]> err.no Git - linux-2.6/blob - drivers/kvm/kvm_main.c
[PATCH] KVM: MMU: If emulating an instruction fails, try unprotecting the page
[linux-2.6] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <asm/processor.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <asm/msr.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <asm/uaccess.h>
31 #include <linux/reboot.h>
32 #include <asm/io.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
36 #include <asm/desc.h>
37
38 #include "x86_emulate.h"
39 #include "segment_descriptor.h"
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 struct kvm_arch_ops *kvm_arch_ops;
45 struct kvm_stat kvm_stat;
46 EXPORT_SYMBOL_GPL(kvm_stat);
47
48 static struct kvm_stats_debugfs_item {
49         const char *name;
50         u32 *data;
51         struct dentry *dentry;
52 } debugfs_entries[] = {
53         { "pf_fixed", &kvm_stat.pf_fixed },
54         { "pf_guest", &kvm_stat.pf_guest },
55         { "tlb_flush", &kvm_stat.tlb_flush },
56         { "invlpg", &kvm_stat.invlpg },
57         { "exits", &kvm_stat.exits },
58         { "io_exits", &kvm_stat.io_exits },
59         { "mmio_exits", &kvm_stat.mmio_exits },
60         { "signal_exits", &kvm_stat.signal_exits },
61         { "irq_window", &kvm_stat.irq_window_exits },
62         { "halt_exits", &kvm_stat.halt_exits },
63         { "request_irq", &kvm_stat.request_irq_exits },
64         { "irq_exits", &kvm_stat.irq_exits },
65         { 0, 0 }
66 };
67
68 static struct dentry *debugfs_dir;
69
70 #define MAX_IO_MSRS 256
71
72 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
73 #define LMSW_GUEST_MASK 0x0eULL
74 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
75 #define CR8_RESEVED_BITS (~0x0fULL)
76 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
77
78 #ifdef CONFIG_X86_64
79 // LDT or TSS descriptor in the GDT. 16 bytes.
80 struct segment_descriptor_64 {
81         struct segment_descriptor s;
82         u32 base_higher;
83         u32 pad_zero;
84 };
85
86 #endif
87
88 unsigned long segment_base(u16 selector)
89 {
90         struct descriptor_table gdt;
91         struct segment_descriptor *d;
92         unsigned long table_base;
93         typedef unsigned long ul;
94         unsigned long v;
95
96         if (selector == 0)
97                 return 0;
98
99         asm ("sgdt %0" : "=m"(gdt));
100         table_base = gdt.base;
101
102         if (selector & 4) {           /* from ldt */
103                 u16 ldt_selector;
104
105                 asm ("sldt %0" : "=g"(ldt_selector));
106                 table_base = segment_base(ldt_selector);
107         }
108         d = (struct segment_descriptor *)(table_base + (selector & ~7));
109         v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
110 #ifdef CONFIG_X86_64
111         if (d->system == 0
112             && (d->type == 2 || d->type == 9 || d->type == 11))
113                 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
114 #endif
115         return v;
116 }
117 EXPORT_SYMBOL_GPL(segment_base);
118
119 static inline int valid_vcpu(int n)
120 {
121         return likely(n >= 0 && n < KVM_MAX_VCPUS);
122 }
123
124 int kvm_read_guest(struct kvm_vcpu *vcpu,
125                              gva_t addr,
126                              unsigned long size,
127                              void *dest)
128 {
129         unsigned char *host_buf = dest;
130         unsigned long req_size = size;
131
132         while (size) {
133                 hpa_t paddr;
134                 unsigned now;
135                 unsigned offset;
136                 hva_t guest_buf;
137
138                 paddr = gva_to_hpa(vcpu, addr);
139
140                 if (is_error_hpa(paddr))
141                         break;
142
143                 guest_buf = (hva_t)kmap_atomic(
144                                         pfn_to_page(paddr >> PAGE_SHIFT),
145                                         KM_USER0);
146                 offset = addr & ~PAGE_MASK;
147                 guest_buf |= offset;
148                 now = min(size, PAGE_SIZE - offset);
149                 memcpy(host_buf, (void*)guest_buf, now);
150                 host_buf += now;
151                 addr += now;
152                 size -= now;
153                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
154         }
155         return req_size - size;
156 }
157 EXPORT_SYMBOL_GPL(kvm_read_guest);
158
159 int kvm_write_guest(struct kvm_vcpu *vcpu,
160                              gva_t addr,
161                              unsigned long size,
162                              void *data)
163 {
164         unsigned char *host_buf = data;
165         unsigned long req_size = size;
166
167         while (size) {
168                 hpa_t paddr;
169                 unsigned now;
170                 unsigned offset;
171                 hva_t guest_buf;
172
173                 paddr = gva_to_hpa(vcpu, addr);
174
175                 if (is_error_hpa(paddr))
176                         break;
177
178                 guest_buf = (hva_t)kmap_atomic(
179                                 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
180                 offset = addr & ~PAGE_MASK;
181                 guest_buf |= offset;
182                 now = min(size, PAGE_SIZE - offset);
183                 memcpy((void*)guest_buf, host_buf, now);
184                 host_buf += now;
185                 addr += now;
186                 size -= now;
187                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
188         }
189         return req_size - size;
190 }
191 EXPORT_SYMBOL_GPL(kvm_write_guest);
192
193 static int vcpu_slot(struct kvm_vcpu *vcpu)
194 {
195         return vcpu - vcpu->kvm->vcpus;
196 }
197
198 /*
199  * Switches to specified vcpu, until a matching vcpu_put()
200  */
201 static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
202 {
203         struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
204
205         mutex_lock(&vcpu->mutex);
206         if (unlikely(!vcpu->vmcs)) {
207                 mutex_unlock(&vcpu->mutex);
208                 return 0;
209         }
210         return kvm_arch_ops->vcpu_load(vcpu);
211 }
212
213 static void vcpu_put(struct kvm_vcpu *vcpu)
214 {
215         kvm_arch_ops->vcpu_put(vcpu);
216         mutex_unlock(&vcpu->mutex);
217 }
218
219 static int kvm_dev_open(struct inode *inode, struct file *filp)
220 {
221         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
222         int i;
223
224         if (!kvm)
225                 return -ENOMEM;
226
227         spin_lock_init(&kvm->lock);
228         INIT_LIST_HEAD(&kvm->active_mmu_pages);
229         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
230                 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
231
232                 mutex_init(&vcpu->mutex);
233                 vcpu->mmu.root_hpa = INVALID_PAGE;
234                 INIT_LIST_HEAD(&vcpu->free_pages);
235         }
236         filp->private_data = kvm;
237         return 0;
238 }
239
240 /*
241  * Free any memory in @free but not in @dont.
