) != spte) {
396                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
397                                spte, *spte);
398                         BUG();
399                 }
400                 set_page_private(page,0);
401         } else {
402                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
403                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
404                 prev_desc = NULL;
405                 while (desc) {
406                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
407                                 if (desc->shadow_ptes[i] == spte) {
408                                         rmap_desc_remove_entry(vcpu, page,
409                                                                desc, i,
410                                                                prev_desc);
411                                         return;
412                                 }
413                         prev_desc = desc;
414                         desc = desc->more;
415                 }
416                 BUG();
417         }
418 }
419
420 static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
421 {
422         struct kvm *kvm = vcpu->kvm;
423         struct page *page;
424         struct kvm_rmap_desc *desc;
425         u64 *spte;
426
427         page = gfn_to_page(kvm, gfn);
428         BUG_ON(!page);
429
430         while (page_private(page)) {
431                 if (!(page_private(page) & 1))
432                         spte = (u64 *)page_private(page);
433                 else {
434                         desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
435                         spte = desc->shadow_ptes[0];
436                 }
437                 BUG_ON(!spte);
438                 BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
439                        != page_to_pfn(page));
440                 BUG_ON(!(*spte & PT_PRESENT_MASK));
441                 BUG_ON(!(*spte & PT_WRITABLE_MASK));
442                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
443                 rmap_remove(vcpu, spte);
444                 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
445                 kvm_flush_remote_tlbs(vcpu->kvm);
446         }
447 }
448
449 #ifdef MMU_DEBUG
450 static int is_empty_shadow_page(u64 *spt)
451 {
452         u64 *pos;
453         u64 *end;
454
455         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
456                 if (*pos != 0) {
457                         printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
458                                pos, *pos);
459                         return 0;
460                 }
461         return 1;
462 }
463 #endif
464
465 static void kvm_mmu_free_page(struct kvm_vcpu *vcpu,
466                               struct kvm_mmu_page *page_head)
467 {
468         ASSERT(is_empty_shadow_page(page_head->spt));
469         list_del(&page_head->link);
470         mmu_memory_cache_free(&vcpu->mmu_page_cache, page_head->spt);
471         mmu_memory_cache_free(&vcpu->mmu_page_header_cache, page_head);
472         ++vcpu->kvm->n_free_mmu_pages;
473 }
474
475 static unsigned kvm_page_table_hashfn(gfn_t gfn)
476 {
477         return gfn;
478 }
479
480 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
481                                                u64 *parent_pte)
482 {
483         struct kvm_mmu_page *page;
484
485         if (!vcpu->kvm->n_free_mmu_pages)
486                 return NULL;
487
488         page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
489                                       sizeof *page);
490         page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
491         set_page_private(virt_to_page(page->spt), (unsigned long)page);
492         list_add(&page->link, &vcpu->kvm->active_mmu_pages);
493         ASSERT(is_empty_shadow_page(page->spt));
494         page->slot_bitmap = 0;
495         page->multimapped = 0;
496         page->parent_pte = parent_pte;
497         --vcpu->kvm->n_free_mmu_pages;
498         return page;
499 }
500
501 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
502                                     struct kvm_mmu_page *page, u64 *parent_pte)
503 {
504         struct kvm_pte_chain *pte_chain;
505         struct hlist_node *node;
506         int i;
507
508         if (!parent_pte)
509                 return;
510         if (!page->multimapped) {
511                 u64 *old = page->parent_pte;
512
513                 if (!old) {
514                         page->parent_pte = parent_pte;
515                         return;
516                 }
517                 page->multimapped = 1;
518                 pte_chain = mmu_alloc_pte_chain(vcpu);
519                 INIT_HLIST_HEAD(&page->parent_ptes);
520                 hlist_add_head(&pte_chain->link, &page->parent_ptes);
521                 pte_chain->parent_ptes[0] = old;
522         }
523         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
524                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
525                         continue;
526                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
527                         if (!pte_chain->parent_ptes[i]) {
528                                 pte_chain->parent_ptes[i] = parent_pte;
529                                 return;
