4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
54 #include <asm/uaccess.h>
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58 int uptodate, unsigned int nr_bytes, int dequeue)
64 error = uptodate ? uptodate : -EIO;
67 * if failfast is set on a request, override number of sectors and
68 * complete the whole request right now
70 if (blk_noretry_request(rq) && error)
71 nr_bytes = rq->hard_nr_sectors << 9;
73 if (!blk_fs_request(rq) && error && !rq->errors)
77 * decide whether to reenable DMA -- 3 is a random magic for now,
78 * if we DMA timeout more than 3 times, just stay in PIO
80 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
85 if (!__blk_end_request(rq, error, nr_bytes)) {
87 HWGROUP(drive)->rq = NULL;
95 * ide_end_request - complete an IDE I/O
96 * @drive: IDE device for the I/O
98 * @nr_sectors: number of sectors completed
100 * This is our end_request wrapper function. We complete the I/O
101 * update random number input and dequeue the request, which if
102 * it was tagged may be out of order.
105 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 unsigned int nr_bytes = nr_sectors << 9;
113 * room for locking improvements here, the calls below don't
114 * need the queue lock held at all
116 spin_lock_irqsave(&ide_lock, flags);
117 rq = HWGROUP(drive)->rq;
120 if (blk_pc_request(rq))
121 nr_bytes = rq->data_len;
123 nr_bytes = rq->hard_cur_sectors << 9;
126 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128 spin_unlock_irqrestore(&ide_lock, flags);
131 EXPORT_SYMBOL(ide_end_request);
134 * Power Management state machine. This one is rather trivial for now,
135 * we should probably add more, like switching back to PIO on suspend
136 * to help some BIOSes, re-do the door locking on resume, etc...
140 ide_pm_flush_cache = ide_pm_state_start_suspend,
143 idedisk_pm_restore_pio = ide_pm_state_start_resume,
148 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 struct request_pm_state *pm = rq->data;
152 if (drive->media != ide_disk)
155 switch (pm->pm_step) {
156 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
157 if (pm->pm_state == PM_EVENT_FREEZE)
158 pm->pm_step = ide_pm_state_completed;
160 pm->pm_step = idedisk_pm_standby;
162 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
163 pm->pm_step = ide_pm_state_completed;
165 case idedisk_pm_restore_pio: /* Resume step 1 complete */
166 pm->pm_step = idedisk_pm_idle;
168 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
169 pm->pm_step = ide_pm_restore_dma;
174 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 struct request_pm_state *pm = rq->data;
177 ide_task_t *args = rq->special;
179 memset(args, 0, sizeof(*args));
181 switch (pm->pm_step) {
182 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
183 if (drive->media != ide_disk)
185 /* Not supported? Switch to next step now. */
186 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
187 ide_complete_power_step(drive, rq, 0, 0);
190 if (ide_id_has_flush_cache_ext(drive->id))
191 args->tf.command = WIN_FLUSH_CACHE_EXT;
193 args->tf.command = WIN_FLUSH_CACHE;
196 case idedisk_pm_standby: /* Suspend step 2 (standby) */
197 args->tf.command = WIN_STANDBYNOW1;
200 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
201 ide_set_max_pio(drive);
203 * skip idedisk_pm_idle for ATAPI devices
205 if (drive->media != ide_disk)
206 pm->pm_step = ide_pm_restore_dma;
208 ide_complete_power_step(drive, rq, 0, 0);
211 case idedisk_pm_idle: /* Resume step 2 (idle) */
212 args->tf.command = WIN_IDLEIMMEDIATE;
215 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
217 * Right now, all we do is call ide_set_dma(drive),
218 * we could be smarter and check for current xfer_speed
219 * in struct drive etc...
221 if (drive->hwif->dma_ops == NULL)
224 * TODO: respect ->using_dma setting
229 pm->pm_step = ide_pm_state_completed;
233 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
234 args->data_phase = TASKFILE_NO_DATA;
235 return do_rw_taskfile(drive, args);
239 * ide_end_dequeued_request - complete an IDE I/O
240 * @drive: IDE device for the I/O
242 * @nr_sectors: number of sectors completed
244 * Complete an I/O that is no longer on the request queue. This
245 * typically occurs when we pull the request and issue a REQUEST_SENSE.
246 * We must still finish the old request but we must not tamper with the
247 * queue in the meantime.