242  */
243 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
244                                   struct kvm_memory_slot *dont)
245 {
246         int i;
247
248         if (!dont || free->phys_mem != dont->phys_mem)
249                 if (free->phys_mem) {
250                         for (i = 0; i < free->npages; ++i)
251                                 if (free->phys_mem[i])
252                                         __free_page(free->phys_mem[i]);
253                         vfree(free->phys_mem);
254                 }
255
256         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
257                 vfree(free->dirty_bitmap);
258
259         free->phys_mem = 0;
260         free->npages = 0;
261         free->dirty_bitmap = 0;
262 }
263
264 static void kvm_free_physmem(struct kvm *kvm)
265 {
266         int i;
267
268         for (i = 0; i < kvm->nmemslots; ++i)
269                 kvm_free_physmem_slot(&kvm->memslots[i], 0);
270 }
271
272 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
273 {
274         kvm_arch_ops->vcpu_free(vcpu);
275         kvm_mmu_destroy(vcpu);
276 }
277
278 static void kvm_free_vcpus(struct kvm *kvm)
279 {
280         unsigned int i;
281
282         for (i = 0; i < KVM_MAX_VCPUS; ++i)
283                 kvm_free_vcpu(&kvm->vcpus[i]);
284 }
285
286 static int kvm_dev_release(struct inode *inode, struct file *filp)
287 {
288         struct kvm *kvm = filp->private_data;
289
290         kvm_free_vcpus(kvm);
291         kvm_free_physmem(kvm);
292         kfree(kvm);
293         return 0;
294 }
295
296 static void inject_gp(struct kvm_vcpu *vcpu)
297 {
298         kvm_arch_ops->inject_gp(vcpu, 0);
299 }
300
301 /*
302  * Load the pae pdptrs.  Return true is they are all valid.
303  */
304 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
305 {
306         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
307         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
308         int i;
309         u64 pdpte;
310         u64 *pdpt;
311         int ret;
312         struct kvm_memory_slot *memslot;
313
314         spin_lock(&vcpu->kvm->lock);
315         memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
316         /* FIXME: !memslot - emulate? 0xff? */
317         pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
318
319         ret = 1;
320         for (i = 0; i < 4; ++i) {
321                 pdpte = pdpt[offset + i];
322                 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
323                         ret = 0;
324                         goto out;
325                 }
326         }
327
328         for (i = 0; i < 4; ++i)
329                 vcpu->pdptrs[i] = pdpt[offset + i];
330
331 out:
332         kunmap_atomic(pdpt, KM_USER0);
333         spin_unlock(&vcpu->kvm->lock);
334
335         return ret;
336 }
337
338 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
339 {
340         if (cr0 & CR0_RESEVED_BITS) {
341                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
342                        cr0, vcpu->cr0);
343                 inject_gp(vcpu);
344                 return;
345         }
346
347         if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
348                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
349                 inject_gp(vcpu);
350                 return;
351         }
352
353         if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
354                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
355                        "and a clear PE flag\n");
356                 inject_gp(vcpu);
357                 return;
358         }
359
360         if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
361 #ifdef CONFIG_X86_64
362                 if ((vcpu->shadow_efer & EFER_LME)) {
363                         int cs_db, cs_l;
364
365                         if (!is_pae(vcpu)) {
366                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
367                                        "in long mode while PAE is disabled\n");
368                                 inject_gp(vcpu);
369                                 return;
370                         }
371                         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
372                         if (cs_l) {
373                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
374                                        "in long mode while CS.L == 1\n");
375                                 inject_gp(vcpu);
376                                 return;
377
378                         }
379                 } else
380 #endif
381                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
382                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
383                                "reserved bits\n");
384                         inject_gp(vcpu);
385                         return;
386                 }
387
388         }
389
390         kvm_arch_ops->set_cr0(vcpu, cr0);
391         vcpu->cr0 = cr0;
392
393         spin_lock(&vcpu->kvm->lock);
394         kvm_mmu_reset_context(vcpu);
395         spin_unlock(&vcpu->kvm->lock);
396         return;
397 }
398 EXPORT_SYMBOL_GPL(set_cr0);
399
400 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
401 {
402         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
403         set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
404 }
405 EXPORT_SYMBOL_GPL(lmsw);
406
407 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
408 {
409         if (cr4 & CR4_RESEVED_BITS) {
410                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
411                 inject_gp(vcpu);
412                 return;
413         }
414
415         if (is_long_mode(vcpu)) {
416                 if (!(cr4 & CR4_PAE_MASK)) {
417                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
418                                "in long mode\n");
419                         inject_gp(vcpu);
420                         return;
421                 }
422         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
423                    && !load_pdptrs(vcpu, vcpu->cr3)) {
424                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
425                 inject_gp(vcpu);
426         }
427
428         if (cr4 & CR4_VMXE_MASK) {
429                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
430                 inject_gp(vcpu);
431                 return;
432         }
433         kvm_arch_ops->set_cr4(vcpu, cr4);
434         spin_lock(&vcpu->kvm->lock);
435         kvm_mmu_reset_context(vcpu);
436         spin_unlock(&vcpu->kvm->lock);
437 }
438 EXPORT_SYMBOL_GPL(set_cr4);
439
440 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
441 {
442         if (is_long_mode(vcpu)) {
443                 if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
444                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
445                         inject_gp(vcpu);
446                         return;
447                 }
448         } else {
449                 if (cr3 & CR3_RESEVED_BITS) {
450                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
451                         inject_gp(vcpu);
452                         return;
453                 }
454                 if (is_paging(vcpu) && is_pae(vcpu) &&
455                     !load_pdptrs(vcpu, cr3)) {
456                         printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
457                                "reserved bits\n");
458                         inject_gp(vcpu);
459                         return;
460                 }
461         }
462
463         vcpu->cr3 = cr3;
464         spin_lock(&vcpu->kvm->lock);
465         vcpu->mmu.new_cr3(vcpu);
466         spin_unlock(&vcpu->kvm->lock);
467 }
468 EXPORT_SYMBOL_GPL(set_cr3);
469
470 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
471 {
472         if ( cr8 & CR8_RESEVED_BITS) {
473                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
474                 inject_gp(vcpu);
475                 return;
476         }
477         vcpu->cr8 = cr8;
478 }
479 EXPORT_SYMBOL_GPL(set_cr8);
480
481 void fx_init(struct kvm_vcpu *vcpu)
482 {
483         struct __attribute__ ((__packed__)) fx_image_s {
484                 u16 control; //fcw
485                 u16 status; //fsw
486                 u16 tag; // ftw
487                 u16 opcode; //fop
488                 u64 ip; // fpu ip
489                 u64 operand;// fpu dp
490                 u32 mxcsr;
491                 u32 mxcsr_mask;
492
493         } *fx_image;
494
495         fx_save(vcpu->host_fx_image);
496         fpu_init();
497         fx_save(vcpu->guest_fx_image);
498         fx_restore(vcpu->host_fx_image);
499
500         fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
501         fx_image->mxcsr = 0x1f80;
502         memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
503                0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
504 }
505 EXPORT_SYMBOL_GPL(fx_init);
506
507 /*
508  * Creates some virtual cpus.  Good luck creating more than one.
509  */
510 static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
511 {
512         int r;
513         struct kvm_vcpu *vcpu;
514
515         r = -EINVAL;
516         if (!valid_vcpu(n))
517                 goto out;
518
519         vcpu = &kvm->vcpus[n];
520
521         mutex_lock(&vcpu->mutex);
522
523         if (vcpu->vmcs) {
524                 mutex_unlock(&vcpu->mutex);
525                 return -EEXIST;
526         }
527
528         vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
529                                            FX_IMAGE_ALIGN);
530         vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
531
532         vcpu->cpu = -1;  /* First load will set up TR */
533         vcpu->kvm = kvm;
534         r = kvm_arch_ops->vcpu_create(vcpu);
535         if (r < 0)
536                 goto out_free_vcpus;
537
538         r = kvm_mmu_create(vcpu);
539         if (r < 0)
540                 goto out_free_vcpus;
541
542         kvm_arch_ops->vcpu_load(vcpu);
543         r = kvm_mmu_setup(vcpu);
544         if (r >= 0)
545                 r = kvm_arch_ops->vcpu_setup(vcpu);
546         vcpu_put(vcpu);
547
548         if (r < 0)
549                 goto out_free_vcpus;
550
551         return 0;
552
553 out_free_vcpus:
554         kvm_free_vcpu(vcpu);
555         mutex_unlock(&vcpu->mutex);
556 out:
557         return r;
558 }
559
560 /*
561  * Allocate some memory and give it an address in the guest physical address
562  * space.
