4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
54 #include <asm/uaccess.h>
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58 int uptodate, unsigned int nr_bytes, int dequeue)
64 error = uptodate ? uptodate : -EIO;
67 * if failfast is set on a request, override number of sectors and
68 * complete the whole request right now
70 if (blk_noretry_request(rq) && error)
71 nr_bytes = rq->hard_nr_sectors << 9;
73 if (!blk_fs_request(rq) && error && !rq->errors)
77 * decide whether to reenable DMA -- 3 is a random magic for now,
78 * if we DMA timeout more than 3 times, just stay in PIO
80 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
85 if (!__blk_end_request(rq, error, nr_bytes)) {
87 HWGROUP(drive)->rq = NULL;
95 * ide_end_request - complete an IDE I/O
96 * @drive: IDE device for the I/O
98 * @nr_sectors: number of sectors completed
100 * This is our end_request wrapper function. We complete the I/O
101 * update random number input and dequeue the request, which if
102 * it was tagged may be out of order.
105 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 unsigned int nr_bytes = nr_sectors << 9;
113 * room for locking improvements here, the calls below don't
114 * need the queue lock held at all
116 spin_lock_irqsave(&ide_lock, flags);
117 rq = HWGROUP(drive)->rq;
120 if (blk_pc_request(rq))
121 nr_bytes = rq->data_len;
123 nr_bytes = rq->hard_cur_sectors << 9;
126 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128 spin_unlock_irqrestore(&ide_lock, flags);
131 EXPORT_SYMBOL(ide_end_request);
134 * Power Management state machine. This one is rather trivial for now,
135 * we should probably add more, like switching back to PIO on suspend
136 * to help some BIOSes, re-do the door locking on resume, etc...
140 ide_pm_flush_cache = ide_pm_state_start_suspend,
143 idedisk_pm_restore_pio = ide_pm_state_start_resume,
148 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 struct request_pm_state *pm = rq->data;
152 if (drive->media != ide_disk)
155 switch (pm->pm_step) {
156 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
157 if (pm->pm_state == PM_EVENT_FREEZE)
158 pm->pm_step = ide_pm_state_completed;
160 pm->pm_step = idedisk_pm_standby;
162 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
163 pm->pm_step = ide_pm_state_completed;
165 case idedisk_pm_restore_pio: /* Resume step 1 complete */
166 pm->pm_step = idedisk_pm_idle;
168 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
169 pm->pm_step = ide_pm_restore_dma;
174 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 struct request_pm_state *pm = rq->data;
177 ide_task_t *args = rq->special;
179 memset(args, 0, sizeof(*args));
181 switch (pm->pm_step) {
182 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
183 if (drive->media != ide_disk)
185 /* Not supported? Switch to next step now. */
186 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
187 ide_complete_power_step(drive, rq, 0, 0);
190 if (ide_id_has_flush_cache_ext(drive->id))
191 args->tf.command = WIN_FLUSH_CACHE_EXT;
193 args->tf.command = WIN_FLUSH_CACHE;
196 case idedisk_pm_standby: /* Suspend step 2 (standby) */
197 args->tf.command = WIN_STANDBYNOW1;
200 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
201 ide_set_max_pio(drive);
203 * skip idedisk_pm_idle for ATAPI devices
205 if (drive->media != ide_disk)
206 pm->pm_step = ide_pm_restore_dma;
208 ide_complete_power_step(drive, rq, 0, 0);
211 case idedisk_pm_idle: /* Resume step 2 (idle) */
212 args->tf.command = WIN_IDLEIMMEDIATE;
215 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
217 * Right now, all we do is call ide_set_dma(drive),
218 * we could be smarter and check for current xfer_speed
219 * in struct drive etc...
221 if (drive->hwif->dma_ops == NULL)
224 * TODO: respect ->using_dma setting
229 pm->pm_step = ide_pm_state_completed;
233 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
234 args->data_phase = TASKFILE_NO_DATA;
235 return do_rw_taskfile(drive, args);
239 * ide_end_dequeued_request - complete an IDE I/O
240 * @drive: IDE device for the I/O
242 * @nr_sectors: number of sectors completed
244 * Complete an I/O that is no longer on the request queue. This
245 * typically occurs when we pull the request and issue a REQUEST_SENSE.
246 * We must still finish the old request but we must not tamper with the
247 * queue in the meantime.