249 * NOTE: This path does not handle barrier, but barrier is not supported
253 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
254 int uptodate, int nr_sectors)
259 spin_lock_irqsave(&ide_lock, flags);
260 BUG_ON(!blk_rq_started(rq));
261 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
262 spin_unlock_irqrestore(&ide_lock, flags);
266 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
270 * ide_complete_pm_request - end the current Power Management request
271 * @drive: target drive
274 * This function cleans up the current PM request and stops the queue
277 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
282 printk("%s: completing PM request, %s\n", drive->name,
283 blk_pm_suspend_request(rq) ? "suspend" : "resume");
285 spin_lock_irqsave(&ide_lock, flags);
286 if (blk_pm_suspend_request(rq)) {
287 blk_stop_queue(drive->queue);
290 blk_start_queue(drive->queue);
292 HWGROUP(drive)->rq = NULL;
293 if (__blk_end_request(rq, 0, 0))
295 spin_unlock_irqrestore(&ide_lock, flags);
299 * ide_end_drive_cmd - end an explicit drive command
304 * Clean up after success/failure of an explicit drive command.
305 * These get thrown onto the queue so they are synchronized with
306 * real I/O operations on the drive.
308 * In LBA48 mode we have to read the register set twice to get
309 * all the extra information out.
312 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
317 spin_lock_irqsave(&ide_lock, flags);
318 rq = HWGROUP(drive)->rq;
319 spin_unlock_irqrestore(&ide_lock, flags);
321 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
322 ide_task_t *task = (ide_task_t *)rq->special;
325 rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT);
328 struct ide_taskfile *tf = &task->tf;
333 drive->hwif->tf_read(drive, task);
335 if (task->tf_flags & IDE_TFLAG_DYN)
338 } else if (blk_pm_request(rq)) {
339 struct request_pm_state *pm = rq->data;
341 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
342 drive->name, rq->pm->pm_step, stat, err);
344 ide_complete_power_step(drive, rq, stat, err);
345 if (pm->pm_step == ide_pm_state_completed)
346 ide_complete_pm_request(drive, rq);
350 spin_lock_irqsave(&ide_lock, flags);
351 HWGROUP(drive)->rq = NULL;
353 if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
356 spin_unlock_irqrestore(&ide_lock, flags);
359 EXPORT_SYMBOL(ide_end_drive_cmd);
362 * try_to_flush_leftover_data - flush junk
363 * @drive: drive to flush
365 * try_to_flush_leftover_data() is invoked in response to a drive
366 * unexpectedly having its DRQ_STAT bit set. As an alternative to
367 * resetting the drive, this routine tries to clear the condition
368 * by read a sector's worth of data from the drive. Of course,
369 * this may not help if the drive is *waiting* for data from *us*.
371 static void try_to_flush_leftover_data (ide_drive_t *drive)
373 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
375 if (drive->media != ide_disk)
379 u32 wcount = (i > 16) ? 16 : i;
382 drive->hwif->input_data(drive, NULL, buffer, wcount * 4);
386 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
391 drv = *(ide_driver_t **)rq->rq_disk->private_data;
392 drv->end_request(drive, 0, 0);
394 ide_end_request(drive, 0, 0);
397 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
399 ide_hwif_t *hwif = drive->hwif;
401 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
402 /* other bits are useless when BUSY */
403 rq->errors |= ERROR_RESET;
404 } else if (stat & ERR_STAT) {
405 /* err has different meaning on cdrom and tape */
406 if (err == ABRT_ERR) {
407 if (drive->select.b.lba &&
408 /* some newer drives don't support WIN_SPECIFY */
409 hwif->INB(hwif->io_ports.command_addr) ==
412 } else if ((err & BAD_CRC) == BAD_CRC) {
413 /* UDMA crc error, just retry the operation */
415 } else if (err & (BBD_ERR | ECC_ERR)) {
416 /* retries won't help these */
417 rq->errors = ERROR_MAX;
418 } else if (err & TRK0_ERR) {
419 /* help it find track zero */
420 rq->errors |= ERROR_RECAL;
424 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
425 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
426 try_to_flush_leftover_data(drive);
428 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
429 ide_kill_rq(drive, rq);
433 if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
434 rq->errors |= ERROR_RESET;
436 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
438 return ide_do_reset(drive);
441 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
442 drive->special.b.recalibrate = 1;
449 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
451 ide_hwif_t *hwif = drive->hwif;
453 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
454 /* other bits are useless when BUSY */
455 rq->errors |= ERROR_RESET;
457 /* add decoding error stuff */
460 if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
462 hwif->OUTBSYNC(drive, WIN_IDLEIMMEDIATE,
463 hwif->io_ports.command_addr);
465 if (rq->errors >= ERROR_MAX) {
466 ide_kill_rq(drive, rq);
468 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
470 return ide_do_reset(drive);
479 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
481 if (drive->media == ide_disk)
482 return ide_ata_error(drive, rq, stat, err);
483 return ide_atapi_error(drive, rq, stat, err);
486 EXPORT_SYMBOL_GPL(__ide_error);
489 * ide_error - handle an error on the IDE
490 * @drive: drive the error occurred on
491 * @msg: message to report
494 * ide_error() takes action based on the error returned by the drive.
