]> err.no Git - linux-2.6/blob - drivers/ide/ide-io.c
ide: remove unnecessary writes to HOB taskfile registers
[linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61
62         /*
63          * if failfast is set on a request, override number of sectors and
64          * complete the whole request right now
65          */
66         if (blk_noretry_request(rq) && end_io_error(uptodate))
67                 nr_bytes = rq->hard_nr_sectors << 9;
68
69         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70                 rq->errors = -EIO;
71
72         /*
73          * decide whether to reenable DMA -- 3 is a random magic for now,
74          * if we DMA timeout more than 3 times, just stay in PIO
75          */
76         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77                 drive->state = 0;
78                 HWGROUP(drive)->hwif->ide_dma_on(drive);
79         }
80
81         if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82                 add_disk_randomness(rq->rq_disk);
83                 if (dequeue) {
84                         if (!list_empty(&rq->queuelist))
85                                 blkdev_dequeue_request(rq);
86                         HWGROUP(drive)->rq = NULL;
87                 }
88                 end_that_request_last(rq, uptodate);
89                 ret = 0;
90         }
91
92         return ret;
93 }
94
95 /**
96  *      ide_end_request         -       complete an IDE I/O
97  *      @drive: IDE device for the I/O
98  *      @uptodate:
99  *      @nr_sectors: number of sectors completed
100  *
101  *      This is our end_request wrapper function. We complete the I/O
102  *      update random number input and dequeue the request, which if
103  *      it was tagged may be out of order.
104  */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108         unsigned int nr_bytes = nr_sectors << 9;
109         struct request *rq;
110         unsigned long flags;
111         int ret = 1;
112
113         /*
114          * room for locking improvements here, the calls below don't
115          * need the queue lock held at all
116          */
117         spin_lock_irqsave(&ide_lock, flags);
118         rq = HWGROUP(drive)->rq;
119
120         if (!nr_bytes) {
121                 if (blk_pc_request(rq))
122                         nr_bytes = rq->data_len;
123                 else
124                         nr_bytes = rq->hard_cur_sectors << 9;
125         }
126
127         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129         spin_unlock_irqrestore(&ide_lock, flags);
130         return ret;
131 }
132 EXPORT_SYMBOL(ide_end_request);
133
134 /*
135  * Power Management state machine. This one is rather trivial for now,
136  * we should probably add more, like switching back to PIO on suspend
137  * to help some BIOSes, re-do the door locking on resume, etc...
138  */
139
140 enum {
141         ide_pm_flush_cache      = ide_pm_state_start_suspend,
142         idedisk_pm_standby,
143
144         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
145         idedisk_pm_idle,
146         ide_pm_restore_dma,
147 };
148
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 {
151         struct request_pm_state *pm = rq->data;
152
153         if (drive->media != ide_disk)
154                 return;
155
156         switch (pm->pm_step) {
157         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
158                 if (pm->pm_state == PM_EVENT_FREEZE)
159                         pm->pm_step = ide_pm_state_completed;
160                 else
161                         pm->pm_step = idedisk_pm_standby;
162                 break;
163         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
164                 pm->pm_step = ide_pm_state_completed;
165                 break;
166         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
167                 pm->pm_step = idedisk_pm_idle;
168                 break;
169         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
170                 pm->pm_step = ide_pm_restore_dma;
171                 break;
172         }
173 }
174
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 {
177         struct request_pm_state *pm = rq->data;
178         ide_task_t *args = rq->special;
179
180         memset(args, 0, sizeof(*args));
181
182         switch (pm->pm_step) {
183         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
184                 if (drive->media != ide_disk)
185                         break;
186                 /* Not supported? Switch to next step now. */
187                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188                         ide_complete_power_step(drive, rq, 0, 0);
189                         return ide_stopped;
190                 }
191                 if (ide_id_has_flush_cache_ext(drive->id))
192                         args->tf.command = WIN_FLUSH_CACHE_EXT;
193                 else
194                         args->tf.command = WIN_FLUSH_CACHE;
195                 goto out_do_tf;
196
197         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
198                 args->tf.command = WIN_STANDBYNOW1;
199                 goto out_do_tf;
200
201         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
202                 ide_set_max_pio(drive);
203                 /*
204                  * skip idedisk_pm_idle for ATAPI devices
205                  */
206                 if (drive->media != ide_disk)
207                         pm->pm_step = ide_pm_restore_dma;
208                 else
209                         ide_complete_power_step(drive, rq, 0, 0);
210                 return ide_stopped;
211
212         case idedisk_pm_idle:           /* Resume step 2 (idle) */
213                 args->tf.command = WIN_IDLEIMMEDIATE;
214                 goto out_do_tf;
215
216         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
217                 /*
218                  * Right now, all we do is call ide_set_dma(drive),
219                  * we could be smarter and check for current xfer_speed
220                  * in struct drive etc...
221                  */
222                 if (drive->hwif->ide_dma_on == NULL)
223                         break;
224                 drive->hwif->dma_off_quietly(drive);
225                 /*
226                  * TODO: respect ->using_dma setting
227                  */
228                 ide_set_dma(drive);
229                 break;
230         }
231         pm->pm_step = ide_pm_state_completed;
232         return ide_stopped;
233
234 out_do_tf:
235         args->tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
236         args->command_type = IDE_DRIVE_TASK_NO_DATA;
237         args->handler      = task_no_data_intr;
238         return do_rw_taskfile(drive, args);
239 }
240
241 /**
242  *      ide_end_dequeued_request        -       complete an IDE I/O
243  *      @drive: IDE device for the I/O
244  *      @uptodate:
245  *      @nr_sectors: number of sectors completed
246  *
247  *      Complete an I/O that is no longer on the request queue. This
248  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
249  *      We must still finish the old request but we must not tamper with the
250  *      queue in the meantime.
251  *
252  *      NOTE: This path does not handle barrier, but barrier is not supported
253  *      on ide-cd anyway.
254  */
255
256 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
257                              int uptodate, int nr_sectors)
258 {
259         unsigned long flags;
260         int ret;
261
262         spin_lock_irqsave(&ide_lock, flags);
263         BUG_ON(!blk_rq_started(rq));
264         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
265         spin_unlock_irqrestore(&ide_lock, flags);
266
267         return ret;
268 }
269 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
270
271
272 /**
273  *      ide_complete_pm_request - end the current Power Management request
274  *      @drive: target drive
275  *      @rq: request
276  *
277  *      This function cleans up the current PM request and stops the queue
278  *      if necessary.