563  *
564  * Discontiguous memory is allowed, mostly for framebuffers.
565  */
566 static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
567                                            struct kvm_memory_region *mem)
568 {
569         int r;
570         gfn_t base_gfn;
571         unsigned long npages;
572         unsigned long i;
573         struct kvm_memory_slot *memslot;
574         struct kvm_memory_slot old, new;
575         int memory_config_version;
576
577         r = -EINVAL;
578         /* General sanity checks */
579         if (mem->memory_size & (PAGE_SIZE - 1))
580                 goto out;
581         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
582                 goto out;
583         if (mem->slot >= KVM_MEMORY_SLOTS)
584                 goto out;
585         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
586                 goto out;
587
588         memslot = &kvm->memslots[mem->slot];
589         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
590         npages = mem->memory_size >> PAGE_SHIFT;
591
592         if (!npages)
593                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
594
595 raced:
596         spin_lock(&kvm->lock);
597
598         memory_config_version = kvm->memory_config_version;
599         new = old = *memslot;
600
601         new.base_gfn = base_gfn;
602         new.npages = npages;
603         new.flags = mem->flags;
604
605         /* Disallow changing a memory slot's size. */
606         r = -EINVAL;
607         if (npages && old.npages && npages != old.npages)
608                 goto out_unlock;
609
610         /* Check for overlaps */
611         r = -EEXIST;
612         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
613                 struct kvm_memory_slot *s = &kvm->memslots[i];
614
615                 if (s == memslot)
616                         continue;
617                 if (!((base_gfn + npages <= s->base_gfn) ||
618                       (base_gfn >= s->base_gfn + s->npages)))
619                         goto out_unlock;
620         }
621         /*
622          * Do memory allocations outside lock.  memory_config_version will
623          * detect any races.
624          */
625         spin_unlock(&kvm->lock);
626
627         /* Deallocate if slot is being removed */
628         if (!npages)
629                 new.phys_mem = 0;
630
631         /* Free page dirty bitmap if unneeded */
632         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
633                 new.dirty_bitmap = 0;
634
635         r = -ENOMEM;
636
637         /* Allocate if a slot is being created */
638         if (npages && !new.phys_mem) {
639                 new.phys_mem = vmalloc(npages * sizeof(struct page *));
640
641                 if (!new.phys_mem)
642                         goto out_free;
643
644                 memset(new.phys_mem, 0, npages * sizeof(struct page *));
645                 for (i = 0; i < npages; ++i) {
646                         new.phys_mem[i] = alloc_page(GFP_HIGHUSER
647                                                      | __GFP_ZERO);
648                         if (!new.phys_mem[i])
649                                 goto out_free;
650                         new.phys_mem[i]->private = 0;
651                 }
652         }
653
654         /* Allocate page dirty bitmap if needed */
655         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
656                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
657
658                 new.dirty_bitmap = vmalloc(dirty_bytes);
659                 if (!new.dirty_bitmap)
660                         goto out_free;
661                 memset(new.dirty_bitmap, 0, dirty_bytes);
662         }
663
664         spin_lock(&kvm->lock);
665
666         if (memory_config_version != kvm->memory_config_version) {
667                 spin_unlock(&kvm->lock);
668                 kvm_free_physmem_slot(&new, &old);
669                 goto raced;
670         }
671
672         r = -EAGAIN;
673         if (kvm->busy)
674                 goto out_unlock;
675
676         if (mem->slot >= kvm->nmemslots)
677                 kvm->nmemslots = mem->slot + 1;
678
679         *memslot = new;
680         ++kvm->memory_config_version;
681
682         spin_unlock(&kvm->lock);
683
684         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
685                 struct kvm_vcpu *vcpu;
686
687                 vcpu = vcpu_load(kvm, i);
688                 if (!vcpu)
689                         continue;
690                 kvm_mmu_reset_context(vcpu);
691                 vcpu_put(vcpu);
692         }
693
694         kvm_free_physmem_slot(&old, &new);
695         return 0;
696
697 out_unlock:
698         spin_unlock(&kvm->lock);
699 out_free:
700         kvm_free_physmem_slot(&new, &old);
701 out:
702         return r;
703 }
704
705 /*
706  * Get (and clear) the dirty memory log for a memory slot.
707  */
708 static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
709                                        struct kvm_dirty_log *log)
710 {
711         struct kvm_memory_slot *memslot;
712         int r, i;
713         int n;
714         unsigned long any = 0;
715
716         spin_lock(&kvm->lock);
717
718         /*
719          * Prevent changes to guest memory configuration even while the lock
720          * is not taken.
721          */
722         ++kvm->busy;
723         spin_unlock(&kvm->lock);
724         r = -EINVAL;
725         if (log->slot >= KVM_MEMORY_SLOTS)
726                 goto out;
727
728         memslot = &kvm->memslots[log->slot];
729         r = -ENOENT;
730         if (!memslot->dirty_bitmap)
731                 goto out;
732
733         n = ALIGN(memslot->npages, 8) / 8;
734
735         for (i = 0; !any && i < n; ++i)
736                 any = memslot->dirty_bitmap[i];
737
738         r = -EFAULT;
739         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
740                 goto out;
741
742
743         if (any) {
744                 spin_lock(&kvm->lock);
745                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
746                 spin_unlock(&kvm->lock);
747                 memset(memslot->dirty_bitmap, 0, n);
748                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
749                         struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
750
751                         if (!vcpu)
752                                 continue;
753                         kvm_arch_ops->tlb_flush(vcpu);
754                         vcpu_put(vcpu);
755                 }
756         }
757
758         r = 0;
759
760 out:
761         spin_lock(&kvm->lock);
762         --kvm->busy;
763         spin_unlock(&kvm->lock);
764         return r;
765 }
766
767 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
768 {
769         int i;
770
771         for (i = 0; i < kvm->nmemslots; ++i) {
772                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
773
774                 if (gfn >= memslot->base_gfn
775                     && gfn < memslot->base_gfn + memslot->npages)
776                         return memslot;
777         }
778         return 0;
779 }
780 EXPORT_SYMBOL_GPL(gfn_to_memslot);
781
782 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
783 {
784         int i;
785         struct kvm_memory_slot *memslot = 0;
786         unsigned long rel_gfn;
787
788         for (i = 0; i < kvm->nmemslots; ++i) {
789                 memslot = &kvm->memslots[i];
790
791                 if (gfn >= memslot->base_gfn
792                     && gfn < memslot->base_gfn + memslot->npages) {
