]> err.no Git - linux-2.6/blob - drivers/ide/ide-io.c
ide: set IDE_TFLAG_IN_* flags before queuing/executing command
[linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61
62         /*
63          * if failfast is set on a request, override number of sectors and
64          * complete the whole request right now
65          */
66         if (blk_noretry_request(rq) && end_io_error(uptodate))
67                 nr_bytes = rq->hard_nr_sectors << 9;
68
69         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70                 rq->errors = -EIO;
71
72         /*
73          * decide whether to reenable DMA -- 3 is a random magic for now,
74          * if we DMA timeout more than 3 times, just stay in PIO
75          */
76         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77                 drive->state = 0;
78                 ide_dma_on(drive);
79         }
80
81         if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82                 add_disk_randomness(rq->rq_disk);
83                 if (dequeue) {
84                         if (!list_empty(&rq->queuelist))
85                                 blkdev_dequeue_request(rq);
86                         HWGROUP(drive)->rq = NULL;
87                 }
88                 end_that_request_last(rq, uptodate);
89                 ret = 0;
90         }
91
92         return ret;
93 }
94
95 /**
96  *      ide_end_request         -       complete an IDE I/O
97  *      @drive: IDE device for the I/O
98  *      @uptodate:
99  *      @nr_sectors: number of sectors completed
100  *
101  *      This is our end_request wrapper function. We complete the I/O
102  *      update random number input and dequeue the request, which if
103  *      it was tagged may be out of order.
104  */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108         unsigned int nr_bytes = nr_sectors << 9;
109         struct request *rq;
110         unsigned long flags;
111         int ret = 1;
112
113         /*
114          * room for locking improvements here, the calls below don't
115          * need the queue lock held at all
116          */
117         spin_lock_irqsave(&ide_lock, flags);
118         rq = HWGROUP(drive)->rq;
119
120         if (!nr_bytes) {
121                 if (blk_pc_request(rq))
122                         nr_bytes = rq->data_len;
123                 else
124                         nr_bytes = rq->hard_cur_sectors << 9;
125         }
126
127         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129         spin_unlock_irqrestore(&ide_lock, flags);
130         return ret;
131 }
132 EXPORT_SYMBOL(ide_end_request);
133
134 /*
135  * Power Management state machine. This one is rather trivial for now,
136  * we should probably add more, like switching back to PIO on suspend
137  * to help some BIOSes, re-do the door locking on resume, etc...
138  */
139
140 enum {
141         ide_pm_flush_cache      = ide_pm_state_start_suspend,
142         idedisk_pm_standby,
143
144         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
145         idedisk_pm_idle,
146         ide_pm_restore_dma,
147 };
148
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 {
151         struct request_pm_state *pm = rq->data;
152
153         if (drive->media != ide_disk)
154                 return;
155
156         switch (pm->pm_step) {
157         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
158                 if (pm->pm_state == PM_EVENT_FREEZE)
159                         pm->pm_step = ide_pm_state_completed;
160                 else
161                         pm->pm_step = idedisk_pm_standby;
162                 break;
163         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
164                 pm->pm_step = ide_pm_state_completed;
165                 break;
166         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
167                 pm->pm_step = idedisk_pm_idle;
168                 break;
169         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
170                 pm->pm_step = ide_pm_restore_dma;
171                 break;
172         }
173 }
174
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 {
177         struct request_pm_state *pm = rq->data;
178         ide_task_t *args = rq->special;
179
180         memset(args, 0, sizeof(*args));
181
182         switch (pm->pm_step) {
183         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
184                 if (drive->media != ide_disk)
185                         break;
186                 /* Not supported? Switch to next step now. */
187                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188                         ide_complete_power_step(drive, rq, 0, 0);
189                         return ide_stopped;
190                 }
191                 if (ide_id_has_flush_cache_ext(drive->id))
192                         args->tf.command = WIN_FLUSH_CACHE_EXT;
193                 else
194                         args->tf.command = WIN_FLUSH_CACHE;
195                 goto out_do_tf;
196
197         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
198                 args->tf.command = WIN_STANDBYNOW1;
199                 goto out_do_tf;
200
201         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
202                 ide_set_max_pio(drive);
203                 /*
204                  * skip idedisk_pm_idle for ATAPI devices
205                  */
206                 if (drive->media != ide_disk)
207                         pm->pm_step = ide_pm_restore_dma;
208                 else
209                         ide_complete_power_step(drive, rq, 0, 0);
210                 return ide_stopped;
211
212         case idedisk_pm_idle:           /* Resume step 2 (idle) */
213                 args->tf.command = WIN_IDLEIMMEDIATE;
214                 goto out_do_tf;
215
216         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
217                 /*
218                  * Right now, all we do is call ide_set_dma(drive),
219                  * we could be smarter and check for current xfer_speed
220                  * in struct drive etc...
221                  */
222                 if (drive->hwif->dma_host_set == NULL)
223                         break;
224                 /*
225                  * TODO: respect ->using_dma setting
226                  */
227                 ide_set_dma(drive);
228                 break;
229         }
230         pm->pm_step = ide_pm_state_completed;
231         return ide_stopped;
232
233 out_do_tf:
234         args->tf_flags   = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
235         args->data_phase = TASKFILE_NO_DATA;
236         return do_rw_taskfile(drive, args);
237 }
238
239 /**
240  *      ide_end_dequeued_request        -       complete an IDE I/O
241  *      @drive: IDE device for the I/O
242  *      @uptodate:
243  *      @nr_sectors: number of sectors completed
244  *
245  *      Complete an I/O that is no longer on the request queue. This
246  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
247  *      We must still finish the old request but we must not tamper with the
248  *      queue in the meantime.
249  *
250  *      NOTE: This path does not handle barrier, but barrier is not supported
251  *      on ide-cd anyway.
252  */
253
254 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255                              int uptodate, int nr_sectors)
256 {
257         unsigned long flags;
258         int ret;
259
260         spin_lock_irqsave(&ide_lock, flags);
261         BUG_ON(!blk_rq_started(rq));
262         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
263         spin_unlock_irqrestore(&ide_lock, flags);
264
265         return ret;
266 }
267 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
268
269
270 /**
271  *      ide_complete_pm_request - end the current Power Management request
272  *      @drive: target drive
273  *      @rq: request
274  *
275  *      This function cleans up the current PM request and stops the queue
276  *      if necessary.
