]> err.no Git - linux-2.6/blob - drivers/kvm/mmu.c
[PATCH] KVM: MMU: Ensure freed shadow pages are clean
[linux-2.6] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19 #include <linux/types.h>
20 #include <linux/string.h>
21 #include <asm/page.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/module.h>
25
26 #include "vmx.h"
27 #include "kvm.h"
28
29 #define pgprintk(x...) do { printk(x); } while (0)
30 #define rmap_printk(x...) do { printk(x); } while (0)
31
32 #define ASSERT(x)                                                       \
33         if (!(x)) {                                                     \
34                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
35                        __FILE__, __LINE__, #x);                         \
36         }
37
38 #define PT64_PT_BITS 9
39 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
40 #define PT32_PT_BITS 10
41 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
42
43 #define PT_WRITABLE_SHIFT 1
44
45 #define PT_PRESENT_MASK (1ULL << 0)
46 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
47 #define PT_USER_MASK (1ULL << 2)
48 #define PT_PWT_MASK (1ULL << 3)
49 #define PT_PCD_MASK (1ULL << 4)
50 #define PT_ACCESSED_MASK (1ULL << 5)
51 #define PT_DIRTY_MASK (1ULL << 6)
52 #define PT_PAGE_SIZE_MASK (1ULL << 7)
53 #define PT_PAT_MASK (1ULL << 7)
54 #define PT_GLOBAL_MASK (1ULL << 8)
55 #define PT64_NX_MASK (1ULL << 63)
56
57 #define PT_PAT_SHIFT 7
58 #define PT_DIR_PAT_SHIFT 12
59 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
60
61 #define PT32_DIR_PSE36_SIZE 4
62 #define PT32_DIR_PSE36_SHIFT 13
63 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
64
65
66 #define PT32_PTE_COPY_MASK \
67         (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
68
69 #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
70
71 #define PT_FIRST_AVAIL_BITS_SHIFT 9
72 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
73
74 #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
75 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
76
77 #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
78 #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
79
80 #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
81 #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
82
83 #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
84
85 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
86
87 #define PT64_LEVEL_BITS 9
88
89 #define PT64_LEVEL_SHIFT(level) \
90                 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
91
92 #define PT64_LEVEL_MASK(level) \
93                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
94
95 #define PT64_INDEX(address, level)\
96         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99 #define PT32_LEVEL_BITS 10
100
101 #define PT32_LEVEL_SHIFT(level) \
102                 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
103
104 #define PT32_LEVEL_MASK(level) \
105                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
106
107 #define PT32_INDEX(address, level)\
108         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
109
110
111 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK)
112 #define PT64_DIR_BASE_ADDR_MASK \
113         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
114
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118
119
120 #define PFERR_PRESENT_MASK (1U << 0)
121 #define PFERR_WRITE_MASK (1U << 1)
122 #define PFERR_USER_MASK (1U << 2)
123
124 #define PT64_ROOT_LEVEL 4
125 #define PT32_ROOT_LEVEL 2
126 #define PT32E_ROOT_LEVEL 3
127
128 #define PT_DIRECTORY_LEVEL 2
129 #define PT_PAGE_TABLE_LEVEL 1
130
131 #define RMAP_EXT 4
132
133 struct kvm_rmap_desc {
134         u64 *shadow_ptes[RMAP_EXT];
135         struct kvm_rmap_desc *more;
136 };
137
138 static int is_write_protection(struct kvm_vcpu *vcpu)
139 {
140         return vcpu->cr0 & CR0_WP_MASK;
141 }
142
143 static int is_cpuid_PSE36(void)
144 {
145         return 1;
146 }
147
148 static int is_present_pte(unsigned long pte)
149 {
150         return pte & PT_PRESENT_MASK;
151 }
152
153 static int is_writeble_pte(unsigned long pte)
154 {
155         return pte & PT_WRITABLE_MASK;
156 }
157
158 static int is_io_pte(unsigned long pte)
159 {
160         return pte & PT_SHADOW_IO_MARK;
161 }
162
163 static int is_rmap_pte(u64 pte)
164 {
165         return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
166                 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
167 }
168
169 /*
170  * Reverse mapping data structures:
171  *
172  * If page->private bit zero is zero, then page->private points to the
173  * shadow page table entry that points to page_address(page).