495 * For normal I/O that may well include retries. We deal with
496 * both new-style (taskfile) and old style command handling here.
497 * In the case of taskfile command handling there is work left to
501 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
506 err = ide_dump_status(drive, msg, stat);
508 if ((rq = HWGROUP(drive)->rq) == NULL)
511 /* retry only "normal" I/O: */
512 if (!blk_fs_request(rq)) {
514 ide_end_drive_cmd(drive, stat, err);
521 drv = *(ide_driver_t **)rq->rq_disk->private_data;
522 return drv->error(drive, rq, stat, err);
524 return __ide_error(drive, rq, stat, err);
527 EXPORT_SYMBOL_GPL(ide_error);
529 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
531 if (drive->media != ide_disk)
532 rq->errors |= ERROR_RESET;
534 ide_kill_rq(drive, rq);
539 EXPORT_SYMBOL_GPL(__ide_abort);
542 * ide_abort - abort pending IDE operations
543 * @drive: drive the error occurred on
544 * @msg: message to report
546 * ide_abort kills and cleans up when we are about to do a
547 * host initiated reset on active commands. Longer term we
548 * want handlers to have sensible abort handling themselves
550 * This differs fundamentally from ide_error because in
551 * this case the command is doing just fine when we
555 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
559 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
562 /* retry only "normal" I/O: */
563 if (!blk_fs_request(rq)) {
565 ide_end_drive_cmd(drive, BUSY_STAT, 0);
572 drv = *(ide_driver_t **)rq->rq_disk->private_data;
573 return drv->abort(drive, rq);
575 return __ide_abort(drive, rq);
578 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
580 tf->nsect = drive->sect;
581 tf->lbal = drive->sect;
582 tf->lbam = drive->cyl;
583 tf->lbah = drive->cyl >> 8;
584 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
585 tf->command = WIN_SPECIFY;
588 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
590 tf->nsect = drive->sect;
591 tf->command = WIN_RESTORE;
594 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
596 tf->nsect = drive->mult_req;
597 tf->command = WIN_SETMULT;
600 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
602 special_t *s = &drive->special;
605 memset(&args, 0, sizeof(ide_task_t));
606 args.data_phase = TASKFILE_NO_DATA;
608 if (s->b.set_geometry) {
609 s->b.set_geometry = 0;
610 ide_tf_set_specify_cmd(drive, &args.tf);
611 } else if (s->b.recalibrate) {
612 s->b.recalibrate = 0;
613 ide_tf_set_restore_cmd(drive, &args.tf);
614 } else if (s->b.set_multmode) {
615 s->b.set_multmode = 0;
616 if (drive->mult_req > drive->id->max_multsect)
617 drive->mult_req = drive->id->max_multsect;
618 ide_tf_set_setmult_cmd(drive, &args.tf);
620 int special = s->all;
622 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
626 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
627 IDE_TFLAG_CUSTOM_HANDLER;
629 do_rw_taskfile(drive, &args);
635 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
637 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
646 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
649 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
652 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
659 * do_special - issue some special commands
660 * @drive: drive the command is for
662 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
663 * commands to a drive. It used to do much more, but has been scaled
667 static ide_startstop_t do_special (ide_drive_t *drive)
669 special_t *s = &drive->special;
672 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
675 ide_hwif_t *hwif = drive->hwif;
676 const struct ide_port_ops *port_ops = hwif->port_ops;
677 u8 req_pio = drive->tune_req;
681 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
683 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
685 if (req_pio == 8 || req_pio == 9) {
688 spin_lock_irqsave(&ide_lock, flags);
689 port_ops->set_pio_mode(drive, req_pio);
690 spin_unlock_irqrestore(&ide_lock, flags);
692 port_ops->set_pio_mode(drive, req_pio);
694 int keep_dma = drive->using_dma;
696 ide_set_pio(drive, req_pio);
698 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
706 if (drive->media == ide_disk)
707 return ide_disk_special(drive);
715 void ide_map_sg(ide_drive_t *drive, struct request *rq)
717 ide_hwif_t *hwif = drive->hwif;
718 struct scatterlist *sg = hwif->sg_table;
720 if (hwif->sg_mapped) /* needed by ide-scsi */
723 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
724 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
726 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