277  */
278 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
279 {
280         unsigned long flags;
281
282 #ifdef DEBUG_PM
283         printk("%s: completing PM request, %s\n", drive->name,
284                blk_pm_suspend_request(rq) ? "suspend" : "resume");
285 #endif
286         spin_lock_irqsave(&ide_lock, flags);
287         if (blk_pm_suspend_request(rq)) {
288                 blk_stop_queue(drive->queue);
289         } else {
290                 drive->blocked = 0;
291                 blk_start_queue(drive->queue);
292         }
293         blkdev_dequeue_request(rq);
294         HWGROUP(drive)->rq = NULL;
295         end_that_request_last(rq, 1);
296         spin_unlock_irqrestore(&ide_lock, flags);
297 }
298
299 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
300 {
301         ide_hwif_t *hwif = drive->hwif;
302         struct ide_taskfile *tf = &task->tf;
303
304         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
305                 u16 data = hwif->INW(IDE_DATA_REG);
306
307                 tf->data = data & 0xff;
308                 tf->hob_data = (data >> 8) & 0xff;
309         }
310
311         /* be sure we're looking at the low order bits */
312         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
313
314         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
315                 tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
316         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
317                 tf->lbal   = hwif->INB(IDE_SECTOR_REG);
318         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
319                 tf->lbam   = hwif->INB(IDE_LCYL_REG);
320         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
321                 tf->lbah   = hwif->INB(IDE_HCYL_REG);
322         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
323                 tf->device = hwif->INB(IDE_SELECT_REG);
324
325         if (task->tf_flags & IDE_TFLAG_LBA48) {
326                 hwif->OUTB(drive->ctl | 0x80, IDE_CONTROL_REG);
327
328                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
329                         tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
330                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
331                         tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
332                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
333                         tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
334                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
335                         tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
336                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
337                         tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
338         }
339 }
340
341 /**
342  *      ide_end_drive_cmd       -       end an explicit drive command
343  *      @drive: command 
344  *      @stat: status bits
345  *      @err: error bits
346  *
347  *      Clean up after success/failure of an explicit drive command.
348  *      These get thrown onto the queue so they are synchronized with
349  *      real I/O operations on the drive.
350  *
351  *      In LBA48 mode we have to read the register set twice to get
352  *      all the extra information out.
353  */
354  
355 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
356 {
357         ide_hwif_t *hwif = HWIF(drive);
358         unsigned long flags;
359         struct request *rq;
360
361         spin_lock_irqsave(&ide_lock, flags);
362         rq = HWGROUP(drive)->rq;
363         spin_unlock_irqrestore(&ide_lock, flags);
364
365         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
366                 u8 *args = (u8 *) rq->buffer;
367                 if (rq->errors == 0)
368                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
369
370                 if (args) {
371                         args[0] = stat;
372                         args[1] = err;
373                         /* be sure we're looking at the low order bits */
374                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
375                         args[2] = hwif->INB(IDE_NSECTOR_REG);
376                 }
377         } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
378                 ide_task_t *args = (ide_task_t *) rq->special;
379                 if (rq->errors == 0)
380                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
381                         
382                 if (args) {
383                         struct ide_taskfile *tf = &args->tf;
384
385                         tf->error = err;
386                         tf->status = stat;
387
388                         ide_tf_read(drive, args);
389                 }
390         } else if (blk_pm_request(rq)) {
391                 struct request_pm_state *pm = rq->data;
392 #ifdef DEBUG_PM
393                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
394                         drive->name, rq->pm->pm_step, stat, err);
395 #endif
396                 ide_complete_power_step(drive, rq, stat, err);
397                 if (pm->pm_step == ide_pm_state_completed)
398                         ide_complete_pm_request(drive, rq);
399                 return;
400         }
401
402         spin_lock_irqsave(&ide_lock, flags);
403         blkdev_dequeue_request(rq);
404         HWGROUP(drive)->rq = NULL;
405         rq->errors = err;
406         end_that_request_last(rq, !rq->errors);
407         spin_unlock_irqrestore(&ide_lock, flags);
408 }
409
410 EXPORT_SYMBOL(ide_end_drive_cmd);
411
412 /**
413  *      try_to_flush_leftover_data      -       flush junk
414  *      @drive: drive to flush
415  *
416  *      try_to_flush_leftover_data() is invoked in response to a drive
417  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
418  *      resetting the drive, this routine tries to clear the condition
419  *      by read a sector's worth of data from the drive.  Of course,
420  *      this may not help if the drive is *waiting* for data from *us*.
421  */
422 static void try_to_flush_leftover_data (ide_drive_t *drive)
423 {
424         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
425
426         if (drive->media != ide_disk)
427                 return;
428         while (i > 0) {
429                 u32 buffer[16];
430                 u32 wcount = (i > 16) ? 16 : i;
431
432                 i -= wcount;
433                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
434         }
435 }
436
437 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
438 {
439         if (rq->rq_disk) {
440                 ide_driver_t *drv;
441
442                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
443                 drv->end_request(drive, 0, 0);
444         } else
445                 ide_end_request(drive, 0, 0);
446 }
447
448 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
449 {
450         ide_hwif_t *hwif = drive->hwif;
451
452         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
453                 /* other bits are useless when BUSY */
454                 rq->errors |= ERROR_RESET;
455         } else if (stat & ERR_STAT) {
456                 /* err has different meaning on cdrom and tape */
457                 if (err == ABRT_ERR) {
458                         if (drive->select.b.lba &&
459                             /* some newer drives don't support WIN_SPECIFY */
460                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
461                                 return ide_stopped;
462                 } else if ((err & BAD_CRC) == BAD_CRC) {
463                         /* UDMA crc error, just retry the operation */
464                         drive->crc_count++;
465                 } else if (err & (BBD_ERR | ECC_ERR)) {
466                         /* retries won't help these */
467                         rq->errors = ERROR_MAX;
468                 } else if (err & TRK0_ERR) {
469                         /* help it find track zero */
470                         rq->errors |= ERROR_RECAL;
471                 }
472         }
473
474         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
475             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
476                 try_to_flush_leftover_data(drive);
477
478         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
479                 ide_kill_rq(drive, rq);
480                 return ide_stopped;
481         }
482
483         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
484                 rq->errors |= ERROR_RESET;
485
486         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
487                 ++rq->errors;
488                 return ide_do_reset(drive);
489         }
490
491         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
492                 drive->special.b.recalibrate = 1;
493
494         ++rq->errors;
495
496         return ide_stopped;
497 }
498
499 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
500 {
501         ide_hwif_t *hwif = drive->hwif;
502
503         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
504                 /* other bits are useless when BUSY */
505                 rq->errors |= ERROR_RESET;
506         } else {
507                 /* add decoding error stuff */
508         }
509
510         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
511                 /* force an abort */
512                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
513
514         if (rq->errors >= ERROR_MAX) {
515                 ide_kill_rq(drive, rq);
516         } else {
517                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
518                         ++rq->errors;
519                         return ide_do_reset(drive);
520                 }
521                 ++rq->errors;
522         }
523
524         return ide_stopped;
525 }
526
527 ide_startstop_t
528 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
529 {
530         if (drive->media == ide_disk)
531                 return ide_ata_error(drive, rq, stat, err);
532         return ide_atapi_error(drive, rq, stat, err);
533 }
534
535 EXPORT_SYMBOL_GPL(__ide_error);
536
537 /**
538  *      ide_error       -       handle an error on the IDE
539  *      @drive: drive the error occurred on
540  *      @msg: message to report
541  *      @stat: status bits
542  *
543  *      ide_error() takes action based on the error returned by the drive.