279  */
280 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
281 {
282         unsigned long flags;
283
284 #ifdef DEBUG_PM
285         printk("%s: completing PM request, %s\n", drive->name,
286                blk_pm_suspend_request(rq) ? "suspend" : "resume");
287 #endif
288         spin_lock_irqsave(&ide_lock, flags);
289         if (blk_pm_suspend_request(rq)) {
290                 blk_stop_queue(drive->queue);
291         } else {
292                 drive->blocked = 0;
293                 blk_start_queue(drive->queue);
294         }
295         blkdev_dequeue_request(rq);
296         HWGROUP(drive)->rq = NULL;
297         end_that_request_last(rq, 1);
298         spin_unlock_irqrestore(&ide_lock, flags);
299 }
300
301 /**
302  *      ide_end_drive_cmd       -       end an explicit drive command
303  *      @drive: command 
304  *      @stat: status bits
305  *      @err: error bits
306  *
307  *      Clean up after success/failure of an explicit drive command.
308  *      These get thrown onto the queue so they are synchronized with
309  *      real I/O operations on the drive.
310  *
311  *      In LBA48 mode we have to read the register set twice to get
312  *      all the extra information out.
313  */
314  
315 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
316 {
317         ide_hwif_t *hwif = HWIF(drive);
318         unsigned long flags;
319         struct request *rq;
320
321         spin_lock_irqsave(&ide_lock, flags);
322         rq = HWGROUP(drive)->rq;
323         spin_unlock_irqrestore(&ide_lock, flags);
324
325         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
326                 u8 *args = (u8 *) rq->buffer;
327                 if (rq->errors == 0)
328                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
329
330                 if (args) {
331                         args[0] = stat;
332                         args[1] = err;
333                         args[2] = hwif->INB(IDE_NSECTOR_REG);
334                 }
335         } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
336                 u8 *args = (u8 *) rq->buffer;
337                 if (rq->errors == 0)
338                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
339
340                 if (args) {
341                         args[0] = stat;
342                         args[1] = err;
343                         /* be sure we're looking at the low order bits */
344                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
345                         args[2] = hwif->INB(IDE_NSECTOR_REG);
346                         args[3] = hwif->INB(IDE_SECTOR_REG);
347                         args[4] = hwif->INB(IDE_LCYL_REG);
348                         args[5] = hwif->INB(IDE_HCYL_REG);
349                         args[6] = hwif->INB(IDE_SELECT_REG);
350                 }
351         } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
352                 ide_task_t *args = (ide_task_t *) rq->special;
353                 if (rq->errors == 0)
354                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
355                         
356                 if (args) {
357                         struct ide_taskfile *tf = &args->tf;
358
359                         if (args->tf_in_flags.b.data) {
360                                 u16 data = hwif->INW(IDE_DATA_REG);
361
362                                 tf->data = data & 0xff;
363                                 tf->hob_data = (data >> 8) & 0xff;
364                         }
365                         tf->error = err;
366                         /* be sure we're looking at the low order bits */
367                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
368                         tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
369                         tf->lbal   = hwif->INB(IDE_SECTOR_REG);
370                         tf->lbam   = hwif->INB(IDE_LCYL_REG);
371                         tf->lbah   = hwif->INB(IDE_HCYL_REG);
372                         tf->device = hwif->INB(IDE_SELECT_REG);
373                         tf->status = stat;
374
375                         if (args->tf_flags & IDE_TFLAG_LBA48) {
376                                 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
377                                 tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
378                                 tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
379                                 tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
380                                 tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
381                                 tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
382                         }
383                 }
384         } else if (blk_pm_request(rq)) {
385                 struct request_pm_state *pm = rq->data;
386 #ifdef DEBUG_PM
387                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
388                         drive->name, rq->pm->pm_step, stat, err);
389 #endif
390                 ide_complete_power_step(drive, rq, stat, err);
391                 if (pm->pm_step == ide_pm_state_completed)
392                         ide_complete_pm_request(drive, rq);
393                 return;
394         }
395
396         spin_lock_irqsave(&ide_lock, flags);
397         blkdev_dequeue_request(rq);
398         HWGROUP(drive)->rq = NULL;
399         rq->errors = err;
400         end_that_request_last(rq, !rq->errors);
401         spin_unlock_irqrestore(&ide_lock, flags);
402 }
403
404 EXPORT_SYMBOL(ide_end_drive_cmd);
405
406 /**
407  *      try_to_flush_leftover_data      -       flush junk
408  *      @drive: drive to flush
409  *
410  *      try_to_flush_leftover_data() is invoked in response to a drive
411  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
412  *      resetting the drive, this routine tries to clear the condition
413  *      by read a sector's worth of data from the drive.  Of course,
414  *      this may not help if the drive is *waiting* for data from *us*.
415  */
416 static void try_to_flush_leftover_data (ide_drive_t *drive)
417 {
418         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
419
420         if (drive->media != ide_disk)
421                 return;
422         while (i > 0) {
423                 u32 buffer[16];
424                 u32 wcount = (i > 16) ? 16 : i;
425
426                 i -= wcount;
427                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
428         }
429 }
430
431 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
432 {
433         if (rq->rq_disk) {
434                 ide_driver_t *drv;
435
436                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
437                 drv->end_request(drive, 0, 0);
438         } else
439                 ide_end_request(drive, 0, 0);
440 }
441
442 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
443 {
444         ide_hwif_t *hwif = drive->hwif;
445
446         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
447                 /* other bits are useless when BUSY */
448                 rq->errors |= ERROR_RESET;
449         } else if (stat & ERR_STAT) {
450                 /* err has different meaning on cdrom and tape */
451                 if (err == ABRT_ERR) {
452                         if (drive->select.b.lba &&
453                             /* some newer drives don't support WIN_SPECIFY */
454                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
455                                 return ide_stopped;
456                 } else if ((err & BAD_CRC) == BAD_CRC) {
457                         /* UDMA crc error, just retry the operation */
458                         drive->crc_count++;
459                 } else if (err & (BBD_ERR | ECC_ERR)) {
460                         /* retries won't help these */
461                         rq->errors = ERROR_MAX;
462                 } else if (err & TRK0_ERR) {
463                         /* help it find track zero */
464                         rq->errors |= ERROR_RECAL;
465                 }
466         }
467
468         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
469             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
470                 try_to_flush_leftover_data(drive);
471
472         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
473                 ide_kill_rq(drive, rq);
474                 return ide_stopped;
475         }
476
477         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
478                 rq->errors |= ERROR_RESET;
479
480         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
481                 ++rq->errors;
482                 return ide_do_reset(drive);
483         }
484
485         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
486                 drive->special.b.recalibrate = 1;
487
488         ++rq->errors;
489
490         return ide_stopped;
491 }
492
493 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
494 {
495         ide_hwif_t *hwif = drive->hwif;
496
497         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
498                 /* other bits are useless when BUSY */
499                 rq->errors |= ERROR_RESET;
500         } else {
501                 /* add decoding error stuff */
502         }
503
504         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
505                 /* force an abort */
506                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
507
508         if (rq->errors >= ERROR_MAX) {
509                 ide_kill_rq(drive, rq);
510         } else {
511                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
512                         ++rq->errors;
513                         return ide_do_reset(drive);
514                 }
515                 ++rq->errors;
516         }
517
518         return ide_stopped;
519 }
520
521 ide_startstop_t
522 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
523 {
524         if (drive->media == ide_disk)
525                 return ide_ata_error(drive, rq, stat, err);
526         return ide_atapi_error(drive, rq, stat, err);
527 }
528
529 EXPORT_SYMBOL_GPL(__ide_error);
530
531 /**
532  *      ide_error       -       handle an error on the IDE
533  *      @drive: drive the error occurred on
534  *      @msg: message to report
535  *      @stat: status bits
536  *
537  *      ide_error() takes action based on the error returned by the drive.