530                         }
531         }
532         pte_chain = mmu_alloc_pte_chain(vcpu);
533         BUG_ON(!pte_chain);
534         hlist_add_head(&pte_chain->link, &page->parent_ptes);
535         pte_chain->parent_ptes[0] = parent_pte;
536 }
537
538 static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
539                                        struct kvm_mmu_page *page,
540                                        u64 *parent_pte)
541 {
542         struct kvm_pte_chain *pte_chain;
543         struct hlist_node *node;
544         int i;
545
546         if (!page->multimapped) {
547                 BUG_ON(page->parent_pte != parent_pte);
548                 page->parent_pte = NULL;
549                 return;
550         }
551         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
552                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
553                         if (!pte_chain->parent_ptes[i])
554                                 break;
555                         if (pte_chain->parent_ptes[i] != parent_pte)
556                                 continue;
557                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
558                                 && pte_chain->parent_ptes[i + 1]) {
559                                 pte_chain->parent_ptes[i]
560                                         = pte_chain->parent_ptes[i + 1];
561                                 ++i;
562                         }
563                         pte_chain->parent_ptes[i] = NULL;
564                         if (i == 0) {
565                                 hlist_del(&pte_chain->link);
566                                 mmu_free_pte_chain(vcpu, pte_chain);
567                                 if (hlist_empty(&page->parent_ptes)) {
568                                         page->multimapped = 0;
569                                         page->parent_pte = NULL;
570                                 }
571                         }
572                         return;
573                 }
574         BUG();
575 }
576
577 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
578                                                 gfn_t gfn)
579 {
580         unsigned index;
581         struct hlist_head *bucket;
582         struct kvm_mmu_page *page;
583         struct hlist_node *node;
584
585         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
586         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
587         bucket = &vcpu->kvm->mmu_page_hash[index];
588         hlist_for_each_entry(page, node, bucket, hash_link)
589                 if (page->gfn == gfn && !page->role.metaphysical) {
590                         pgprintk("%s: found role %x\n",
591                                  __FUNCTION__, page->role.word);
592                         return page;
593                 }
594         return NULL;
595 }
596
597 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
598                                              gfn_t gfn,
599                                              gva_t gaddr,
600                                              unsigned level,
601                                              int metaphysical,
602                                              unsigned hugepage_access,
603                                              u64 *parent_pte)
604 {
605         union kvm_mmu_page_role role;
606         unsigned index;
607         unsigned quadrant;
608         struct hlist_head *bucket;
609         struct kvm_mmu_page *page;
610         struct hlist_node *node;
611
612         role.word = 0;
613         role.glevels = vcpu->mmu.root_level;
614         role.level = level;
615         role.metaphysical = metaphysical;
616         role.hugepage_access = hugepage_access;
617         if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
618                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
619                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
620                 role.quadrant = quadrant;
621         }
622         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
623                  gfn, role.word);
624         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
625         bucket = &vcpu->kvm->mmu_page_hash[index];
626         hlist_for_each_entry(page, node, bucket, hash_link)
627                 if (page->gfn == gfn && page->role.word == role.word) {
628                         mmu_page_add_parent_pte(vcpu, page, parent_pte);
629                         pgprintk("%s: found\n", __FUNCTION__);
630                         return page;
631                 }
632         page = kvm_mmu_alloc_page(vcpu, parent_pte);
633         if (!page)
634                 return page;
635         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
636         page->gfn = gfn;
637         page->role = role;
638         hlist_add_head(&page->hash_link, bucket);
639         if (!metaphysical)
640                 rmap_write_protect(vcpu, gfn);
641         return page;
642 }
643
644 static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
645                                          struct kvm_mmu_page *page)
646 {
647         unsigned i;
648         u64 *pt;
649         u64 ent;
650
651         pt = page->spt;
652
653         if (page->role.level == PT_PAGE_TABLE_LEVEL) {