544  *      For normal I/O that may well include retries. We deal with
545  *      both new-style (taskfile) and old style command handling here.
546  *      In the case of taskfile command handling there is work left to
547  *      do
548  */
549  
550 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
551 {
552         struct request *rq;
553         u8 err;
554
555         err = ide_dump_status(drive, msg, stat);
556
557         if ((rq = HWGROUP(drive)->rq) == NULL)
558                 return ide_stopped;
559
560         /* retry only "normal" I/O: */
561         if (!blk_fs_request(rq)) {
562                 rq->errors = 1;
563                 ide_end_drive_cmd(drive, stat, err);
564                 return ide_stopped;
565         }
566
567         if (rq->rq_disk) {
568                 ide_driver_t *drv;
569
570                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
571                 return drv->error(drive, rq, stat, err);
572         } else
573                 return __ide_error(drive, rq, stat, err);
574 }
575
576 EXPORT_SYMBOL_GPL(ide_error);
577
578 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
579 {
580         if (drive->media != ide_disk)
581                 rq->errors |= ERROR_RESET;
582
583         ide_kill_rq(drive, rq);
584
585         return ide_stopped;
586 }
587
588 EXPORT_SYMBOL_GPL(__ide_abort);
589
590 /**
591  *      ide_abort       -       abort pending IDE operations
592  *      @drive: drive the error occurred on
593  *      @msg: message to report
594  *
595  *      ide_abort kills and cleans up when we are about to do a 
596  *      host initiated reset on active commands. Longer term we
597  *      want handlers to have sensible abort handling themselves
598  *
599  *      This differs fundamentally from ide_error because in 
600  *      this case the command is doing just fine when we
601  *      blow it away.
602  */
603  
604 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
605 {
606         struct request *rq;
607
608         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
609                 return ide_stopped;
610
611         /* retry only "normal" I/O: */
612         if (!blk_fs_request(rq)) {
613                 rq->errors = 1;
614                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
615                 return ide_stopped;
616         }
617
618         if (rq->rq_disk) {
619                 ide_driver_t *drv;
620
621                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
622                 return drv->abort(drive, rq);
623         } else
624                 return __ide_abort(drive, rq);
625 }
626
627 /**
628  *      drive_cmd_intr          -       drive command completion interrupt
629  *      @drive: drive the completion interrupt occurred on
630  *
631  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
632  *      We do any necessary data reading and then wait for the drive to
633  *      go non busy. At that point we may read the error data and complete
634  *      the request
635  */
636  
637 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
638 {
639         struct request *rq = HWGROUP(drive)->rq;
640         ide_hwif_t *hwif = HWIF(drive);
641         u8 *args = (u8 *) rq->buffer;
642         u8 stat = hwif->INB(IDE_STATUS_REG);
643         int retries = 10;
644
645         local_irq_enable_in_hardirq();
646         if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
647             (stat & DRQ_STAT) && args && args[3]) {
648                 u8 io_32bit = drive->io_32bit;
649                 drive->io_32bit = 0;
650                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
651                 drive->io_32bit = io_32bit;
652                 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
653                         udelay(100);
654         }
655
656         if (!OK_STAT(stat, READY_STAT, BAD_STAT))
657                 return ide_error(drive, "drive_cmd", stat);
658                 /* calls ide_end_drive_cmd */
659         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
660         return ide_stopped;
661 }
662
663 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
664 {
665         tf->nsect   = drive->sect;
666         tf->lbal    = drive->sect;
667         tf->lbam    = drive->cyl;
668         tf->lbah    = drive->cyl >> 8;
669         tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
670         tf->command = WIN_SPECIFY;
671 }
672
673 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
674 {
675         tf->nsect   = drive->sect;
676         tf->command = WIN_RESTORE;
677 }
678
679 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
680 {
681         tf->nsect   = drive->mult_req;
682         tf->command = WIN_SETMULT;
683 }
684
685 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
686 {
687         special_t *s = &drive->special;
688         ide_task_t args;
689
690         memset(&args, 0, sizeof(ide_task_t));
691         args.data_phase = TASKFILE_NO_DATA;
692
693         if (s->b.set_geometry) {
694                 s->b.set_geometry = 0;
695                 ide_tf_set_specify_cmd(drive, &args.tf);
696         } else if (s->b.recalibrate) {
697                 s->b.recalibrate = 0;
698                 ide_tf_set_restore_cmd(drive, &args.tf);
699         } else if (s->b.set_multmode) {
700                 s->b.set_multmode = 0;
701                 if (drive->mult_req > drive->id->max_multsect)
702                         drive->mult_req = drive->id->max_multsect;
703                 ide_tf_set_setmult_cmd(drive, &args.tf);
704         } else if (s->all) {
705                 int special = s->all;
706                 s->all = 0;
707                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
708                 return ide_stopped;
709         }
710
711         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
712                         IDE_TFLAG_CUSTOM_HANDLER;
713
714         do_rw_taskfile(drive, &args);
715
716         return ide_started;
717 }
718
719 /*
720  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
721  */
722 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
723 {
724         switch (req_pio) {
725         case 202:
726         case 201:
727         case 200:
728         case 102:
729         case 101:
730         case 100:
731                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
732         case 9:
733         case 8:
734                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
735         case 7:
736         case 6:
737                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
738         default:
739                 return 0;
740         }
741 }
742
743 /**
744  *      do_special              -       issue some special commands
745  *      @drive: drive the command is for
746  *
747  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
748  *      commands to a drive.  It used to do much more, but has been scaled
749  *      back.