538  *      For normal I/O that may well include retries. We deal with
539  *      both new-style (taskfile) and old style command handling here.
540  *      In the case of taskfile command handling there is work left to
541  *      do
542  */
543  
544 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
545 {
546         struct request *rq;
547         u8 err;
548
549         err = ide_dump_status(drive, msg, stat);
550
551         if ((rq = HWGROUP(drive)->rq) == NULL)
552                 return ide_stopped;
553
554         /* retry only "normal" I/O: */
555         if (!blk_fs_request(rq)) {
556                 rq->errors = 1;
557                 ide_end_drive_cmd(drive, stat, err);
558                 return ide_stopped;
559         }
560
561         if (rq->rq_disk) {
562                 ide_driver_t *drv;
563
564                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
565                 return drv->error(drive, rq, stat, err);
566         } else
567                 return __ide_error(drive, rq, stat, err);
568 }
569
570 EXPORT_SYMBOL_GPL(ide_error);
571
572 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
573 {
574         if (drive->media != ide_disk)
575                 rq->errors |= ERROR_RESET;
576
577         ide_kill_rq(drive, rq);
578
579         return ide_stopped;
580 }
581
582 EXPORT_SYMBOL_GPL(__ide_abort);
583
584 /**
585  *      ide_abort       -       abort pending IDE operations
586  *      @drive: drive the error occurred on
587  *      @msg: message to report
588  *
589  *      ide_abort kills and cleans up when we are about to do a 
590  *      host initiated reset on active commands. Longer term we
591  *      want handlers to have sensible abort handling themselves
592  *
593  *      This differs fundamentally from ide_error because in 
594  *      this case the command is doing just fine when we
595  *      blow it away.
596  */
597  
598 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
599 {
600         struct request *rq;
601
602         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
603                 return ide_stopped;
604
605         /* retry only "normal" I/O: */
606         if (!blk_fs_request(rq)) {
607                 rq->errors = 1;
608                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
609                 return ide_stopped;
610         }
611
612         if (rq->rq_disk) {
613                 ide_driver_t *drv;
614
615                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
616                 return drv->abort(drive, rq);
617         } else
618                 return __ide_abort(drive, rq);
619 }
620
621 /**
622  *      drive_cmd_intr          -       drive command completion interrupt
623  *      @drive: drive the completion interrupt occurred on
624  *
625  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
626  *      We do any necessary data reading and then wait for the drive to
627  *      go non busy. At that point we may read the error data and complete
628  *      the request
629  */
630  
631 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
632 {
633         struct request *rq = HWGROUP(drive)->rq;
634         ide_hwif_t *hwif = HWIF(drive);
635         u8 *args = (u8 *) rq->buffer;
636         u8 stat = hwif->INB(IDE_STATUS_REG);
637         int retries = 10;
638
639         local_irq_enable_in_hardirq();
640         if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
641             (stat & DRQ_STAT) && args && args[3]) {
642                 u8 io_32bit = drive->io_32bit;
643                 drive->io_32bit = 0;
644                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
645                 drive->io_32bit = io_32bit;
646                 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
647                         udelay(100);
648         }
649
650         if (!OK_STAT(stat, READY_STAT, BAD_STAT))
651                 return ide_error(drive, "drive_cmd", stat);
652                 /* calls ide_end_drive_cmd */
653         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
654         return ide_stopped;
655 }
656
657 static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
658 {
659         task->tf.nsect   = drive->sect;
660         task->tf.lbal    = drive->sect;
661         task->tf.lbam    = drive->cyl;
662         task->tf.lbah    = drive->cyl >> 8;
663         task->tf.device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
664         task->tf.command = WIN_SPECIFY;
665
666         task->handler = &set_geometry_intr;
667 }
668
669 static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
670 {
671         task->tf.nsect   = drive->sect;
672         task->tf.command = WIN_RESTORE;
673
674         task->handler = &recal_intr;
675 }
676
677 static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
678 {
679         task->tf.nsect   = drive->mult_req;
680         task->tf.command = WIN_SETMULT;
681
682         task->handler = &set_multmode_intr;
683 }
684
685 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
686 {
687         special_t *s = &drive->special;
688         ide_task_t args;
689
690         memset(&args, 0, sizeof(ide_task_t));
691         args.command_type = IDE_DRIVE_TASK_NO_DATA;
692
693         if (s->b.set_geometry) {
694                 s->b.set_geometry = 0;
695                 ide_init_specify_cmd(drive, &args);
696         } else if (s->b.recalibrate) {
697                 s->b.recalibrate = 0;
698                 ide_init_restore_cmd(drive, &args);
699         } else if (s->b.set_multmode) {
700                 s->b.set_multmode = 0;
701                 if (drive->mult_req > drive->id->max_multsect)
702                         drive->mult_req = drive->id->max_multsect;
703                 ide_init_setmult_cmd(drive, &args);
704         } else if (s->all) {
705                 int special = s->all;
706                 s->all = 0;
707                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
708                 return ide_stopped;
709         }
710
711         args.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
712
713         do_rw_taskfile(drive, &args);
714
715         return ide_started;
716 }
717
718 /*
719  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
720  */
721 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
722 {
723         switch (req_pio) {
724         case 202:
725         case 201:
726         case 200:
727         case 102:
728         case 101:
729         case 100:
730                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
731         case 9:
732         case 8:
733                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
734         case 7:
735         case 6:
736                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
737         default:
738                 return 0;
739         }
740 }
741
742 /**
743  *      do_special              -       issue some special commands
744  *      @drive: drive the command is for
745  *
746  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
747  *      commands to a drive.  It used to do much more, but has been scaled
748  *      back.
