]> err.no Git - linux-2.6/blob - drivers/ieee1394/nodemgr.c
Merge branch 'genirq' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux...
[linux-2.6] / drivers / ieee1394 / nodemgr.c
1 /*
2  * Node information (ConfigROM) collection and management.
3  *
4  * Copyright (C) 2000           Andreas E. Bombe
5  *               2001-2003      Ben Collins <bcollins@debian.net>
6  *
7  * This code is licensed under the GPL.  See the file COPYING in the root
8  * directory of the kernel sources for details.
9  */
10
11 #include <linux/bitmap.h>
12 #include <linux/kernel.h>
13 #include <linux/list.h>
14 #include <linux/slab.h>
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/mutex.h>
20 #include <linux/freezer.h>
21 #include <linux/semaphore.h>
22 #include <asm/atomic.h>
23
24 #include "csr.h"
25 #include "highlevel.h"
26 #include "hosts.h"
27 #include "ieee1394.h"
28 #include "ieee1394_core.h"
29 #include "ieee1394_hotplug.h"
30 #include "ieee1394_types.h"
31 #include "ieee1394_transactions.h"
32 #include "nodemgr.h"
33
34 static int ignore_drivers;
35 module_param(ignore_drivers, int, S_IRUGO | S_IWUSR);
36 MODULE_PARM_DESC(ignore_drivers, "Disable automatic probing for drivers.");
37
38 struct nodemgr_csr_info {
39         struct hpsb_host *host;
40         nodeid_t nodeid;
41         unsigned int generation;
42         unsigned int speed_unverified:1;
43 };
44
45
46 /*
47  * Correct the speed map entry.  This is necessary
48  *  - for nodes with link speed < phy speed,
49  *  - for 1394b nodes with negotiated phy port speed < IEEE1394_SPEED_MAX.
50  * A possible speed is determined by trial and error, using quadlet reads.
51  */
52 static int nodemgr_check_speed(struct nodemgr_csr_info *ci, u64 addr,
53                                quadlet_t *buffer)
54 {
55         quadlet_t q;
56         u8 i, *speed, old_speed, good_speed;
57         int error;
58
59         speed = &(ci->host->speed[NODEID_TO_NODE(ci->nodeid)]);
60         old_speed = *speed;
61         good_speed = IEEE1394_SPEED_MAX + 1;
62
63         /* Try every speed from S100 to old_speed.
64          * If we did it the other way around, a too low speed could be caught
65          * if the retry succeeded for some other reason, e.g. because the link
66          * just finished its initialization. */
67         for (i = IEEE1394_SPEED_100; i <= old_speed; i++) {
68                 *speed = i;
69                 error = hpsb_read(ci->host, ci->nodeid, ci->generation, addr,
70                                   &q, sizeof(quadlet_t));
71                 if (error)
72                         break;
73                 *buffer = q;
74                 good_speed = i;
75         }
76         if (good_speed <= IEEE1394_SPEED_MAX) {
77                 HPSB_DEBUG("Speed probe of node " NODE_BUS_FMT " yields %s",
78                            NODE_BUS_ARGS(ci->host, ci->nodeid),
79                            hpsb_speedto_str[good_speed]);
80                 *speed = good_speed;
81                 ci->speed_unverified = 0;
82                 return 0;
83         }
84         *speed = old_speed;
85         return error;
86 }
87
88 static int nodemgr_bus_read(struct csr1212_csr *csr, u64 addr, u16 length,
89                             void *buffer, void *__ci)
90 {
91         struct nodemgr_csr_info *ci = (struct nodemgr_csr_info*)__ci;
92         int i, error;
93
94         for (i = 1; ; i++) {
95                 error = hpsb_read(ci->host, ci->nodeid, ci->generation, addr,
96                                   buffer, length);
97                 if (!error) {
98                         ci->speed_unverified = 0;
99                         break;
100                 }
101                 /* Give up after 3rd failure. */
102                 if (i == 3)
103                         break;
104
105                 /* The ieee1394_core guessed the node's speed capability from
106                  * the self ID.  Check whether a lower speed works. */
107                 if (ci->speed_unverified && length == sizeof(quadlet_t)) {
108                         error = nodemgr_check_speed(ci, addr, buffer);
109                         if (!error)
110                                 break;
111                 }
112                 if (msleep_interruptible(334))
113                         return -EINTR;
114         }
115         return error;
116 }
117
118 static int nodemgr_get_max_rom(quadlet_t *bus_info_data, void *__ci)
119 {
120         return (be32_to_cpu(bus_info_data[2]) >> 8) & 0x3;
121 }
122
123 static struct csr1212_bus_ops nodemgr_csr_ops = {
124         .bus_read =     nodemgr_bus_read,
125         .get_max_rom =  nodemgr_get_max_rom
126 };
127
128
129 /*
130  * Basically what we do here is start off retrieving the bus_info block.
131  * From there will fill in some info about the node, verify it is of IEEE
132  * 1394 type, and that the crc checks out ok. After that we start off with
133  * the root directory, and subdirectories. To do this, we retrieve the
134  * quadlet header for a directory, find out the length, and retrieve the
135  * complete directory entry (be it a leaf or a directory). We then process
136  * it and add the info to our structure for that particular node.
137  *
138  * We verify CRC's along the way for each directory/block/leaf. The entire
139  * node structure is generic, and simply stores the information in a way
140  * that's easy to parse by the protocol interface.
141  */
142
143 /*
144  * The nodemgr relies heavily on the Driver Model for device callbacks and
145  * driver/device mappings. The old nodemgr used to handle all this itself,
146  * but now we are much simpler because of the LDM.
147  */
148
149 struct host_info {
150         struct hpsb_host *host;
151         struct list_head list;
152         struct task_struct *thread;
153 };
154
155 static int nodemgr_bus_match(struct device * dev, struct device_driver * drv);
156 static int nodemgr_uevent(struct device *dev, struct kobj_uevent_env *env);
157 static void nodemgr_resume_ne(struct node_entry *ne);
158 static void nodemgr_remove_ne(struct node_entry *ne);
159 static struct node_entry *find_entry_by_guid(u64 guid);
160
161 struct bus_type ieee1394_bus_type = {
162         .name           = "ieee1394",
163         .match          = nodemgr_bus_match,
164 };
165
166 static void host_cls_release(struct device *dev)
167 {
168         put_device(&container_of((dev), struct hpsb_host, host_dev)->device);
169 }
170
171 struct class hpsb_host_class = {
172         .name           = "ieee1394_host",
173         .dev_release    = host_cls_release,
174 };
175
176 static void ne_cls_release(struct device *dev)
177 {
178         put_device(&container_of((dev), struct node_entry, node_dev)->device);
179 }
180
181 static struct class nodemgr_ne_class = {
182         .name           = "ieee1394_node",
183         .dev_release    = ne_cls_release,
184 };
185
186 static void ud_cls_release(struct device *dev)
187 {
188         put_device(&container_of((dev), struct unit_directory, unit_dev)->device);
189 }
190
191 /* The name here is only so that unit directory hotplug works with old
192  * style hotplug, which only ever did unit directories anyway.
193  */
194 static struct class nodemgr_ud_class = {
195         .name           = "ieee1394",
196         .dev_release    = ud_cls_release,
197         .dev_uevent     = nodemgr_uevent,
198 };
199
200 static struct hpsb_highlevel nodemgr_highlevel;
201
202
203 static void nodemgr_release_ud(struct device *dev)
204 {
205         struct unit_directory *ud = container_of(dev, struct unit_directory, device);
206
207         if (ud->vendor_name_kv)
208                 csr1212_release_keyval(ud->vendor_name_kv);
209         if (ud->model_name_kv)
210                 csr1212_release_keyval(ud->model_name_kv);
211
212         kfree(ud);
213 }
214
215 static void nodemgr_release_ne(struct device *dev)
216 {
217         struct node_entry *ne = container_of(dev, struct node_entry, device);
218
219         if (ne->vendor_name_kv)
220                 csr1212_release_keyval(ne->vendor_name_kv);
221
222         kfree(ne);
223 }
224
225
226 static void nodemgr_release_host(struct device *dev)
227 {
228         struct hpsb_host *host = container_of(dev, struct hpsb_host, device);
229
230         csr1212_destroy_csr(host->csr.rom);
231
232         kfree(host);
233 }
234
235 static int nodemgr_ud_platform_data;
236
237 static struct device nodemgr_dev_template_ud = {
238         .bus            = &ieee1394_bus_type,
239         .release        = nodemgr_release_ud,
240         .platform_data  = &nodemgr_ud_platform_data,
241 };
242
243 static struct device nodemgr_dev_template_ne = {
244         .bus            = &ieee1394_bus_type,
245         .release        = nodemgr_release_ne,
246 };
247
248 /* This dummy driver prevents the host devices from being scanned. We have no
249  * useful drivers for them yet, and there would be a deadlock possible if the
250  * driver core scans the host device while the host's low-level driver (i.e.