731 EXPORT_SYMBOL_GPL(ide_map_sg);
733 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
735 ide_hwif_t *hwif = drive->hwif;
737 hwif->nsect = hwif->nleft = rq->nr_sectors;
742 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
745 * execute_drive_command - issue special drive command
746 * @drive: the drive to issue the command on
747 * @rq: the request structure holding the command
749 * execute_drive_cmd() issues a special drive command, usually
750 * initiated by ioctl() from the external hdparm program. The
751 * command can be a drive command, drive task or taskfile
752 * operation. Weirdly you can call it with NULL to wait for
753 * all commands to finish. Don't do this as that is due to change
756 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
759 ide_hwif_t *hwif = HWIF(drive);
760 ide_task_t *task = rq->special;
763 hwif->data_phase = task->data_phase;
765 switch (hwif->data_phase) {
766 case TASKFILE_MULTI_OUT:
768 case TASKFILE_MULTI_IN:
770 ide_init_sg_cmd(drive, rq);
771 ide_map_sg(drive, rq);
776 return do_rw_taskfile(drive, task);
780 * NULL is actually a valid way of waiting for
781 * all current requests to be flushed from the queue.
784 printk("%s: DRIVE_CMD (null)\n", drive->name);
786 ide_end_drive_cmd(drive, ide_read_status(drive), ide_read_error(drive));
791 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
793 struct request_pm_state *pm = rq->data;
795 if (blk_pm_suspend_request(rq) &&
796 pm->pm_step == ide_pm_state_start_suspend)
797 /* Mark drive blocked when starting the suspend sequence. */
799 else if (blk_pm_resume_request(rq) &&
800 pm->pm_step == ide_pm_state_start_resume) {
802 * The first thing we do on wakeup is to wait for BSY bit to
803 * go away (with a looong timeout) as a drive on this hwif may
804 * just be POSTing itself.
805 * We do that before even selecting as the "other" device on
806 * the bus may be broken enough to walk on our toes at this
811 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
813 rc = ide_wait_not_busy(HWIF(drive), 35000);
815 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
817 ide_set_irq(drive, 1);
818 rc = ide_wait_not_busy(HWIF(drive), 100000);
820 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
825 * start_request - start of I/O and command issuing for IDE
827 * start_request() initiates handling of a new I/O request. It
828 * accepts commands and I/O (read/write) requests. It also does
829 * the final remapping for weird stuff like EZDrive. Once
830 * device mapper can work sector level the EZDrive stuff can go away
832 * FIXME: this function needs a rename
835 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
837 ide_startstop_t startstop;
840 BUG_ON(!blk_rq_started(rq));
843 printk("%s: start_request: current=0x%08lx\n",
844 HWIF(drive)->name, (unsigned long) rq);
847 /* bail early if we've exceeded max_failures */
848 if (drive->max_failures && (drive->failures > drive->max_failures)) {
849 rq->cmd_flags |= REQ_FAILED;
854 if (blk_fs_request(rq) &&
855 (drive->media == ide_disk || drive->media == ide_floppy)) {
856 block += drive->sect0;
858 /* Yecch - this will shift the entire interval,
859 possibly killing some innocent following sector */
860 if (block == 0 && drive->remap_0_to_1 == 1)
861 block = 1; /* redirect MBR access to EZ-Drive partn table */
863 if (blk_pm_request(rq))
864 ide_check_pm_state(drive, rq);
867 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
868 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
871 if (!drive->special.all) {
875 * We reset the drive so we need to issue a SETFEATURES.
876 * Do it _after_ do_special() restored device parameters.
878 if (drive->current_speed == 0xff)
879 ide_config_drive_speed(drive, drive->desired_speed);
881 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
882 return execute_drive_cmd(drive, rq);
883 else if (blk_pm_request(rq)) {
884 struct request_pm_state *pm = rq->data;
886 printk("%s: start_power_step(step: %d)\n",
887 drive->name, rq->pm->pm_step);
889 startstop = ide_start_power_step(drive, rq);
890 if (startstop == ide_stopped &&
891 pm->pm_step == ide_pm_state_completed)
892 ide_complete_pm_request(drive, rq);
896 drv = *(ide_driver_t **)rq->rq_disk->private_data;
897 return drv->do_request(drive, rq, block);
899 return do_special(drive);
901 ide_kill_rq(drive, rq);
906 * ide_stall_queue - pause an IDE device
907 * @drive: drive to stall
908 * @timeout: time to stall for (jiffies)
910 * ide_stall_queue() can be used by a drive to give excess bandwidth back
911 * to the hwgroup by sleeping for timeout jiffies.