749  */
750
751 static ide_startstop_t do_special (ide_drive_t *drive)
752 {
753         special_t *s = &drive->special;
754
755 #ifdef DEBUG
756         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
757 #endif
758         if (s->b.set_tune) {
759                 ide_hwif_t *hwif = drive->hwif;
760                 u8 req_pio = drive->tune_req;
761
762                 s->b.set_tune = 0;
763
764                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
765
766                         if (hwif->set_pio_mode == NULL)
767                                 return ide_stopped;
768
769                         /*
770                          * take ide_lock for drive->[no_]unmask/[no_]io_32bit
771                          */
772                         if (req_pio == 8 || req_pio == 9) {
773                                 unsigned long flags;
774
775                                 spin_lock_irqsave(&ide_lock, flags);
776                                 hwif->set_pio_mode(drive, req_pio);
777                                 spin_unlock_irqrestore(&ide_lock, flags);
778                         } else
779                                 hwif->set_pio_mode(drive, req_pio);
780                 } else {
781                         int keep_dma = drive->using_dma;
782
783                         ide_set_pio(drive, req_pio);
784
785                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
786                                 if (keep_dma)
787                                         hwif->ide_dma_on(drive);
788                         }
789                 }
790
791                 return ide_stopped;
792         } else {
793                 if (drive->media == ide_disk)
794                         return ide_disk_special(drive);
795
796                 s->all = 0;
797                 drive->mult_req = 0;
798                 return ide_stopped;
799         }
800 }
801
802 void ide_map_sg(ide_drive_t *drive, struct request *rq)
803 {
804         ide_hwif_t *hwif = drive->hwif;
805         struct scatterlist *sg = hwif->sg_table;
806
807         if (hwif->sg_mapped)    /* needed by ide-scsi */
808                 return;
809
810         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
811                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
812         } else {
813                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
814                 hwif->sg_nents = 1;
815         }
816 }
817
818 EXPORT_SYMBOL_GPL(ide_map_sg);
819
820 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
821 {
822         ide_hwif_t *hwif = drive->hwif;
823
824         hwif->nsect = hwif->nleft = rq->nr_sectors;
825         hwif->cursg_ofs = 0;
826         hwif->cursg = NULL;
827 }
828
829 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
830
831 /**
832  *      execute_drive_command   -       issue special drive command
833  *      @drive: the drive to issue the command on
834  *      @rq: the request structure holding the command
835  *
836  *      execute_drive_cmd() issues a special drive command,  usually 
837  *      initiated by ioctl() from the external hdparm program. The
838  *      command can be a drive command, drive task or taskfile 
839  *      operation. Weirdly you can call it with NULL to wait for
840  *      all commands to finish. Don't do this as that is due to change
841  */
842
843 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
844                 struct request *rq)
845 {
846         ide_hwif_t *hwif = HWIF(drive);
847         u8 *args = rq->buffer;
848         ide_task_t ltask;
849         struct ide_taskfile *tf = &ltask.tf;
850
851         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
852                 ide_task_t *task = rq->special;
853  
854                 if (task == NULL)
855                         goto done;
856
857                 hwif->data_phase = task->data_phase;
858
859                 switch (hwif->data_phase) {
860                 case TASKFILE_MULTI_OUT:
861                 case TASKFILE_OUT:
862                 case TASKFILE_MULTI_IN:
863                 case TASKFILE_IN:
864                         ide_init_sg_cmd(drive, rq);
865                         ide_map_sg(drive, rq);
866                 default:
867                         break;
868                 }
869
870                 if (task->tf_flags & IDE_TFLAG_FLAGGED)
871                         return flagged_taskfile(drive, task);
872
873                 return do_rw_taskfile(drive, task);
874         }
875
876         if (args == NULL)
877                 goto done;
878
879         memset(&ltask, 0, sizeof(ltask));
880         if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
881 #ifdef DEBUG
882                 printk("%s: DRIVE_TASK_CMD\n", drive->name);
883 #endif
884                 memcpy(&ltask.tf_array[7], &args[1], 6);
885                 ltask.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
886         } else { /* rq->cmd_type == REQ_TYPE_ATA_CMD */
887 #ifdef DEBUG
888                 printk("%s: DRIVE_CMD\n", drive->name);
889 #endif
890                 tf->feature = args[2];
891                 if (args[0] == WIN_SMART) {
892                         tf->nsect = args[3];
893                         tf->lbal  = args[1];
894                         tf->lbam  = 0x4f;
895                         tf->lbah  = 0xc2;
896                         ltask.tf_flags = IDE_TFLAG_OUT_TF;
897                 } else {
898                         tf->nsect = args[1];
899                         ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
900                                          IDE_TFLAG_OUT_NSECT;
901                 }
902         }
903         tf->command = args[0];
904         ide_tf_load(drive, &ltask);
905         ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_CMD, NULL);
906         return ide_started;
907
908 done:
909         /*
910          * NULL is actually a valid way of waiting for
911          * all current requests to be flushed from the queue.
912          */
913 #ifdef DEBUG
914         printk("%s: DRIVE_CMD (null)\n", drive->name);
915 #endif
916         ide_end_drive_cmd(drive,
917                         hwif->INB(IDE_STATUS_REG),
918                         hwif->INB(IDE_ERROR_REG));
919         return ide_stopped;
920 }
921
922 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
923 {
924         struct request_pm_state *pm = rq->data;
925
926         if (blk_pm_suspend_request(rq) &&
927             pm->pm_step == ide_pm_state_start_suspend)
928                 /* Mark drive blocked when starting the suspend sequence. */
929                 drive->blocked = 1;
930         else if (blk_pm_resume_request(rq) &&
931                  pm->pm_step == ide_pm_state_start_resume) {
932                 /* 
933                  * The first thing we do on wakeup is to wait for BSY bit to
934                  * go away (with a looong timeout) as a drive on this hwif may
935                  * just be POSTing itself.
936                  * We do that before even selecting as the "other" device on
937                  * the bus may be broken enough to walk on our toes at this
938                  * point.
939                  */
940                 int rc;
941 #ifdef DEBUG_PM
942                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
943 #endif
944                 rc = ide_wait_not_busy(HWIF(drive), 35000);
945                 if (rc)
946                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
947                 SELECT_DRIVE(drive);
948                 if (IDE_CONTROL_REG)
949                         HWIF(drive)->OUTB(drive->ctl, IDE_CONTROL_REG);
950                 rc = ide_wait_not_busy(HWIF(drive), 100000);
951                 if (rc)
952                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
953         }
954 }
955
956 /**
957  *      start_request   -       start of I/O and command issuing for IDE
958  *
959  *      start_request() initiates handling of a new I/O request. It
960  *      accepts commands and I/O (read/write) requests. It also does
961  *      the final remapping for weird stuff like EZDrive. Once 
962  *      device mapper can work sector level the EZDrive stuff can go away
963  *
964  *      FIXME: this function needs a rename
965  */
966  
967 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
968 {
969         ide_startstop_t startstop;
970         sector_t block;
971
972         BUG_ON(!blk_rq_started(rq));
973
974 #ifdef DEBUG
975         printk("%s: start_request: current=0x%08lx\n",
976                 HWIF(drive)->name, (unsigned long) rq);
977 #endif
978
979         /* bail early if we've exceeded max_failures */
980         if (drive->max_failures && (drive->failures > drive->max_failures)) {
981                 rq->cmd_flags |= REQ_FAILED;
982                 goto kill_rq;
983         }
984
985         block    = rq->sector;
986         if (blk_fs_request(rq) &&
987             (drive->media == ide_disk || drive->media == ide_floppy)) {
988                 block += drive->sect0;
989         }
990         /* Yecch - this will shift the entire interval,
991            possibly killing some innocent following sector */
992         if (block == 0 && drive->remap_0_to_1 == 1)
993                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
994
995         if (blk_pm_request(rq))
996                 ide_check_pm_state(drive, rq);
997
998         SELECT_DRIVE(drive);
999         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1000                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1001                 return startstop;
1002         }
1003         if (!drive->special.all) {
1004                 ide_driver_t *drv;
1005
1006                 /*
1007                  * We reset the drive so we need to issue a SETFEATURES.