654                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
655                         if (pt[i] & PT_PRESENT_MASK)
656                                 rmap_remove(vcpu, &pt[i]);
657                         pt[i] = 0;
658                 }
659                 kvm_flush_remote_tlbs(vcpu->kvm);
660                 return;
661         }
662
663         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
664                 ent = pt[i];
665
666                 pt[i] = 0;
667                 if (!(ent & PT_PRESENT_MASK))
668                         continue;
669                 ent &= PT64_BASE_ADDR_MASK;
670                 mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
671         }
672         kvm_flush_remote_tlbs(vcpu->kvm);
673 }
674
675 static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
676                              struct kvm_mmu_page *page,
677                              u64 *parent_pte)
678 {
679         mmu_page_remove_parent_pte(vcpu, page, parent_pte);
680 }
681
682 static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
683                              struct kvm_mmu_page *page)
684 {
685         u64 *parent_pte;
686
687         while (page->multimapped || page->parent_pte) {
688                 if (!page->multimapped)
689                         parent_pte = page->parent_pte;
690                 else {
691                         struct kvm_pte_chain *chain;
692
693                         chain = container_of(page->parent_ptes.first,
694                                              struct kvm_pte_chain, link);
695                         parent_pte = chain->parent_ptes[0];
696                 }
697                 BUG_ON(!parent_pte);
698                 kvm_mmu_put_page(vcpu, page, parent_pte);
699                 set_shadow_pte(parent_pte, 0);
700         }
701         kvm_mmu_page_unlink_children(vcpu, page);
702         if (!page->root_count) {
703                 hlist_del(&page->hash_link);
704                 kvm_mmu_free_page(vcpu, page);
705         } else
706                 list_move(&page->link, &vcpu->kvm->active_mmu_pages);
707 }
708
709 static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
710 {
711         unsigned index;
712         struct hlist_head *bucket;
713         struct kvm_mmu_page *page;
714         struct hlist_node *node, *n;
715         int r;
716
717         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
718         r = 0;
719         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
720         bucket = &vcpu->kvm->mmu_page_hash[index];
721         hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
722                 if (page->gfn == gfn && !page->role.metaphysical) {
723                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
724                                  page->role.word);
725                         kvm_mmu_zap_page(vcpu, page);
726                         r = 1;
727                 }
728         return r;
729 }
730
731 static void mmu_unshadow(struct kvm_vcpu *vcpu, gfn_t gfn)
732 {
733         struct kvm_mmu_page *page;
734
735         while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
736                 pgprintk("%s: zap %lx %x\n",
737                          __FUNCTION__, gfn, page->role.word);
738                 kvm_mmu_zap_page(vcpu, page);
739         }
740 }
741
742 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
743 {
744         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
745         struct kvm_mmu_page *page_head = page_header(__pa(pte));
746
747         __set_bit(slot, &page_head->slot_bitmap);
748 }
749
750 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
751 {
752         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
753
754         return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
755 }
756
757 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
758 {
759         struct page *page;
760
761         ASSERT((gpa & HPA_ERR_MASK) == 0);
762         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
763         if (!page)
764                 return gpa | HPA_ERR_MASK;
765         return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
766                 | (gpa & (PAGE_SIZE-1));
767 }
768
769 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
770 {
771         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
772
773         if (gpa == UNMAPPED_GVA)
774                 return UNMAPPED_GVA;
775         return gpa_to_hpa(vcpu, gpa);
776 }
777
778 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
779 {
780         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
781
782         if (gpa == UNMAPPED_GVA)
783                 return NULL;
784         return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
785 }
786
787 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
788 {
789 }
790
791 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
792 {
793         int level = PT32E_ROOT_LEVEL;
794         hpa_t table_addr = vcpu->mmu.root_hpa;
795
796         for (; ; level--) {
797                 u32 index = PT64_INDEX(v, level);
798                 u64 *table;
799                 u64 pte;
800
801                 ASSERT(VALID_PAGE(table_addr));
802                 table = __va(table_addr);
803
804                 if (level == 1) {
805                         pte = table[index];