914 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
916 if (timeout > WAIT_WORSTCASE)
917 timeout = WAIT_WORSTCASE;
918 drive->sleep = timeout + jiffies;
922 EXPORT_SYMBOL(ide_stall_queue);
924 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
927 * choose_drive - select a drive to service
928 * @hwgroup: hardware group to select on
930 * choose_drive() selects the next drive which will be serviced.
931 * This is necessary because the IDE layer can't issue commands
932 * to both drives on the same cable, unlike SCSI.
935 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
937 ide_drive_t *drive, *best;
941 drive = hwgroup->drive;
944 * drive is doing pre-flush, ordered write, post-flush sequence. even
945 * though that is 3 requests, it must be seen as a single transaction.
946 * we must not preempt this drive until that is complete
948 if (blk_queue_flushing(drive->queue)) {
950 * small race where queue could get replugged during
951 * the 3-request flush cycle, just yank the plug since
952 * we want it to finish asap
954 blk_remove_plug(drive->queue);
959 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
960 && !elv_queue_empty(drive->queue)) {
962 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
963 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
965 if (!blk_queue_plugged(drive->queue))
969 } while ((drive = drive->next) != hwgroup->drive);
970 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
971 long t = (signed long)(WAKEUP(best) - jiffies);
972 if (t >= WAIT_MIN_SLEEP) {
974 * We *may* have some time to spare, but first let's see if
975 * someone can potentially benefit from our nice mood today..
980 && time_before(jiffies - best->service_time, WAKEUP(drive))
981 && time_before(WAKEUP(drive), jiffies + t))
983 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
986 } while ((drive = drive->next) != best);
993 * Issue a new request to a drive from hwgroup
994 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
996 * A hwgroup is a serialized group of IDE interfaces. Usually there is
997 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
998 * may have both interfaces in a single hwgroup to "serialize" access.
999 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1000 * together into one hwgroup for serialized access.
1002 * Note also that several hwgroups can end up sharing a single IRQ,
1003 * possibly along with many other devices. This is especially common in
1004 * PCI-based systems with off-board IDE controller cards.
1006 * The IDE driver uses the single global ide_lock spinlock to protect
1007 * access to the request queues, and to protect the hwgroup->busy flag.
1009 * The first thread into the driver for a particular hwgroup sets the
1010 * hwgroup->busy flag to indicate that this hwgroup is now active,
1011 * and then initiates processing of the top request from the request queue.
1013 * Other threads attempting entry notice the busy setting, and will simply
1014 * queue their new requests and exit immediately. Note that hwgroup->busy
1015 * remains set even when the driver is merely awaiting the next interrupt.
1016 * Thus, the meaning is "this hwgroup is busy processing a request".
1018 * When processing of a request completes, the completing thread or IRQ-handler
1019 * will start the next request from the queue. If no more work remains,
1020 * the driver will clear the hwgroup->busy flag and exit.
1022 * The ide_lock (spinlock) is used to protect all access to the
1023 * hwgroup->busy flag, but is otherwise not needed for most processing in
1024 * the driver. This makes the driver much more friendlier to shared IRQs
1025 * than previous designs, while remaining 100% (?) SMP safe and capable.
1027 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1032 ide_startstop_t startstop;
1035 /* for atari only: POSSIBLY BROKEN HERE(?) */
1036 ide_get_lock(ide_intr, hwgroup);
1038 /* caller must own ide_lock */
1039 BUG_ON(!irqs_disabled());
1041 while (!hwgroup->busy) {
1043 drive = choose_drive(hwgroup);
1044 if (drive == NULL) {
1046 unsigned long sleep = 0; /* shut up, gcc */
1048 drive = hwgroup->drive;
1050 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1052 sleep = drive->sleep;
1054 } while ((drive = drive->next) != hwgroup->drive);
1057 * Take a short snooze, and then wake up this hwgroup again.
1058 * This gives other hwgroups on the same a chance to
1059 * play fairly with us, just in case there are big differences
1060 * in relative throughputs.. don't want to hog the cpu too much.