1008                  * Do it _after_ do_special() restored device parameters.
1009                  */
1010                 if (drive->current_speed == 0xff)
1011                         ide_config_drive_speed(drive, drive->desired_speed);
1012
1013                 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1014                     rq->cmd_type == REQ_TYPE_ATA_TASK ||
1015                     rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1016                         return execute_drive_cmd(drive, rq);
1017                 else if (blk_pm_request(rq)) {
1018                         struct request_pm_state *pm = rq->data;
1019 #ifdef DEBUG_PM
1020                         printk("%s: start_power_step(step: %d)\n",
1021                                 drive->name, rq->pm->pm_step);
1022 #endif
1023                         startstop = ide_start_power_step(drive, rq);
1024                         if (startstop == ide_stopped &&
1025                             pm->pm_step == ide_pm_state_completed)
1026                                 ide_complete_pm_request(drive, rq);
1027                         return startstop;
1028                 }
1029
1030                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1031                 return drv->do_request(drive, rq, block);
1032         }
1033         return do_special(drive);
1034 kill_rq:
1035         ide_kill_rq(drive, rq);
1036         return ide_stopped;
1037 }
1038
1039 /**
1040  *      ide_stall_queue         -       pause an IDE device
1041  *      @drive: drive to stall
1042  *      @timeout: time to stall for (jiffies)
1043  *
1044  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
1045  *      to the hwgroup by sleeping for timeout jiffies.
1046  */
1047  
1048 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1049 {
1050         if (timeout > WAIT_WORSTCASE)
1051                 timeout = WAIT_WORSTCASE;
1052         drive->sleep = timeout + jiffies;
1053         drive->sleeping = 1;
1054 }
1055
1056 EXPORT_SYMBOL(ide_stall_queue);
1057
1058 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
1059
1060 /**
1061  *      choose_drive            -       select a drive to service
1062  *      @hwgroup: hardware group to select on
1063  *
1064  *      choose_drive() selects the next drive which will be serviced.
1065  *      This is necessary because the IDE layer can't issue commands
1066  *      to both drives on the same cable, unlike SCSI.
1067  */
1068  
1069 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1070 {
1071         ide_drive_t *drive, *best;
1072
1073 repeat: 
1074         best = NULL;
1075         drive = hwgroup->drive;
1076
1077         /*
1078          * drive is doing pre-flush, ordered write, post-flush sequence. even
1079          * though that is 3 requests, it must be seen as a single transaction.
1080          * we must not preempt this drive until that is complete
1081          */
1082         if (blk_queue_flushing(drive->queue)) {
1083                 /*
1084                  * small race where queue could get replugged during
1085                  * the 3-request flush cycle, just yank the plug since
1086                  * we want it to finish asap
1087                  */
1088                 blk_remove_plug(drive->queue);
1089                 return drive;
1090         }
1091
1092         do {
1093                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1094                     && !elv_queue_empty(drive->queue)) {
1095                         if (!best
1096                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1097                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1098                         {
1099                                 if (!blk_queue_plugged(drive->queue))
1100                                         best = drive;
1101                         }
1102                 }
1103         } while ((drive = drive->next) != hwgroup->drive);
1104         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1105                 long t = (signed long)(WAKEUP(best) - jiffies);
1106                 if (t >= WAIT_MIN_SLEEP) {
1107                 /*
1108                  * We *may* have some time to spare, but first let's see if
1109                  * someone can potentially benefit from our nice mood today..
1110                  */
1111                         drive = best->next;
1112                         do {
1113                                 if (!drive->sleeping
1114                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1115                                  && time_before(WAKEUP(drive), jiffies + t))
1116                                 {
1117                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1118                                         goto repeat;
1119                                 }
1120                         } while ((drive = drive->next) != best);
1121                 }
1122         }
1123         return best;
1124 }
1125
1126 /*
1127  * Issue a new request to a drive from hwgroup
1128  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1129  *
1130  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1131  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1132  * may have both interfaces in a single hwgroup to "serialize" access.
1133  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1134  * together into one hwgroup for serialized access.
1135  *
1136  * Note also that several hwgroups can end up sharing a single IRQ,
1137  * possibly along with many other devices.  This is especially common in
1138  * PCI-based systems with off-board IDE controller cards.
1139  *
1140  * The IDE driver uses the single global ide_lock spinlock to protect
1141  * access to the request queues, and to protect the hwgroup->busy flag.
1142  *
1143  * The first thread into the driver for a particular hwgroup sets the
1144  * hwgroup->busy flag to indicate that this hwgroup is now active,
1145  * and then initiates processing of the top request from the request queue.
1146  *
1147  * Other threads attempting entry notice the busy setting, and will simply
1148  * queue their new requests and exit immediately.  Note that hwgroup->busy
1149  * remains set even when the driver is merely awaiting the next interrupt.
1150  * Thus, the meaning is "this hwgroup is busy processing a request".
1151  *
1152  * When processing of a request completes, the completing thread or IRQ-handler
1153  * will start the next request from the queue.  If no more work remains,
1154  * the driver will clear the hwgroup->busy flag and exit.
1155  *
1156  * The ide_lock (spinlock) is used to protect all access to the
1157  * hwgroup->busy flag, but is otherwise not needed for most processing in
1158  * the driver.  This makes the driver much more friendlier to shared IRQs
1159  * than previous designs, while remaining 100% (?) SMP safe and capable.
1160  */
1161 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1162 {
1163         ide_drive_t     *drive;
1164         ide_hwif_t      *hwif;
1165         struct request  *rq;
1166         ide_startstop_t startstop;
1167         int             loops = 0;
1168
1169         /* for atari only: POSSIBLY BROKEN HERE(?) */
1170         ide_get_lock(ide_intr, hwgroup);
1171
1172         /* caller must own ide_lock */
1173         BUG_ON(!irqs_disabled());
1174
1175         while (!hwgroup->busy) {
1176                 hwgroup->busy = 1;
1177                 drive = choose_drive(hwgroup);
1178                 if (drive == NULL) {
1179                         int sleeping = 0;
1180                         unsigned long sleep = 0; /* shut up, gcc */
1181                         hwgroup->rq = NULL;
1182                         drive = hwgroup->drive;
1183                         do {
1184                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1185                                         sleeping = 1;
1186                                         sleep = drive->sleep;
1187                                 }
1188                         } while ((drive = drive->next) != hwgroup->drive);
1189                         if (sleeping) {
1190                 /*
1191                  * Take a short snooze, and then wake up this hwgroup again.