249 * NOTE: This path does not handle barrier, but barrier is not supported
253 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
254 int uptodate, int nr_sectors)
259 spin_lock_irqsave(&ide_lock, flags);
260 BUG_ON(!blk_rq_started(rq));
261 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
262 spin_unlock_irqrestore(&ide_lock, flags);
266 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
270 * ide_complete_pm_request - end the current Power Management request
271 * @drive: target drive
274 * This function cleans up the current PM request and stops the queue
277 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
282 printk("%s: completing PM request, %s\n", drive->name,
283 blk_pm_suspend_request(rq) ? "suspend" : "resume");
285 spin_lock_irqsave(&ide_lock, flags);
286 if (blk_pm_suspend_request(rq)) {
287 blk_stop_queue(drive->queue);
290 blk_start_queue(drive->queue);
292 HWGROUP(drive)->rq = NULL;
293 if (__blk_end_request(rq, 0, 0))
295 spin_unlock_irqrestore(&ide_lock, flags);
298 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
300 ide_hwif_t *hwif = drive->hwif;
301 struct ide_taskfile *tf = &task->tf;
303 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
304 u16 data = hwif->INW(hwif->io_ports[IDE_DATA_OFFSET]);
306 tf->data = data & 0xff;
307 tf->hob_data = (data >> 8) & 0xff;
310 /* be sure we're looking at the low order bits */
311 hwif->OUTB(drive->ctl & ~0x80, hwif->io_ports[IDE_CONTROL_OFFSET]);
313 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
314 tf->nsect = hwif->INB(hwif->io_ports[IDE_NSECTOR_OFFSET]);
315 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
316 tf->lbal = hwif->INB(hwif->io_ports[IDE_SECTOR_OFFSET]);
317 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
318 tf->lbam = hwif->INB(hwif->io_ports[IDE_LCYL_OFFSET]);
319 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
320 tf->lbah = hwif->INB(hwif->io_ports[IDE_HCYL_OFFSET]);
321 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
322 tf->device = hwif->INB(hwif->io_ports[IDE_SELECT_OFFSET]);
324 if (task->tf_flags & IDE_TFLAG_LBA48) {
325 hwif->OUTB(drive->ctl | 0x80,
326 hwif->io_ports[IDE_CONTROL_OFFSET]);
328 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
330 hwif->INB(hwif->io_ports[IDE_FEATURE_OFFSET]);
331 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
333 hwif->INB(hwif->io_ports[IDE_NSECTOR_OFFSET]);
334 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
336 hwif->INB(hwif->io_ports[IDE_SECTOR_OFFSET]);
337 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
339 hwif->INB(hwif->io_ports[IDE_LCYL_OFFSET]);
340 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
342 hwif->INB(hwif->io_ports[IDE_HCYL_OFFSET]);
347 * ide_end_drive_cmd - end an explicit drive command
352 * Clean up after success/failure of an explicit drive command.
353 * These get thrown onto the queue so they are synchronized with
354 * real I/O operations on the drive.
356 * In LBA48 mode we have to read the register set twice to get
357 * all the extra information out.
360 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
365 spin_lock_irqsave(&ide_lock, flags);
366 rq = HWGROUP(drive)->rq;
367 spin_unlock_irqrestore(&ide_lock, flags);
369 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
370 ide_task_t *task = (ide_task_t *)rq->special;
373 rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT);
376 struct ide_taskfile *tf = &task->tf;
381 ide_tf_read(drive, task);
383 if (task->tf_flags & IDE_TFLAG_DYN)
386 } else if (blk_pm_request(rq)) {
387 struct request_pm_state *pm = rq->data;
389 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
390 drive->name, rq->pm->pm_step, stat, err);
392 ide_complete_power_step(drive, rq, stat, err);
393 if (pm->pm_step == ide_pm_state_completed)
394 ide_complete_pm_request(drive, rq);
398 spin_lock_irqsave(&ide_lock, flags);
399 HWGROUP(drive)->rq = NULL;
401 if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
404 spin_unlock_irqrestore(&ide_lock, flags);
407 EXPORT_SYMBOL(ide_end_drive_cmd);
410 * try_to_flush_leftover_data - flush junk
411 * @drive: drive to flush
413 * try_to_flush_leftover_data() is invoked in response to a drive
414 * unexpectedly having its DRQ_STAT bit set. As an alternative to
415 * resetting the drive, this routine tries to clear the condition
416 * by read a sector's worth of data from the drive. Of course,
417 * this may not help if the drive is *waiting* for data from *us*.
419 static void try_to_flush_leftover_data (ide_drive_t *drive)
421 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
423 if (drive->media != ide_disk)
427 u32 wcount = (i > 16) ? 16 : i;
430 HWIF(drive)->ata_input_data(drive, buffer, wcount);
434 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
439 drv = *(ide_driver_t **)rq->rq_disk->private_data;
440 drv->end_request(drive, 0, 0);
442 ide_end_request(drive, 0, 0);
445 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
447 ide_hwif_t *hwif = drive->hwif;
449 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
450 /* other bits are useless when BUSY */
451 rq->errors |= ERROR_RESET;
452 } else if (stat & ERR_STAT) {
453 /* err has different meaning on cdrom and tape */
454 if (err == ABRT_ERR) {
455 if (drive->select.b.lba &&
456 /* some newer drives don't support WIN_SPECIFY */
457 hwif->INB(hwif->io_ports[IDE_COMMAND_OFFSET]) ==
460 } else if ((err & BAD_CRC) == BAD_CRC) {
461 /* UDMA crc error, just retry the operation */
463 } else if (err & (BBD_ERR | ECC_ERR)) {
464 /* retries won't help these */
465 rq->errors = ERROR_MAX;
466 } else if (err & TRK0_ERR) {
467 /* help it find track zero */
468 rq->errors |= ERROR_RECAL;
472 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
473 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
474 try_to_flush_leftover_data(drive);
476 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
477 ide_kill_rq(drive, rq);
481 if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
482 rq->errors |= ERROR_RESET;
484 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
486 return ide_do_reset(drive);
489 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
490 drive->special.b.recalibrate = 1;
497 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
499 ide_hwif_t *hwif = drive->hwif;
501 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
502 /* other bits are useless when BUSY */
503 rq->errors |= ERROR_RESET;
505 /* add decoding error stuff */
508 if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
510 hwif->OUTB(WIN_IDLEIMMEDIATE,
511 hwif->io_ports[IDE_COMMAND_OFFSET]);
513 if (rq->errors >= ERROR_MAX) {
514 ide_kill_rq(drive, rq);
516 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
518 return ide_do_reset(drive);
527 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
529 if (drive->media == ide_disk)
530 return ide_ata_error(drive, rq, stat, err);
531 return ide_atapi_error(drive, rq, stat, err);
534 EXPORT_SYMBOL_GPL(__ide_error);
537 * ide_error - handle an error on the IDE
538 * @drive: drive the error occurred on
539 * @msg: message to report
542 * ide_error() takes action based on the error returned by the drive.