174  *
175  * If page->private bit zero is one, (then page->private & ~1) points
176  * to a struct kvm_rmap_desc containing more mappings.
177  */
178 static void rmap_add(struct kvm *kvm, u64 *spte)
179 {
180         struct page *page;
181         struct kvm_rmap_desc *desc;
182         int i;
183
184         if (!is_rmap_pte(*spte))
185                 return;
186         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
187         if (!page->private) {
188                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
189                 page->private = (unsigned long)spte;
190         } else if (!(page->private & 1)) {
191                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
192                 desc = kzalloc(sizeof *desc, GFP_NOWAIT);
193                 if (!desc)
194                         BUG(); /* FIXME: return error */
195                 desc->shadow_ptes[0] = (u64 *)page->private;
196                 desc->shadow_ptes[1] = spte;
197                 page->private = (unsigned long)desc | 1;
198         } else {
199                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
200                 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
201                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
202                         desc = desc->more;
203                 if (desc->shadow_ptes[RMAP_EXT-1]) {
204                         desc->more = kzalloc(sizeof *desc->more, GFP_NOWAIT);
205                         if (!desc->more)
206                                 BUG(); /* FIXME: return error */
207                         desc = desc->more;
208                 }
209                 for (i = 0; desc->shadow_ptes[i]; ++i)
210                         ;
211                 desc->shadow_ptes[i] = spte;
212         }
213 }
214
215 static void rmap_desc_remove_entry(struct page *page,
216                                    struct kvm_rmap_desc *desc,
217                                    int i,
218                                    struct kvm_rmap_desc *prev_desc)
219 {
220         int j;
221
222         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
223                 ;
224         desc->shadow_ptes[i] = desc->shadow_ptes[j];
225         desc->shadow_ptes[j] = 0;
226         if (j != 0)
227                 return;
228         if (!prev_desc && !desc->more)
229                 page->private = (unsigned long)desc->shadow_ptes[0];
230         else
231                 if (prev_desc)
232                         prev_desc->more = desc->more;
233                 else
234                         page->private = (unsigned long)desc->more | 1;
235         kfree(desc);
236 }
237
238 static void rmap_remove(struct kvm *kvm, u64 *spte)
239 {
240         struct page *page;
241         struct kvm_rmap_desc *desc;
242         struct kvm_rmap_desc *prev_desc;
243         int i;
244
245         if (!is_rmap_pte(*spte))
246                 return;
247         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
248         if (!page->private) {
249                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
250                 BUG();
251         } else if (!(page->private & 1)) {
252                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
253                 if ((u64 *)page->private != spte) {
254                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
255                                spte, *spte);
256                         BUG();
257                 }
258                 page->private = 0;
259         } else {
260                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
261                 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
262                 prev_desc = NULL;
263                 while (desc) {
264                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
265                                 if (desc->shadow_ptes[i] == spte) {
266                                         rmap_desc_remove_entry(page, desc, i,
267                                                                prev_desc);
268                                         return;
269                                 }
270                         prev_desc = desc;
271                         desc = desc->more;
272                 }
273                 BUG();
274         }
275 }
276
277 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
278 {
279         struct page *page;
280         struct kvm_memory_slot *slot;
281         struct kvm_rmap_desc *desc;
282         u64 *spte;
283
284         slot = gfn_to_memslot(kvm, gfn);
285         BUG_ON(!slot);
286         page = gfn_to_page(slot, gfn);
287
288         while (page->private) {
289                 if (!(page->private & 1))
290                         spte = (u64 *)page->private;
291                 else {
292                         desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
293                         spte = desc->shadow_ptes[0];
294                 }
295                 BUG_ON(!spte);
296                 BUG_ON((*spte & PT64_BASE_ADDR_MASK) !=
297                        page_to_pfn(page) << PAGE_SHIFT);