251  * the host's parent device) is being removed. */
252 static struct device_driver nodemgr_mid_layer_driver = {
253         .bus            = &ieee1394_bus_type,
254         .name           = "nodemgr",
255         .owner          = THIS_MODULE,
256 };
257
258 struct device nodemgr_dev_template_host = {
259         .bus            = &ieee1394_bus_type,
260         .release        = nodemgr_release_host,
261 };
262
263
264 #define fw_attr(class, class_type, field, type, format_string)          \
265 static ssize_t fw_show_##class##_##field (struct device *dev, struct device_attribute *attr, char *buf)\
266 {                                                                       \
267         class_type *class;                                              \
268         class = container_of(dev, class_type, device);                  \
269         return sprintf(buf, format_string, (type)class->field);         \
270 }                                                                       \
271 static struct device_attribute dev_attr_##class##_##field = {           \
272         .attr = {.name = __stringify(field), .mode = S_IRUGO },         \
273         .show   = fw_show_##class##_##field,                            \
274 };
275
276 #define fw_attr_td(class, class_type, td_kv)                            \
277 static ssize_t fw_show_##class##_##td_kv (struct device *dev, struct device_attribute *attr, char *buf)\
278 {                                                                       \
279         int len;                                                        \
280         class_type *class = container_of(dev, class_type, device);      \
281         len = (class->td_kv->value.leaf.len - 2) * sizeof(quadlet_t);   \
282         memcpy(buf,                                                     \
283                CSR1212_TEXTUAL_DESCRIPTOR_LEAF_DATA(class->td_kv),      \
284                len);                                                    \
285         while (buf[len - 1] == '\0')                                    \
286                 len--;                                                  \
287         buf[len++] = '\n';                                              \
288         buf[len] = '\0';                                                \
289         return len;                                                     \
290 }                                                                       \
291 static struct device_attribute dev_attr_##class##_##td_kv = {           \
292         .attr = {.name = __stringify(td_kv), .mode = S_IRUGO },         \
293         .show   = fw_show_##class##_##td_kv,                            \
294 };
295
296
297 #define fw_drv_attr(field, type, format_string)                 \
298 static ssize_t fw_drv_show_##field (struct device_driver *drv, char *buf) \
299 {                                                               \
300         struct hpsb_protocol_driver *driver;                    \
301         driver = container_of(drv, struct hpsb_protocol_driver, driver); \
302         return sprintf(buf, format_string, (type)driver->field);\
303 }                                                               \
304 static struct driver_attribute driver_attr_drv_##field = {      \
305         .attr = {.name = __stringify(field), .mode = S_IRUGO }, \
306         .show   = fw_drv_show_##field,                          \
307 };
308
309
310 static ssize_t fw_show_ne_bus_options(struct device *dev, struct device_attribute *attr, char *buf)
311 {
312         struct node_entry *ne = container_of(dev, struct node_entry, device);
313
314         return sprintf(buf, "IRMC(%d) CMC(%d) ISC(%d) BMC(%d) PMC(%d) GEN(%d) "
315                        "LSPD(%d) MAX_REC(%d) MAX_ROM(%d) CYC_CLK_ACC(%d)\n",
316                        ne->busopt.irmc,
317                        ne->busopt.cmc, ne->busopt.isc, ne->busopt.bmc,
318                        ne->busopt.pmc, ne->busopt.generation, ne->busopt.lnkspd,
319                        ne->busopt.max_rec,
320                        ne->busopt.max_rom,
321                        ne->busopt.cyc_clk_acc);
322 }
323 static DEVICE_ATTR(bus_options,S_IRUGO,fw_show_ne_bus_options,NULL);
324
325
326 #ifdef HPSB_DEBUG_TLABELS
327 static ssize_t fw_show_ne_tlabels_free(struct device *dev,
328                                        struct device_attribute *attr, char *buf)
329 {
330         struct node_entry *ne = container_of(dev, struct node_entry, device);
331         unsigned long flags;
332         unsigned long *tp = ne->host->tl_pool[NODEID_TO_NODE(ne->nodeid)].map;
333         int tf;
334
335         spin_lock_irqsave(&hpsb_tlabel_lock, flags);
336         tf = 64 - bitmap_weight(tp, 64);
337         spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
338
339         return sprintf(buf, "%d\n", tf);
340 }
341 static DEVICE_ATTR(tlabels_free,S_IRUGO,fw_show_ne_tlabels_free,NULL);
342
343
344 static ssize_t fw_show_ne_tlabels_mask(struct device *dev,
345                                        struct device_attribute *attr, char *buf)
346 {
347         struct node_entry *ne = container_of(dev, struct node_entry, device);
348         unsigned long flags;
349         unsigned long *tp = ne->host->tl_pool[NODEID_TO_NODE(ne->nodeid)].map;
350         u64 tm;
351
352         spin_lock_irqsave(&hpsb_tlabel_lock, flags);
353 #if (BITS_PER_LONG <= 32)
354         tm = ((u64)tp[0] << 32) + tp[1];
355 #else
356         tm = tp[0];
357 #endif
358         spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
359
360         return sprintf(buf, "0x%016llx\n", (unsigned long long)tm);
361 }
362 static DEVICE_ATTR(tlabels_mask, S_IRUGO, fw_show_ne_tlabels_mask, NULL);
363 #endif /* HPSB_DEBUG_TLABELS */
364
365
366 static ssize_t fw_set_ignore_driver(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
367 {
368         struct unit_directory *ud = container_of(dev, struct unit_directory, device);
369         int state = simple_strtoul(buf, NULL, 10);
370
371         if (state == 1) {
372                 ud->ignore_driver = 1;
373                 device_release_driver(dev);
374         } else if (state == 0)
375                 ud->ignore_driver = 0;
376
377         return count;
378 }
379 static ssize_t fw_get_ignore_driver(struct device *dev, struct device_attribute *attr, char *buf)
380 {
381         struct unit_directory *ud = container_of(dev, struct unit_directory, device);
382
383         return sprintf(buf, "%d\n", ud->ignore_driver);
384 }
385 static DEVICE_ATTR(ignore_driver, S_IWUSR | S_IRUGO, fw_get_ignore_driver, fw_set_ignore_driver);
386
387
388 static ssize_t fw_set_destroy_node(struct bus_type *bus, const char *buf, size_t count)
389 {
390         struct node_entry *ne;
391         u64 guid = (u64)simple_strtoull(buf, NULL, 16);
392
393         ne = find_entry_by_guid(guid);
394
395         if (ne == NULL || !ne->in_limbo)
396                 return -EINVAL;
397
398         nodemgr_remove_ne(ne);
399
400         return count;
401 }
402 static ssize_t fw_get_destroy_node(struct bus_type *bus, char *buf)
403 {
404         return sprintf(buf, "You can destroy in_limbo nodes by writing their GUID to this file\n");
405 }
406 static BUS_ATTR(destroy_node, S_IWUSR | S_IRUGO, fw_get_destroy_node, fw_set_destroy_node);
407
408
409 static ssize_t fw_set_rescan(struct bus_type *bus, const char *buf,
410                              size_t count)
411 {
412         int error = 0;
413
414         if (simple_strtoul(buf, NULL, 10) == 1)
415                 error = bus_rescan_devices(&ieee1394_bus_type);
416         return error ? error : count;
417 }
418 static ssize_t fw_get_rescan(struct bus_type *bus, char *buf)
419 {
420         return sprintf(buf, "You can force a rescan of the bus for "
421                         "drivers by writing a 1 to this file\n");
422 }
423 static BUS_ATTR(rescan, S_IWUSR | S_IRUGO, fw_get_rescan, fw_set_rescan);
424
425
426 static ssize_t fw_set_ignore_drivers(struct bus_type *bus, const char *buf, size_t count)
427 {
428         int state = simple_strtoul(buf, NULL, 10);
429
430         if (state == 1)
431                 ignore_drivers = 1;
432         else if (state == 0)
433                 ignore_drivers = 0;
434
435         return count;
436 }
437 static ssize_t fw_get_ignore_drivers(struct bus_type *bus, char *buf)
438 {
439         return sprintf(buf, "%d\n", ignore_drivers);
440 }
441 static BUS_ATTR(ignore_drivers, S_IWUSR | S_IRUGO, fw_get_ignore_drivers, fw_set_ignore_drivers);
442
443
444 struct bus_attribute *const fw_bus_attrs[] = {
445         &bus_attr_destroy_node,
446         &bus_attr_rescan,
447         &bus_attr_ignore_drivers,
448         NULL
449 };
450
451
452 fw_attr(ne, struct node_entry, capabilities, unsigned int, "0x%06x\n")
453 fw_attr(ne, struct node_entry, nodeid, unsigned int, "0x%04x\n")
454
455 fw_attr(ne, struct node_entry, vendor_id, unsigned int, "0x%06x\n")
456 fw_attr_td(ne, struct node_entry, vendor_name_kv)
457
458 fw_attr(ne, struct node_entry, guid, unsigned long long, "0x%016Lx\n")
459 fw_attr(ne, struct node_entry, guid_vendor_id, unsigned int, "0x%06x\n")
460 fw_attr(ne, struct node_entry, in_limbo, int, "%d\n");
461
462 static struct device_attribute *const fw_ne_attrs[] = {
463         &dev_attr_ne_guid,
464         &dev_attr_ne_guid_vendor_id,
465         &dev_attr_ne_capabilities,
466         &dev_attr_ne_vendor_id,
467         &dev_attr_ne_nodeid,
468         &dev_attr_bus_options,
469 #ifdef HPSB_DEBUG_TLABELS
470         &dev_attr_tlabels_free,
471         &dev_attr_tlabels_mask,
472 #endif
473 };
474
475
476
477 fw_attr(ud, struct unit_directory, address, unsigned long long, "0x%016Lx\n")
478 fw_attr(ud, struct unit_directory, length, int, "%d\n")
479 /* These are all dependent on the value being provided */
480 fw_attr(ud, struct unit_directory, vendor_id, unsigned int, "0x%06x\n")
481 fw_attr(ud, struct unit_directory, model_id, unsigned int, "0x%06x\n")
482 fw_attr(ud, struct unit_directory, specifier_id, unsigned int, "0x%06x\n")