793
794                         if (!memslot || !memslot->dirty_bitmap)
795                                 return;
796
797                         rel_gfn = gfn - memslot->base_gfn;
798
799                         /* avoid RMW */
800                         if (!test_bit(rel_gfn, memslot->dirty_bitmap))
801                                 set_bit(rel_gfn, memslot->dirty_bitmap);
802                         return;
803                 }
804         }
805 }
806
807 static int emulator_read_std(unsigned long addr,
808                              unsigned long *val,
809                              unsigned int bytes,
810                              struct x86_emulate_ctxt *ctxt)
811 {
812         struct kvm_vcpu *vcpu = ctxt->vcpu;
813         void *data = val;
814
815         while (bytes) {
816                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
817                 unsigned offset = addr & (PAGE_SIZE-1);
818                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
819                 unsigned long pfn;
820                 struct kvm_memory_slot *memslot;
821                 void *page;
822
823                 if (gpa == UNMAPPED_GVA)
824                         return X86EMUL_PROPAGATE_FAULT;
825                 pfn = gpa >> PAGE_SHIFT;
826                 memslot = gfn_to_memslot(vcpu->kvm, pfn);
827                 if (!memslot)
828                         return X86EMUL_UNHANDLEABLE;
829                 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
830
831                 memcpy(data, page + offset, tocopy);
832
833                 kunmap_atomic(page, KM_USER0);
834
835                 bytes -= tocopy;
836                 data += tocopy;
837                 addr += tocopy;
838         }
839
840         return X86EMUL_CONTINUE;
841 }
842
843 static int emulator_write_std(unsigned long addr,
844                               unsigned long val,
845                               unsigned int bytes,
846                               struct x86_emulate_ctxt *ctxt)
847 {
848         printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
849                addr, bytes);
850         return X86EMUL_UNHANDLEABLE;
851 }
852
853 static int emulator_read_emulated(unsigned long addr,
854                                   unsigned long *val,
855                                   unsigned int bytes,
856                                   struct x86_emulate_ctxt *ctxt)
857 {
858         struct kvm_vcpu *vcpu = ctxt->vcpu;
859
860         if (vcpu->mmio_read_completed) {
861                 memcpy(val, vcpu->mmio_data, bytes);
862                 vcpu->mmio_read_completed = 0;
863                 return X86EMUL_CONTINUE;
864         } else if (emulator_read_std(addr, val, bytes, ctxt)
865                    == X86EMUL_CONTINUE)
866                 return X86EMUL_CONTINUE;
867         else {
868                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
869                 if (gpa == UNMAPPED_GVA)
870                         return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
871                 vcpu->mmio_needed = 1;
872                 vcpu->mmio_phys_addr = gpa;
873                 vcpu->mmio_size = bytes;
874                 vcpu->mmio_is_write = 0;
875
876                 return X86EMUL_UNHANDLEABLE;
877         }
878 }
879
880 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
881                                unsigned long val, int bytes)
882 {
883         struct kvm_memory_slot *m;
884         struct page *page;
885         void *virt;
886
887         if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
888                 return 0;
889         m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
890         if (!m)
891                 return 0;
892         page = gfn_to_page(m, gpa >> PAGE_SHIFT);
893         kvm_mmu_pre_write(vcpu, gpa, bytes);
894         virt = kmap_atomic(page, KM_USER0);
895         memcpy(virt + offset_in_page(gpa), &val, bytes);
896         kunmap_atomic(virt, KM_USER0);
897         kvm_mmu_post_write(vcpu, gpa, bytes);
898         return 1;
899 }
900
901 static int emulator_write_emulated(unsigned long addr,
902                                    unsigned long val,
903                                    unsigned int bytes,
904                                    struct x86_emulate_ctxt *ctxt)
905 {
906         struct kvm_vcpu *vcpu = ctxt->vcpu;
907         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
908
909         if (gpa == UNMAPPED_GVA)
910                 return X86EMUL_PROPAGATE_FAULT;
911
912         if (emulator_write_phys(vcpu, gpa, val, bytes))
913                 return X86EMUL_CONTINUE;
914
915         vcpu->mmio_needed = 1;
916         vcpu->mmio_phys_addr = gpa;
917         vcpu->mmio_size = bytes;
918         vcpu->mmio_is_write = 1;
919         memcpy(vcpu->mmio_data, &val, bytes);
920
921         return X86EMUL_CONTINUE;
922 }
923
924 static int emulator_cmpxchg_emulated(unsigned long addr,
925                                      unsigned long old,
926                                      unsigned long new,
927                                      unsigned int bytes,
928                                      struct x86_emulate_ctxt *ctxt)
929 {
930         static int reported;
931
932         if (!reported) {
933                 reported = 1;
934                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
935         }
936         return emulator_write_emulated(addr, new, bytes, ctxt);
937 }
938
939 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
940 {
941         return kvm_arch_ops->get_segment_base(vcpu, seg);
942 }
943
944 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
945 {
946         spin_lock(&vcpu->kvm->lock);
947         vcpu->mmu.inval_page(vcpu, address);
948         spin_unlock(&vcpu->kvm->lock);
949         kvm_arch_ops->invlpg(vcpu, address);
950         return X86EMUL_CONTINUE;
951 }
952
953 int emulate_clts(struct kvm_vcpu *vcpu)
954 {
955         unsigned long cr0;
956
957         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
958         cr0 = vcpu->cr0 & ~CR0_TS_MASK;
959         kvm_arch_ops->set_cr0(vcpu, cr0);
960         return X86EMUL_CONTINUE;
961 }
962
963 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
964 {
965         struct kvm_vcpu *vcpu = ctxt->vcpu;
966
967         switch (dr) {
968         case 0 ... 3:
969                 *dest = kvm_arch_ops->get_dr(vcpu, dr);
970                 return X86EMUL_CONTINUE;
971         default:
972                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
973                        __FUNCTION__, dr);
974                 return X86EMUL_UNHANDLEABLE;
975         }
976 }
977
978 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
979 {
980         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
981         int exception;
982
983         kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
984         if (exception) {
985                 /* FIXME: better handling */
986                 return X86EMUL_UNHANDLEABLE;
987         }
988         return X86EMUL_CONTINUE;
989 }
990
991 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
992 {
993         static int reported;
994         u8 opcodes[4];
995         unsigned long rip = ctxt->vcpu->rip;
996         unsigned long rip_linear;
997
998         rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
999
1000         if (reported)
1001                 return;
1002
1003         emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1004
1005         printk(KERN_ERR "emulation failed but !mmio_needed?"