543 * For normal I/O that may well include retries. We deal with
544 * both new-style (taskfile) and old style command handling here.
545 * In the case of taskfile command handling there is work left to
549 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
554 err = ide_dump_status(drive, msg, stat);
556 if ((rq = HWGROUP(drive)->rq) == NULL)
559 /* retry only "normal" I/O: */
560 if (!blk_fs_request(rq)) {
562 ide_end_drive_cmd(drive, stat, err);
569 drv = *(ide_driver_t **)rq->rq_disk->private_data;
570 return drv->error(drive, rq, stat, err);
572 return __ide_error(drive, rq, stat, err);
575 EXPORT_SYMBOL_GPL(ide_error);
577 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
579 if (drive->media != ide_disk)
580 rq->errors |= ERROR_RESET;
582 ide_kill_rq(drive, rq);
587 EXPORT_SYMBOL_GPL(__ide_abort);
590 * ide_abort - abort pending IDE operations
591 * @drive: drive the error occurred on
592 * @msg: message to report
594 * ide_abort kills and cleans up when we are about to do a
595 * host initiated reset on active commands. Longer term we
596 * want handlers to have sensible abort handling themselves
598 * This differs fundamentally from ide_error because in
599 * this case the command is doing just fine when we
603 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
607 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
610 /* retry only "normal" I/O: */
611 if (!blk_fs_request(rq)) {
613 ide_end_drive_cmd(drive, BUSY_STAT, 0);
620 drv = *(ide_driver_t **)rq->rq_disk->private_data;
621 return drv->abort(drive, rq);
623 return __ide_abort(drive, rq);
626 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
628 tf->nsect = drive->sect;
629 tf->lbal = drive->sect;
630 tf->lbam = drive->cyl;
631 tf->lbah = drive->cyl >> 8;
632 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
633 tf->command = WIN_SPECIFY;
636 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
638 tf->nsect = drive->sect;
639 tf->command = WIN_RESTORE;
642 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
644 tf->nsect = drive->mult_req;
645 tf->command = WIN_SETMULT;
648 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
650 special_t *s = &drive->special;
653 memset(&args, 0, sizeof(ide_task_t));
654 args.data_phase = TASKFILE_NO_DATA;
656 if (s->b.set_geometry) {
657 s->b.set_geometry = 0;
658 ide_tf_set_specify_cmd(drive, &args.tf);
659 } else if (s->b.recalibrate) {
660 s->b.recalibrate = 0;
661 ide_tf_set_restore_cmd(drive, &args.tf);
662 } else if (s->b.set_multmode) {
663 s->b.set_multmode = 0;
664 if (drive->mult_req > drive->id->max_multsect)
665 drive->mult_req = drive->id->max_multsect;
666 ide_tf_set_setmult_cmd(drive, &args.tf);
668 int special = s->all;
670 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
674 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
675 IDE_TFLAG_CUSTOM_HANDLER;
677 do_rw_taskfile(drive, &args);
683 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
685 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
694 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
697 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
700 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
707 * do_special - issue some special commands
708 * @drive: drive the command is for
710 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
711 * commands to a drive. It used to do much more, but has been scaled
715 static ide_startstop_t do_special (ide_drive_t *drive)
717 special_t *s = &drive->special;
720 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
723 ide_hwif_t *hwif = drive->hwif;
724 const struct ide_port_ops *port_ops = hwif->port_ops;
725 u8 req_pio = drive->tune_req;
729 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
731 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
733 if (req_pio == 8 || req_pio == 9) {
736 spin_lock_irqsave(&ide_lock, flags);
737 port_ops->set_pio_mode(drive, req_pio);
738 spin_unlock_irqrestore(&ide_lock, flags);
740 port_ops->set_pio_mode(drive, req_pio);
742 int keep_dma = drive->using_dma;
744 ide_set_pio(drive, req_pio);
746 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
754 if (drive->media == ide_disk)
755 return ide_disk_special(drive);
763 void ide_map_sg(ide_drive_t *drive, struct request *rq)
765 ide_hwif_t *hwif = drive->hwif;
766 struct scatterlist *sg = hwif->sg_table;
768 if (hwif->sg_mapped) /* needed by ide-scsi */
771 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
772 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
774 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
779 EXPORT_SYMBOL_GPL(ide_map_sg);
781 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
783 ide_hwif_t *hwif = drive->hwif;
785 hwif->nsect = hwif->nleft = rq->nr_sectors;
790 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
793 * execute_drive_command - issue special drive command
794 * @drive: the drive to issue the command on
795 * @rq: the request structure holding the command
797 * execute_drive_cmd() issues a special drive command, usually
798 * initiated by ioctl() from the external hdparm program. The
799 * command can be a drive command, drive task or taskfile
800 * operation. Weirdly you can call it with NULL to wait for
801 * all commands to finish. Don't do this as that is due to change
804 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
807 ide_hwif_t *hwif = HWIF(drive);
808 ide_task_t *task = rq->special;
811 hwif->data_phase = task->data_phase;
813 switch (hwif->data_phase) {
814 case TASKFILE_MULTI_OUT:
816 case TASKFILE_MULTI_IN:
818 ide_init_sg_cmd(drive, rq);
819 ide_map_sg(drive, rq);
824 return do_rw_taskfile(drive, task);
828 * NULL is actually a valid way of waiting for
829 * all current requests to be flushed from the queue.