483 fw_attr(ud, struct unit_directory, version, unsigned int, "0x%06x\n")
484 fw_attr_td(ud, struct unit_directory, vendor_name_kv)
485 fw_attr_td(ud, struct unit_directory, model_name_kv)
486
487 static struct device_attribute *const fw_ud_attrs[] = {
488         &dev_attr_ud_address,
489         &dev_attr_ud_length,
490         &dev_attr_ignore_driver,
491 };
492
493
494 fw_attr(host, struct hpsb_host, node_count, int, "%d\n")
495 fw_attr(host, struct hpsb_host, selfid_count, int, "%d\n")
496 fw_attr(host, struct hpsb_host, nodes_active, int, "%d\n")
497 fw_attr(host, struct hpsb_host, in_bus_reset, int, "%d\n")
498 fw_attr(host, struct hpsb_host, is_root, int, "%d\n")
499 fw_attr(host, struct hpsb_host, is_cycmst, int, "%d\n")
500 fw_attr(host, struct hpsb_host, is_irm, int, "%d\n")
501 fw_attr(host, struct hpsb_host, is_busmgr, int, "%d\n")
502
503 static struct device_attribute *const fw_host_attrs[] = {
504         &dev_attr_host_node_count,
505         &dev_attr_host_selfid_count,
506         &dev_attr_host_nodes_active,
507         &dev_attr_host_in_bus_reset,
508         &dev_attr_host_is_root,
509         &dev_attr_host_is_cycmst,
510         &dev_attr_host_is_irm,
511         &dev_attr_host_is_busmgr,
512 };
513
514
515 static ssize_t fw_show_drv_device_ids(struct device_driver *drv, char *buf)
516 {
517         struct hpsb_protocol_driver *driver;
518         struct ieee1394_device_id *id;
519         int length = 0;
520         char *scratch = buf;
521
522         driver = container_of(drv, struct hpsb_protocol_driver, driver);
523         id = driver->id_table;
524         if (!id)
525                 return 0;
526
527         for (; id->match_flags != 0; id++) {
528                 int need_coma = 0;
529
530                 if (id->match_flags & IEEE1394_MATCH_VENDOR_ID) {
531                         length += sprintf(scratch, "vendor_id=0x%06x", id->vendor_id);
532                         scratch = buf + length;
533                         need_coma++;
534                 }
535
536                 if (id->match_flags & IEEE1394_MATCH_MODEL_ID) {
537                         length += sprintf(scratch, "%smodel_id=0x%06x",
538                                           need_coma++ ? "," : "",
539                                           id->model_id);
540                         scratch = buf + length;
541                 }
542
543                 if (id->match_flags & IEEE1394_MATCH_SPECIFIER_ID) {
544                         length += sprintf(scratch, "%sspecifier_id=0x%06x",
545                                           need_coma++ ? "," : "",
546                                           id->specifier_id);
547                         scratch = buf + length;
548                 }
549
550                 if (id->match_flags & IEEE1394_MATCH_VERSION) {
551                         length += sprintf(scratch, "%sversion=0x%06x",
552                                           need_coma++ ? "," : "",
553                                           id->version);
554                         scratch = buf + length;
555                 }
556
557                 if (need_coma) {
558                         *scratch++ = '\n';
559                         length++;
560                 }
561         }
562
563         return length;
564 }
565 static DRIVER_ATTR(device_ids,S_IRUGO,fw_show_drv_device_ids,NULL);
566
567
568 fw_drv_attr(name, const char *, "%s\n")
569
570 static struct driver_attribute *const fw_drv_attrs[] = {
571         &driver_attr_drv_name,
572         &driver_attr_device_ids,
573 };
574
575
576 static void nodemgr_create_drv_files(struct hpsb_protocol_driver *driver)
577 {
578         struct device_driver *drv = &driver->driver;
579         int i;
580
581         for (i = 0; i < ARRAY_SIZE(fw_drv_attrs); i++)
582                 if (driver_create_file(drv, fw_drv_attrs[i]))
583                         goto fail;
584         return;
585 fail:
586         HPSB_ERR("Failed to add sysfs attribute");
587 }
588
589
590 static void nodemgr_remove_drv_files(struct hpsb_protocol_driver *driver)
591 {
592         struct device_driver *drv = &driver->driver;
593         int i;
594
595         for (i = 0; i < ARRAY_SIZE(fw_drv_attrs); i++)
596                 driver_remove_file(drv, fw_drv_attrs[i]);
597 }
598
599
600 static void nodemgr_create_ne_dev_files(struct node_entry *ne)
601 {
602         struct device *dev = &ne->device;
603         int i;
604
605         for (i = 0; i < ARRAY_SIZE(fw_ne_attrs); i++)
606                 if (device_create_file(dev, fw_ne_attrs[i]))
607                         goto fail;
608         return;
609 fail:
610         HPSB_ERR("Failed to add sysfs attribute");
611 }
612
613
614 static void nodemgr_create_host_dev_files(struct hpsb_host *host)
615 {
616         struct device *dev = &host->device;
617         int i;
618
619         for (i = 0; i < ARRAY_SIZE(fw_host_attrs); i++)
620                 if (device_create_file(dev, fw_host_attrs[i]))
621                         goto fail;
622         return;
623 fail:
624         HPSB_ERR("Failed to add sysfs attribute");
625 }
626
627
628 static struct node_entry *find_entry_by_nodeid(struct hpsb_host *host,
629                                                nodeid_t nodeid);
630
631 static void nodemgr_update_host_dev_links(struct hpsb_host *host)
632 {
633         struct device *dev = &host->device;
634         struct node_entry *ne;
635
636         sysfs_remove_link(&dev->kobj, "irm_id");
637         sysfs_remove_link(&dev->kobj, "busmgr_id");
638         sysfs_remove_link(&dev->kobj, "host_id");
639
640         if ((ne = find_entry_by_nodeid(host, host->irm_id)) &&
641             sysfs_create_link(&dev->kobj, &ne->device.kobj, "irm_id"))
642                 goto fail;
643         if ((ne = find_entry_by_nodeid(host, host->busmgr_id)) &&
644             sysfs_create_link(&dev->kobj, &ne->device.kobj, "busmgr_id"))
645                 goto fail;
646         if ((ne = find_entry_by_nodeid(host, host->node_id)) &&
647             sysfs_create_link(&dev->kobj, &ne->device.kobj, "host_id"))
648                 goto fail;
649         return;
650 fail:
651         HPSB_ERR("Failed to update sysfs attributes for host %d", host->id);
652 }
653
654 static void nodemgr_create_ud_dev_files(struct unit_directory *ud)
655 {
656         struct device *dev = &ud->device;
657         int i;
658
659         for (i = 0; i < ARRAY_SIZE(fw_ud_attrs); i++)
660                 if (device_create_file(dev, fw_ud_attrs[i]))
661                         goto fail;
662         if (ud->flags & UNIT_DIRECTORY_SPECIFIER_ID)
663                 if (device_create_file(dev, &dev_attr_ud_specifier_id))
664                         goto fail;
665         if (ud->flags & UNIT_DIRECTORY_VERSION)
666                 if (device_create_file(dev, &dev_attr_ud_version))
667                         goto fail;
668         if (ud->flags & UNIT_DIRECTORY_VENDOR_ID) {
669                 if (device_create_file(dev, &dev_attr_ud_vendor_id))
670                         goto fail;
671                 if (ud->vendor_name_kv &&
672                     device_create_file(dev, &dev_attr_ud_vendor_name_kv))
673                         goto fail;
674         }
675         if (ud->flags & UNIT_DIRECTORY_MODEL_ID) {
676                 if (device_create_file(dev, &dev_attr_ud_model_id))
677                         goto fail;
678                 if (ud->model_name_kv &&
679                     device_create_file(dev, &dev_attr_ud_model_name_kv))
680                         goto fail;
681         }
682         return;
683 fail:
684         HPSB_ERR("Failed to add sysfs attribute");
685 }
686
687
688 static int nodemgr_bus_match(struct device * dev, struct device_driver * drv)
689 {
690         struct hpsb_protocol_driver *driver;
691         struct unit_directory *ud;
692         struct ieee1394_device_id *id;
693
694         /* We only match unit directories */
695         if (dev->platform_data != &nodemgr_ud_platform_data)
696                 return 0;
697
698         ud = container_of(dev, struct unit_directory, device);
699         if (ud->ne->in_limbo || ud->ignore_driver)
700                 return 0;
701
702         /* We only match drivers of type hpsb_protocol_driver */
703         if (drv == &nodemgr_mid_layer_driver)
704                 return 0;
705
706         driver = container_of(drv, struct hpsb_protocol_driver, driver);
707         id = driver->id_table;
708         if (!id)
709                 return 0;
710
711         for (; id->match_flags != 0; id++) {
712                 if ((id->match_flags & IEEE1394_MATCH_VENDOR_ID) &&
713                     id->vendor_id != ud->vendor_id)
714                         continue;
715
716                 if ((id->match_flags & IEEE1394_MATCH_MODEL_ID) &&
717                     id->model_id != ud->model_id)
718                         continue;
719
720                 if ((id->match_flags & IEEE1394_MATCH_SPECIFIER_ID) &&
721                     id->specifier_id != ud->specifier_id)
722                         continue;
723
724                 if ((id->match_flags & IEEE1394_MATCH_VERSION) &&
725                     id->version != ud->version)
726                         continue;
727
728                 return 1;
729         }
730
731         return 0;
732 }
733
734
735 static DEFINE_MUTEX(nodemgr_serialize_remove_uds);
736
737 static int __match_ne(struct device *dev, void *data)
738 {
739         struct unit_directory *ud;
740         struct node_entry *ne = (struct node_entry *)data;
741
742         ud = container_of(dev, struct unit_directory, unit_dev);
743         return ud->ne == ne;
744 }
745
746 static void nodemgr_remove_uds(struct node_entry *ne)
747 {
748         struct device *dev;
749         struct unit_directory *ud;
750
751         /* Use class_find device to iterate the devices. Since this code
752          * may be called from other contexts besides the knodemgrds,
753          * protect it by nodemgr_serialize_remove_uds.