1006                " rip %lx %02x %02x %02x %02x\n",
1007                rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1008         reported = 1;
1009 }
1010
1011 struct x86_emulate_ops emulate_ops = {
1012         .read_std            = emulator_read_std,
1013         .write_std           = emulator_write_std,
1014         .read_emulated       = emulator_read_emulated,
1015         .write_emulated      = emulator_write_emulated,
1016         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
1017 };
1018
1019 int emulate_instruction(struct kvm_vcpu *vcpu,
1020                         struct kvm_run *run,
1021                         unsigned long cr2,
1022                         u16 error_code)
1023 {
1024         struct x86_emulate_ctxt emulate_ctxt;
1025         int r;
1026         int cs_db, cs_l;
1027
1028         kvm_arch_ops->cache_regs(vcpu);
1029
1030         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1031
1032         emulate_ctxt.vcpu = vcpu;
1033         emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1034         emulate_ctxt.cr2 = cr2;
1035         emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1036                 ? X86EMUL_MODE_REAL : cs_l
1037                 ? X86EMUL_MODE_PROT64 : cs_db
1038                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1039
1040         if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1041                 emulate_ctxt.cs_base = 0;
1042                 emulate_ctxt.ds_base = 0;
1043                 emulate_ctxt.es_base = 0;
1044                 emulate_ctxt.ss_base = 0;
1045         } else {
1046                 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1047                 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1048                 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1049                 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1050         }
1051
1052         emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1053         emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1054
1055         vcpu->mmio_is_write = 0;
1056         r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1057
1058         if ((r || vcpu->mmio_is_write) && run) {
1059                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1060                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1061                 run->mmio.len = vcpu->mmio_size;
1062                 run->mmio.is_write = vcpu->mmio_is_write;
1063         }
1064
1065         if (r) {
1066                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1067                         return EMULATE_DONE;
1068                 if (!vcpu->mmio_needed) {
1069                         report_emulation_failure(&emulate_ctxt);
1070                         return EMULATE_FAIL;
1071                 }
1072                 return EMULATE_DO_MMIO;
1073         }
1074
1075         kvm_arch_ops->decache_regs(vcpu);
1076         kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1077
1078         if (vcpu->mmio_is_write)
1079                 return EMULATE_DO_MMIO;
1080
1081         return EMULATE_DONE;
1082 }
1083 EXPORT_SYMBOL_GPL(emulate_instruction);
1084
1085 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1086 {
1087         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1088 }
1089
1090 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1091 {
1092         struct descriptor_table dt = { limit, base };
1093
1094         kvm_arch_ops->set_gdt(vcpu, &dt);
1095 }
1096
1097 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1098 {
1099         struct descriptor_table dt = { limit, base };
1100
1101         kvm_arch_ops->set_idt(vcpu, &dt);
1102 }
1103
1104 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1105                    unsigned long *rflags)
1106 {
1107         lmsw(vcpu, msw);
1108         *rflags = kvm_arch_ops->get_rflags(vcpu);
1109 }
1110
1111 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1112 {
1113         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1114         switch (cr) {
1115         case 0:
1116                 return vcpu->cr0;
1117         case 2:
1118                 return vcpu->cr2;
1119         case 3:
1120                 return vcpu->cr3;
1121         case 4:
1122                 return vcpu->cr4;
1123         default:
1124                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1125                 return 0;
1126         }
1127 }
1128
1129 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1130                      unsigned long *rflags)
1131 {
1132         switch (cr) {
1133         case 0:
1134                 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1135                 *rflags = kvm_arch_ops->get_rflags(vcpu);
1136                 break;
1137         case 2:
1138                 vcpu->cr2 = val;
1139                 break;
1140         case 3:
1141                 set_cr3(vcpu, val);
1142                 break;
1143         case 4:
1144                 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1145                 break;
1146         default:
1147                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1148         }
1149 }
1150
1151 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1152 {
1153         u64 data;
1154
1155         switch (msr) {
1156         case 0xc0010010: /* SYSCFG */
1157         case 0xc0010015: /* HWCR */
1158         case MSR_IA32_PLATFORM_ID:
1159         case MSR_IA32_P5_MC_ADDR:
1160         case MSR_IA32_P5_MC_TYPE:
1161         case MSR_IA32_MC0_CTL:
1162         case MSR_IA32_MCG_STATUS:
1163         case MSR_IA32_MCG_CAP:
1164         case MSR_IA32_MC0_MISC:
1165         case MSR_IA32_MC0_MISC+4:
1166         case MSR_IA32_MC0_MISC+8:
1167         case MSR_IA32_MC0_MISC+12:
1168         case MSR_IA32_MC0_MISC+16:
1169         case MSR_IA32_UCODE_REV:
1170         case MSR_IA32_PERF_STATUS:
1171                 /* MTRR registers */
1172         case 0xfe:
1173         case 0x200 ... 0x2ff:
1174                 data = 0;
1175                 break;
1176         case 0xcd: /* fsb frequency */
1177                 data = 3;
1178                 break;
1179         case MSR_IA32_APICBASE:
1180                 data = vcpu->apic_base;
1181                 break;
1182 #ifdef CONFIG_X86_64
1183         case MSR_EFER:
1184                 data = vcpu->shadow_efer;
1185                 break;
1186 #endif
1187         default:
1188                 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1189                 return 1;
1190         }
1191         *pdata = data;
1192         return 0;
1193 }
1194 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1195
1196 /*
1197  * Reads an msr value (of 'msr_index') into 'pdata'.
1198  * Returns 0 on success, non-0 otherwise.
1199  * Assumes vcpu_load() was already called.
1200  */
1201 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1202 {
1203         return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1204 }
1205
1206 #ifdef CONFIG_X86_64
1207
1208 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1209 {
1210         if (efer & EFER_RESERVED_BITS) {
1211                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1212                        efer);
1213                 inject_gp(vcpu);
1214                 return;
1215         }
1216
1217         if (is_paging(vcpu)
1218             && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1219                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1220                 inject_gp(vcpu);
1221                 return;
1222         }
1223
1224         kvm_arch_ops->set_efer(vcpu, efer);
1225
1226         efer &= ~EFER_LMA;
1227         efer |= vcpu->shadow_efer & EFER_LMA;
1228
1229         vcpu->shadow_efer = efer;
1230 }
1231
1232 #endif
1233
1234 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1235 {
1236         switch (msr) {
1237 #ifdef CONFIG_X86_64
1238         case MSR_EFER:
1239                 set_efer(vcpu, data);
1240                 break;
1241 #endif
1242         case MSR_IA32_MC0_STATUS:
1243                 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1244                        __FUNCTION__, data);
1245                 break;
1246         case MSR_IA32_UCODE_REV:
1247         case MSR_IA32_UCODE_WRITE:
1248         case 0x200 ... 0x2ff: /* MTRRs */
1249                 break;
1250         case MSR_IA32_APICBASE:
1251                 vcpu->apic_base = data;
1252                 break;
1253         default:
1254                 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1255                 return 1;
1256         }
1257         return 0;
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1260
1261 /*
1262  * Writes msr value into into the appropriate "register".
1263  * Returns 0 on success, non-0 otherwise.
1264  * Assumes vcpu_load() was already called.