832 printk("%s: DRIVE_CMD (null)\n", drive->name);
834 ide_end_drive_cmd(drive, ide_read_status(drive), ide_read_error(drive));
839 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
841 struct request_pm_state *pm = rq->data;
843 if (blk_pm_suspend_request(rq) &&
844 pm->pm_step == ide_pm_state_start_suspend)
845 /* Mark drive blocked when starting the suspend sequence. */
847 else if (blk_pm_resume_request(rq) &&
848 pm->pm_step == ide_pm_state_start_resume) {
850 * The first thing we do on wakeup is to wait for BSY bit to
851 * go away (with a looong timeout) as a drive on this hwif may
852 * just be POSTing itself.
853 * We do that before even selecting as the "other" device on
854 * the bus may be broken enough to walk on our toes at this
859 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
861 rc = ide_wait_not_busy(HWIF(drive), 35000);
863 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
865 ide_set_irq(drive, 1);
866 rc = ide_wait_not_busy(HWIF(drive), 100000);
868 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
873 * start_request - start of I/O and command issuing for IDE
875 * start_request() initiates handling of a new I/O request. It
876 * accepts commands and I/O (read/write) requests. It also does
877 * the final remapping for weird stuff like EZDrive. Once
878 * device mapper can work sector level the EZDrive stuff can go away
880 * FIXME: this function needs a rename
883 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
885 ide_startstop_t startstop;
888 BUG_ON(!blk_rq_started(rq));
891 printk("%s: start_request: current=0x%08lx\n",
892 HWIF(drive)->name, (unsigned long) rq);
895 /* bail early if we've exceeded max_failures */
896 if (drive->max_failures && (drive->failures > drive->max_failures)) {
897 rq->cmd_flags |= REQ_FAILED;
902 if (blk_fs_request(rq) &&
903 (drive->media == ide_disk || drive->media == ide_floppy)) {
904 block += drive->sect0;
906 /* Yecch - this will shift the entire interval,
907 possibly killing some innocent following sector */
908 if (block == 0 && drive->remap_0_to_1 == 1)
909 block = 1; /* redirect MBR access to EZ-Drive partn table */
911 if (blk_pm_request(rq))
912 ide_check_pm_state(drive, rq);
915 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
916 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
919 if (!drive->special.all) {
923 * We reset the drive so we need to issue a SETFEATURES.
924 * Do it _after_ do_special() restored device parameters.
926 if (drive->current_speed == 0xff)
927 ide_config_drive_speed(drive, drive->desired_speed);
929 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
930 return execute_drive_cmd(drive, rq);
931 else if (blk_pm_request(rq)) {
932 struct request_pm_state *pm = rq->data;
934 printk("%s: start_power_step(step: %d)\n",
935 drive->name, rq->pm->pm_step);
937 startstop = ide_start_power_step(drive, rq);
938 if (startstop == ide_stopped &&
939 pm->pm_step == ide_pm_state_completed)
940 ide_complete_pm_request(drive, rq);
944 drv = *(ide_driver_t **)rq->rq_disk->private_data;
945 return drv->do_request(drive, rq, block);
947 return do_special(drive);
949 ide_kill_rq(drive, rq);
954 * ide_stall_queue - pause an IDE device
955 * @drive: drive to stall
956 * @timeout: time to stall for (jiffies)
958 * ide_stall_queue() can be used by a drive to give excess bandwidth back
959 * to the hwgroup by sleeping for timeout jiffies.
962 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
964 if (timeout > WAIT_WORSTCASE)
965 timeout = WAIT_WORSTCASE;
966 drive->sleep = timeout + jiffies;
970 EXPORT_SYMBOL(ide_stall_queue);
972 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
975 * choose_drive - select a drive to service
976 * @hwgroup: hardware group to select on
978 * choose_drive() selects the next drive which will be serviced.