754          */
755         mutex_lock(&nodemgr_serialize_remove_uds);
756         for (;;) {
757                 dev = class_find_device(&nodemgr_ud_class, ne, __match_ne);
758                 if (!dev)
759                         break;
760                 ud = container_of(dev, struct unit_directory, unit_dev);
761                 put_device(dev);
762                 device_unregister(&ud->unit_dev);
763                 device_unregister(&ud->device);
764         }
765         mutex_unlock(&nodemgr_serialize_remove_uds);
766 }
767
768
769 static void nodemgr_remove_ne(struct node_entry *ne)
770 {
771         struct device *dev;
772
773         dev = get_device(&ne->device);
774         if (!dev)
775                 return;
776
777         HPSB_DEBUG("Node removed: ID:BUS[" NODE_BUS_FMT "]  GUID[%016Lx]",
778                    NODE_BUS_ARGS(ne->host, ne->nodeid), (unsigned long long)ne->guid);
779         nodemgr_remove_uds(ne);
780
781         device_unregister(&ne->node_dev);
782         device_unregister(dev);
783
784         put_device(dev);
785 }
786
787 static int __nodemgr_remove_host_dev(struct device *dev, void *data)
788 {
789         if (dev->bus == &ieee1394_bus_type)
790                 nodemgr_remove_ne(container_of(dev, struct node_entry,
791                                   device));
792         return 0;
793 }
794
795 static void nodemgr_remove_host_dev(struct device *dev)
796 {
797         WARN_ON(device_for_each_child(dev, NULL, __nodemgr_remove_host_dev));
798         sysfs_remove_link(&dev->kobj, "irm_id");
799         sysfs_remove_link(&dev->kobj, "busmgr_id");
800         sysfs_remove_link(&dev->kobj, "host_id");
801 }
802
803
804 static void nodemgr_update_bus_options(struct node_entry *ne)
805 {
806 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
807         static const u16 mr[] = { 4, 64, 1024, 0};
808 #endif
809         quadlet_t busoptions = be32_to_cpu(ne->csr->bus_info_data[2]);
810
811         ne->busopt.irmc         = (busoptions >> 31) & 1;
812         ne->busopt.cmc          = (busoptions >> 30) & 1;
813         ne->busopt.isc          = (busoptions >> 29) & 1;
814         ne->busopt.bmc          = (busoptions >> 28) & 1;
815         ne->busopt.pmc          = (busoptions >> 27) & 1;
816         ne->busopt.cyc_clk_acc  = (busoptions >> 16) & 0xff;
817         ne->busopt.max_rec      = 1 << (((busoptions >> 12) & 0xf) + 1);
818         ne->busopt.max_rom      = (busoptions >> 8) & 0x3;
819         ne->busopt.generation   = (busoptions >> 4) & 0xf;
820         ne->busopt.lnkspd       = busoptions & 0x7;
821
822         HPSB_VERBOSE("NodeMgr: raw=0x%08x irmc=%d cmc=%d isc=%d bmc=%d pmc=%d "
823                      "cyc_clk_acc=%d max_rec=%d max_rom=%d gen=%d lspd=%d",
824                      busoptions, ne->busopt.irmc, ne->busopt.cmc,
825                      ne->busopt.isc, ne->busopt.bmc, ne->busopt.pmc,
826                      ne->busopt.cyc_clk_acc, ne->busopt.max_rec,
827                      mr[ne->busopt.max_rom],
828                      ne->busopt.generation, ne->busopt.lnkspd);
829 }
830
831
832 static struct node_entry *nodemgr_create_node(octlet_t guid, struct csr1212_csr *csr,
833                                               struct host_info *hi, nodeid_t nodeid,
834                                               unsigned int generation)
835 {
836         struct hpsb_host *host = hi->host;
837         struct node_entry *ne;
838
839         ne = kzalloc(sizeof(*ne), GFP_KERNEL);
840         if (!ne)
841                 goto fail_alloc;
842
843         ne->host = host;
844         ne->nodeid = nodeid;
845         ne->generation = generation;
846         ne->needs_probe = 1;
847
848         ne->guid = guid;
849         ne->guid_vendor_id = (guid >> 40) & 0xffffff;
850         ne->csr = csr;
851
852         memcpy(&ne->device, &nodemgr_dev_template_ne,
853                sizeof(ne->device));
854         ne->device.parent = &host->device;
855         snprintf(ne->device.bus_id, BUS_ID_SIZE, "%016Lx",
856                  (unsigned long long)(ne->guid));
857
858         ne->node_dev.parent = &ne->device;
859         ne->node_dev.class = &nodemgr_ne_class;
860         snprintf(ne->node_dev.bus_id, BUS_ID_SIZE, "%016Lx",
861                 (unsigned long long)(ne->guid));
862
863         if (device_register(&ne->device))
864                 goto fail_devreg;
865         if (device_register(&ne->node_dev))
866                 goto fail_classdevreg;
867         get_device(&ne->device);
868
869         nodemgr_create_ne_dev_files(ne);
870
871         nodemgr_update_bus_options(ne);
872
873         HPSB_DEBUG("%s added: ID:BUS[" NODE_BUS_FMT "]  GUID[%016Lx]",
874                    (host->node_id == nodeid) ? "Host" : "Node",
875                    NODE_BUS_ARGS(host, nodeid), (unsigned long long)guid);
876
877         return ne;
878
879 fail_classdevreg:
880         device_unregister(&ne->device);
881 fail_devreg:
882         kfree(ne);
883 fail_alloc:
884         HPSB_ERR("Failed to create node ID:BUS[" NODE_BUS_FMT "]  GUID[%016Lx]",
885                  NODE_BUS_ARGS(host, nodeid), (unsigned long long)guid);
886
887         return NULL;
888 }
889
890 static int __match_ne_guid(struct device *dev, void *data)
891 {
892         struct node_entry *ne;
893         u64 *guid = (u64 *)data;
894
895         ne = container_of(dev, struct node_entry, node_dev);
896         return ne->guid == *guid;
897 }
898
899 static struct node_entry *find_entry_by_guid(u64 guid)
900 {
901         struct device *dev;
902         struct node_entry *ne;
903
904         dev = class_find_device(&nodemgr_ne_class, &guid, __match_ne_guid);
905         if (!dev)
906                 return NULL;
907         ne = container_of(dev, struct node_entry, node_dev);
908         put_device(dev);
909
910         return ne;
911 }
912
913 struct match_nodeid_param {
914         struct hpsb_host *host;
915         nodeid_t nodeid;
916 };
917
918 static int __match_ne_nodeid(struct device *dev, void *data)
919 {
920         int found = 0;
921         struct node_entry *ne;
922         struct match_nodeid_param *param = (struct match_nodeid_param *)data;
923
924         if (!dev)
925                 goto ret;
926         ne = container_of(dev, struct node_entry, node_dev);
927         if (ne->host == param->host && ne->nodeid == param->nodeid)
928                 found = 1;
929 ret:
930         return found;
931 }
932
933 static struct node_entry *find_entry_by_nodeid(struct hpsb_host *host,
934                                                nodeid_t nodeid)
935 {
936         struct device *dev;
937         struct node_entry *ne;
938         struct match_nodeid_param param;
939
940         param.host = host;
941         param.nodeid = nodeid;
942
943         dev = class_find_device(&nodemgr_ne_class, &param, __match_ne_nodeid);
944         if (!dev)
945                 return NULL;
946         ne = container_of(dev, struct node_entry, node_dev);
947         put_device(dev);
948
949         return ne;
950 }
951
952
953 static void nodemgr_register_device(struct node_entry *ne, 
954         struct unit_directory *ud, struct device *parent)
955 {
956         memcpy(&ud->device, &nodemgr_dev_template_ud,
957                sizeof(ud->device));
958
959         ud->device.parent = parent;
960
961         snprintf(ud->device.bus_id, BUS_ID_SIZE, "%s-%u",
962                  ne->device.bus_id, ud->id);
963
964         ud->unit_dev.parent = &ud->device;
965         ud->unit_dev.class = &nodemgr_ud_class;
966         snprintf(ud->unit_dev.bus_id, BUS_ID_SIZE, "%s-%u",
967                  ne->device.bus_id, ud->id);
968
969         if (device_register(&ud->device))
970                 goto fail_devreg;
971         if (device_register(&ud->unit_dev))
972                 goto fail_classdevreg;
973         get_device(&ud->device);
974
975         nodemgr_create_ud_dev_files(ud);
976
977         return;
978
979 fail_classdevreg:
980         device_unregister(&ud->device);
981 fail_devreg:
982         HPSB_ERR("Failed to create unit %s", ud->device.bus_id);
983 }       
984
985
986 /* This implementation currently only scans the config rom and its
987  * immediate unit directories looking for software_id and
988  * software_version entries, in order to get driver autoloading working. */
989 static struct unit_directory *nodemgr_process_unit_directory
990         (struct host_info *hi, struct node_entry *ne, struct csr1212_keyval *ud_kv,
991          unsigned int *id, struct unit_directory *parent)
992 {
993         struct unit_directory *ud;
994         struct unit_directory *ud_child = NULL;
995         struct csr1212_dentry *dentry;
996         struct csr1212_keyval *kv;
997         u8 last_key_id = 0;
998
999         ud = kzalloc(sizeof(*ud), GFP_KERNEL);
1000         if (!ud)
1001                 goto unit_directory_error;
1002
1003         ud->ne = ne;
1004         ud->ignore_driver = ignore_drivers;
1005         ud->address = ud_kv->offset + CSR1212_REGISTER_SPACE_BASE;
1006         ud->directory_id = ud->address & 0xffffff;
1007         ud->ud_kv = ud_kv;
1008         ud->id = (*id)++;
1009
1010         csr1212_for_each_dir_entry(ne->csr, kv, ud_kv, dentry) {
1011                 switch (kv->key.id) {
1012                 case CSR1212_KV_ID_VENDOR:
1013                         if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE) {
1014                                 ud->vendor_id = kv->value.immediate;
1015                                 ud->flags |= UNIT_DIRECTORY_VENDOR_ID;
1016                         }
1017                         break;
1018
1019                 case CSR1212_KV_ID_MODEL:
1020                         ud->model_id = kv->value.immediate;
1021                         ud->flags |= UNIT_DIRECTORY_MODEL_ID;
1022                         break;
1023
1024                 case CSR1212_KV_ID_SPECIFIER_ID:
1025                         ud->specifier_id = kv->value.immediate;
1026                         ud->flags |= UNIT_DIRECTORY_SPECIFIER_ID;
1027                         break;
1028
1029                 case CSR1212_KV_ID_VERSION:
1030                         ud->version = kv->value.immediate;
1031                         ud->flags |= UNIT_DIRECTORY_VERSION;
1032                         break;
1033
1034                 case CSR1212_KV_ID_DESCRIPTOR:
1035                         if (kv->key.type == CSR1212_KV_TYPE_LEAF &&
1036                             CSR1212_DESCRIPTOR_LEAF_TYPE(kv) == 0 &&
1037                             CSR1212_DESCRIPTOR_LEAF_SPECIFIER_ID(kv) == 0 &&
1038                             CSR1212_TEXTUAL_DESCRIPTOR_LEAF_WIDTH(kv) == 0 &&
1039                             CSR1212_TEXTUAL_DESCRIPTOR_LEAF_CHAR_SET(kv) == 0 &&