298                 BUG_ON(!(*spte & PT_PRESENT_MASK));
299                 BUG_ON(!(*spte & PT_WRITABLE_MASK));
300                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
301                 rmap_remove(kvm, spte);
302                 *spte &= ~(u64)PT_WRITABLE_MASK;
303         }
304 }
305
306 static int is_empty_shadow_page(hpa_t page_hpa)
307 {
308         u32 *pos;
309         u32 *end;
310         for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u32);
311                       pos != end; pos++)
312                 if (*pos != 0)
313                         return 0;
314         return 1;
315 }
316
317 static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
318 {
319         struct kvm_mmu_page *page_head = page_header(page_hpa);
320
321         ASSERT(is_empty_shadow_page(page_hpa));
322         list_del(&page_head->link);
323         page_head->page_hpa = page_hpa;
324         list_add(&page_head->link, &vcpu->free_pages);
325         ++vcpu->kvm->n_free_mmu_pages;
326 }
327
328 static unsigned kvm_page_table_hashfn(gfn_t gfn)
329 {
330         return gfn;
331 }
332
333 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
334                                                u64 *parent_pte)
335 {
336         struct kvm_mmu_page *page;
337
338         if (list_empty(&vcpu->free_pages))
339                 return NULL;
340
341         page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
342         list_del(&page->link);
343         list_add(&page->link, &vcpu->kvm->active_mmu_pages);
344         ASSERT(is_empty_shadow_page(page->page_hpa));
345         page->slot_bitmap = 0;
346         page->global = 1;
347         page->multimapped = 0;
348         page->parent_pte = parent_pte;
349         --vcpu->kvm->n_free_mmu_pages;
350         return page;
351 }
352
353 static void mmu_page_add_parent_pte(struct kvm_mmu_page *page, u64 *parent_pte)
354 {
355         struct kvm_pte_chain *pte_chain;
356         struct hlist_node *node;
357         int i;
358
359         if (!parent_pte)
360                 return;
361         if (!page->multimapped) {
362                 u64 *old = page->parent_pte;
363
364                 if (!old) {
365                         page->parent_pte = parent_pte;
366                         return;
367                 }
368                 page->multimapped = 1;
369                 pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
370                 BUG_ON(!pte_chain);
371                 INIT_HLIST_HEAD(&page->parent_ptes);
372                 hlist_add_head(&pte_chain->link, &page->parent_ptes);
373                 pte_chain->parent_ptes[0] = old;
374         }
375         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
376                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
377                         continue;
378                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
379                         if (!pte_chain->parent_ptes[i]) {
380                                 pte_chain->parent_ptes[i] = parent_pte;
381                                 return;
382                         }
383         }
384         pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
385         BUG_ON(!pte_chain);
386         hlist_add_head(&pte_chain->link, &page->parent_ptes);
387         pte_chain->parent_ptes[0] = parent_pte;
388 }
389
390 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
391                                        u64 *parent_pte)
392 {
393         struct kvm_pte_chain *pte_chain;
394         struct hlist_node *node;
395         int i;
396
397         if (!page->multimapped) {
398                 BUG_ON(page->parent_pte != parent_pte);
399                 page->parent_pte = NULL;
400                 return;
401         }
402         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
403                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
404                         if (!pte_chain->parent_ptes[i])
405                                 break;
406                         if (pte_chain->parent_ptes[i] != parent_pte)
407                                 continue;
408                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
409                                 && pte_chain->parent_ptes[i + 1]) {
410                                 pte_chain->parent_ptes[i]
411                                         = pte_chain->parent_ptes[i + 1];
412                                 ++i;
413                         }
414                         pte_chain->parent_ptes[i] = NULL;
415                         if (i == 0) {
416                                 hlist_del(&pte_chain->link);
417                                 kfree(pte_chain);
418                                 if (hlist_empty(&page->parent_ptes)) {
419                                         page->multimapped = 0;
420                                         page->parent_pte = NULL;
421                                 }
422                         }
423                         return;
424                 }
425         BUG();
426 }
427
428 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
429                                                 gfn_t gfn)