1265  */
1266 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1267 {
1268         return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1269 }
1270
1271 void kvm_resched(struct kvm_vcpu *vcpu)
1272 {
1273         vcpu_put(vcpu);
1274         cond_resched();
1275         /* Cannot fail -  no vcpu unplug yet. */
1276         vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
1277 }
1278 EXPORT_SYMBOL_GPL(kvm_resched);
1279
1280 void load_msrs(struct vmx_msr_entry *e, int n)
1281 {
1282         int i;
1283
1284         for (i = 0; i < n; ++i)
1285                 wrmsrl(e[i].index, e[i].data);
1286 }
1287 EXPORT_SYMBOL_GPL(load_msrs);
1288
1289 void save_msrs(struct vmx_msr_entry *e, int n)
1290 {
1291         int i;
1292
1293         for (i = 0; i < n; ++i)
1294                 rdmsrl(e[i].index, e[i].data);
1295 }
1296 EXPORT_SYMBOL_GPL(save_msrs);
1297
1298 static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
1299 {
1300         struct kvm_vcpu *vcpu;
1301         int r;
1302
1303         if (!valid_vcpu(kvm_run->vcpu))
1304                 return -EINVAL;
1305
1306         vcpu = vcpu_load(kvm, kvm_run->vcpu);
1307         if (!vcpu)
1308                 return -ENOENT;
1309
1310         if (kvm_run->emulated) {
1311                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1312                 kvm_run->emulated = 0;
1313         }
1314
1315         if (kvm_run->mmio_completed) {
1316                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1317                 vcpu->mmio_read_completed = 1;
1318         }
1319
1320         vcpu->mmio_needed = 0;
1321
1322         r = kvm_arch_ops->run(vcpu, kvm_run);
1323
1324         vcpu_put(vcpu);
1325         return r;
1326 }
1327
1328 static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
1329 {
1330         struct kvm_vcpu *vcpu;
1331
1332         if (!valid_vcpu(regs->vcpu))
1333                 return -EINVAL;
1334
1335         vcpu = vcpu_load(kvm, regs->vcpu);
1336         if (!vcpu)
1337                 return -ENOENT;
1338
1339         kvm_arch_ops->cache_regs(vcpu);
1340
1341         regs->rax = vcpu->regs[VCPU_REGS_RAX];
1342         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1343         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1344         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1345         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1346         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1347         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1348         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1349 #ifdef CONFIG_X86_64
1350         regs->r8 = vcpu->regs[VCPU_REGS_R8];
1351         regs->r9 = vcpu->regs[VCPU_REGS_R9];
1352         regs->r10 = vcpu->regs[VCPU_REGS_R10];
1353         regs->r11 = vcpu->regs[VCPU_REGS_R11];
1354         regs->r12 = vcpu->regs[VCPU_REGS_R12];
1355         regs->r13 = vcpu->regs[VCPU_REGS_R13];
1356         regs->r14 = vcpu->regs[VCPU_REGS_R14];
1357         regs->r15 = vcpu->regs[VCPU_REGS_R15];
1358 #endif
1359
1360         regs->rip = vcpu->rip;
1361         regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1362
1363         /*
1364          * Don't leak debug flags in case they were set for guest debugging
1365          */
1366         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1367                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1368
1369         vcpu_put(vcpu);
1370
1371         return 0;
1372 }
1373
1374 static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
1375 {
1376         struct kvm_vcpu *vcpu;
1377
1378         if (!valid_vcpu(regs->vcpu))
1379                 return -EINVAL;
1380
1381         vcpu = vcpu_load(kvm, regs->vcpu);
1382         if (!vcpu)
1383                 return -ENOENT;
1384
1385         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1386         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1387         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1388         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1389         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1390         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1391         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1392         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1393 #ifdef CONFIG_X86_64
1394         vcpu->regs[VCPU_REGS_R8] = regs->r8;
1395         vcpu->regs[VCPU_REGS_R9] = regs->r9;
1396         vcpu->regs[VCPU_REGS_R10] = regs->r10;
1397         vcpu->regs[VCPU_REGS_R11] = regs->r11;
1398         vcpu->regs[VCPU_REGS_R12] = regs->r12;
1399         vcpu->regs[VCPU_REGS_R13] = regs->r13;
1400         vcpu->regs[VCPU_REGS_R14] = regs->r14;
1401         vcpu->regs[VCPU_REGS_R15] = regs->r15;
1402 #endif
1403
1404         vcpu->rip = regs->rip;
1405         kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1406
1407         kvm_arch_ops->decache_regs(vcpu);
1408
1409         vcpu_put(vcpu);
1410
1411         return 0;
1412 }
1413
1414 static void get_segment(struct kvm_vcpu *vcpu,
1415                         struct kvm_segment *var, int seg)
1416 {
1417         return kvm_arch_ops->get_segment(vcpu, var, seg);
1418 }
1419
1420 static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1421 {
1422         struct kvm_vcpu *vcpu;
1423         struct descriptor_table dt;
1424
1425         if (!valid_vcpu(sregs->vcpu))
1426                 return -EINVAL;
1427         vcpu = vcpu_load(kvm, sregs->vcpu);
1428         if (!vcpu)
1429                 return -ENOENT;
1430
1431         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1432         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1433         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1434         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1435         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1436         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1437
1438         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1439         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1440
1441         kvm_arch_ops->get_idt(vcpu, &dt);
1442         sregs->idt.limit = dt.limit;
1443         sregs->idt.base = dt.base;
1444         kvm_arch_ops->get_gdt(vcpu, &dt);
1445         sregs->gdt.limit = dt.limit;
1446         sregs->gdt.base = dt.base;
1447
1448         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1449         sregs->cr0 = vcpu->cr0;
1450         sregs->cr2 = vcpu->cr2;
1451         sregs->cr3 = vcpu->cr3;
1452         sregs->cr4 = vcpu->cr4;
1453         sregs->cr8 = vcpu->cr8;
1454         sregs->efer = vcpu->shadow_efer;
1455         sregs->apic_base = vcpu->apic_base;
1456
1457         memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1458                sizeof sregs->interrupt_bitmap);
1459
1460         vcpu_put(vcpu);
1461
1462         return 0;
1463 }
1464
1465 static void set_segment(struct kvm_vcpu *vcpu,
1466                         struct kvm_segment *var, int seg)
1467 {
1468         return kvm_arch_ops->set_segment(vcpu, var, seg);
1469 }
1470
1471 static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1472 {
1473         struct kvm_vcpu *vcpu;
1474         int mmu_reset_needed = 0;
1475         int i;
1476         struct descriptor_table dt;
1477
1478         if (!valid_vcpu(sregs->vcpu))
1479                 return -EINVAL;
1480         vcpu = vcpu_load(kvm, sregs->vcpu);
1481         if (!vcpu)
1482                 return -ENOENT;
1483
1484         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1485         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1486         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1487         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1488         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1489         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1490
1491         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1492         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1493
1494         dt.limit = sregs->idt.limit;
1495         dt.base = sregs->idt.base;
1496         kvm_arch_ops->set_idt(vcpu, &dt);
1497         dt.limit = sregs->gdt.limit;
1498         dt.base = sregs->gdt.base;
1499         kvm_arch_ops->set_gdt(vcpu, &dt);
1500
1501         vcpu->cr2 = sregs->cr2;
1502         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1503         vcpu->cr3 = sregs->cr3;
1504
1505         vcpu->cr8 = sregs->cr8;
1506
1507         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1508 #ifdef CONFIG_X86_64
1509         kvm_arch_ops->set_efer(vcpu, sregs->efer);
1510 #endif
1511         vcpu->apic_base = sregs->apic_base;
1512
1513         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1514
1515         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1516         kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1517
1518         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1519         kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1520         if (!is_long_mode(vcpu) && is_pae(vcpu))
1521                 load_pdptrs(vcpu, vcpu->cr3);
1522
1523         if (mmu_reset_needed)
1524                 kvm_mmu_reset_context(vcpu);
1525
1526         memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1527                sizeof vcpu->irq_pending);
1528         vcpu->irq_summary = 0;
1529         for (i = 0; i < NR_IRQ_WORDS; ++i)
1530                 if (vcpu->irq_pending[i])
1531                         __set_bit(i, &vcpu->irq_summary);
1532
1533         vcpu_put(vcpu);
1534
1535         return 0;
1536 }
1537
1538 /*
1539  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1540  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1541  *
1542  * This list is modified at module load time to reflect the
1543  * capabilities of the host cpu.