1192                  * This gives other hwgroups on the same a chance to
1193                  * play fairly with us, just in case there are big differences
1194                  * in relative throughputs.. don't want to hog the cpu too much.
1195                  */
1196                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1197                                         sleep = jiffies + WAIT_MIN_SLEEP;
1198 #if 1
1199                                 if (timer_pending(&hwgroup->timer))
1200                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1201 #endif
1202                                 /* so that ide_timer_expiry knows what to do */
1203                                 hwgroup->sleeping = 1;
1204                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1205                                 mod_timer(&hwgroup->timer, sleep);
1206                                 /* we purposely leave hwgroup->busy==1
1207                                  * while sleeping */
1208                         } else {
1209                                 /* Ugly, but how can we sleep for the lock
1210                                  * otherwise? perhaps from tq_disk?
1211                                  */
1212
1213                                 /* for atari only */
1214                                 ide_release_lock();
1215                                 hwgroup->busy = 0;
1216                         }
1217
1218                         /* no more work for this hwgroup (for now) */
1219                         return;
1220                 }
1221         again:
1222                 hwif = HWIF(drive);
1223                 if (hwgroup->hwif->sharing_irq &&
1224                     hwif != hwgroup->hwif &&
1225                     hwif->io_ports[IDE_CONTROL_OFFSET]) {
1226                         /* set nIEN for previous hwif */
1227                         SELECT_INTERRUPT(drive);
1228                 }
1229                 hwgroup->hwif = hwif;
1230                 hwgroup->drive = drive;
1231                 drive->sleeping = 0;
1232                 drive->service_start = jiffies;
1233
1234                 if (blk_queue_plugged(drive->queue)) {
1235                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1236                         break;
1237                 }
1238
1239                 /*
1240                  * we know that the queue isn't empty, but this can happen
1241                  * if the q->prep_rq_fn() decides to kill a request
1242                  */
1243                 rq = elv_next_request(drive->queue);
1244                 if (!rq) {
1245                         hwgroup->busy = 0;
1246                         break;
1247                 }
1248
1249                 /*
1250                  * Sanity: don't accept a request that isn't a PM request
1251                  * if we are currently power managed. This is very important as
1252                  * blk_stop_queue() doesn't prevent the elv_next_request()
1253                  * above to return us whatever is in the queue. Since we call
1254                  * ide_do_request() ourselves, we end up taking requests while
1255                  * the queue is blocked...
1256                  * 
1257                  * We let requests forced at head of queue with ide-preempt
1258                  * though. I hope that doesn't happen too much, hopefully not
1259                  * unless the subdriver triggers such a thing in its own PM
1260                  * state machine.
1261                  *
1262                  * We count how many times we loop here to make sure we service
1263                  * all drives in the hwgroup without looping for ever
1264                  */
1265                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1266                         drive = drive->next ? drive->next : hwgroup->drive;
1267                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1268                                 goto again;
1269                         /* We clear busy, there should be no pending ATA command at this point. */
1270                         hwgroup->busy = 0;
1271                         break;
1272                 }
1273
1274                 hwgroup->rq = rq;
1275
1276                 /*
1277                  * Some systems have trouble with IDE IRQs arriving while
1278                  * the driver is still setting things up.  So, here we disable
1279                  * the IRQ used by this interface while the request is being started.
1280                  * This may look bad at first, but pretty much the same thing
1281                  * happens anyway when any interrupt comes in, IDE or otherwise
1282                  *  -- the kernel masks the IRQ while it is being handled.
1283                  */
1284                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1285                         disable_irq_nosync(hwif->irq);
1286                 spin_unlock(&ide_lock);
1287                 local_irq_enable_in_hardirq();
1288                         /* allow other IRQs while we start this request */
1289                 startstop = start_request(drive, rq);
1290                 spin_lock_irq(&ide_lock);
1291                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1292                         enable_irq(hwif->irq);
1293                 if (startstop == ide_stopped)
1294                         hwgroup->busy = 0;
1295         }
1296 }
1297
1298 /*
1299  * Passes the stuff to ide_do_request
1300  */
1301 void do_ide_request(struct request_queue *q)
1302 {
1303         ide_drive_t *drive = q->queuedata;
1304
1305         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1306 }
1307
1308 /*
1309  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1310  * retry the current request in pio mode instead of risking tossing it
1311  * all away
1312  */
1313 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1314 {
1315         ide_hwif_t *hwif = HWIF(drive);
1316         struct request *rq;
1317         ide_startstop_t ret = ide_stopped;
1318
1319         /*
1320          * end current dma transaction
1321          */
1322
1323         if (error < 0) {
1324                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1325                 (void)HWIF(drive)->ide_dma_end(drive);
1326                 ret = ide_error(drive, "dma timeout error",
1327                                                 hwif->INB(IDE_STATUS_REG));
1328         } else {
1329                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1330                 hwif->dma_timeout(drive);
1331         }
1332
1333         /*
1334          * disable dma for now, but remember that we did so because of
1335          * a timeout -- we'll reenable after we finish this next request
1336          * (or rather the first chunk of it) in pio.
1337          */
1338         drive->retry_pio++;
1339         drive->state = DMA_PIO_RETRY;
1340         hwif->dma_off_quietly(drive);
1341
1342         /*
1343          * un-busy drive etc (hwgroup->busy is cleared on return) and
1344          * make sure request is sane
1345          */
1346         rq = HWGROUP(drive)->rq;
1347
1348         if (!rq)
1349                 goto out;
1350
1351         HWGROUP(drive)->rq = NULL;
1352
1353         rq->errors = 0;
1354
1355         if (!rq->bio)
1356                 goto out;
1357
1358         rq->sector = rq->bio->bi_sector;
1359         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1360         rq->hard_cur_sectors = rq->current_nr_sectors;
1361         rq->buffer = bio_data(rq->bio);
1362 out:
1363         return ret;
1364 }
1365
1366 /**
1367  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1368  *      @data: timer callback magic (hwgroup)
1369  *
1370  *      An IDE command has timed out before the expected drive return
1371  *      occurred. At this point we attempt to clean up the current
1372  *      mess. If the current handler includes an expiry handler then
1373  *      we invoke the expiry handler, and providing it is happy the
1374  *      work is done. If that fails we apply generic recovery rules
1375  *      invoking the handler and checking the drive DMA status. We
1376  *      have an excessively incestuous relationship with the DMA
1377  *      logic that wants cleaning up.