430 {
431         unsigned index;
432         struct hlist_head *bucket;
433         struct kvm_mmu_page *page;
434         struct hlist_node *node;
435
436         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
437         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
438         bucket = &vcpu->kvm->mmu_page_hash[index];
439         hlist_for_each_entry(page, node, bucket, hash_link)
440                 if (page->gfn == gfn && !page->role.metaphysical) {
441                         pgprintk("%s: found role %x\n",
442                                  __FUNCTION__, page->role.word);
443                         return page;
444                 }
445         return NULL;
446 }
447
448 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
449                                              gfn_t gfn,
450                                              gva_t gaddr,
451                                              unsigned level,
452                                              int metaphysical,
453                                              u64 *parent_pte)
454 {
455         union kvm_mmu_page_role role;
456         unsigned index;
457         unsigned quadrant;
458         struct hlist_head *bucket;
459         struct kvm_mmu_page *page;
460         struct hlist_node *node;
461
462         role.word = 0;
463         role.glevels = vcpu->mmu.root_level;
464         role.level = level;
465         role.metaphysical = metaphysical;
466         if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
467                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
468                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
469                 role.quadrant = quadrant;
470         }
471         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
472                  gfn, role.word);
473         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
474         bucket = &vcpu->kvm->mmu_page_hash[index];
475         hlist_for_each_entry(page, node, bucket, hash_link)
476                 if (page->gfn == gfn && page->role.word == role.word) {
477                         mmu_page_add_parent_pte(page, parent_pte);
478                         pgprintk("%s: found\n", __FUNCTION__);
479                         return page;
480                 }
481         page = kvm_mmu_alloc_page(vcpu, parent_pte);
482         if (!page)
483                 return page;
484         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
485         page->gfn = gfn;
486         page->role = role;
487         hlist_add_head(&page->hash_link, bucket);
488         if (!metaphysical)
489                 rmap_write_protect(vcpu->kvm, gfn);
490         return page;
491 }
492
493 static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
494                                          struct kvm_mmu_page *page)
495 {
496         unsigned i;
497         u64 *pt;
498         u64 ent;
499
500         pt = __va(page->page_hpa);
501
502         if (page->role.level == PT_PAGE_TABLE_LEVEL) {
503                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
504                         if (pt[i] & PT_PRESENT_MASK)
505                                 rmap_remove(vcpu->kvm, &pt[i]);
506                         pt[i] = 0;
507                 }
508                 return;
509         }
510
511         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
512                 ent = pt[i];
513
514                 pt[i] = 0;
515                 if (!(ent & PT_PRESENT_MASK))
516                         continue;
517                 ent &= PT64_BASE_ADDR_MASK;
518                 mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
519         }
520 }
521
522 static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
523                              struct kvm_mmu_page *page,
524                              u64 *parent_pte)
525 {
526         mmu_page_remove_parent_pte(page, parent_pte);
527 }
528
529 static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
530                              struct kvm_mmu_page *page)
531 {
532         u64 *parent_pte;
533
534         while (page->multimapped || page->parent_pte) {
535                 if (!page->multimapped)
536                         parent_pte = page->parent_pte;
537                 else {
538                         struct kvm_pte_chain *chain;
539
540                         chain = container_of(page->parent_ptes.first,
541                                              struct kvm_pte_chain, link);
542                         parent_pte = chain->parent_ptes[0];
543                 }
544                 BUG_ON(!parent_pte);
545                 kvm_mmu_put_page(vcpu, page, parent_pte);
546                 *parent_pte = 0;
547         }
548         kvm_mmu_page_unlink_children(vcpu, page);
549         hlist_del(&page->hash_link);
550         kvm_mmu_free_page(vcpu, page->page_hpa);
551 }
552
553 static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
554 {
555         unsigned index;
556         struct hlist_head *bucket;
557         struct kvm_mmu_page *page;
558         struct hlist_node *node, *n;
559         int r;