1040                             CSR1212_TEXTUAL_DESCRIPTOR_LEAF_LANGUAGE(kv) == 0) {
1041                                 switch (last_key_id) {
1042                                 case CSR1212_KV_ID_VENDOR:
1043                                         csr1212_keep_keyval(kv);
1044                                         ud->vendor_name_kv = kv;
1045                                         break;
1046
1047                                 case CSR1212_KV_ID_MODEL:
1048                                         csr1212_keep_keyval(kv);
1049                                         ud->model_name_kv = kv;
1050                                         break;
1051
1052                                 }
1053                         } /* else if (kv->key.type == CSR1212_KV_TYPE_DIRECTORY) ... */
1054                         break;
1055
1056                 case CSR1212_KV_ID_DEPENDENT_INFO:
1057                         /* Logical Unit Number */
1058                         if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE) {
1059                                 if (ud->flags & UNIT_DIRECTORY_HAS_LUN) {
1060                                         ud_child = kmemdup(ud, sizeof(*ud_child), GFP_KERNEL);
1061                                         if (!ud_child)
1062                                                 goto unit_directory_error;
1063                                         nodemgr_register_device(ne, ud_child, &ne->device);
1064                                         ud_child = NULL;
1065                                         
1066                                         ud->id = (*id)++;
1067                                 }
1068                                 ud->lun = kv->value.immediate;
1069                                 ud->flags |= UNIT_DIRECTORY_HAS_LUN;
1070
1071                         /* Logical Unit Directory */
1072                         } else if (kv->key.type == CSR1212_KV_TYPE_DIRECTORY) {
1073                                 /* This should really be done in SBP2 as this is
1074                                  * doing SBP2 specific parsing.
1075                                  */
1076                                 
1077                                 /* first register the parent unit */
1078                                 ud->flags |= UNIT_DIRECTORY_HAS_LUN_DIRECTORY;
1079                                 if (ud->device.bus != &ieee1394_bus_type)
1080                                         nodemgr_register_device(ne, ud, &ne->device);
1081                                 
1082                                 /* process the child unit */
1083                                 ud_child = nodemgr_process_unit_directory(hi, ne, kv, id, ud);
1084
1085                                 if (ud_child == NULL)
1086                                         break;
1087                                 
1088                                 /* inherit unspecified values, the driver core picks it up */
1089                                 if ((ud->flags & UNIT_DIRECTORY_MODEL_ID) &&
1090                                     !(ud_child->flags & UNIT_DIRECTORY_MODEL_ID))
1091                                 {
1092                                         ud_child->flags |=  UNIT_DIRECTORY_MODEL_ID;
1093                                         ud_child->model_id = ud->model_id;
1094                                 }
1095                                 if ((ud->flags & UNIT_DIRECTORY_SPECIFIER_ID) &&
1096                                     !(ud_child->flags & UNIT_DIRECTORY_SPECIFIER_ID))
1097                                 {
1098                                         ud_child->flags |=  UNIT_DIRECTORY_SPECIFIER_ID;
1099                                         ud_child->specifier_id = ud->specifier_id;
1100                                 }
1101                                 if ((ud->flags & UNIT_DIRECTORY_VERSION) &&
1102                                     !(ud_child->flags & UNIT_DIRECTORY_VERSION))
1103                                 {
1104                                         ud_child->flags |=  UNIT_DIRECTORY_VERSION;
1105                                         ud_child->version = ud->version;
1106                                 }
1107                                 
1108                                 /* register the child unit */
1109                                 ud_child->flags |= UNIT_DIRECTORY_LUN_DIRECTORY;
1110                                 nodemgr_register_device(ne, ud_child, &ud->device);
1111                         }
1112
1113                         break;
1114
1115                 case CSR1212_KV_ID_DIRECTORY_ID:
1116                         ud->directory_id = kv->value.immediate;
1117                         break;
1118
1119                 default:
1120                         break;
1121                 }
1122                 last_key_id = kv->key.id;
1123         }
1124         
1125         /* do not process child units here and only if not already registered */
1126         if (!parent && ud->device.bus != &ieee1394_bus_type)
1127                 nodemgr_register_device(ne, ud, &ne->device);
1128
1129         return ud;
1130
1131 unit_directory_error:
1132         kfree(ud);
1133         return NULL;
1134 }
1135
1136
1137 static void nodemgr_process_root_directory(struct host_info *hi, struct node_entry *ne)
1138 {
1139         unsigned int ud_id = 0;
1140         struct csr1212_dentry *dentry;
1141         struct csr1212_keyval *kv, *vendor_name_kv = NULL;
1142         u8 last_key_id = 0;
1143
1144         ne->needs_probe = 0;
1145
1146         csr1212_for_each_dir_entry(ne->csr, kv, ne->csr->root_kv, dentry) {
1147                 switch (kv->key.id) {
1148                 case CSR1212_KV_ID_VENDOR:
1149                         ne->vendor_id = kv->value.immediate;
1150                         break;
1151
1152                 case CSR1212_KV_ID_NODE_CAPABILITIES:
1153                         ne->capabilities = kv->value.immediate;
1154                         break;
1155
1156                 case CSR1212_KV_ID_UNIT:
1157                         nodemgr_process_unit_directory(hi, ne, kv, &ud_id, NULL);
1158                         break;
1159
1160                 case CSR1212_KV_ID_DESCRIPTOR:
1161                         if (last_key_id == CSR1212_KV_ID_VENDOR) {
1162                                 if (kv->key.type == CSR1212_KV_TYPE_LEAF &&
1163                                     CSR1212_DESCRIPTOR_LEAF_TYPE(kv) == 0 &&
1164                                     CSR1212_DESCRIPTOR_LEAF_SPECIFIER_ID(kv) == 0 &&
1165                                     CSR1212_TEXTUAL_DESCRIPTOR_LEAF_WIDTH(kv) == 0 &&
1166                                     CSR1212_TEXTUAL_DESCRIPTOR_LEAF_CHAR_SET(kv) == 0 &&
1167                                     CSR1212_TEXTUAL_DESCRIPTOR_LEAF_LANGUAGE(kv) == 0) {
1168                                         csr1212_keep_keyval(kv);
1169                                         vendor_name_kv = kv;
1170                                 }
1171                         }
1172                         break;
1173                 }
1174                 last_key_id = kv->key.id;
1175         }
1176
1177         if (ne->vendor_name_kv) {
1178                 kv = ne->vendor_name_kv;
1179                 ne->vendor_name_kv = vendor_name_kv;
1180                 csr1212_release_keyval(kv);
1181         } else if (vendor_name_kv) {
1182                 ne->vendor_name_kv = vendor_name_kv;
1183                 if (device_create_file(&ne->device,
1184                                        &dev_attr_ne_vendor_name_kv) != 0)
1185                         HPSB_ERR("Failed to add sysfs attribute");
1186         }
1187 }
1188
1189 #ifdef CONFIG_HOTPLUG
1190
1191 static int nodemgr_uevent(struct device *dev, struct kobj_uevent_env *env)
1192 {
1193         struct unit_directory *ud;
1194         int retval = 0;
1195         /* ieee1394:venNmoNspNverN */
1196         char buf[8 + 1 + 3 + 8 + 2 + 8 + 2 + 8 + 3 + 8 + 1];
1197
1198         if (!dev)
1199                 return -ENODEV;
1200
1201         ud = container_of(dev, struct unit_directory, unit_dev);
1202
1203         if (ud->ne->in_limbo || ud->ignore_driver)
1204                 return -ENODEV;
1205
1206 #define PUT_ENVP(fmt,val)                                       \
1207 do {                                                            \
1208         retval = add_uevent_var(env, fmt, val);         \
1209         if (retval)                                             \
1210                 return retval;                                  \
1211 } while (0)
1212
1213         PUT_ENVP("VENDOR_ID=%06x", ud->vendor_id);
1214         PUT_ENVP("MODEL_ID=%06x", ud->model_id);
1215         PUT_ENVP("GUID=%016Lx", (unsigned long long)ud->ne->guid);
1216         PUT_ENVP("SPECIFIER_ID=%06x", ud->specifier_id);
1217         PUT_ENVP("VERSION=%06x", ud->version);
1218         snprintf(buf, sizeof(buf), "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
1219                         ud->vendor_id,
1220                         ud->model_id,
1221                         ud->specifier_id,
1222                         ud->version);
1223         PUT_ENVP("MODALIAS=%s", buf);
1224
1225 #undef PUT_ENVP
1226
1227         return 0;
1228 }
1229
1230 #else
1231
1232 static int nodemgr_uevent(struct device *dev, struct kobj_uevent_env *env)
1233 {
1234         return -ENODEV;
1235 }
1236
1237 #endif /* CONFIG_HOTPLUG */
1238
1239
1240 int __hpsb_register_protocol(struct hpsb_protocol_driver *drv,
1241                              struct module *owner)
1242 {
1243         int error;
1244
1245         drv->driver.bus = &ieee1394_bus_type;
1246         drv->driver.owner = owner;
1247         drv->driver.name = drv->name;
1248
1249         /* This will cause a probe for devices */
1250         error = driver_register(&drv->driver);
1251         if (!error)
1252                 nodemgr_create_drv_files(drv);
1253         return error;
1254 }
1255
1256 void hpsb_unregister_protocol(struct hpsb_protocol_driver *driver)
1257 {
1258         nodemgr_remove_drv_files(driver);
1259         /* This will subsequently disconnect all devices that our driver
1260          * is attached to. */
1261         driver_unregister(&driver->driver);
1262 }
1263
1264
1265 /*
1266  * This function updates nodes that were present on the bus before the
1267  * reset and still are after the reset.  The nodeid and the config rom
1268  * may have changed, and the drivers managing this device must be
1269  * informed that this device just went through a bus reset, to allow
1270  * the to take whatever actions required.