1378  */
1379  
1380 void ide_timer_expiry (unsigned long data)
1381 {
1382         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1383         ide_handler_t   *handler;
1384         ide_expiry_t    *expiry;
1385         unsigned long   flags;
1386         unsigned long   wait = -1;
1387
1388         spin_lock_irqsave(&ide_lock, flags);
1389
1390         if (((handler = hwgroup->handler) == NULL) ||
1391             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1392                 /*
1393                  * Either a marginal timeout occurred
1394                  * (got the interrupt just as timer expired),
1395                  * or we were "sleeping" to give other devices a chance.
1396                  * Either way, we don't really want to complain about anything.
1397                  */
1398                 if (hwgroup->sleeping) {
1399                         hwgroup->sleeping = 0;
1400                         hwgroup->busy = 0;
1401                 }
1402         } else {
1403                 ide_drive_t *drive = hwgroup->drive;
1404                 if (!drive) {
1405                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1406                         hwgroup->handler = NULL;
1407                 } else {
1408                         ide_hwif_t *hwif;
1409                         ide_startstop_t startstop = ide_stopped;
1410                         if (!hwgroup->busy) {
1411                                 hwgroup->busy = 1;      /* paranoia */
1412                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1413                         }
1414                         if ((expiry = hwgroup->expiry) != NULL) {
1415                                 /* continue */
1416                                 if ((wait = expiry(drive)) > 0) {
1417                                         /* reset timer */
1418                                         hwgroup->timer.expires  = jiffies + wait;
1419                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1420                                         add_timer(&hwgroup->timer);
1421                                         spin_unlock_irqrestore(&ide_lock, flags);
1422                                         return;
1423                                 }
1424                         }
1425                         hwgroup->handler = NULL;
1426                         /*
1427                          * We need to simulate a real interrupt when invoking
1428                          * the handler() function, which means we need to
1429                          * globally mask the specific IRQ:
1430                          */
1431                         spin_unlock(&ide_lock);
1432                         hwif  = HWIF(drive);
1433                         /* disable_irq_nosync ?? */
1434                         disable_irq(hwif->irq);
1435                         /* local CPU only,
1436                          * as if we were handling an interrupt */
1437                         local_irq_disable();
1438                         if (hwgroup->polling) {
1439                                 startstop = handler(drive);
1440                         } else if (drive_is_ready(drive)) {
1441                                 if (drive->waiting_for_dma)
1442                                         hwgroup->hwif->dma_lost_irq(drive);
1443                                 (void)ide_ack_intr(hwif);
1444                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1445                                 startstop = handler(drive);
1446                         } else {
1447                                 if (drive->waiting_for_dma) {
1448                                         startstop = ide_dma_timeout_retry(drive, wait);
1449                                 } else
1450                                         startstop =
1451                                         ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1452                         }
1453                         drive->service_time = jiffies - drive->service_start;
1454                         spin_lock_irq(&ide_lock);
1455                         enable_irq(hwif->irq);
1456                         if (startstop == ide_stopped)
1457                                 hwgroup->busy = 0;
1458                 }
1459         }
1460         ide_do_request(hwgroup, IDE_NO_IRQ);
1461         spin_unlock_irqrestore(&ide_lock, flags);
1462 }
1463
1464 /**
1465  *      unexpected_intr         -       handle an unexpected IDE interrupt
1466  *      @irq: interrupt line
1467  *      @hwgroup: hwgroup being processed
1468  *
1469  *      There's nothing really useful we can do with an unexpected interrupt,
1470  *      other than reading the status register (to clear it), and logging it.
1471  *      There should be no way that an irq can happen before we're ready for it,
1472  *      so we needn't worry much about losing an "important" interrupt here.
1473  *
1474  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1475  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1476  *      looks "good", we just ignore the interrupt completely.
1477  *
1478  *      This routine assumes __cli() is in effect when called.
1479  *
1480  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1481  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1482  *      we could screw up by interfering with a new request being set up for 
1483  *      irq15.
1484  *
1485  *      In reality, this is a non-issue.  The new command is not sent unless 
1486  *      the drive is ready to accept one, in which case we know the drive is
1487  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1488  *      before completing the issuance of any new drive command, so we will not
1489  *      be accidentally invoked as a result of any valid command completion
1490  *      interrupt.
1491  *
1492  *      Note that we must walk the entire hwgroup here. We know which hwif
1493  *      is doing the current command, but we don't know which hwif burped
1494  *      mysteriously.
1495  */
1496  
1497 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1498 {
1499         u8 stat;
1500         ide_hwif_t *hwif = hwgroup->hwif;
1501
1502         /*
1503          * handle the unexpected interrupt
1504          */
1505         do {
1506                 if (hwif->irq == irq) {
1507                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1508                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1509                                 /* Try to not flood the console with msgs */
1510                                 static unsigned long last_msgtime, count;
1511                                 ++count;
1512                                 if (time_after(jiffies, last_msgtime + HZ)) {
1513                                         last_msgtime = jiffies;
1514                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1515                                                 "status=0x%02x, count=%ld\n",
1516                                                 hwif->name,
1517                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1518                                 }
1519                         }
1520                 }
1521         } while ((hwif = hwif->next) != hwgroup->hwif);
1522 }
1523
1524 /**
1525  *      ide_intr        -       default IDE interrupt handler
1526  *      @irq: interrupt number
1527  *      @dev_id: hwif group
1528  *      @regs: unused weirdness from the kernel irq layer
1529  *
1530  *      This is the default IRQ handler for the IDE layer. You should
1531  *      not need to override it. If you do be aware it is subtle in
1532  *      places
1533  *
1534  *      hwgroup->hwif is the interface in the group currently performing
1535  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1536  *      the IRQ handler to call. As we issue a command the handlers
1537  *      step through multiple states, reassigning the handler to the
1538  *      next step in the process. Unlike a smart SCSI controller IDE
1539  *      expects the main processor to sequence the various transfer
1540  *      stages. We also manage a poll timer to catch up with most
1541  *      timeout situations. There are still a few where the handlers
1542  *      don't ever decide to give up.
1543  *
1544  *      The handler eventually returns ide_stopped to indicate the
1545  *      request completed. At this point we issue the next request
1546  *      on the hwgroup and the process begins again.
1547  */
1548  
1549 irqreturn_t ide_intr (int irq, void *dev_id)
1550 {
1551         unsigned long flags;
1552         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1553         ide_hwif_t *hwif;
1554         ide_drive_t *drive;
1555         ide_handler_t *handler;
1556         ide_startstop_t startstop;
1557
1558         spin_lock_irqsave(&ide_lock, flags);
1559         hwif = hwgroup->hwif;
1560
1561         if (!ide_ack_intr(hwif)) {
1562                 spin_unlock_irqrestore(&ide_lock, flags);
1563                 return IRQ_NONE;
1564         }
1565
1566         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1567                 /*
1568                  * Not expecting an interrupt from this drive.
1569                  * That means this could be:
1570                  *      (1) an interrupt from another PCI device
1571                  *      sharing the same PCI INT# as us.
1572                  * or   (2) a drive just entered sleep or standby mode,
1573                  *      and is interrupting to let us know.