560
561         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
562         r = 0;
563         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
564         bucket = &vcpu->kvm->mmu_page_hash[index];
565         hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
566                 if (page->gfn == gfn && !page->role.metaphysical) {
567                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
568                                  page->role.word);
569                         kvm_mmu_zap_page(vcpu, page);
570                         r = 1;
571                 }
572         return r;
573 }
574
575 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
576 {
577         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
578         struct kvm_mmu_page *page_head = page_header(__pa(pte));
579
580         __set_bit(slot, &page_head->slot_bitmap);
581 }
582
583 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
584 {
585         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
586
587         return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
588 }
589
590 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
591 {
592         struct kvm_memory_slot *slot;
593         struct page *page;
594
595         ASSERT((gpa & HPA_ERR_MASK) == 0);
596         slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
597         if (!slot)
598                 return gpa | HPA_ERR_MASK;
599         page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
600         return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
601                 | (gpa & (PAGE_SIZE-1));
602 }
603
604 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
605 {
606         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
607
608         if (gpa == UNMAPPED_GVA)
609                 return UNMAPPED_GVA;
610         return gpa_to_hpa(vcpu, gpa);
611 }
612
613 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
614 {
615 }
616
617 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
618 {
619         int level = PT32E_ROOT_LEVEL;
620         hpa_t table_addr = vcpu->mmu.root_hpa;
621
622         for (; ; level--) {
623                 u32 index = PT64_INDEX(v, level);
624                 u64 *table;
625                 u64 pte;
626
627                 ASSERT(VALID_PAGE(table_addr));
628                 table = __va(table_addr);
629
630                 if (level == 1) {
631                         pte = table[index];
632                         if (is_present_pte(pte) && is_writeble_pte(pte))
633                                 return 0;
634                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
635                         page_header_update_slot(vcpu->kvm, table, v);
636                         table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
637                                                                 PT_USER_MASK;
638                         rmap_add(vcpu->kvm, &table[index]);
639                         return 0;
640                 }
641
642                 if (table[index] == 0) {
643                         struct kvm_mmu_page *new_table;
644                         gfn_t pseudo_gfn;
645
646                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
647                                 >> PAGE_SHIFT;
648                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
649                                                      v, level - 1,
650                                                      1, &table[index]);
651                         if (!new_table) {
652                                 pgprintk("nonpaging_map: ENOMEM\n");
653                                 return -ENOMEM;
654                         }
655
656                         table[index] = new_table->page_hpa | PT_PRESENT_MASK
657                                 | PT_WRITABLE_MASK | PT_USER_MASK;
658                 }
659                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
660         }
661 }
662
663 static void mmu_free_roots(struct kvm_vcpu *vcpu)
664 {
665         int i;
666
667 #ifdef CONFIG_X86_64
668         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
669                 hpa_t root = vcpu->mmu.root_hpa;
670
671                 ASSERT(VALID_PAGE(root));
672                 vcpu->mmu.root_hpa = INVALID_PAGE;
673                 return;
674         }
675 #endif
676         for (i = 0; i < 4; ++i) {
677                 hpa_t root = vcpu->mmu.pae_root[i];
678
679                 ASSERT(VALID_PAGE(root));
680                 root &= PT64_BASE_ADDR_MASK;
681                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
682         }
683         vcpu->mmu.root_hpa = INVALID_PAGE;
684 }
685
686 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
687 {
688         int i;
689         gfn_t root_gfn;
690         root_gfn = vcpu->cr3 >> PAGE_SHIFT;
691
692 #ifdef CONFIG_X86_64
693         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
694                 hpa_t root = vcpu->mmu.root_hpa;
695
696                 ASSERT(!VALID_PAGE(root));
697                 root = kvm_mmu_get_page(vcpu, root_gfn, 0,