1271  */
1272 static void nodemgr_update_node(struct node_entry *ne, struct csr1212_csr *csr,
1273                                 struct host_info *hi, nodeid_t nodeid,
1274                                 unsigned int generation)
1275 {
1276         if (ne->nodeid != nodeid) {
1277                 HPSB_DEBUG("Node changed: " NODE_BUS_FMT " -> " NODE_BUS_FMT,
1278                            NODE_BUS_ARGS(ne->host, ne->nodeid),
1279                            NODE_BUS_ARGS(ne->host, nodeid));
1280                 ne->nodeid = nodeid;
1281         }
1282
1283         if (ne->busopt.generation != ((be32_to_cpu(csr->bus_info_data[2]) >> 4) & 0xf)) {
1284                 kfree(ne->csr->private);
1285                 csr1212_destroy_csr(ne->csr);
1286                 ne->csr = csr;
1287
1288                 /* If the node's configrom generation has changed, we
1289                  * unregister all the unit directories. */
1290                 nodemgr_remove_uds(ne);
1291
1292                 nodemgr_update_bus_options(ne);
1293
1294                 /* Mark the node as new, so it gets re-probed */
1295                 ne->needs_probe = 1;
1296         } else {
1297                 /* old cache is valid, so update its generation */
1298                 struct nodemgr_csr_info *ci = ne->csr->private;
1299                 ci->generation = generation;
1300                 /* free the partially filled now unneeded new cache */
1301                 kfree(csr->private);
1302                 csr1212_destroy_csr(csr);
1303         }
1304
1305         if (ne->in_limbo)
1306                 nodemgr_resume_ne(ne);
1307
1308         /* Mark the node current */
1309         ne->generation = generation;
1310 }
1311
1312
1313
1314 static void nodemgr_node_scan_one(struct host_info *hi,
1315                                   nodeid_t nodeid, int generation)
1316 {
1317         struct hpsb_host *host = hi->host;
1318         struct node_entry *ne;
1319         octlet_t guid;
1320         struct csr1212_csr *csr;
1321         struct nodemgr_csr_info *ci;
1322         u8 *speed;
1323
1324         ci = kmalloc(sizeof(*ci), GFP_KERNEL);
1325         if (!ci)
1326                 return;
1327
1328         ci->host = host;
1329         ci->nodeid = nodeid;
1330         ci->generation = generation;
1331
1332         /* Prepare for speed probe which occurs when reading the ROM */
1333         speed = &(host->speed[NODEID_TO_NODE(nodeid)]);
1334         if (*speed > host->csr.lnk_spd)
1335                 *speed = host->csr.lnk_spd;
1336         ci->speed_unverified = *speed > IEEE1394_SPEED_100;
1337
1338         /* We need to detect when the ConfigROM's generation has changed,
1339          * so we only update the node's info when it needs to be.  */
1340
1341         csr = csr1212_create_csr(&nodemgr_csr_ops, 5 * sizeof(quadlet_t), ci);
1342         if (!csr || csr1212_parse_csr(csr) != CSR1212_SUCCESS) {
1343                 HPSB_ERR("Error parsing configrom for node " NODE_BUS_FMT,
1344                          NODE_BUS_ARGS(host, nodeid));
1345                 if (csr)
1346                         csr1212_destroy_csr(csr);
1347                 kfree(ci);
1348                 return;
1349         }
1350
1351         if (csr->bus_info_data[1] != IEEE1394_BUSID_MAGIC) {
1352                 /* This isn't a 1394 device, but we let it slide. There
1353                  * was a report of a device with broken firmware which
1354                  * reported '2394' instead of '1394', which is obviously a
1355                  * mistake. One would hope that a non-1394 device never
1356                  * gets connected to Firewire bus. If someone does, we
1357                  * shouldn't be held responsible, so we'll allow it with a
1358                  * warning.  */
1359                 HPSB_WARN("Node " NODE_BUS_FMT " has invalid busID magic [0x%08x]",
1360                           NODE_BUS_ARGS(host, nodeid), csr->bus_info_data[1]);
1361         }
1362
1363         guid = ((u64)be32_to_cpu(csr->bus_info_data[3]) << 32) | be32_to_cpu(csr->bus_info_data[4]);
1364         ne = find_entry_by_guid(guid);
1365
1366         if (ne && ne->host != host && ne->in_limbo) {
1367                 /* Must have moved this device from one host to another */
1368                 nodemgr_remove_ne(ne);
1369                 ne = NULL;
1370         }
1371
1372         if (!ne)
1373                 nodemgr_create_node(guid, csr, hi, nodeid, generation);
1374         else
1375                 nodemgr_update_node(ne, csr, hi, nodeid, generation);
1376 }
1377
1378
1379 static void nodemgr_node_scan(struct host_info *hi, int generation)
1380 {
1381         int count;
1382         struct hpsb_host *host = hi->host;
1383         struct selfid *sid = (struct selfid *)host->topology_map;
1384         nodeid_t nodeid = LOCAL_BUS;
1385
1386         /* Scan each node on the bus */
1387         for (count = host->selfid_count; count; count--, sid++) {
1388                 if (sid->extended)
1389                         continue;
1390
1391                 if (!sid->link_active) {
1392                         nodeid++;
1393                         continue;
1394                 }
1395                 nodemgr_node_scan_one(hi, nodeid++, generation);
1396         }
1397 }
1398
1399 static int __nodemgr_driver_suspend(struct device *dev, void *data)
1400 {
1401         struct unit_directory *ud;
1402         struct device_driver *drv;
1403         struct node_entry *ne = (struct node_entry *)data;
1404         int error;
1405
1406         ud = container_of(dev, struct unit_directory, unit_dev);
1407         if (ud->ne == ne) {
1408                 drv = get_driver(ud->device.driver);
1409                 if (drv) {
1410                         error = 1; /* release if suspend is not implemented */
1411                         if (drv->suspend) {
1412                                 down(&ud->device.sem);
1413                                 error = drv->suspend(&ud->device, PMSG_SUSPEND);
1414                                 up(&ud->device.sem);
1415                         }
1416                         if (error)
1417                                 device_release_driver(&ud->device);
1418                         put_driver(drv);
1419                 }
1420         }
1421
1422         return 0;
1423 }
1424
1425 static int __nodemgr_driver_resume(struct device *dev, void *data)
1426 {
1427         struct unit_directory *ud;
1428         struct device_driver *drv;
1429         struct node_entry *ne = (struct node_entry *)data;
1430
1431         ud = container_of(dev, struct unit_directory, unit_dev);
1432         if (ud->ne == ne) {
1433                 drv = get_driver(ud->device.driver);
1434                 if (drv) {
1435                         if (drv->resume) {
1436                                 down(&ud->device.sem);
1437                                 drv->resume(&ud->device);
1438                                 up(&ud->device.sem);
1439                         }
1440                         put_driver(drv);
1441                 }
1442         }
1443
1444         return 0;
1445 }
1446
1447 static void nodemgr_suspend_ne(struct node_entry *ne)
1448 {
1449         HPSB_DEBUG("Node suspended: ID:BUS[" NODE_BUS_FMT "]  GUID[%016Lx]",
1450                    NODE_BUS_ARGS(ne->host, ne->nodeid),
1451                    (unsigned long long)ne->guid);
1452
1453         ne->in_limbo = 1;
1454         WARN_ON(device_create_file(&ne->device, &dev_attr_ne_in_limbo));
1455
1456         class_for_each_device(&nodemgr_ud_class, ne, __nodemgr_driver_suspend);
1457 }
1458
1459
1460 static void nodemgr_resume_ne(struct node_entry *ne)
1461 {
1462         ne->in_limbo = 0;
1463         device_remove_file(&ne->device, &dev_attr_ne_in_limbo);
1464
1465         class_for_each_device(&nodemgr_ud_class, ne, __nodemgr_driver_resume);
1466         HPSB_DEBUG("Node resumed: ID:BUS[" NODE_BUS_FMT "]  GUID[%016Lx]",
1467                    NODE_BUS_ARGS(ne->host, ne->nodeid), (unsigned long long)ne->guid);
1468 }
1469
1470 static int __nodemgr_update_pdrv(struct device *dev, void *data)
1471 {
1472         struct unit_directory *ud;
1473         struct device_driver *drv;
1474         struct hpsb_protocol_driver *pdrv;
1475         struct node_entry *ne = (struct node_entry *)data;
1476         int error;
1477
1478         ud = container_of(dev, struct unit_directory, unit_dev);
1479         if (ud->ne == ne) {
1480                 drv = get_driver(ud->device.driver);
1481                 if (drv) {
1482                         error = 0;
1483                         pdrv = container_of(drv, struct hpsb_protocol_driver,
1484                                             driver);
1485                         if (pdrv->update) {
1486                                 down(&ud->device.sem);
1487                                 error = pdrv->update(ud);
1488                                 up(&ud->device.sem);
1489                         }
1490                         if (error)
1491                                 device_release_driver(&ud->device);
1492                         put_driver(drv);
1493                 }
1494         }
1495
1496         return 0;
1497 }
1498
1499 static void nodemgr_update_pdrv(struct node_entry *ne)
1500 {
1501         class_for_each_device(&nodemgr_ud_class, ne, __nodemgr_update_pdrv);
1502 }
1503
1504
1505 /* Write the BROADCAST_CHANNEL as per IEEE1394a 8.3.2.3.11 and 8.4.2.3.  This
1506  * seems like an optional service but in the end it is practically mandatory
1507  * as a consequence of these clauses.