806                         if (is_present_pte(pte) && is_writeble_pte(pte))
807                                 return 0;
808                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
809                         page_header_update_slot(vcpu->kvm, table, v);
810                         table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
811                                                                 PT_USER_MASK;
812                         rmap_add(vcpu, &table[index]);
813                         return 0;
814                 }
815
816                 if (table[index] == 0) {
817                         struct kvm_mmu_page *new_table;
818                         gfn_t pseudo_gfn;
819
820                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
821                                 >> PAGE_SHIFT;
822                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
823                                                      v, level - 1,
824                                                      1, 0, &table[index]);
825                         if (!new_table) {
826                                 pgprintk("nonpaging_map: ENOMEM\n");
827                                 return -ENOMEM;
828                         }
829
830                         table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
831                                 | PT_WRITABLE_MASK | PT_USER_MASK;
832                 }
833                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
834         }
835 }
836
837 static void mmu_free_roots(struct kvm_vcpu *vcpu)
838 {
839         int i;
840         struct kvm_mmu_page *page;
841
842         if (!VALID_PAGE(vcpu->mmu.root_hpa))
843                 return;
844 #ifdef CONFIG_X86_64
845         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
846                 hpa_t root = vcpu->mmu.root_hpa;
847
848                 page = page_header(root);
849                 --page->root_count;
850                 vcpu->mmu.root_hpa = INVALID_PAGE;
851                 return;
852         }
853 #endif
854         for (i = 0; i < 4; ++i) {
855                 hpa_t root = vcpu->mmu.pae_root[i];
856
857                 if (root) {
858                         root &= PT64_BASE_ADDR_MASK;
859                         page = page_header(root);
860                         --page->root_count;
861                 }
862                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
863         }
864         vcpu->mmu.root_hpa = INVALID_PAGE;
865 }
866
867 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
868 {
869         int i;
870         gfn_t root_gfn;
871         struct kvm_mmu_page *page;
872
873         root_gfn = vcpu->cr3 >> PAGE_SHIFT;
874
875 #ifdef CONFIG_X86_64
876         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
877                 hpa_t root = vcpu->mmu.root_hpa;
878
879                 ASSERT(!VALID_PAGE(root));
880                 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
881                                         PT64_ROOT_LEVEL, 0, 0, NULL);
882                 root = __pa(page->spt);
883                 ++page->root_count;
884                 vcpu->mmu.root_hpa = root;
885                 return;
886         }
887 #endif
888         for (i = 0; i < 4; ++i) {
889                 hpa_t root = vcpu->mmu.pae_root[i];
890
891                 ASSERT(!VALID_PAGE(root));
892                 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
893                         if (!is_present_pte(vcpu->pdptrs[i])) {
894                                 vcpu->mmu.pae_root[i] = 0;
895                                 continue;
896                         }
897                         root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
898                 } else if (vcpu->mmu.root_level == 0)
899                         root_gfn = 0;
900                 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
901                                         PT32_ROOT_LEVEL, !is_paging(vcpu),
902                                         0, NULL);
903                 root = __pa(page->spt);
904                 ++page->root_count;
905                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
906         }
907         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
908 }
909
910 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
911 {
912         return vaddr;
913 }
914
915 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
916                                u32 error_code)
917 {
918         gpa_t addr = gva;
919         hpa_t paddr;
920         int r;
921
922         r = mmu_topup_memory_caches(vcpu);
923         if (r)
924                 return r;
925
926         ASSERT(vcpu);
927         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
928
929
930         paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
931
932         if (is_error_hpa(paddr))
933                 return 1;
934
935         return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
936 }
937
938 static void nonpaging_free(struct kvm_vcpu *vcpu)
939 {
940         mmu_free_roots(vcpu);
941 }
942
943 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
944 {
945         struct kvm_mmu *context = &vcpu->mmu;
946
947         context->new_cr3 = nonpaging_new_cr3;
948         context->page_fault = nonpaging_page_fault;