1544  */
1545 static u32 msrs_to_save[] = {
1546         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1547         MSR_K6_STAR,
1548 #ifdef CONFIG_X86_64
1549         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1550 #endif
1551         MSR_IA32_TIME_STAMP_COUNTER,
1552 };
1553
1554 static unsigned num_msrs_to_save;
1555
1556 static __init void kvm_init_msr_list(void)
1557 {
1558         u32 dummy[2];
1559         unsigned i, j;
1560
1561         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1562                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1563                         continue;
1564                 if (j < i)
1565                         msrs_to_save[j] = msrs_to_save[i];
1566                 j++;
1567         }
1568         num_msrs_to_save = j;
1569 }
1570
1571 /*
1572  * Adapt set_msr() to msr_io()'s calling convention
1573  */
1574 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1575 {
1576         return set_msr(vcpu, index, *data);
1577 }
1578
1579 /*
1580  * Read or write a bunch of msrs. All parameters are kernel addresses.
1581  *
1582  * @return number of msrs set successfully.
1583  */
1584 static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
1585                     struct kvm_msr_entry *entries,
1586                     int (*do_msr)(struct kvm_vcpu *vcpu,
1587                                   unsigned index, u64 *data))
1588 {
1589         struct kvm_vcpu *vcpu;
1590         int i;
1591
1592         if (!valid_vcpu(msrs->vcpu))
1593                 return -EINVAL;
1594
1595         vcpu = vcpu_load(kvm, msrs->vcpu);
1596         if (!vcpu)
1597                 return -ENOENT;
1598
1599         for (i = 0; i < msrs->nmsrs; ++i)
1600                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1601                         break;
1602
1603         vcpu_put(vcpu);
1604
1605         return i;
1606 }
1607
1608 /*
1609  * Read or write a bunch of msrs. Parameters are user addresses.
1610  *
1611  * @return number of msrs set successfully.
1612  */
1613 static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
1614                   int (*do_msr)(struct kvm_vcpu *vcpu,
1615                                 unsigned index, u64 *data),
1616                   int writeback)
1617 {
1618         struct kvm_msrs msrs;
1619         struct kvm_msr_entry *entries;
1620         int r, n;
1621         unsigned size;
1622
1623         r = -EFAULT;
1624         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1625                 goto out;
1626
1627         r = -E2BIG;
1628         if (msrs.nmsrs >= MAX_IO_MSRS)
1629                 goto out;
1630
1631         r = -ENOMEM;
1632         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1633         entries = vmalloc(size);
1634         if (!entries)
1635                 goto out;
1636
1637         r = -EFAULT;
1638         if (copy_from_user(entries, user_msrs->entries, size))
1639                 goto out_free;
1640
1641         r = n = __msr_io(kvm, &msrs, entries, do_msr);
1642         if (r < 0)
1643                 goto out_free;
1644
1645         r = -EFAULT;
1646         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1647                 goto out_free;
1648
1649         r = n;
1650
1651 out_free:
1652         vfree(entries);
1653 out:
1654         return r;
1655 }
1656
1657 /*
1658  * Translate a guest virtual address to a guest physical address.
1659  */
1660 static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
1661 {
1662         unsigned long vaddr = tr->linear_address;
1663         struct kvm_vcpu *vcpu;
1664         gpa_t gpa;
1665
1666         vcpu = vcpu_load(kvm, tr->vcpu);
1667         if (!vcpu)
1668                 return -ENOENT;
1669         spin_lock(&kvm->lock);
1670         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1671         tr->physical_address = gpa;
1672         tr->valid = gpa != UNMAPPED_GVA;
1673         tr->writeable = 1;
1674         tr->usermode = 0;
1675         spin_unlock(&kvm->lock);
1676         vcpu_put(vcpu);
1677
1678         return 0;
1679 }
1680
1681 static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
1682 {
1683         struct kvm_vcpu *vcpu;
1684
1685         if (!valid_vcpu(irq->vcpu))
1686                 return -EINVAL;
1687         if (irq->irq < 0 || irq->irq >= 256)
1688                 return -EINVAL;
1689         vcpu = vcpu_load(kvm, irq->vcpu);
1690         if (!vcpu)
1691                 return -ENOENT;
1692
1693         set_bit(irq->irq, vcpu->irq_pending);
1694         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1695
1696         vcpu_put(vcpu);
1697
1698         return 0;
1699 }
1700
1701 static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
1702                                      struct kvm_debug_guest *dbg)
1703 {
1704         struct kvm_vcpu *vcpu;
1705         int r;
1706
1707         if (!valid_vcpu(dbg->vcpu))
1708                 return -EINVAL;
1709         vcpu = vcpu_load(kvm, dbg->vcpu);
1710         if (!vcpu)
1711                 return -ENOENT;
1712
1713         r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1714
1715         vcpu_put(vcpu);
1716
1717         return r;
1718 }
1719
1720 static long kvm_dev_ioctl(struct file *filp,
1721                           unsigned int ioctl, unsigned long arg)
1722 {
1723         struct kvm *kvm = filp->private_data;
1724         int r = -EINVAL;
1725
1726         switch (ioctl) {
1727         case KVM_GET_API_VERSION:
1728                 r = KVM_API_VERSION;
1729                 break;
1730         case KVM_CREATE_VCPU: {
1731                 r = kvm_dev_ioctl_create_vcpu(kvm, arg);
1732                 if (r)
1733                         goto out;
1734                 break;
1735         }
1736         case KVM_RUN: {
1737                 struct kvm_run kvm_run;
1738
1739                 r = -EFAULT;
1740                 if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
1741                         goto out;
1742                 r = kvm_dev_ioctl_run(kvm, &kvm_run);
1743                 if (r < 0 &&  r != -EINTR)
1744                         goto out;
1745                 if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run)) {
1746                         r = -EFAULT;
1747                         goto out;
1748                 }
1749                 break;
1750         }
1751         case KVM_GET_REGS: {
1752                 struct kvm_regs kvm_regs;
1753
1754                 r = -EFAULT;
1755                 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1756                         goto out;
1757                 r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
1758                 if (r)
1759                         goto out;
1760                 r = -EFAULT;
1761                 if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
1762                         goto out;
1763                 r = 0;
1764                 break;
1765         }
1766         case KVM_SET_REGS: {
1767                 struct kvm_regs kvm_regs;
1768
1769                 r = -EFAULT;
1770                 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1771                         goto out;
1772                 r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
1773                 if (r)
1774                         goto out;
1775                 r = 0;
1776                 break;
1777         }
1778         case KVM_GET_SREGS: {
1779                 struct kvm_sregs kvm_sregs;
1780
1781                 r = -EFAULT;
1782                 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1783                         goto out;
1784                 r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
1785                 if (r)
1786                         goto out;
1787                 r = -EFAULT;
1788                 if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
1789                         goto out;
1790                 r = 0;
1791                 break;
1792         }
1793         case KVM_SET_SREGS: {
1794                 struct kvm_sregs kvm_sregs;
1795
1796                 r = -EFAULT;
1797                 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1798                         goto out;
1799                 r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
1800                 if (r)
1801                         goto out;
1802                 r = 0;
1803                 break;
1804         }
1805         case KVM_TRANSLATE: {
1806                 struct kvm_translation tr;
1807
1808                 r = -EFAULT;
1809                 if (copy_from_user(&tr, (void *)arg, sizeof tr))
1810                         goto out;