698                                         PT64_ROOT_LEVEL, 0, NULL)->page_hpa;
699                 vcpu->mmu.root_hpa = root;
700                 return;
701         }
702 #endif
703         for (i = 0; i < 4; ++i) {
704                 hpa_t root = vcpu->mmu.pae_root[i];
705
706                 ASSERT(!VALID_PAGE(root));
707                 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL)
708                         root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
709                 else if (vcpu->mmu.root_level == 0)
710                         root_gfn = 0;
711                 root = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
712                                         PT32_ROOT_LEVEL, !is_paging(vcpu),
713                                         NULL)->page_hpa;
714                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
715         }
716         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
717 }
718
719 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
720 {
721         return vaddr;
722 }
723
724 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
725                                u32 error_code)
726 {
727         gpa_t addr = gva;
728         hpa_t paddr;
729
730         ASSERT(vcpu);
731         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
732
733
734         paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
735
736         if (is_error_hpa(paddr))
737                 return 1;
738
739         return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
740 }
741
742 static void nonpaging_free(struct kvm_vcpu *vcpu)
743 {
744         mmu_free_roots(vcpu);
745 }
746
747 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
748 {
749         struct kvm_mmu *context = &vcpu->mmu;
750
751         context->new_cr3 = nonpaging_new_cr3;
752         context->page_fault = nonpaging_page_fault;
753         context->gva_to_gpa = nonpaging_gva_to_gpa;
754         context->free = nonpaging_free;
755         context->root_level = 0;
756         context->shadow_root_level = PT32E_ROOT_LEVEL;
757         mmu_alloc_roots(vcpu);
758         ASSERT(VALID_PAGE(context->root_hpa));
759         kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
760         return 0;
761 }
762
763 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
764 {
765         ++kvm_stat.tlb_flush;
766         kvm_arch_ops->tlb_flush(vcpu);
767 }
768
769 static void paging_new_cr3(struct kvm_vcpu *vcpu)
770 {
771         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
772         mmu_free_roots(vcpu);
773         mmu_alloc_roots(vcpu);
774         kvm_mmu_flush_tlb(vcpu);
775         kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
776 }
777
778 static void mark_pagetable_nonglobal(void *shadow_pte)
779 {
780         page_header(__pa(shadow_pte))->global = 0;
781 }
782
783 static inline void set_pte_common(struct kvm_vcpu *vcpu,
784                              u64 *shadow_pte,
785                              gpa_t gaddr,
786                              int dirty,
787                              u64 access_bits,
788                              gfn_t gfn)
789 {
790         hpa_t paddr;
791
792         *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
793         if (!dirty)
794                 access_bits &= ~PT_WRITABLE_MASK;
795
796         paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
797
798         *shadow_pte |= access_bits;
799
800         if (!(*shadow_pte & PT_GLOBAL_MASK))
801                 mark_pagetable_nonglobal(shadow_pte);
802
803         if (is_error_hpa(paddr)) {
804                 *shadow_pte |= gaddr;
805                 *shadow_pte |= PT_SHADOW_IO_MARK;
806                 *shadow_pte &= ~PT_PRESENT_MASK;
807                 return;
808         }
809
810         *shadow_pte |= paddr;
811
812         if (access_bits & PT_WRITABLE_MASK) {
813                 struct kvm_mmu_page *shadow;
814
815                 shadow = kvm_mmu_lookup_page(vcpu, gfn);
816                 if (shadow) {
817                         pgprintk("%s: found shadow page for %lx, marking ro\n",
818                                  __FUNCTION__, gfn);
819                         access_bits &= ~PT_WRITABLE_MASK;
820                         *shadow_pte &= ~PT_WRITABLE_MASK;
821                 }
822         }
823
824         if (access_bits & PT_WRITABLE_MASK)
825                 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
826
827         page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
828         rmap_add(vcpu->kvm, shadow_pte);
829 }
830
831 static void inject_page_fault(struct kvm_vcpu *vcpu,
832                               u64 addr,
833                               u32 err_code)
834 {
835         kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
836 }
837
838 static inline int fix_read_pf(u64 *shadow_ent)
839 {
840         if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
841             !(*shadow_ent & PT_USER_MASK)) {
842                 /*
843                  * If supervisor write protect is disabled, we shadow kernel
844                  * pages as user pages so we can trap the write access.