949         context->gva_to_gpa = nonpaging_gva_to_gpa;
950         context->free = nonpaging_free;
951         context->root_level = 0;
952         context->shadow_root_level = PT32E_ROOT_LEVEL;
953         context->root_hpa = INVALID_PAGE;
954         return 0;
955 }
956
957 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
958 {
959         ++vcpu->stat.tlb_flush;
960         kvm_arch_ops->tlb_flush(vcpu);
961 }
962
963 static void paging_new_cr3(struct kvm_vcpu *vcpu)
964 {
965         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
966         mmu_free_roots(vcpu);
967 }
968
969 static void inject_page_fault(struct kvm_vcpu *vcpu,
970                               u64 addr,
971                               u32 err_code)
972 {
973         kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
974 }
975
976 static void paging_free(struct kvm_vcpu *vcpu)
977 {
978         nonpaging_free(vcpu);
979 }
980
981 #define PTTYPE 64
982 #include "paging_tmpl.h"
983 #undef PTTYPE
984
985 #define PTTYPE 32
986 #include "paging_tmpl.h"
987 #undef PTTYPE
988
989 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
990 {
991         struct kvm_mmu *context = &vcpu->mmu;
992
993         ASSERT(is_pae(vcpu));
994         context->new_cr3 = paging_new_cr3;
995         context->page_fault = paging64_page_fault;
996         context->gva_to_gpa = paging64_gva_to_gpa;
997         context->free = paging_free;
998         context->root_level = level;
999         context->shadow_root_level = level;
1000         context->root_hpa = INVALID_PAGE;
1001         return 0;
1002 }
1003
1004 static int paging64_init_context(struct kvm_vcpu *vcpu)
1005 {
1006         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1007 }
1008
1009 static int paging32_init_context(struct kvm_vcpu *vcpu)
1010 {
1011         struct kvm_mmu *context = &vcpu->mmu;
1012
1013         context->new_cr3 = paging_new_cr3;
1014         context->page_fault = paging32_page_fault;
1015         context->gva_to_gpa = paging32_gva_to_gpa;
1016         context->free = paging_free;
1017         context->root_level = PT32_ROOT_LEVEL;
1018         context->shadow_root_level = PT32E_ROOT_LEVEL;
1019         context->root_hpa = INVALID_PAGE;
1020         return 0;
1021 }
1022
1023 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1024 {
1025         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1026 }
1027
1028 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1029 {
1030         ASSERT(vcpu);
1031         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1032
1033         if (!is_paging(vcpu))
1034                 return nonpaging_init_context(vcpu);
1035         else if (is_long_mode(vcpu))
1036                 return paging64_init_context(vcpu);
1037         else if (is_pae(vcpu))
1038                 return paging32E_init_context(vcpu);
1039         else
1040                 return paging32_init_context(vcpu);
1041 }
1042
1043 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1044 {
1045         ASSERT(vcpu);
1046         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1047                 vcpu->mmu.free(vcpu);
1048                 vcpu->mmu.root_hpa = INVALID_PAGE;
1049         }
1050 }
1051
1052 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1053 {
1054         destroy_kvm_mmu(vcpu);
1055         return init_kvm_mmu(vcpu);
1056 }
1057
1058 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1059 {
1060         int r;
1061
1062         spin_lock(&vcpu->kvm->lock);
1063         r = mmu_topup_memory_caches(vcpu);
1064         if (r)
1065                 goto out;
1066         mmu_alloc_roots(vcpu);
1067         kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
1068         kvm_mmu_flush_tlb(vcpu);
1069 out:
1070         spin_unlock(&vcpu->kvm->lock);
1071         return r;
1072 }
1073 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1074
1075 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1076 {
1077         mmu_free_roots(vcpu);
1078 }
1079
1080 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1081                                   struct kvm_mmu_page *page,
1082                                   u64 *spte)
1083 {
1084         u64 pte;
1085         struct kvm_mmu_page *child;
1086
1087         pte = *spte;
1088         if (is_present_pte(pte)) {
1089                 if (page->role.level == PT_PAGE_TABLE_LEVEL)
1090                         rmap_remove(vcpu, spte);
1091                 else {
1092                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1093                         mmu_page_remove_parent_pte(vcpu, child, spte);
1094                 }
1095         }
1096         *spte = 0;
1097         kvm_flush_remote_tlbs(vcpu->kvm);
1098 }
1099
1100 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1101                                   struct kvm_mmu_page *page,
1102                                   u64 *spte,
1103                                   const void *new, int bytes)
1104 {
1105         if (page->role.level != PT_PAGE_TABLE_LEVEL)
1106                 return;
1107
1108         if (page->role.glevels == PT32_ROOT_LEVEL)
1109                 paging32_update_pte(vcpu, page, spte, new, bytes);
1110         else
1111                 paging64_update_pte(vcpu, page, spte, new, bytes);
1112 }
1113