1811                 r = kvm_dev_ioctl_translate(kvm, &tr);
1812                 if (r)
1813                         goto out;
1814                 r = -EFAULT;
1815                 if (copy_to_user((void *)arg, &tr, sizeof tr))
1816                         goto out;
1817                 r = 0;
1818                 break;
1819         }
1820         case KVM_INTERRUPT: {
1821                 struct kvm_interrupt irq;
1822
1823                 r = -EFAULT;
1824                 if (copy_from_user(&irq, (void *)arg, sizeof irq))
1825                         goto out;
1826                 r = kvm_dev_ioctl_interrupt(kvm, &irq);
1827                 if (r)
1828                         goto out;
1829                 r = 0;
1830                 break;
1831         }
1832         case KVM_DEBUG_GUEST: {
1833                 struct kvm_debug_guest dbg;
1834
1835                 r = -EFAULT;
1836                 if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
1837                         goto out;
1838                 r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
1839                 if (r)
1840                         goto out;
1841                 r = 0;
1842                 break;
1843         }
1844         case KVM_SET_MEMORY_REGION: {
1845                 struct kvm_memory_region kvm_mem;
1846
1847                 r = -EFAULT;
1848                 if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
1849                         goto out;
1850                 r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
1851                 if (r)
1852                         goto out;
1853                 break;
1854         }
1855         case KVM_GET_DIRTY_LOG: {
1856                 struct kvm_dirty_log log;
1857
1858                 r = -EFAULT;
1859                 if (copy_from_user(&log, (void *)arg, sizeof log))
1860                         goto out;
1861                 r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
1862                 if (r)
1863                         goto out;
1864                 break;
1865         }
1866         case KVM_GET_MSRS:
1867                 r = msr_io(kvm, (void __user *)arg, get_msr, 1);
1868                 break;
1869         case KVM_SET_MSRS:
1870                 r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
1871                 break;
1872         case KVM_GET_MSR_INDEX_LIST: {
1873                 struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
1874                 struct kvm_msr_list msr_list;
1875                 unsigned n;
1876
1877                 r = -EFAULT;
1878                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1879                         goto out;
1880                 n = msr_list.nmsrs;
1881                 msr_list.nmsrs = num_msrs_to_save;
1882                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1883                         goto out;
1884                 r = -E2BIG;
1885                 if (n < num_msrs_to_save)
1886                         goto out;
1887                 r = -EFAULT;
1888                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1889                                  num_msrs_to_save * sizeof(u32)))
1890                         goto out;
1891                 r = 0;
1892         }
1893         default:
1894                 ;
1895         }
1896 out:
1897         return r;
1898 }
1899
1900 static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
1901                                    unsigned long address,
1902                                    int *type)
1903 {
1904         struct kvm *kvm = vma->vm_file->private_data;
1905         unsigned long pgoff;
1906         struct kvm_memory_slot *slot;
1907         struct page *page;
1908
1909         *type = VM_FAULT_MINOR;
1910         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1911         slot = gfn_to_memslot(kvm, pgoff);
1912         if (!slot)
1913                 return NOPAGE_SIGBUS;
1914         page = gfn_to_page(slot, pgoff);
1915         if (!page)
1916                 return NOPAGE_SIGBUS;
1917         get_page(page);
1918         return page;
1919 }
1920
1921 static struct vm_operations_struct kvm_dev_vm_ops = {
1922         .nopage = kvm_dev_nopage,
1923 };
1924
1925 static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
1926 {
1927         vma->vm_ops = &kvm_dev_vm_ops;
1928         return 0;
1929 }
1930
1931 static struct file_operations kvm_chardev_ops = {
1932         .open           = kvm_dev_open,
1933         .release        = kvm_dev_release,
1934         .unlocked_ioctl = kvm_dev_ioctl,
1935         .compat_ioctl   = kvm_dev_ioctl,
1936         .mmap           = kvm_dev_mmap,
1937 };
1938
1939 static struct miscdevice kvm_dev = {
1940         MISC_DYNAMIC_MINOR,
1941         "kvm",
1942         &kvm_chardev_ops,
1943 };
1944
1945 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1946                        void *v)
1947 {
1948         if (val == SYS_RESTART) {
1949                 /*
1950                  * Some (well, at least mine) BIOSes hang on reboot if
1951                  * in vmx root mode.
1952                  */
1953                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1954                 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1955         }
1956         return NOTIFY_OK;
1957 }
1958
1959 static struct notifier_block kvm_reboot_notifier = {
1960         .notifier_call = kvm_reboot,
1961         .priority = 0,
1962 };
1963
1964 static __init void kvm_init_debug(void)
1965 {
1966         struct kvm_stats_debugfs_item *p;
1967
1968         debugfs_dir = debugfs_create_dir("kvm", 0);
1969         for (p = debugfs_entries; p->name; ++p)
1970                 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
1971                                                p->data);
1972 }
1973
1974 static void kvm_exit_debug(void)
1975 {
1976         struct kvm_stats_debugfs_item *p;
1977
1978         for (p = debugfs_entries; p->name; ++p)
1979                 debugfs_remove(p->dentry);
1980         debugfs_remove(debugfs_dir);
1981 }
1982
1983 hpa_t bad_page_address;
1984
1985 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
1986 {
1987         int r;
1988
1989         if (kvm_arch_ops) {
1990                 printk(KERN_ERR "kvm: already loaded the other module\n");
1991                 return -EEXIST;
1992         }
1993
1994         if (!ops->cpu_has_kvm_support()) {
1995                 printk(KERN_ERR "kvm: no hardware support\n");
1996                 return -EOPNOTSUPP;
1997         }
1998         if (ops->disabled_by_bios()) {
1999                 printk(KERN_ERR "kvm: disabled by bios\n");
2000                 return -EOPNOTSUPP;
2001         }
2002
2003         kvm_arch_ops = ops;
2004
2005         r = kvm_arch_ops->hardware_setup();
2006         if (r < 0)
2007             return r;
2008
2009         on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
2010         register_reboot_notifier(&kvm_reboot_notifier);
2011
2012         kvm_chardev_ops.owner = module;
2013
2014         r = misc_register(&kvm_dev);
2015         if (r) {
2016                 printk (KERN_ERR "kvm: misc device register failed\n");
2017                 goto out_free;
2018         }
2019
2020         return r;
2021
2022 out_free:
2023         unregister_reboot_notifier(&kvm_reboot_notifier);
2024         on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
2025         kvm_arch_ops->hardware_unsetup();
2026         return r;
2027 }
2028
2029 void kvm_exit_arch(void)
2030 {
2031         misc_deregister(&kvm_dev);
2032
2033         unregister_reboot_notifier(&kvm_reboot_notifier);
2034         on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
2035         kvm_arch_ops->hardware_unsetup();
2036         kvm_arch_ops = NULL;
2037 }
2038
2039 static __init int kvm_init(void)
2040 {
2041         static struct page *bad_page;
2042         int r = 0;
2043
2044         kvm_init_debug();
2045
2046         kvm_init_msr_list();
2047
2048         if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2049                 r = -ENOMEM;
2050                 goto out;
2051         }
2052
2053         bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2054         memset(__va(bad_page_address), 0, PAGE_SIZE);
2055
2056         return r;
2057
2058 out:
2059         kvm_exit_debug();
2060         return r;
2061 }
2062
2063 static __exit void kvm_exit(void)
2064 {
2065         kvm_exit_debug();
2066         __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2067 }
2068
2069 module_init(kvm_init)
2070 module_exit(kvm_exit)
2071
2072 EXPORT_SYMBOL_GPL(kvm_init_arch);
2073 EXPORT_SYMBOL_GPL(kvm_exit_arch);