1508  *
1509  * Note that we cannot do a broadcast write to all nodes at once because some
1510  * pre-1394a devices would hang. */
1511 static void nodemgr_irm_write_bc(struct node_entry *ne, int generation)
1512 {
1513         const u64 bc_addr = (CSR_REGISTER_BASE | CSR_BROADCAST_CHANNEL);
1514         quadlet_t bc_remote, bc_local;
1515         int error;
1516
1517         if (!ne->host->is_irm || ne->generation != generation ||
1518             ne->nodeid == ne->host->node_id)
1519                 return;
1520
1521         bc_local = cpu_to_be32(ne->host->csr.broadcast_channel);
1522
1523         /* Check if the register is implemented and 1394a compliant. */
1524         error = hpsb_read(ne->host, ne->nodeid, generation, bc_addr, &bc_remote,
1525                           sizeof(bc_remote));
1526         if (!error && bc_remote & cpu_to_be32(0x80000000) &&
1527             bc_remote != bc_local)
1528                 hpsb_node_write(ne, bc_addr, &bc_local, sizeof(bc_local));
1529 }
1530
1531
1532 static void nodemgr_probe_ne(struct host_info *hi, struct node_entry *ne, int generation)
1533 {
1534         struct device *dev;
1535
1536         if (ne->host != hi->host || ne->in_limbo)
1537                 return;
1538
1539         dev = get_device(&ne->device);
1540         if (!dev)
1541                 return;
1542
1543         nodemgr_irm_write_bc(ne, generation);
1544
1545         /* If "needs_probe", then this is either a new or changed node we
1546          * rescan totally. If the generation matches for an existing node
1547          * (one that existed prior to the bus reset) we send update calls
1548          * down to the drivers. Otherwise, this is a dead node and we
1549          * suspend it. */
1550         if (ne->needs_probe)
1551                 nodemgr_process_root_directory(hi, ne);
1552         else if (ne->generation == generation)
1553                 nodemgr_update_pdrv(ne);
1554         else
1555                 nodemgr_suspend_ne(ne);
1556
1557         put_device(dev);
1558 }
1559
1560 struct probe_param {
1561         struct host_info *hi;
1562         int generation;
1563 };
1564
1565 static int __nodemgr_node_probe(struct device *dev, void *data)
1566 {
1567         struct probe_param *param = (struct probe_param *)data;
1568         struct node_entry *ne;
1569
1570         ne = container_of(dev, struct node_entry, node_dev);
1571         if (!ne->needs_probe)
1572                 nodemgr_probe_ne(param->hi, ne, param->generation);
1573         if (ne->needs_probe)
1574                 nodemgr_probe_ne(param->hi, ne, param->generation);
1575         return 0;
1576 }
1577
1578 static void nodemgr_node_probe(struct host_info *hi, int generation)
1579 {
1580         struct hpsb_host *host = hi->host;
1581         struct probe_param param;
1582
1583         param.hi = hi;
1584         param.generation = generation;
1585         /* Do some processing of the nodes we've probed. This pulls them
1586          * into the sysfs layer if needed, and can result in processing of
1587          * unit-directories, or just updating the node and it's
1588          * unit-directories.
1589          *
1590          * Run updates before probes. Usually, updates are time-critical
1591          * while probes are time-consuming. (Well, those probes need some
1592          * improvement...) */
1593
1594         class_for_each_device(&nodemgr_ne_class, &param, __nodemgr_node_probe);
1595
1596         /* If we had a bus reset while we were scanning the bus, it is
1597          * possible that we did not probe all nodes.  In that case, we
1598          * skip the clean up for now, since we could remove nodes that
1599          * were still on the bus.  Another bus scan is pending which will
1600          * do the clean up eventually.
1601          *
1602          * Now let's tell the bus to rescan our devices. This may seem
1603          * like overhead, but the driver-model core will only scan a
1604          * device for a driver when either the device is added, or when a
1605          * new driver is added. A bus reset is a good reason to rescan
1606          * devices that were there before.  For example, an sbp2 device
1607          * may become available for login, if the host that held it was
1608          * just removed.  */
1609
1610         if (generation == get_hpsb_generation(host))
1611                 if (bus_rescan_devices(&ieee1394_bus_type))
1612                         HPSB_DEBUG("bus_rescan_devices had an error");
1613 }
1614
1615 static int nodemgr_send_resume_packet(struct hpsb_host *host)
1616 {
1617         struct hpsb_packet *packet;
1618         int error = -ENOMEM;
1619
1620         packet = hpsb_make_phypacket(host,
1621                         EXTPHYPACKET_TYPE_RESUME |
1622                         NODEID_TO_NODE(host->node_id) << PHYPACKET_PORT_SHIFT);
1623         if (packet) {
1624                 packet->no_waiter = 1;
1625                 packet->generation = get_hpsb_generation(host);
1626                 error = hpsb_send_packet(packet);
1627         }
1628         if (error)
1629                 HPSB_WARN("fw-host%d: Failed to broadcast resume packet",
1630                           host->id);
1631         return error;
1632 }
1633
1634 /* Perform a few high-level IRM responsibilities. */
1635 static int nodemgr_do_irm_duties(struct hpsb_host *host, int cycles)
1636 {
1637         quadlet_t bc;
1638
1639         /* if irm_id == -1 then there is no IRM on this bus */
1640         if (!host->is_irm || host->irm_id == (nodeid_t)-1)
1641                 return 1;
1642
1643         /* We are a 1394a-2000 compliant IRM. Set the validity bit. */
1644         host->csr.broadcast_channel |= 0x40000000;
1645
1646         /* If there is no bus manager then we should set the root node's
1647          * force_root bit to promote bus stability per the 1394
1648          * spec. (8.4.2.6) */
1649         if (host->busmgr_id == 0xffff && host->node_count > 1)
1650         {
1651                 u16 root_node = host->node_count - 1;
1652
1653                 /* get cycle master capability flag from root node */
1654                 if (host->is_cycmst ||
1655                     (!hpsb_read(host, LOCAL_BUS | root_node, get_hpsb_generation(host),
1656                                 (CSR_REGISTER_BASE + CSR_CONFIG_ROM + 2 * sizeof(quadlet_t)),
1657                                 &bc, sizeof(quadlet_t)) &&
1658                      be32_to_cpu(bc) & 1 << CSR_CMC_SHIFT))
1659                         hpsb_send_phy_config(host, root_node, -1);
1660                 else {
1661                         HPSB_DEBUG("The root node is not cycle master capable; "
1662                                    "selecting a new root node and resetting...");
1663
1664                         if (cycles >= 5) {
1665                                 /* Oh screw it! Just leave the bus as it is */
1666                                 HPSB_DEBUG("Stopping reset loop for IRM sanity");
1667                                 return 1;
1668                         }
1669
1670                         hpsb_send_phy_config(host, NODEID_TO_NODE(host->node_id), -1);
1671                         hpsb_reset_bus(host, LONG_RESET_FORCE_ROOT);
1672
1673                         return 0;
1674                 }
1675         }
1676
1677         /* Some devices suspend their ports while being connected to an inactive
1678          * host adapter, i.e. if connected before the low-level driver is
1679          * loaded.  They become visible either when physically unplugged and
1680          * replugged, or when receiving a resume packet.  Send one once. */
1681         if (!host->resume_packet_sent && !nodemgr_send_resume_packet(host))
1682                 host->resume_packet_sent = 1;
1683
1684         return 1;
1685 }
1686
1687 /* We need to ensure that if we are not the IRM, that the IRM node is capable of
1688  * everything we can do, otherwise issue a bus reset and try to become the IRM
1689  * ourselves. */
1690 static int nodemgr_check_irm_capability(struct hpsb_host *host, int cycles)
1691 {
1692         quadlet_t bc;
1693         int status;
1694
1695         if (hpsb_disable_irm || host->is_irm)
1696                 return 1;
1697
1698         status = hpsb_read(host, LOCAL_BUS | (host->irm_id),
1699                            get_hpsb_generation(host),
1700                            (CSR_REGISTER_BASE | CSR_BROADCAST_CHANNEL),
1701                            &bc, sizeof(quadlet_t));
1702
1703         if (status < 0 || !(be32_to_cpu(bc) & 0x80000000)) {
1704                 /* The current irm node does not have a valid BROADCAST_CHANNEL
1705                  * register and we do, so reset the bus with force_root set */
1706                 HPSB_DEBUG("Current remote IRM is not 1394a-2000 compliant, resetting...");
1707
1708                 if (cycles >= 5) {
1709                         /* Oh screw it! Just leave the bus as it is */
1710                         HPSB_DEBUG("Stopping reset loop for IRM sanity");
1711                         return 1;
1712                 }
1713
1714                 hpsb_send_phy_config(host, NODEID_TO_NODE(host->node_id), -1);