1114 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1115                        const u8 *old, const u8 *new, int bytes)
1116 {
1117         gfn_t gfn = gpa >> PAGE_SHIFT;
1118         struct kvm_mmu_page *page;
1119         struct hlist_node *node, *n;
1120         struct hlist_head *bucket;
1121         unsigned index;
1122         u64 *spte;
1123         unsigned offset = offset_in_page(gpa);
1124         unsigned pte_size;
1125         unsigned page_offset;
1126         unsigned misaligned;
1127         unsigned quadrant;
1128         int level;
1129         int flooded = 0;
1130         int npte;
1131
1132         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1133         if (gfn == vcpu->last_pt_write_gfn) {
1134                 ++vcpu->last_pt_write_count;
1135                 if (vcpu->last_pt_write_count >= 3)
1136                         flooded = 1;
1137         } else {
1138                 vcpu->last_pt_write_gfn = gfn;
1139                 vcpu->last_pt_write_count = 1;
1140         }
1141         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1142         bucket = &vcpu->kvm->mmu_page_hash[index];
1143         hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
1144                 if (page->gfn != gfn || page->role.metaphysical)
1145                         continue;
1146                 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1147                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1148                 misaligned |= bytes < 4;
1149                 if (misaligned || flooded) {
1150                         /*
1151                          * Misaligned accesses are too much trouble to fix
1152                          * up; also, they usually indicate a page is not used
1153                          * as a page table.
1154                          *
1155                          * If we're seeing too many writes to a page,
1156                          * it may no longer be a page table, or we may be
1157                          * forking, in which case it is better to unmap the
1158                          * page.
1159                          */
1160                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1161                                  gpa, bytes, page->role.word);
1162                         kvm_mmu_zap_page(vcpu, page);
1163                         continue;
1164                 }
1165                 page_offset = offset;
1166                 level = page->role.level;
1167                 npte = 1;
1168                 if (page->role.glevels == PT32_ROOT_LEVEL) {
1169                         page_offset <<= 1;      /* 32->64 */
1170                         /*
1171                          * A 32-bit pde maps 4MB while the shadow pdes map
1172                          * only 2MB.  So we need to double the offset again
1173                          * and zap two pdes instead of one.
1174                          */
1175                         if (level == PT32_ROOT_LEVEL) {
1176                                 page_offset &= ~7; /* kill rounding error */
1177                                 page_offset <<= 1;
1178                                 npte = 2;
1179                         }
1180                         quadrant = page_offset >> PAGE_SHIFT;
1181                         page_offset &= ~PAGE_MASK;
1182                         if (quadrant != page->role.quadrant)
1183                                 continue;
1184                 }
1185                 spte = &page->spt[page_offset / sizeof(*spte)];
1186                 while (npte--) {
1187                         mmu_pte_write_zap_pte(vcpu, page, spte);
1188                         mmu_pte_write_new_pte(vcpu, page, spte, new, bytes);
1189                         ++spte;
1190                 }
1191         }
1192 }
1193
1194 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1195 {
1196         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1197
1198         return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1199 }
1200
1201 void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1202 {
1203         while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1204                 struct kvm_mmu_page *page;
1205
1206                 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1207                                     struct kvm_mmu_page, link);
1208                 kvm_mmu_zap_page(vcpu, page);
1209         }
1210 }
1211 EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
1212
1213 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1214 {
1215         struct kvm_mmu_page *page;
1216
1217         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1218                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1219                                     struct kvm_mmu_page, link);
1220                 kvm_mmu_zap_page(vcpu, page);
1221         }
1222         free_page((unsigned long)vcpu->mmu.pae_root);
1223 }
1224
1225 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1226 {
1227         struct page *page;
1228         int i;
1229
1230         ASSERT(vcpu);
1231
1232         vcpu->kvm->n_free_mmu_pages = KVM_NUM_MMU_PAGES;
1233
1234         /*
1235          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1236          * Therefore we need to allocate shadow page tables in the first
1237          * 4GB of memory, which happens to fit the DMA32 zone.