845                  */
846                 *shadow_ent |= PT_USER_MASK;
847                 *shadow_ent &= ~PT_WRITABLE_MASK;
848
849                 return 1;
850
851         }
852         return 0;
853 }
854
855 static int may_access(u64 pte, int write, int user)
856 {
857
858         if (user && !(pte & PT_USER_MASK))
859                 return 0;
860         if (write && !(pte & PT_WRITABLE_MASK))
861                 return 0;
862         return 1;
863 }
864
865 static void paging_free(struct kvm_vcpu *vcpu)
866 {
867         nonpaging_free(vcpu);
868 }
869
870 #define PTTYPE 64
871 #include "paging_tmpl.h"
872 #undef PTTYPE
873
874 #define PTTYPE 32
875 #include "paging_tmpl.h"
876 #undef PTTYPE
877
878 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
879 {
880         struct kvm_mmu *context = &vcpu->mmu;
881
882         ASSERT(is_pae(vcpu));
883         context->new_cr3 = paging_new_cr3;
884         context->page_fault = paging64_page_fault;
885         context->gva_to_gpa = paging64_gva_to_gpa;
886         context->free = paging_free;
887         context->root_level = level;
888         context->shadow_root_level = level;
889         mmu_alloc_roots(vcpu);
890         ASSERT(VALID_PAGE(context->root_hpa));
891         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
892                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
893         return 0;
894 }
895
896 static int paging64_init_context(struct kvm_vcpu *vcpu)
897 {
898         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
899 }
900
901 static int paging32_init_context(struct kvm_vcpu *vcpu)
902 {
903         struct kvm_mmu *context = &vcpu->mmu;
904
905         context->new_cr3 = paging_new_cr3;
906         context->page_fault = paging32_page_fault;
907         context->gva_to_gpa = paging32_gva_to_gpa;
908         context->free = paging_free;
909         context->root_level = PT32_ROOT_LEVEL;
910         context->shadow_root_level = PT32E_ROOT_LEVEL;
911         mmu_alloc_roots(vcpu);
912         ASSERT(VALID_PAGE(context->root_hpa));
913         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
914                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
915         return 0;
916 }
917
918 static int paging32E_init_context(struct kvm_vcpu *vcpu)
919 {
920         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
921 }
922
923 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
924 {
925         ASSERT(vcpu);
926         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
927
928         if (!is_paging(vcpu))
929                 return nonpaging_init_context(vcpu);
930         else if (is_long_mode(vcpu))
931                 return paging64_init_context(vcpu);
932         else if (is_pae(vcpu))
933                 return paging32E_init_context(vcpu);
934         else
935                 return paging32_init_context(vcpu);
936 }
937
938 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
939 {
940         ASSERT(vcpu);
941         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
942                 vcpu->mmu.free(vcpu);
943                 vcpu->mmu.root_hpa = INVALID_PAGE;
944         }
945 }
946
947 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
948 {
949         destroy_kvm_mmu(vcpu);
950         return init_kvm_mmu(vcpu);
951 }
952
953 void kvm_mmu_pre_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
954 {
955         gfn_t gfn = gpa >> PAGE_SHIFT;
956         struct kvm_mmu_page *page;
957         struct kvm_mmu_page *child;
958         struct hlist_node *node, *n;
959         struct hlist_head *bucket;
960         unsigned index;
961         u64 *spte;
962         u64 pte;
963         unsigned offset = offset_in_page(gpa);
964         unsigned pte_size;
965         unsigned page_offset;
966         unsigned misaligned;
967         int level;
968
969         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
970         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
971         bucket = &vcpu->kvm->mmu_page_hash[index];
972         hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
973                 if (page->gfn != gfn || page->role.metaphysical)
974                         continue;
975                 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
976                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
977                 if (misaligned) {
978                         /*
979                          * Misaligned accesses are too much trouble to fix
980                          * up; also, they usually indicate a page is not used
981                          * as a page table.