979 * This is necessary because the IDE layer can't issue commands
980 * to both drives on the same cable, unlike SCSI.
983 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
985 ide_drive_t *drive, *best;
989 drive = hwgroup->drive;
992 * drive is doing pre-flush, ordered write, post-flush sequence. even
993 * though that is 3 requests, it must be seen as a single transaction.
994 * we must not preempt this drive until that is complete
996 if (blk_queue_flushing(drive->queue)) {
998 * small race where queue could get replugged during
999 * the 3-request flush cycle, just yank the plug since
1000 * we want it to finish asap
1002 blk_remove_plug(drive->queue);
1007 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1008 && !elv_queue_empty(drive->queue)) {
1010 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1011 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1013 if (!blk_queue_plugged(drive->queue))
1017 } while ((drive = drive->next) != hwgroup->drive);
1018 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1019 long t = (signed long)(WAKEUP(best) - jiffies);
1020 if (t >= WAIT_MIN_SLEEP) {
1022 * We *may* have some time to spare, but first let's see if
1023 * someone can potentially benefit from our nice mood today..
1027 if (!drive->sleeping
1028 && time_before(jiffies - best->service_time, WAKEUP(drive))
1029 && time_before(WAKEUP(drive), jiffies + t))
1031 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1034 } while ((drive = drive->next) != best);
1041 * Issue a new request to a drive from hwgroup
1042 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1044 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1045 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1046 * may have both interfaces in a single hwgroup to "serialize" access.
1047 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1048 * together into one hwgroup for serialized access.
1050 * Note also that several hwgroups can end up sharing a single IRQ,
1051 * possibly along with many other devices. This is especially common in
1052 * PCI-based systems with off-board IDE controller cards.
1054 * The IDE driver uses the single global ide_lock spinlock to protect
1055 * access to the request queues, and to protect the hwgroup->busy flag.
1057 * The first thread into the driver for a particular hwgroup sets the
1058 * hwgroup->busy flag to indicate that this hwgroup is now active,
1059 * and then initiates processing of the top request from the request queue.
1061 * Other threads attempting entry notice the busy setting, and will simply
1062 * queue their new requests and exit immediately. Note that hwgroup->busy
1063 * remains set even when the driver is merely awaiting the next interrupt.
1064 * Thus, the meaning is "this hwgroup is busy processing a request".
1066 * When processing of a request completes, the completing thread or IRQ-handler
1067 * will start the next request from the queue. If no more work remains,
1068 * the driver will clear the hwgroup->busy flag and exit.
1070 * The ide_lock (spinlock) is used to protect all access to the
1071 * hwgroup->busy flag, but is otherwise not needed for most processing in
1072 * the driver. This makes the driver much more friendlier to shared IRQs
1073 * than previous designs, while remaining 100% (?) SMP safe and capable.
1075 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1080 ide_startstop_t startstop;
1083 /* for atari only: POSSIBLY BROKEN HERE(?) */
1084 ide_get_lock(ide_intr, hwgroup);
1086 /* caller must own ide_lock */
1087 BUG_ON(!irqs_disabled());
1089 while (!hwgroup->busy) {
1091 drive = choose_drive(hwgroup);
1092 if (drive == NULL) {
1094 unsigned long sleep = 0; /* shut up, gcc */
1096 drive = hwgroup->drive;
1098 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1100 sleep = drive->sleep;
1102 } while ((drive = drive->next) != hwgroup->drive);
1105 * Take a short snooze, and then wake up this hwgroup again.
1106 * This gives other hwgroups on the same a chance to
1107 * play fairly with us, just in case there are big differences
1108 * in relative throughputs.. don't want to hog the cpu too much.
1110 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1111 sleep = jiffies + WAIT_MIN_SLEEP;
1113 if (timer_pending(&hwgroup->timer))
1114 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1116 /* so that ide_timer_expiry knows what to do */
1117 hwgroup->sleeping = 1;
1118 hwgroup->req_gen_timer = hwgroup->req_gen;
1119 mod_timer(&hwgroup->timer, sleep);
1120 /* we purposely leave hwgroup->busy==1
1123 /* Ugly, but how can we sleep for the lock
1124 * otherwise? perhaps from tq_disk?
1127 /* for atari only */
1132 /* no more work for this hwgroup (for now) */
1137 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1139 * set nIEN for previous hwif, drives in the
1140 * quirk_list may not like intr setups/cleanups
1142 if (drive->quirk_list != 1)
1143 ide_set_irq(drive, 0);
1145 hwgroup->hwif = hwif;
1146 hwgroup->drive = drive;
1147 drive->sleeping = 0;
1148 drive->service_start = jiffies;
1150 if (blk_queue_plugged(drive->queue)) {
1151 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1156 * we know that the queue isn't empty, but this can happen
1157 * if the q->prep_rq_fn() decides to kill a request
1159 rq = elv_next_request(drive->queue);
1166 * Sanity: don't accept a request that isn't a PM request
1167 * if we are currently power managed. This is very important as
1168 * blk_stop_queue() doesn't prevent the elv_next_request()
1169 * above to return us whatever is in the queue. Since we call
1170 * ide_do_request() ourselves, we end up taking requests while
1171 * the queue is blocked...