1238          */
1239         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1240         if (!page)
1241                 goto error_1;
1242         vcpu->mmu.pae_root = page_address(page);
1243         for (i = 0; i < 4; ++i)
1244                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1245
1246         return 0;
1247
1248 error_1:
1249         free_mmu_pages(vcpu);
1250         return -ENOMEM;
1251 }
1252
1253 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1254 {
1255         ASSERT(vcpu);
1256         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1257
1258         return alloc_mmu_pages(vcpu);
1259 }
1260
1261 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1262 {
1263         ASSERT(vcpu);
1264         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1265
1266         return init_kvm_mmu(vcpu);
1267 }
1268
1269 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1270 {
1271         ASSERT(vcpu);
1272
1273         destroy_kvm_mmu(vcpu);
1274         free_mmu_pages(vcpu);
1275         mmu_free_memory_caches(vcpu);
1276 }
1277
1278 void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
1279 {
1280         struct kvm *kvm = vcpu->kvm;
1281         struct kvm_mmu_page *page;
1282
1283         list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1284                 int i;
1285                 u64 *pt;
1286
1287                 if (!test_bit(slot, &page->slot_bitmap))
1288                         continue;
1289
1290                 pt = page->spt;
1291                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1292                         /* avoid RMW */
1293                         if (pt[i] & PT_WRITABLE_MASK) {
1294                                 rmap_remove(vcpu, &pt[i]);
1295                                 pt[i] &= ~PT_WRITABLE_MASK;
1296                         }
1297         }
1298 }
1299
1300 void kvm_mmu_zap_all(struct kvm_vcpu *vcpu)
1301 {
1302         destroy_kvm_mmu(vcpu);
1303
1304         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1305                 struct kvm_mmu_page *page;
1306
1307                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1308                                     struct kvm_mmu_page, link);
1309                 kvm_mmu_zap_page(vcpu, page);
1310         }
1311
1312         mmu_free_memory_caches(vcpu);
1313         kvm_flush_remote_tlbs(vcpu->kvm);
1314         init_kvm_mmu(vcpu);
1315 }
1316
1317 void kvm_mmu_module_exit(void)
1318 {
1319         if (pte_chain_cache)
1320                 kmem_cache_destroy(pte_chain_cache);
1321         if (rmap_desc_cache)
1322                 kmem_cache_destroy(rmap_desc_cache);
1323         if (mmu_page_cache)
1324                 kmem_cache_destroy(mmu_page_cache);
1325         if (mmu_page_header_cache)
1326                 kmem_cache_destroy(mmu_page_header_cache);
1327 }
1328
1329 int kvm_mmu_module_init(void)
1330 {
1331         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1332                                             sizeof(struct kvm_pte_chain),
1333                                             0, 0, NULL, NULL);
1334         if (!pte_chain_cache)
1335                 goto nomem;
1336         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1337                                             sizeof(struct kvm_rmap_desc),
1338                                             0, 0, NULL, NULL);
1339         if (!rmap_desc_cache)
1340                 goto nomem;
1341
1342         mmu_page_cache = kmem_cache_create("kvm_mmu_page",
1343                                            PAGE_SIZE,
1344                                            PAGE_SIZE, 0, NULL, NULL);
1345         if (!mmu_page_cache)
1346                 goto nomem;
1347
1348         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1349                                                   sizeof(struct kvm_mmu_page),
1350                                                   0, 0, NULL, NULL);
1351         if (!mmu_page_header_cache)
1352                 goto nomem;
1353
1354         return 0;
1355
1356 nomem:
1357         kvm_mmu_module_exit();
1358         return -ENOMEM;
1359 }
1360
1361 #ifdef AUDIT
1362
1363 static const char *audit_msg;
1364
1365 static gva_t canonicalize(gva_t gva)
1366 {
1367 #ifdef CONFIG_X86_64
1368         gva = (long long)(gva << 16) >> 16;
1369 #endif
1370         return gva;
1371 }
1372
1373 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1374                                 gva_t va, int level)
1375 {
1376         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1377         int i;
1378         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1379
1380         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1381                 u64 ent = pt[i];
1382
1383                 if (!(ent & PT_PRESENT_MASK))
1384                         continue;
1385
1386                 va = canonicalize(va);
1387                 if (level > 1)
1388                         audit_mappings_page(vcpu, ent, va, level - 1);