1715                 hpsb_reset_bus(host, LONG_RESET_FORCE_ROOT);
1716
1717                 return 0;
1718         }
1719
1720         return 1;
1721 }
1722
1723 static int nodemgr_host_thread(void *__hi)
1724 {
1725         struct host_info *hi = (struct host_info *)__hi;
1726         struct hpsb_host *host = hi->host;
1727         unsigned int g, generation = 0;
1728         int i, reset_cycles = 0;
1729
1730         set_freezable();
1731         /* Setup our device-model entries */
1732         nodemgr_create_host_dev_files(host);
1733
1734         for (;;) {
1735                 /* Sleep until next bus reset */
1736                 set_current_state(TASK_INTERRUPTIBLE);
1737                 if (get_hpsb_generation(host) == generation &&
1738                     !kthread_should_stop())
1739                         schedule();
1740                 __set_current_state(TASK_RUNNING);
1741
1742                 /* Thread may have been woken up to freeze or to exit */
1743                 if (try_to_freeze())
1744                         continue;
1745                 if (kthread_should_stop())
1746                         goto exit;
1747
1748                 /* Pause for 1/4 second in 1/16 second intervals,
1749                  * to make sure things settle down. */
1750                 g = get_hpsb_generation(host);
1751                 for (i = 0; i < 4 ; i++) {
1752                         msleep_interruptible(63);
1753                         if (kthread_should_stop())
1754                                 goto exit;
1755
1756                         /* Now get the generation in which the node ID's we collect
1757                          * are valid.  During the bus scan we will use this generation
1758                          * for the read transactions, so that if another reset occurs
1759                          * during the scan the transactions will fail instead of
1760                          * returning bogus data. */
1761                         generation = get_hpsb_generation(host);
1762
1763                         /* If we get a reset before we are done waiting, then
1764                          * start the waiting over again */
1765                         if (generation != g)
1766                                 g = generation, i = 0;
1767                 }
1768
1769                 if (!nodemgr_check_irm_capability(host, reset_cycles) ||
1770                     !nodemgr_do_irm_duties(host, reset_cycles)) {
1771                         reset_cycles++;
1772                         continue;
1773                 }
1774                 reset_cycles = 0;
1775
1776                 /* Scan our nodes to get the bus options and create node
1777                  * entries. This does not do the sysfs stuff, since that
1778                  * would trigger uevents and such, which is a bad idea at
1779                  * this point. */
1780                 nodemgr_node_scan(hi, generation);
1781
1782                 /* This actually does the full probe, with sysfs
1783                  * registration. */
1784                 nodemgr_node_probe(hi, generation);
1785
1786                 /* Update some of our sysfs symlinks */
1787                 nodemgr_update_host_dev_links(host);
1788         }
1789 exit:
1790         HPSB_VERBOSE("NodeMgr: Exiting thread");
1791         return 0;
1792 }
1793
1794 struct host_iter_param {
1795         void *data;
1796         int (*cb)(struct hpsb_host *, void *);
1797 };
1798
1799 static int __nodemgr_for_each_host(struct device *dev, void *data)
1800 {
1801         struct hpsb_host *host;
1802         struct host_iter_param *hip = (struct host_iter_param *)data;
1803         int error = 0;
1804
1805         host = container_of(dev, struct hpsb_host, host_dev);
1806         error = hip->cb(host, hip->data);
1807
1808         return error;
1809 }
1810 /**
1811  * nodemgr_for_each_host - call a function for each IEEE 1394 host
1812  * @data: an address to supply to the callback
1813  * @cb: function to call for each host
1814  *
1815  * Iterate the hosts, calling a given function with supplied data for each host.
1816  * If the callback fails on a host, i.e. if it returns a non-zero value, the
1817  * iteration is stopped.
1818  *
1819  * Return value: 0 on success, non-zero on failure (same as returned by last run
1820  * of the callback).
1821  */
1822 int nodemgr_for_each_host(void *data, int (*cb)(struct hpsb_host *, void *))
1823 {
1824         struct host_iter_param hip;
1825         int error;
1826
1827         hip.cb = cb;
1828         hip.data = data;
1829         error = class_for_each_device(&hpsb_host_class, &hip,
1830                                       __nodemgr_for_each_host);
1831
1832         return error;
1833 }
1834
1835 /* The following two convenience functions use a struct node_entry
1836  * for addressing a node on the bus.  They are intended for use by any
1837  * process context, not just the nodemgr thread, so we need to be a
1838  * little careful when reading out the node ID and generation.  The
1839  * thing that can go wrong is that we get the node ID, then a bus
1840  * reset occurs, and then we read the generation.  The node ID is
1841  * possibly invalid, but the generation is current, and we end up
1842  * sending a packet to a the wrong node.
1843  *
1844  * The solution is to make sure we read the generation first, so that
1845  * if a reset occurs in the process, we end up with a stale generation
1846  * and the transactions will fail instead of silently using wrong node
1847  * ID's.
1848  */
1849
1850 /**
1851  * hpsb_node_fill_packet - fill some destination information into a packet
1852  * @ne: destination node
1853  * @packet: packet to fill in
1854  *
1855  * This will fill in the given, pre-initialised hpsb_packet with the current
1856  * information from the node entry (host, node ID, bus generation number).
1857  */
1858 void hpsb_node_fill_packet(struct node_entry *ne, struct hpsb_packet *packet)
1859 {
1860         packet->host = ne->host;
1861         packet->generation = ne->generation;
1862         barrier();
1863         packet->node_id = ne->nodeid;
1864 }
1865
1866 int hpsb_node_write(struct node_entry *ne, u64 addr,
1867                     quadlet_t *buffer, size_t length)
1868 {
1869         unsigned int generation = ne->generation;
1870
1871         barrier();
1872         return hpsb_write(ne->host, ne->nodeid, generation,
1873                           addr, buffer, length);
1874 }
1875
1876 static void nodemgr_add_host(struct hpsb_host *host)
1877 {
1878         struct host_info *hi;
1879
1880         hi = hpsb_create_hostinfo(&nodemgr_highlevel, host, sizeof(*hi));
1881         if (!hi) {
1882                 HPSB_ERR("NodeMgr: out of memory in add host");
1883                 return;
1884         }
1885         hi->host = host;
1886         hi->thread = kthread_run(nodemgr_host_thread, hi, "knodemgrd_%d",
1887                                  host->id);
1888         if (IS_ERR(hi->thread)) {
1889                 HPSB_ERR("NodeMgr: cannot start thread for host %d", host->id);
1890                 hpsb_destroy_hostinfo(&nodemgr_highlevel, host);
1891         }
1892 }
1893
1894 static void nodemgr_host_reset(struct hpsb_host *host)
1895 {
1896         struct host_info *hi = hpsb_get_hostinfo(&nodemgr_highlevel, host);
1897
1898         if (hi) {
1899                 HPSB_VERBOSE("NodeMgr: Processing reset for host %d", host->id);
1900                 wake_up_process(hi->thread);
1901         }
1902 }
1903
1904 static void nodemgr_remove_host(struct hpsb_host *host)
1905 {
1906         struct host_info *hi = hpsb_get_hostinfo(&nodemgr_highlevel, host);
1907
1908         if (hi) {
1909                 kthread_stop(hi->thread);
1910                 nodemgr_remove_host_dev(&host->device);
1911         }
1912 }
1913
1914 static struct hpsb_highlevel nodemgr_highlevel = {
1915         .name =         "Node manager",
1916         .add_host =     nodemgr_add_host,
1917         .host_reset =   nodemgr_host_reset,
1918         .remove_host =  nodemgr_remove_host,
1919 };
1920
1921 int init_ieee1394_nodemgr(void)
1922 {
1923         int error;
1924
1925         error = class_register(&nodemgr_ne_class);
1926         if (error)
1927                 goto fail_ne;
1928         error = class_register(&nodemgr_ud_class);
1929         if (error)
1930                 goto fail_ud;
1931         error = driver_register(&nodemgr_mid_layer_driver);
1932         if (error)
1933                 goto fail_ml;
1934         /* This driver is not used if nodemgr is off (disable_nodemgr=1). */
1935         nodemgr_dev_template_host.driver = &nodemgr_mid_layer_driver;
1936
1937         hpsb_register_highlevel(&nodemgr_highlevel);
1938         return 0;
1939
1940 fail_ml:
1941         class_unregister(&nodemgr_ud_class);
1942 fail_ud:
1943         class_unregister(&nodemgr_ne_class);
1944 fail_ne:
1945         return error;
1946 }
1947
1948 void cleanup_ieee1394_nodemgr(void)
1949 {
1950         hpsb_unregister_highlevel(&nodemgr_highlevel);
1951         driver_unregister(&nodemgr_mid_layer_driver);
1952         class_unregister(&nodemgr_ud_class);
1953         class_unregister(&nodemgr_ne_class);
1954 }