1173 * We let requests forced at head of queue with ide-preempt
1174 * though. I hope that doesn't happen too much, hopefully not
1175 * unless the subdriver triggers such a thing in its own PM
1178 * We count how many times we loop here to make sure we service
1179 * all drives in the hwgroup without looping for ever
1181 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1182 drive = drive->next ? drive->next : hwgroup->drive;
1183 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1185 /* We clear busy, there should be no pending ATA command at this point. */
1193 * Some systems have trouble with IDE IRQs arriving while
1194 * the driver is still setting things up. So, here we disable
1195 * the IRQ used by this interface while the request is being started.
1196 * This may look bad at first, but pretty much the same thing
1197 * happens anyway when any interrupt comes in, IDE or otherwise
1198 * -- the kernel masks the IRQ while it is being handled.
1200 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1201 disable_irq_nosync(hwif->irq);
1202 spin_unlock(&ide_lock);
1203 local_irq_enable_in_hardirq();
1204 /* allow other IRQs while we start this request */
1205 startstop = start_request(drive, rq);
1206 spin_lock_irq(&ide_lock);
1207 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1208 enable_irq(hwif->irq);
1209 if (startstop == ide_stopped)
1215 * Passes the stuff to ide_do_request
1217 void do_ide_request(struct request_queue *q)
1219 ide_drive_t *drive = q->queuedata;
1221 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1225 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1226 * retry the current request in pio mode instead of risking tossing it
1229 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1231 ide_hwif_t *hwif = HWIF(drive);
1233 ide_startstop_t ret = ide_stopped;
1236 * end current dma transaction
1240 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1241 (void)hwif->dma_ops->dma_end(drive);
1242 ret = ide_error(drive, "dma timeout error",
1243 ide_read_status(drive));
1245 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1246 hwif->dma_ops->dma_timeout(drive);
1250 * disable dma for now, but remember that we did so because of
1251 * a timeout -- we'll reenable after we finish this next request
1252 * (or rather the first chunk of it) in pio.
1255 drive->state = DMA_PIO_RETRY;
1256 ide_dma_off_quietly(drive);
1259 * un-busy drive etc (hwgroup->busy is cleared on return) and
1260 * make sure request is sane
1262 rq = HWGROUP(drive)->rq;
1267 HWGROUP(drive)->rq = NULL;
1274 rq->sector = rq->bio->bi_sector;
1275 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1276 rq->hard_cur_sectors = rq->current_nr_sectors;
1277 rq->buffer = bio_data(rq->bio);
1283 * ide_timer_expiry - handle lack of an IDE interrupt
1284 * @data: timer callback magic (hwgroup)
1286 * An IDE command has timed out before the expected drive return
1287 * occurred. At this point we attempt to clean up the current
1288 * mess. If the current handler includes an expiry handler then
1289 * we invoke the expiry handler, and providing it is happy the
1290 * work is done. If that fails we apply generic recovery rules
1291 * invoking the handler and checking the drive DMA status. We
1292 * have an excessively incestuous relationship with the DMA
1293 * logic that wants cleaning up.
1296 void ide_timer_expiry (unsigned long data)
1298 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1299 ide_handler_t *handler;
1300 ide_expiry_t *expiry;
1301 unsigned long flags;
1302 unsigned long wait = -1;
1304 spin_lock_irqsave(&ide_lock, flags);
1306 if (((handler = hwgroup->handler) == NULL) ||
1307 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1309 * Either a marginal timeout occurred
1310 * (got the interrupt just as timer expired),
1311 * or we were "sleeping" to give other devices a chance.
1312 * Either way, we don't really want to complain about anything.
1314 if (hwgroup->sleeping) {
1315 hwgroup->sleeping = 0;
1319 ide_drive_t *drive = hwgroup->drive;
1321 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1322 hwgroup->handler = NULL;
1325 ide_startstop_t startstop = ide_stopped;
1326 if (!hwgroup->busy) {
1327 hwgroup->busy = 1; /* paranoia */
1328 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1330 if ((expiry = hwgroup->expiry) != NULL) {
1332 if ((wait = expiry(drive)) > 0) {
1334 hwgroup->timer.expires = jiffies + wait;
1335 hwgroup->req_gen_timer = hwgroup->req_gen;
1336 add_timer(&hwgroup->timer);
1337 spin_unlock_irqrestore(&ide_lock, flags);
1341 hwgroup->handler = NULL;
1343 * We need to simulate a real interrupt when invoking
1344 * the handler() function, which means we need to
1345 * globally mask the specific IRQ:
1347 spin_unlock(&ide_lock);
1349 /* disable_irq_nosync ?? */
1350 disable_irq(hwif->irq);
1352 * as if we were handling an interrupt */
1353 local_irq_disable();
1354 if (hwgroup->polling) {
1355 startstop = handler(drive);
1356 } else if (drive_is_ready(drive)) {
1357 if (drive->waiting_for_dma)
1358 hwif->dma_ops->dma_lost_irq(drive);
1359 (void)ide_ack_intr(hwif);
1360 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1361 startstop = handler(drive);
1363 if (drive->waiting_for_dma) {
1364 startstop = ide_dma_timeout_retry(drive, wait);
1367 ide_error(drive, "irq timeout",
1368 ide_read_status(drive));
1370 drive->service_time = jiffies - drive->service_start;
1371 spin_lock_irq(&ide_lock);
1372 enable_irq(hwif->irq);
1373 if (startstop == ide_stopped)
1377 ide_do_request(hwgroup, IDE_NO_IRQ);
1378 spin_unlock_irqrestore(&ide_lock, flags);
1382 * unexpected_intr - handle an unexpected IDE interrupt
1383 * @irq: interrupt line
1384 * @hwgroup: hwgroup being processed
1386 * There's nothing really useful we can do with an unexpected interrupt,
1387 * other than reading the status register (to clear it), and logging it.