750  */
751
752 static ide_startstop_t do_special (ide_drive_t *drive)
753 {
754         special_t *s = &drive->special;
755
756 #ifdef DEBUG
757         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
758 #endif
759         if (s->b.set_tune) {
760                 ide_hwif_t *hwif = drive->hwif;
761                 u8 req_pio = drive->tune_req;
762
763                 s->b.set_tune = 0;
764
765                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
766
767                         if (hwif->set_pio_mode == NULL)
768                                 return ide_stopped;
769
770                         /*
771                          * take ide_lock for drive->[no_]unmask/[no_]io_32bit
772                          */
773                         if (req_pio == 8 || req_pio == 9) {
774                                 unsigned long flags;
775
776                                 spin_lock_irqsave(&ide_lock, flags);
777                                 hwif->set_pio_mode(drive, req_pio);
778                                 spin_unlock_irqrestore(&ide_lock, flags);
779                         } else
780                                 hwif->set_pio_mode(drive, req_pio);
781                 } else {
782                         int keep_dma = drive->using_dma;
783
784                         ide_set_pio(drive, req_pio);
785
786                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
787                                 if (keep_dma)
788                                         ide_dma_on(drive);
789                         }
790                 }
791
792                 return ide_stopped;
793         } else {
794                 if (drive->media == ide_disk)
795                         return ide_disk_special(drive);
796
797                 s->all = 0;
798                 drive->mult_req = 0;
799                 return ide_stopped;
800         }
801 }
802
803 void ide_map_sg(ide_drive_t *drive, struct request *rq)
804 {
805         ide_hwif_t *hwif = drive->hwif;
806         struct scatterlist *sg = hwif->sg_table;
807
808         if (hwif->sg_mapped)    /* needed by ide-scsi */
809                 return;
810
811         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
812                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
813         } else {
814                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
815                 hwif->sg_nents = 1;
816         }
817 }
818
819 EXPORT_SYMBOL_GPL(ide_map_sg);
820
821 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
822 {
823         ide_hwif_t *hwif = drive->hwif;
824
825         hwif->nsect = hwif->nleft = rq->nr_sectors;
826         hwif->cursg_ofs = 0;
827         hwif->cursg = NULL;
828 }
829
830 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
831
832 /**
833  *      execute_drive_command   -       issue special drive command
834  *      @drive: the drive to issue the command on
835  *      @rq: the request structure holding the command
836  *
837  *      execute_drive_cmd() issues a special drive command,  usually 
838  *      initiated by ioctl() from the external hdparm program. The
839  *      command can be a drive command, drive task or taskfile 
840  *      operation. Weirdly you can call it with NULL to wait for
841  *      all commands to finish. Don't do this as that is due to change
842  */
843
844 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
845                 struct request *rq)
846 {
847         ide_hwif_t *hwif = HWIF(drive);
848         u8 *args = rq->buffer;
849         ide_task_t ltask;
850         struct ide_taskfile *tf = &ltask.tf;
851
852         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
853                 ide_task_t *task = rq->special;
854  
855                 if (task == NULL)
856                         goto done;
857
858                 hwif->data_phase = task->data_phase;
859
860                 switch (hwif->data_phase) {
861                 case TASKFILE_MULTI_OUT:
862                 case TASKFILE_OUT:
863                 case TASKFILE_MULTI_IN:
864                 case TASKFILE_IN:
865                         ide_init_sg_cmd(drive, rq);
866                         ide_map_sg(drive, rq);
867                 default:
868                         break;
869                 }
870
871                 return do_rw_taskfile(drive, task);
872         }
873
874         if (args == NULL)
875                 goto done;
876
877         memset(&ltask, 0, sizeof(ltask));
878         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
879 #ifdef DEBUG
880                 printk("%s: DRIVE_CMD\n", drive->name);
881 #endif
882                 tf->feature = args[2];
883                 if (args[0] == WIN_SMART) {
884                         tf->nsect = args[3];
885                         tf->lbal  = args[1];
886                         tf->lbam  = 0x4f;
887                         tf->lbah  = 0xc2;
888                         ltask.tf_flags = IDE_TFLAG_OUT_TF;
889                 } else {
890                         tf->nsect = args[1];
891                         ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
892                                          IDE_TFLAG_OUT_NSECT;
893                 }
894         }
895         tf->command = args[0];
896         ide_tf_load(drive, &ltask);
897         ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
898         return ide_started;
899
900 done:
901         /*
902          * NULL is actually a valid way of waiting for
903          * all current requests to be flushed from the queue.
904          */
905 #ifdef DEBUG
906         printk("%s: DRIVE_CMD (null)\n", drive->name);
907 #endif
908         ide_end_drive_cmd(drive,
909                         hwif->INB(IDE_STATUS_REG),
910                         hwif->INB(IDE_ERROR_REG));
911         return ide_stopped;
912 }
913
914 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
915 {
916         struct request_pm_state *pm = rq->data;
917
918         if (blk_pm_suspend_request(rq) &&
919             pm->pm_step == ide_pm_state_start_suspend)
920                 /* Mark drive blocked when starting the suspend sequence. */
921                 drive->blocked = 1;
922         else if (blk_pm_resume_request(rq) &&
923                  pm->pm_step == ide_pm_state_start_resume) {
924                 /* 
925                  * The first thing we do on wakeup is to wait for BSY bit to
926                  * go away (with a looong timeout) as a drive on this hwif may
927                  * just be POSTing itself.
928                  * We do that before even selecting as the "other" device on
929                  * the bus may be broken enough to walk on our toes at this
930                  * point.
931                  */
932                 int rc;
933 #ifdef DEBUG_PM
934                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
935 #endif
936                 rc = ide_wait_not_busy(HWIF(drive), 35000);
937                 if (rc)
938                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
939                 SELECT_DRIVE(drive);
940                 ide_set_irq(drive, 1);
941                 rc = ide_wait_not_busy(HWIF(drive), 100000);
942                 if (rc)
943                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
944         }
945 }
946
947 /**
948  *      start_request   -       start of I/O and command issuing for IDE
949  *
950  *      start_request() initiates handling of a new I/O request. It
951  *      accepts commands and I/O (read/write) requests. It also does
952  *      the final remapping for weird stuff like EZDrive. Once 
953  *      device mapper can work sector level the EZDrive stuff can go away
954  *
955  *      FIXME: this function needs a rename
956  */
957  
958 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
959 {
960         ide_startstop_t startstop;
961         sector_t block;
962
963         BUG_ON(!blk_rq_started(rq));
964
965 #ifdef DEBUG
966         printk("%s: start_request: current=0x%08lx\n",
967                 HWIF(drive)->name, (unsigned long) rq);
968 #endif
969
970         /* bail early if we've exceeded max_failures */
971         if (drive->max_failures && (drive->failures > drive->max_failures)) {
972                 rq->cmd_flags |= REQ_FAILED;
973                 goto kill_rq;
974         }
975
976         block    = rq->sector;
977         if (blk_fs_request(rq) &&
978             (drive->media == ide_disk || drive->media == ide_floppy)) {
979                 block += drive->sect0;
980         }
981         /* Yecch - this will shift the entire interval,
982            possibly killing some innocent following sector */
983         if (block == 0 && drive->remap_0_to_1 == 1)
984                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
985
986         if (blk_pm_request(rq))
987                 ide_check_pm_state(drive, rq);
988
989         SELECT_DRIVE(drive);
990         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
991                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
992                 return startstop;
993         }
994         if (!drive->special.all) {
995                 ide_driver_t *drv;
996
997                 /*
998                  * We reset the drive so we need to issue a SETFEATURES.
999                  * Do it _after_ do_special() restored device parameters.