982                          */
983                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
984                                  gpa, bytes, page->role.word);
985                         kvm_mmu_zap_page(vcpu, page);
986                         continue;
987                 }
988                 page_offset = offset;
989                 level = page->role.level;
990                 if (page->role.glevels == PT32_ROOT_LEVEL) {
991                         page_offset <<= 1;          /* 32->64 */
992                         page_offset &= ~PAGE_MASK;
993                 }
994                 spte = __va(page->page_hpa);
995                 spte += page_offset / sizeof(*spte);
996                 pte = *spte;
997                 if (is_present_pte(pte)) {
998                         if (level == PT_PAGE_TABLE_LEVEL)
999                                 rmap_remove(vcpu->kvm, spte);
1000                         else {
1001                                 child = page_header(pte & PT64_BASE_ADDR_MASK);
1002                                 mmu_page_remove_parent_pte(child, spte);
1003                         }
1004                 }
1005                 *spte = 0;
1006         }
1007 }
1008
1009 void kvm_mmu_post_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1010 {
1011 }
1012
1013 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1014 {
1015         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1016
1017         return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1018 }
1019
1020 void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1021 {
1022         while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1023                 struct kvm_mmu_page *page;
1024
1025                 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1026                                     struct kvm_mmu_page, link);
1027                 kvm_mmu_zap_page(vcpu, page);
1028         }
1029 }
1030 EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
1031
1032 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1033 {
1034         while (!list_empty(&vcpu->free_pages)) {
1035                 struct kvm_mmu_page *page;
1036
1037                 page = list_entry(vcpu->free_pages.next,
1038                                   struct kvm_mmu_page, link);
1039                 list_del(&page->link);
1040                 __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
1041                 page->page_hpa = INVALID_PAGE;
1042         }
1043         free_page((unsigned long)vcpu->mmu.pae_root);
1044 }
1045
1046 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1047 {
1048         struct page *page;
1049         int i;
1050
1051         ASSERT(vcpu);
1052
1053         for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
1054                 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
1055
1056                 INIT_LIST_HEAD(&page_header->link);
1057                 if ((page = alloc_page(GFP_KERNEL)) == NULL)
1058                         goto error_1;
1059                 page->private = (unsigned long)page_header;
1060                 page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
1061                 memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
1062                 list_add(&page_header->link, &vcpu->free_pages);
1063                 ++vcpu->kvm->n_free_mmu_pages;
1064         }
1065
1066         /*
1067          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1068          * Therefore we need to allocate shadow page tables in the first
1069          * 4GB of memory, which happens to fit the DMA32 zone.
1070          */
1071         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1072         if (!page)
1073                 goto error_1;
1074         vcpu->mmu.pae_root = page_address(page);
1075         for (i = 0; i < 4; ++i)
1076                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1077
1078         return 0;
1079
1080 error_1:
1081         free_mmu_pages(vcpu);
1082         return -ENOMEM;
1083 }
1084
1085 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1086 {
1087         ASSERT(vcpu);
1088         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1089         ASSERT(list_empty(&vcpu->free_pages));
1090
1091         return alloc_mmu_pages(vcpu);
1092 }
1093
1094 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1095 {
1096         ASSERT(vcpu);
1097         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1098         ASSERT(!list_empty(&vcpu->free_pages));
1099
1100         return init_kvm_mmu(vcpu);
1101 }
1102
1103 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1104 {
1105         ASSERT(vcpu);
1106
1107         destroy_kvm_mmu(vcpu);
1108         free_mmu_pages(vcpu);
1109 }
1110
1111 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1112 {
1113         struct kvm_mmu_page *page;
1114
1115         list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1116                 int i;
1117                 u64 *pt;
1118
1119                 if (!test_bit(slot, &page->slot_bitmap))
1120                         continue;
1121
1122                 pt = __va(page->page_hpa);
1123                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1124                         /* avoid RMW */
1125                         if (pt[i] & PT_WRITABLE_MASK) {
1126                                 rmap_remove(kvm, &pt[i]);
1127                                 pt[i] &= ~PT_WRITABLE_MASK;
1128                         }
1129         }
1130 }