1388 * There should be no way that an irq can happen before we're ready for it,
1389 * so we needn't worry much about losing an "important" interrupt here.
1391 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1392 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1393 * looks "good", we just ignore the interrupt completely.
1395 * This routine assumes __cli() is in effect when called.
1397 * If an unexpected interrupt happens on irq15 while we are handling irq14
1398 * and if the two interfaces are "serialized" (CMD640), then it looks like
1399 * we could screw up by interfering with a new request being set up for
1402 * In reality, this is a non-issue. The new command is not sent unless
1403 * the drive is ready to accept one, in which case we know the drive is
1404 * not trying to interrupt us. And ide_set_handler() is always invoked
1405 * before completing the issuance of any new drive command, so we will not
1406 * be accidentally invoked as a result of any valid command completion
1409 * Note that we must walk the entire hwgroup here. We know which hwif
1410 * is doing the current command, but we don't know which hwif burped
1414 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1417 ide_hwif_t *hwif = hwgroup->hwif;
1420 * handle the unexpected interrupt
1423 if (hwif->irq == irq) {
1424 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1425 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1426 /* Try to not flood the console with msgs */
1427 static unsigned long last_msgtime, count;
1429 if (time_after(jiffies, last_msgtime + HZ)) {
1430 last_msgtime = jiffies;
1431 printk(KERN_ERR "%s%s: unexpected interrupt, "
1432 "status=0x%02x, count=%ld\n",
1434 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1438 } while ((hwif = hwif->next) != hwgroup->hwif);
1442 * ide_intr - default IDE interrupt handler
1443 * @irq: interrupt number
1444 * @dev_id: hwif group
1445 * @regs: unused weirdness from the kernel irq layer
1447 * This is the default IRQ handler for the IDE layer. You should
1448 * not need to override it. If you do be aware it is subtle in
1451 * hwgroup->hwif is the interface in the group currently performing
1452 * a command. hwgroup->drive is the drive and hwgroup->handler is
1453 * the IRQ handler to call. As we issue a command the handlers
1454 * step through multiple states, reassigning the handler to the
1455 * next step in the process. Unlike a smart SCSI controller IDE
1456 * expects the main processor to sequence the various transfer
1457 * stages. We also manage a poll timer to catch up with most
1458 * timeout situations. There are still a few where the handlers
1459 * don't ever decide to give up.
1461 * The handler eventually returns ide_stopped to indicate the
1462 * request completed. At this point we issue the next request
1463 * on the hwgroup and the process begins again.
1466 irqreturn_t ide_intr (int irq, void *dev_id)
1468 unsigned long flags;
1469 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1472 ide_handler_t *handler;
1473 ide_startstop_t startstop;
1475 spin_lock_irqsave(&ide_lock, flags);
1476 hwif = hwgroup->hwif;
1478 if (!ide_ack_intr(hwif)) {
1479 spin_unlock_irqrestore(&ide_lock, flags);
1483 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1485 * Not expecting an interrupt from this drive.
1486 * That means this could be:
1487 * (1) an interrupt from another PCI device
1488 * sharing the same PCI INT# as us.
1489 * or (2) a drive just entered sleep or standby mode,
1490 * and is interrupting to let us know.
1491 * or (3) a spurious interrupt of unknown origin.
1493 * For PCI, we cannot tell the difference,
1494 * so in that case we just ignore it and hope it goes away.
1496 * FIXME: unexpected_intr should be hwif-> then we can
1497 * remove all the ifdef PCI crap
1499 #ifdef CONFIG_BLK_DEV_IDEPCI
1500 if (hwif->chipset != ide_pci)
1501 #endif /* CONFIG_BLK_DEV_IDEPCI */
1504 * Probably not a shared PCI interrupt,
1505 * so we can safely try to do something about it:
1507 unexpected_intr(irq, hwgroup);
1508 #ifdef CONFIG_BLK_DEV_IDEPCI
1511 * Whack the status register, just in case
1512 * we have a leftover pending IRQ.