1000                  */
1001                 if (drive->current_speed == 0xff)
1002                         ide_config_drive_speed(drive, drive->desired_speed);
1003
1004                 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1005                     rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1006                         return execute_drive_cmd(drive, rq);
1007                 else if (blk_pm_request(rq)) {
1008                         struct request_pm_state *pm = rq->data;
1009 #ifdef DEBUG_PM
1010                         printk("%s: start_power_step(step: %d)\n",
1011                                 drive->name, rq->pm->pm_step);
1012 #endif
1013                         startstop = ide_start_power_step(drive, rq);
1014                         if (startstop == ide_stopped &&
1015                             pm->pm_step == ide_pm_state_completed)
1016                                 ide_complete_pm_request(drive, rq);
1017                         return startstop;
1018                 }
1019
1020                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1021                 return drv->do_request(drive, rq, block);
1022         }
1023         return do_special(drive);
1024 kill_rq:
1025         ide_kill_rq(drive, rq);
1026         return ide_stopped;
1027 }
1028
1029 /**
1030  *      ide_stall_queue         -       pause an IDE device
1031  *      @drive: drive to stall
1032  *      @timeout: time to stall for (jiffies)
1033  *
1034  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
1035  *      to the hwgroup by sleeping for timeout jiffies.
1036  */
1037  
1038 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1039 {
1040         if (timeout > WAIT_WORSTCASE)
1041                 timeout = WAIT_WORSTCASE;
1042         drive->sleep = timeout + jiffies;
1043         drive->sleeping = 1;
1044 }
1045
1046 EXPORT_SYMBOL(ide_stall_queue);
1047
1048 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
1049
1050 /**
1051  *      choose_drive            -       select a drive to service
1052  *      @hwgroup: hardware group to select on
1053  *
1054  *      choose_drive() selects the next drive which will be serviced.
1055  *      This is necessary because the IDE layer can't issue commands
1056  *      to both drives on the same cable, unlike SCSI.
1057  */
1058  
1059 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1060 {
1061         ide_drive_t *drive, *best;
1062
1063 repeat: 
1064         best = NULL;
1065         drive = hwgroup->drive;
1066
1067         /*
1068          * drive is doing pre-flush, ordered write, post-flush sequence. even
1069          * though that is 3 requests, it must be seen as a single transaction.
1070          * we must not preempt this drive until that is complete
1071          */
1072         if (blk_queue_flushing(drive->queue)) {
1073                 /*
1074                  * small race where queue could get replugged during
1075                  * the 3-request flush cycle, just yank the plug since
1076                  * we want it to finish asap
1077                  */
1078                 blk_remove_plug(drive->queue);
1079                 return drive;
1080         }
1081
1082         do {
1083                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1084                     && !elv_queue_empty(drive->queue)) {
1085                         if (!best
1086                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1087                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1088                         {
1089                                 if (!blk_queue_plugged(drive->queue))
1090                                         best = drive;
1091                         }
1092                 }
1093         } while ((drive = drive->next) != hwgroup->drive);
1094         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1095                 long t = (signed long)(WAKEUP(best) - jiffies);
1096                 if (t >= WAIT_MIN_SLEEP) {
1097                 /*
1098                  * We *may* have some time to spare, but first let's see if
1099                  * someone can potentially benefit from our nice mood today..
1100                  */
1101                         drive = best->next;
1102                         do {
1103                                 if (!drive->sleeping
1104                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1105                                  && time_before(WAKEUP(drive), jiffies + t))
1106                                 {
1107                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1108                                         goto repeat;
1109                                 }
1110                         } while ((drive = drive->next) != best);
1111                 }
1112         }
1113         return best;
1114 }
1115
1116 /*
1117  * Issue a new request to a drive from hwgroup
1118  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1119  *
1120  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1121  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1122  * may have both interfaces in a single hwgroup to "serialize" access.
1123  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1124  * together into one hwgroup for serialized access.
1125  *
1126  * Note also that several hwgroups can end up sharing a single IRQ,
1127  * possibly along with many other devices.  This is especially common in
1128  * PCI-based systems with off-board IDE controller cards.
1129  *
1130  * The IDE driver uses the single global ide_lock spinlock to protect
1131  * access to the request queues, and to protect the hwgroup->busy flag.
1132  *
1133  * The first thread into the driver for a particular hwgroup sets the
1134  * hwgroup->busy flag to indicate that this hwgroup is now active,
1135  * and then initiates processing of the top request from the request queue.
1136  *
1137  * Other threads attempting entry notice the busy setting, and will simply
1138  * queue their new requests and exit immediately.  Note that hwgroup->busy
1139  * remains set even when the driver is merely awaiting the next interrupt.
1140  * Thus, the meaning is "this hwgroup is busy processing a request".
1141  *
1142  * When processing of a request completes, the completing thread or IRQ-handler
1143  * will start the next request from the queue.  If no more work remains,
1144  * the driver will clear the hwgroup->busy flag and exit.
1145  *
1146  * The ide_lock (spinlock) is used to protect all access to the
1147  * hwgroup->busy flag, but is otherwise not needed for most processing in
1148  * the driver.  This makes the driver much more friendlier to shared IRQs
1149  * than previous designs, while remaining 100% (?) SMP safe and capable.
1150  */
1151 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1152 {
1153         ide_drive_t     *drive;
1154         ide_hwif_t      *hwif;
1155         struct request  *rq;
1156         ide_startstop_t startstop;
1157         int             loops = 0;
1158
1159         /* for atari only: POSSIBLY BROKEN HERE(?) */
1160         ide_get_lock(ide_intr, hwgroup);
1161
1162         /* caller must own ide_lock */
1163         BUG_ON(!irqs_disabled());
1164
1165         while (!hwgroup->busy) {
1166                 hwgroup->busy = 1;
1167                 drive = choose_drive(hwgroup);
1168                 if (drive == NULL) {
1169                         int sleeping = 0;
1170                         unsigned long sleep = 0; /* shut up, gcc */
1171                         hwgroup->rq = NULL;
1172                         drive = hwgroup->drive;
1173                         do {
1174                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1175                                         sleeping = 1;
1176                                         sleep = drive->sleep;
1177                                 }
1178                         } while ((drive = drive->next) != hwgroup->drive);
1179                         if (sleeping) {
1180                 /*
1181                  * Take a short snooze, and then wake up this hwgroup again.
1182                  * This gives other hwgroups on the same a chance to
1183                  * play fairly with us, just in case there are big differences
1184                  * in relative throughputs.. don't want to hog the cpu too much.