1389                 else {
1390                         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1391                         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1392
1393                         if ((ent & PT_PRESENT_MASK)
1394                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
1395                                 printk(KERN_ERR "audit error: (%s) levels %d"
1396                                        " gva %lx gpa %llx hpa %llx ent %llx\n",
1397                                        audit_msg, vcpu->mmu.root_level,
1398                                        va, gpa, hpa, ent);
1399                 }
1400         }
1401 }
1402
1403 static void audit_mappings(struct kvm_vcpu *vcpu)
1404 {
1405         unsigned i;
1406
1407         if (vcpu->mmu.root_level == 4)
1408                 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1409         else
1410                 for (i = 0; i < 4; ++i)
1411                         if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1412                                 audit_mappings_page(vcpu,
1413                                                     vcpu->mmu.pae_root[i],
1414                                                     i << 30,
1415                                                     2);
1416 }
1417
1418 static int count_rmaps(struct kvm_vcpu *vcpu)
1419 {
1420         int nmaps = 0;
1421         int i, j, k;
1422
1423         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1424                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1425                 struct kvm_rmap_desc *d;
1426
1427                 for (j = 0; j < m->npages; ++j) {
1428                         struct page *page = m->phys_mem[j];
1429
1430                         if (!page->private)
1431                                 continue;
1432                         if (!(page->private & 1)) {
1433                                 ++nmaps;
1434                                 continue;
1435                         }
1436                         d = (struct kvm_rmap_desc *)(page->private & ~1ul);
1437                         while (d) {
1438                                 for (k = 0; k < RMAP_EXT; ++k)
1439                                         if (d->shadow_ptes[k])
1440                                                 ++nmaps;
1441                                         else
1442                                                 break;
1443                                 d = d->more;
1444                         }
1445                 }
1446         }
1447         return nmaps;
1448 }
1449
1450 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1451 {
1452         int nmaps = 0;
1453         struct kvm_mmu_page *page;
1454         int i;
1455
1456         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1457                 u64 *pt = page->spt;
1458
1459                 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1460                         continue;
1461
1462                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1463                         u64 ent = pt[i];
1464
1465                         if (!(ent & PT_PRESENT_MASK))
1466                                 continue;
1467                         if (!(ent & PT_WRITABLE_MASK))
1468                                 continue;
1469                         ++nmaps;
1470                 }
1471         }
1472         return nmaps;
1473 }
1474
1475 static void audit_rmap(struct kvm_vcpu *vcpu)
1476 {
1477         int n_rmap = count_rmaps(vcpu);
1478         int n_actual = count_writable_mappings(vcpu);
1479
1480         if (n_rmap != n_actual)
1481                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1482                        __FUNCTION__, audit_msg, n_rmap, n_actual);
1483 }
1484
1485 static void audit_write_protection(struct kvm_vcpu *vcpu)
1486 {
1487         struct kvm_mmu_page *page;
1488
1489         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1490                 hfn_t hfn;
1491                 struct page *pg;
1492
1493                 if (page->role.metaphysical)
1494                         continue;
1495
1496                 hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
1497                         >> PAGE_SHIFT;
1498                 pg = pfn_to_page(hfn);
1499                 if (pg->private)
1500                         printk(KERN_ERR "%s: (%s) shadow page has writable"
1501                                " mappings: gfn %lx role %x\n",
1502                                __FUNCTION__, audit_msg, page->gfn,
1503                                page->role.word);
1504         }
1505 }
1506
1507 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1508 {
1509         int olddbg = dbg;
1510
1511         dbg = 0;
1512         audit_msg = msg;
1513         audit_rmap(vcpu);
1514         audit_write_protection(vcpu);
1515         audit_mappings(vcpu);
1516         dbg = olddbg;
1517 }
1518
1519 #endif