1514 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1515 #endif /* CONFIG_BLK_DEV_IDEPCI */
1517 spin_unlock_irqrestore(&ide_lock, flags);
1520 drive = hwgroup->drive;
1523 * This should NEVER happen, and there isn't much
1524 * we could do about it here.
1526 * [Note - this can occur if the drive is hot unplugged]
1528 spin_unlock_irqrestore(&ide_lock, flags);
1531 if (!drive_is_ready(drive)) {
1533 * This happens regularly when we share a PCI IRQ with
1534 * another device. Unfortunately, it can also happen
1535 * with some buggy drives that trigger the IRQ before
1536 * their status register is up to date. Hopefully we have
1537 * enough advance overhead that the latter isn't a problem.
1539 spin_unlock_irqrestore(&ide_lock, flags);
1542 if (!hwgroup->busy) {
1543 hwgroup->busy = 1; /* paranoia */
1544 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1546 hwgroup->handler = NULL;
1548 del_timer(&hwgroup->timer);
1549 spin_unlock(&ide_lock);
1551 /* Some controllers might set DMA INTR no matter DMA or PIO;
1552 * bmdma status might need to be cleared even for
1553 * PIO interrupts to prevent spurious/lost irq.
1555 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1556 /* ide_dma_end() needs bmdma status for error checking.
1557 * So, skip clearing bmdma status here and leave it
1558 * to ide_dma_end() if this is dma interrupt.
1560 hwif->ide_dma_clear_irq(drive);
1563 local_irq_enable_in_hardirq();
1564 /* service this interrupt, may set handler for next interrupt */
1565 startstop = handler(drive);
1566 spin_lock_irq(&ide_lock);
1569 * Note that handler() may have set things up for another
1570 * interrupt to occur soon, but it cannot happen until
1571 * we exit from this routine, because it will be the
1572 * same irq as is currently being serviced here, and Linux
1573 * won't allow another of the same (on any CPU) until we return.
1575 drive->service_time = jiffies - drive->service_start;
1576 if (startstop == ide_stopped) {
1577 if (hwgroup->handler == NULL) { /* paranoia */
1579 ide_do_request(hwgroup, hwif->irq);
1581 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1582 "on exit\n", drive->name);
1585 spin_unlock_irqrestore(&ide_lock, flags);
1590 * ide_init_drive_cmd - initialize a drive command request
1591 * @rq: request object
1593 * Initialize a request before we fill it in and send it down to
1594 * ide_do_drive_cmd. Commands must be set up by this function. Right
1595 * now it doesn't do a lot, but if that changes abusers will have a
1599 void ide_init_drive_cmd (struct request *rq)
1601 memset(rq, 0, sizeof(*rq));
1605 EXPORT_SYMBOL(ide_init_drive_cmd);
1608 * ide_do_drive_cmd - issue IDE special command
1609 * @drive: device to issue command
1610 * @rq: request to issue
1611 * @action: action for processing
1613 * This function issues a special IDE device request
1614 * onto the request queue.
1616 * If action is ide_wait, then the rq is queued at the end of the
1617 * request queue, and the function sleeps until it has been processed.
1618 * This is for use when invoked from an ioctl handler.
1620 * If action is ide_preempt, then the rq is queued at the head of
1621 * the request queue, displacing the currently-being-processed
1622 * request and this function returns immediately without waiting
1623 * for the new rq to be completed. This is VERY DANGEROUS, and is
1624 * intended for careful use by the ATAPI tape/cdrom driver code.
1626 * If action is ide_end, then the rq is queued at the end of the
1627 * request queue, and the function returns immediately without waiting
1628 * for the new rq to be completed. This is again intended for careful
1629 * use by the ATAPI tape/cdrom driver code.
1632 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1634 unsigned long flags;
1635 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1636 DECLARE_COMPLETION_ONSTACK(wait);
1637 int where = ELEVATOR_INSERT_BACK, err;
1638 int must_wait = (action == ide_wait || action == ide_head_wait);
1643 * we need to hold an extra reference to request for safe inspection
1648 rq->end_io_data = &wait;
1649 rq->end_io = blk_end_sync_rq;
1652 spin_lock_irqsave(&ide_lock, flags);
1653 if (action == ide_preempt)
1655 if (action == ide_preempt || action == ide_head_wait) {
1656 where = ELEVATOR_INSERT_FRONT;
1657 rq->cmd_flags |= REQ_PREEMPT;
1659 __elv_add_request(drive->queue, rq, where, 0);
1660 ide_do_request(hwgroup, IDE_NO_IRQ);
1661 spin_unlock_irqrestore(&ide_lock, flags);
1665 wait_for_completion(&wait);
1669 blk_put_request(rq);
1675 EXPORT_SYMBOL(ide_do_drive_cmd);
1677 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1681 memset(&task, 0, sizeof(task));
1682 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1683 IDE_TFLAG_OUT_FEATURE | tf_flags;
1684 task.tf.feature = dma; /* Use PIO/DMA */
1685 task.tf.lbam = bcount & 0xff;
1686 task.tf.lbah = (bcount >> 8) & 0xff;
1688 ide_tf_load(drive, &task);
1691 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);