1185                  */
1186                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1187                                         sleep = jiffies + WAIT_MIN_SLEEP;
1188 #if 1
1189                                 if (timer_pending(&hwgroup->timer))
1190                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1191 #endif
1192                                 /* so that ide_timer_expiry knows what to do */
1193                                 hwgroup->sleeping = 1;
1194                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1195                                 mod_timer(&hwgroup->timer, sleep);
1196                                 /* we purposely leave hwgroup->busy==1
1197                                  * while sleeping */
1198                         } else {
1199                                 /* Ugly, but how can we sleep for the lock
1200                                  * otherwise? perhaps from tq_disk?
1201                                  */
1202
1203                                 /* for atari only */
1204                                 ide_release_lock();
1205                                 hwgroup->busy = 0;
1206                         }
1207
1208                         /* no more work for this hwgroup (for now) */
1209                         return;
1210                 }
1211         again:
1212                 hwif = HWIF(drive);
1213                 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1214                         /*
1215                          * set nIEN for previous hwif, drives in the
1216                          * quirk_list may not like intr setups/cleanups
1217                          */
1218                         if (drive->quirk_list != 1)
1219                                 ide_set_irq(drive, 0);
1220                 }
1221                 hwgroup->hwif = hwif;
1222                 hwgroup->drive = drive;
1223                 drive->sleeping = 0;
1224                 drive->service_start = jiffies;
1225
1226                 if (blk_queue_plugged(drive->queue)) {
1227                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1228                         break;
1229                 }
1230
1231                 /*
1232                  * we know that the queue isn't empty, but this can happen
1233                  * if the q->prep_rq_fn() decides to kill a request
1234                  */
1235                 rq = elv_next_request(drive->queue);
1236                 if (!rq) {
1237                         hwgroup->busy = 0;
1238                         break;
1239                 }
1240
1241                 /*
1242                  * Sanity: don't accept a request that isn't a PM request
1243                  * if we are currently power managed. This is very important as
1244                  * blk_stop_queue() doesn't prevent the elv_next_request()
1245                  * above to return us whatever is in the queue. Since we call
1246                  * ide_do_request() ourselves, we end up taking requests while
1247                  * the queue is blocked...
1248                  * 
1249                  * We let requests forced at head of queue with ide-preempt
1250                  * though. I hope that doesn't happen too much, hopefully not
1251                  * unless the subdriver triggers such a thing in its own PM
1252                  * state machine.
1253                  *
1254                  * We count how many times we loop here to make sure we service
1255                  * all drives in the hwgroup without looping for ever
1256                  */
1257                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1258                         drive = drive->next ? drive->next : hwgroup->drive;
1259                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1260                                 goto again;
1261                         /* We clear busy, there should be no pending ATA command at this point. */
1262                         hwgroup->busy = 0;
1263                         break;
1264                 }
1265
1266                 hwgroup->rq = rq;
1267
1268                 /*
1269                  * Some systems have trouble with IDE IRQs arriving while
1270                  * the driver is still setting things up.  So, here we disable
1271                  * the IRQ used by this interface while the request is being started.
1272                  * This may look bad at first, but pretty much the same thing
1273                  * happens anyway when any interrupt comes in, IDE or otherwise
1274                  *  -- the kernel masks the IRQ while it is being handled.
1275                  */
1276                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1277                         disable_irq_nosync(hwif->irq);
1278                 spin_unlock(&ide_lock);
1279                 local_irq_enable_in_hardirq();
1280                         /* allow other IRQs while we start this request */
1281                 startstop = start_request(drive, rq);
1282                 spin_lock_irq(&ide_lock);
1283                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1284                         enable_irq(hwif->irq);
1285                 if (startstop == ide_stopped)
1286                         hwgroup->busy = 0;
1287         }
1288 }
1289
1290 /*
1291  * Passes the stuff to ide_do_request
1292  */
1293 void do_ide_request(struct request_queue *q)
1294 {
1295         ide_drive_t *drive = q->queuedata;
1296
1297         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1298 }
1299
1300 /*
1301  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1302  * retry the current request in pio mode instead of risking tossing it
1303  * all away
1304  */
1305 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1306 {
1307         ide_hwif_t *hwif = HWIF(drive);
1308         struct request *rq;
1309         ide_startstop_t ret = ide_stopped;
1310
1311         /*
1312          * end current dma transaction
1313          */
1314
1315         if (error < 0) {
1316                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1317                 (void)HWIF(drive)->ide_dma_end(drive);
1318                 ret = ide_error(drive, "dma timeout error",
1319                                                 hwif->INB(IDE_STATUS_REG));
1320         } else {
1321                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1322                 hwif->dma_timeout(drive);
1323         }
1324
1325         /*
1326          * disable dma for now, but remember that we did so because of
1327          * a timeout -- we'll reenable after we finish this next request
1328          * (or rather the first chunk of it) in pio.
1329          */
1330         drive->retry_pio++;
1331         drive->state = DMA_PIO_RETRY;
1332         ide_dma_off_quietly(drive);
1333
1334         /*
1335          * un-busy drive etc (hwgroup->busy is cleared on return) and
1336          * make sure request is sane
1337          */
1338         rq = HWGROUP(drive)->rq;
1339
1340         if (!rq)
1341                 goto out;
1342
1343         HWGROUP(drive)->rq = NULL;
1344
1345         rq->errors = 0;
1346
1347         if (!rq->bio)
1348                 goto out;
1349
1350         rq->sector = rq->bio->bi_sector;
1351         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1352         rq->hard_cur_sectors = rq->current_nr_sectors;
1353         rq->buffer = bio_data(rq->bio);
1354 out:
1355         return ret;
1356 }
1357
1358 /**
1359  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1360  *      @data: timer callback magic (hwgroup)
1361  *
1362  *      An IDE command has timed out before the expected drive return
1363  *      occurred. At this point we attempt to clean up the current
1364  *      mess. If the current handler includes an expiry handler then
1365  *      we invoke the expiry handler, and providing it is happy the
1366  *      work is done. If that fails we apply generic recovery rules
1367  *      invoking the handler and checking the drive DMA status. We
1368  *      have an excessively incestuous relationship with the DMA
1369  *      logic that wants cleaning up.
1370  */
1371  
1372 void ide_timer_expiry (unsigned long data)
1373 {
1374         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1375         ide_handler_t   *handler;
1376         ide_expiry_t    *expiry;
1377         unsigned long   flags;
1378         unsigned long   wait = -1;
1379
1380         spin_lock_irqsave(&ide_lock, flags);
1381
1382         if (((handler = hwgroup->handler) == NULL) ||
1383             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1384                 /*
1385                  * Either a marginal timeout occurred
1386                  * (got the interrupt just as timer expired),
1387                  * or we were "sleeping" to give other devices a chance.
1388                  * Either way, we don't really want to complain about anything.