1574                  * or   (3) a spurious interrupt of unknown origin.
1575                  *
1576                  * For PCI, we cannot tell the difference,
1577                  * so in that case we just ignore it and hope it goes away.
1578                  *
1579                  * FIXME: unexpected_intr should be hwif-> then we can
1580                  * remove all the ifdef PCI crap
1581                  */
1582 #ifdef CONFIG_BLK_DEV_IDEPCI
1583                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1584 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1585                 {
1586                         /*
1587                          * Probably not a shared PCI interrupt,
1588                          * so we can safely try to do something about it:
1589                          */
1590                         unexpected_intr(irq, hwgroup);
1591 #ifdef CONFIG_BLK_DEV_IDEPCI
1592                 } else {
1593                         /*
1594                          * Whack the status register, just in case
1595                          * we have a leftover pending IRQ.
1596                          */
1597                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1598 #endif /* CONFIG_BLK_DEV_IDEPCI */
1599                 }
1600                 spin_unlock_irqrestore(&ide_lock, flags);
1601                 return IRQ_NONE;
1602         }
1603         drive = hwgroup->drive;
1604         if (!drive) {
1605                 /*
1606                  * This should NEVER happen, and there isn't much
1607                  * we could do about it here.
1608                  *
1609                  * [Note - this can occur if the drive is hot unplugged]
1610                  */
1611                 spin_unlock_irqrestore(&ide_lock, flags);
1612                 return IRQ_HANDLED;
1613         }
1614         if (!drive_is_ready(drive)) {
1615                 /*
1616                  * This happens regularly when we share a PCI IRQ with
1617                  * another device.  Unfortunately, it can also happen
1618                  * with some buggy drives that trigger the IRQ before
1619                  * their status register is up to date.  Hopefully we have
1620                  * enough advance overhead that the latter isn't a problem.
1621                  */
1622                 spin_unlock_irqrestore(&ide_lock, flags);
1623                 return IRQ_NONE;
1624         }
1625         if (!hwgroup->busy) {
1626                 hwgroup->busy = 1;      /* paranoia */
1627                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1628         }
1629         hwgroup->handler = NULL;
1630         hwgroup->req_gen++;
1631         del_timer(&hwgroup->timer);
1632         spin_unlock(&ide_lock);
1633
1634         /* Some controllers might set DMA INTR no matter DMA or PIO;
1635          * bmdma status might need to be cleared even for
1636          * PIO interrupts to prevent spurious/lost irq.
1637          */
1638         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1639                 /* ide_dma_end() needs bmdma status for error checking.
1640                  * So, skip clearing bmdma status here and leave it
1641                  * to ide_dma_end() if this is dma interrupt.
1642                  */
1643                 hwif->ide_dma_clear_irq(drive);
1644
1645         if (drive->unmask)
1646                 local_irq_enable_in_hardirq();
1647         /* service this interrupt, may set handler for next interrupt */
1648         startstop = handler(drive);
1649         spin_lock_irq(&ide_lock);
1650
1651         /*
1652          * Note that handler() may have set things up for another
1653          * interrupt to occur soon, but it cannot happen until
1654          * we exit from this routine, because it will be the
1655          * same irq as is currently being serviced here, and Linux
1656          * won't allow another of the same (on any CPU) until we return.
1657          */
1658         drive->service_time = jiffies - drive->service_start;
1659         if (startstop == ide_stopped) {
1660                 if (hwgroup->handler == NULL) { /* paranoia */
1661                         hwgroup->busy = 0;
1662                         ide_do_request(hwgroup, hwif->irq);
1663                 } else {
1664                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1665                                 "on exit\n", drive->name);
1666                 }
1667         }
1668         spin_unlock_irqrestore(&ide_lock, flags);
1669         return IRQ_HANDLED;
1670 }
1671
1672 /**
1673  *      ide_init_drive_cmd      -       initialize a drive command request
1674  *      @rq: request object
1675  *
1676  *      Initialize a request before we fill it in and send it down to
1677  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1678  *      now it doesn't do a lot, but if that changes abusers will have a
1679  *      nasty surprise.
1680  */
1681
1682 void ide_init_drive_cmd (struct request *rq)
1683 {
1684         memset(rq, 0, sizeof(*rq));
1685         rq->cmd_type = REQ_TYPE_ATA_CMD;
1686         rq->ref_count = 1;
1687 }
1688
1689 EXPORT_SYMBOL(ide_init_drive_cmd);
1690
1691 /**
1692  *      ide_do_drive_cmd        -       issue IDE special command
1693  *      @drive: device to issue command
1694  *      @rq: request to issue
1695  *      @action: action for processing
1696  *
1697  *      This function issues a special IDE device request
1698  *      onto the request queue.
1699  *
1700  *      If action is ide_wait, then the rq is queued at the end of the
1701  *      request queue, and the function sleeps until it has been processed.
1702  *      This is for use when invoked from an ioctl handler.
1703  *
1704  *      If action is ide_preempt, then the rq is queued at the head of
1705  *      the request queue, displacing the currently-being-processed
1706  *      request and this function returns immediately without waiting
1707  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1708  *      intended for careful use by the ATAPI tape/cdrom driver code.
1709  *
1710  *      If action is ide_end, then the rq is queued at the end of the
1711  *      request queue, and the function returns immediately without waiting
1712  *      for the new rq to be completed. This is again intended for careful
1713  *      use by the ATAPI tape/cdrom driver code.
1714  */
1715  
1716 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1717 {
1718         unsigned long flags;
1719         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1720         DECLARE_COMPLETION_ONSTACK(wait);
1721         int where = ELEVATOR_INSERT_BACK, err;
1722         int must_wait = (action == ide_wait || action == ide_head_wait);
1723
1724         rq->errors = 0;
1725
1726         /*
1727          * we need to hold an extra reference to request for safe inspection
1728          * after completion
1729          */
1730         if (must_wait) {
1731                 rq->ref_count++;
1732                 rq->end_io_data = &wait;
1733                 rq->end_io = blk_end_sync_rq;
1734         }
1735
1736         spin_lock_irqsave(&ide_lock, flags);
1737         if (action == ide_preempt)
1738                 hwgroup->rq = NULL;
1739         if (action == ide_preempt || action == ide_head_wait) {
1740                 where = ELEVATOR_INSERT_FRONT;
1741                 rq->cmd_flags |= REQ_PREEMPT;
1742         }
1743         __elv_add_request(drive->queue, rq, where, 0);
1744         ide_do_request(hwgroup, IDE_NO_IRQ);
1745         spin_unlock_irqrestore(&ide_lock, flags);
1746
1747         err = 0;
1748         if (must_wait) {
1749                 wait_for_completion(&wait);
1750                 if (rq->errors)
1751                         err = -EIO;
1752
1753                 blk_put_request(rq);
1754         }
1755
1756         return err;
1757 }
1758
1759 EXPORT_SYMBOL(ide_do_drive_cmd);