1389                  */
1390                 if (hwgroup->sleeping) {
1391                         hwgroup->sleeping = 0;
1392                         hwgroup->busy = 0;
1393                 }
1394         } else {
1395                 ide_drive_t *drive = hwgroup->drive;
1396                 if (!drive) {
1397                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1398                         hwgroup->handler = NULL;
1399                 } else {
1400                         ide_hwif_t *hwif;
1401                         ide_startstop_t startstop = ide_stopped;
1402                         if (!hwgroup->busy) {
1403                                 hwgroup->busy = 1;      /* paranoia */
1404                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1405                         }
1406                         if ((expiry = hwgroup->expiry) != NULL) {
1407                                 /* continue */
1408                                 if ((wait = expiry(drive)) > 0) {
1409                                         /* reset timer */
1410                                         hwgroup->timer.expires  = jiffies + wait;
1411                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1412                                         add_timer(&hwgroup->timer);
1413                                         spin_unlock_irqrestore(&ide_lock, flags);
1414                                         return;
1415                                 }
1416                         }
1417                         hwgroup->handler = NULL;
1418                         /*
1419                          * We need to simulate a real interrupt when invoking
1420                          * the handler() function, which means we need to
1421                          * globally mask the specific IRQ:
1422                          */
1423                         spin_unlock(&ide_lock);
1424                         hwif  = HWIF(drive);
1425                         /* disable_irq_nosync ?? */
1426                         disable_irq(hwif->irq);
1427                         /* local CPU only,
1428                          * as if we were handling an interrupt */
1429                         local_irq_disable();
1430                         if (hwgroup->polling) {
1431                                 startstop = handler(drive);
1432                         } else if (drive_is_ready(drive)) {
1433                                 if (drive->waiting_for_dma)
1434                                         hwgroup->hwif->dma_lost_irq(drive);
1435                                 (void)ide_ack_intr(hwif);
1436                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1437                                 startstop = handler(drive);
1438                         } else {
1439                                 if (drive->waiting_for_dma) {
1440                                         startstop = ide_dma_timeout_retry(drive, wait);
1441                                 } else
1442                                         startstop =
1443                                         ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1444                         }
1445                         drive->service_time = jiffies - drive->service_start;
1446                         spin_lock_irq(&ide_lock);
1447                         enable_irq(hwif->irq);
1448                         if (startstop == ide_stopped)
1449                                 hwgroup->busy = 0;
1450                 }
1451         }
1452         ide_do_request(hwgroup, IDE_NO_IRQ);
1453         spin_unlock_irqrestore(&ide_lock, flags);
1454 }
1455
1456 /**
1457  *      unexpected_intr         -       handle an unexpected IDE interrupt
1458  *      @irq: interrupt line
1459  *      @hwgroup: hwgroup being processed
1460  *
1461  *      There's nothing really useful we can do with an unexpected interrupt,
1462  *      other than reading the status register (to clear it), and logging it.
1463  *      There should be no way that an irq can happen before we're ready for it,
1464  *      so we needn't worry much about losing an "important" interrupt here.
1465  *
1466  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1467  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1468  *      looks "good", we just ignore the interrupt completely.
1469  *
1470  *      This routine assumes __cli() is in effect when called.
1471  *
1472  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1473  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1474  *      we could screw up by interfering with a new request being set up for 
1475  *      irq15.
1476  *
1477  *      In reality, this is a non-issue.  The new command is not sent unless 
1478  *      the drive is ready to accept one, in which case we know the drive is
1479  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1480  *      before completing the issuance of any new drive command, so we will not
1481  *      be accidentally invoked as a result of any valid command completion
1482  *      interrupt.
1483  *
1484  *      Note that we must walk the entire hwgroup here. We know which hwif
1485  *      is doing the current command, but we don't know which hwif burped
1486  *      mysteriously.
1487  */
1488  
1489 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1490 {
1491         u8 stat;
1492         ide_hwif_t *hwif = hwgroup->hwif;
1493
1494         /*
1495          * handle the unexpected interrupt
1496          */
1497         do {
1498                 if (hwif->irq == irq) {
1499                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1500                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1501                                 /* Try to not flood the console with msgs */
1502                                 static unsigned long last_msgtime, count;
1503                                 ++count;
1504                                 if (time_after(jiffies, last_msgtime + HZ)) {
1505                                         last_msgtime = jiffies;
1506                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1507                                                 "status=0x%02x, count=%ld\n",
1508                                                 hwif->name,
1509                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1510                                 }
1511                         }
1512                 }
1513         } while ((hwif = hwif->next) != hwgroup->hwif);
1514 }
1515
1516 /**
1517  *      ide_intr        -       default IDE interrupt handler
1518  *      @irq: interrupt number
1519  *      @dev_id: hwif group
1520  *      @regs: unused weirdness from the kernel irq layer
1521  *
1522  *      This is the default IRQ handler for the IDE layer. You should
1523  *      not need to override it. If you do be aware it is subtle in
1524  *      places
1525  *
1526  *      hwgroup->hwif is the interface in the group currently performing
1527  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1528  *      the IRQ handler to call. As we issue a command the handlers
1529  *      step through multiple states, reassigning the handler to the
1530  *      next step in the process. Unlike a smart SCSI controller IDE
1531  *      expects the main processor to sequence the various transfer
1532  *      stages. We also manage a poll timer to catch up with most
1533  *      timeout situations. There are still a few where the handlers
1534  *      don't ever decide to give up.
1535  *
1536  *      The handler eventually returns ide_stopped to indicate the
1537  *      request completed. At this point we issue the next request
1538  *      on the hwgroup and the process begins again.
1539  */
1540  
1541 irqreturn_t ide_intr (int irq, void *dev_id)
1542 {
1543         unsigned long flags;
1544         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1545         ide_hwif_t *hwif;
1546         ide_drive_t *drive;
1547         ide_handler_t *handler;
1548         ide_startstop_t startstop;
1549
1550         spin_lock_irqsave(&ide_lock, flags);
1551         hwif = hwgroup->hwif;
1552
1553         if (!ide_ack_intr(hwif)) {
1554                 spin_unlock_irqrestore(&ide_lock, flags);
1555                 return IRQ_NONE;
1556         }
1557
1558         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1559                 /*
1560                  * Not expecting an interrupt from this drive.
1561                  * That means this could be:
1562                  *      (1) an interrupt from another PCI device
1563                  *      sharing the same PCI INT# as us.
1564                  * or   (2) a drive just entered sleep or standby mode,
1565                  *      and is interrupting to let us know.
1566                  * or   (3) a spurious interrupt of unknown origin.
1567                  *
1568                  * For PCI, we cannot tell the difference,
1569                  * so in that case we just ignore it and hope it goes away.
1570                  *
1571                  * FIXME: unexpected_intr should be hwif-> then we can
1572                  * remove all the ifdef PCI crap
1573                  */
1574 #ifdef CONFIG_BLK_DEV_IDEPCI
1575                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1576 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1577                 {
1578                         /*
1579                          * Probably not a shared PCI interrupt,
1580                          * so we can safely try to do something about it:
1581                          */
1582                         unexpected_intr(irq, hwgroup);
1583 #ifdef CONFIG_BLK_DEV_IDEPCI
1584                 } else {
1585                         /*
1586                          * Whack the status register, just in case
1587                          * we have a leftover pending IRQ.
1588                          */
1589                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1590 #endif /* CONFIG_BLK_DEV_IDEPCI */
1591                 }
1592                 spin_unlock_irqrestore(&ide_lock, flags);
1593                 return IRQ_NONE;
1594         }
1595         drive = hwgroup->drive;
1596         if (!drive) {
1597                 /*
1598                  * This should NEVER happen, and there isn't much
1599                  * we could do about it here.
1600                  *
1601                  * [Note - this can occur if the drive is hot unplugged]
1602                  */
1603                 spin_unlock_irqrestore(&ide_lock, flags);
1604                 return IRQ_HANDLED;
1605         }
1606         if (!drive_is_ready(drive)) {
1607                 /*
1608                  * This happens regularly when we share a PCI IRQ with
1609                  * another device.  Unfortunately, it can also happen
1610                  * with some buggy drives that trigger the IRQ before
1611                  * their status register is up to date.  Hopefully we have
1612                  * enough advance overhead that the latter isn't a problem.
1613                  */
1614                 spin_unlock_irqrestore(&ide_lock, flags);
1615                 return IRQ_NONE;
1616         }
1617         if (!hwgroup->busy) {
1618                 hwgroup->busy = 1;      /* paranoia */
1619                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1620         }
1621         hwgroup->handler = NULL;
1622         hwgroup->req_gen++;
1623         del_timer(&hwgroup->timer);
1624         spin_unlock(&ide_lock);
1625
1626         /* Some controllers might set DMA INTR no matter DMA or PIO;
1627          * bmdma status might need to be cleared even for
1628          * PIO interrupts to prevent spurious/lost irq.
1629          */
1630         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1631                 /* ide_dma_end() needs bmdma status for error checking.
1632                  * So, skip clearing bmdma status here and leave it
1633                  * to ide_dma_end() if this is dma interrupt.
1634                  */
1635                 hwif->ide_dma_clear_irq(drive);
1636
1637         if (drive->unmask)
1638                 local_irq_enable_in_hardirq();
1639         /* service this interrupt, may set handler for next interrupt */
1640         startstop = handler(drive);
1641         spin_lock_irq(&ide_lock);
1642
1643         /*
1644          * Note that handler() may have set things up for another
1645          * interrupt to occur soon, but it cannot happen until
1646          * we exit from this routine, because it will be the
1647          * same irq as is currently being serviced here, and Linux
1648          * won't allow another of the same (on any CPU) until we return.
1649          */
1650         drive->service_time = jiffies - drive->service_start;
1651         if (startstop == ide_stopped) {
1652                 if (hwgroup->handler == NULL) { /* paranoia */
1653                         hwgroup->busy = 0;
1654                         ide_do_request(hwgroup, hwif->irq);
1655                 } else {
1656                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1657                                 "on exit\n", drive->name);
1658                 }
1659         }
1660         spin_unlock_irqrestore(&ide_lock, flags);
1661         return IRQ_HANDLED;
1662 }
1663
1664 /**
1665  *      ide_init_drive_cmd      -       initialize a drive command request
1666  *      @rq: request object
1667  *
1668  *      Initialize a request before we fill it in and send it down to
1669  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1670  *      now it doesn't do a lot, but if that changes abusers will have a
1671  *      nasty surprise.
1672  */
1673
1674 void ide_init_drive_cmd (struct request *rq)
1675 {
1676         memset(rq, 0, sizeof(*rq));
1677         rq->cmd_type = REQ_TYPE_ATA_CMD;
1678         rq->ref_count = 1;
1679 }
1680
1681 EXPORT_SYMBOL(ide_init_drive_cmd);
1682
1683 /**
1684  *      ide_do_drive_cmd        -       issue IDE special command
1685  *      @drive: device to issue command
1686  *      @rq: request to issue
1687  *      @action: action for processing
1688  *
1689  *      This function issues a special IDE device request
1690  *      onto the request queue.
1691  *
1692  *      If action is ide_wait, then the rq is queued at the end of the
1693  *      request queue, and the function sleeps until it has been processed.
1694  *      This is for use when invoked from an ioctl handler.
1695  *
1696  *      If action is ide_preempt, then the rq is queued at the head of
1697  *      the request queue, displacing the currently-being-processed
1698  *      request and this function returns immediately without waiting
1699  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1700  *      intended for careful use by the ATAPI tape/cdrom driver code.
1701  *
1702  *      If action is ide_end, then the rq is queued at the end of the
1703  *      request queue, and the function returns immediately without waiting
1704  *      for the new rq to be completed. This is again intended for careful
1705  *      use by the ATAPI tape/cdrom driver code.
1706  */
1707  
1708 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1709 {
1710         unsigned long flags;
1711         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1712         DECLARE_COMPLETION_ONSTACK(wait);
1713         int where = ELEVATOR_INSERT_BACK, err;
1714         int must_wait = (action == ide_wait || action == ide_head_wait);
1715
1716         rq->errors = 0;
1717
1718         /*
1719          * we need to hold an extra reference to request for safe inspection
1720          * after completion
1721          */
1722         if (must_wait) {
1723                 rq->ref_count++;
1724                 rq->end_io_data = &wait;
1725                 rq->end_io = blk_end_sync_rq;
1726         }
1727
1728         spin_lock_irqsave(&ide_lock, flags);
1729         if (action == ide_preempt)
1730                 hwgroup->rq = NULL;
1731         if (action == ide_preempt || action == ide_head_wait) {
1732                 where = ELEVATOR_INSERT_FRONT;
1733                 rq->cmd_flags |= REQ_PREEMPT;
1734         }
1735         __elv_add_request(drive->queue, rq, where, 0);
1736         ide_do_request(hwgroup, IDE_NO_IRQ);
1737         spin_unlock_irqrestore(&ide_lock, flags);
1738
1739         err = 0;
1740         if (must_wait) {
1741                 wait_for_completion(&wait);
1742                 if (rq->errors)
1743                         err = -EIO;
1744
1745                 blk_put_request(rq);
1746         }
1747
1748         return err;
1749 }
1750
1751 EXPORT_SYMBOL(ide_do_drive_cmd);
1752
1753 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1754 {
1755         ide_task_t task;
1756
1757         memset(&task, 0, sizeof(task));
1758         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1759                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1760         task.tf.feature = dma;          /* Use PIO/DMA */
1761         task.tf.lbam    = bcount & 0xff;
1762         task.tf.lbah    = (bcount >> 8) & 0xff;
1763
1764         ide_tf_load(drive, &task);
1765 }
1766
1767 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);