1062 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1063 sleep = jiffies + WAIT_MIN_SLEEP;
1065 if (timer_pending(&hwgroup->timer))
1066 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1068 /* so that ide_timer_expiry knows what to do */
1069 hwgroup->sleeping = 1;
1070 hwgroup->req_gen_timer = hwgroup->req_gen;
1071 mod_timer(&hwgroup->timer, sleep);
1072 /* we purposely leave hwgroup->busy==1
1075 /* Ugly, but how can we sleep for the lock
1076 * otherwise? perhaps from tq_disk?
1079 /* for atari only */
1084 /* no more work for this hwgroup (for now) */
1089 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1091 * set nIEN for previous hwif, drives in the
1092 * quirk_list may not like intr setups/cleanups
1094 if (drive->quirk_list != 1)
1095 ide_set_irq(drive, 0);
1097 hwgroup->hwif = hwif;
1098 hwgroup->drive = drive;
1099 drive->sleeping = 0;
1100 drive->service_start = jiffies;
1102 if (blk_queue_plugged(drive->queue)) {
1103 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1108 * we know that the queue isn't empty, but this can happen
1109 * if the q->prep_rq_fn() decides to kill a request
1111 rq = elv_next_request(drive->queue);
1118 * Sanity: don't accept a request that isn't a PM request
1119 * if we are currently power managed. This is very important as
1120 * blk_stop_queue() doesn't prevent the elv_next_request()
1121 * above to return us whatever is in the queue. Since we call
1122 * ide_do_request() ourselves, we end up taking requests while
1123 * the queue is blocked...
1125 * We let requests forced at head of queue with ide-preempt
1126 * though. I hope that doesn't happen too much, hopefully not
1127 * unless the subdriver triggers such a thing in its own PM
1130 * We count how many times we loop here to make sure we service
1131 * all drives in the hwgroup without looping for ever
1133 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1134 drive = drive->next ? drive->next : hwgroup->drive;
1135 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1137 /* We clear busy, there should be no pending ATA command at this point. */
1145 * Some systems have trouble with IDE IRQs arriving while
1146 * the driver is still setting things up. So, here we disable
1147 * the IRQ used by this interface while the request is being started.
1148 * This may look bad at first, but pretty much the same thing
1149 * happens anyway when any interrupt comes in, IDE or otherwise
1150 * -- the kernel masks the IRQ while it is being handled.
1152 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1153 disable_irq_nosync(hwif->irq);
1154 spin_unlock(&ide_lock);
1155 local_irq_enable_in_hardirq();
1156 /* allow other IRQs while we start this request */
1157 startstop = start_request(drive, rq);
1158 spin_lock_irq(&ide_lock);
1159 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1160 enable_irq(hwif->irq);
1161 if (startstop == ide_stopped)
1167 * Passes the stuff to ide_do_request
1169 void do_ide_request(struct request_queue *q)
1171 ide_drive_t *drive = q->queuedata;
1173 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1177 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1178 * retry the current request in pio mode instead of risking tossing it
1181 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1183 ide_hwif_t *hwif = HWIF(drive);
1185 ide_startstop_t ret = ide_stopped;
1188 * end current dma transaction
1192 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1193 (void)hwif->dma_ops->dma_end(drive);
1194 ret = ide_error(drive, "dma timeout error",
1195 ide_read_status(drive));
1197 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1198 hwif->dma_ops->dma_timeout(drive);
1202 * disable dma for now, but remember that we did so because of
1203 * a timeout -- we'll reenable after we finish this next request
1204 * (or rather the first chunk of it) in pio.
1207 drive->state = DMA_PIO_RETRY;
1208 ide_dma_off_quietly(drive);
1211 * un-busy drive etc (hwgroup->busy is cleared on return) and
1212 * make sure request is sane
1214 rq = HWGROUP(drive)->rq;
1219 HWGROUP(drive)->rq = NULL;
1226 rq->sector = rq->bio->bi_sector;
1227 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1228 rq->hard_cur_sectors = rq->current_nr_sectors;
1229 rq->buffer = bio_data(rq->bio);
1235 * ide_timer_expiry - handle lack of an IDE interrupt
1236 * @data: timer callback magic (hwgroup)
1238 * An IDE command has timed out before the expected drive return
1239 * occurred. At this point we attempt to clean up the current
1240 * mess. If the current handler includes an expiry handler then
1241 * we invoke the expiry handler, and providing it is happy the
1242 * work is done. If that fails we apply generic recovery rules
1243 * invoking the handler and checking the drive DMA status. We
1244 * have an excessively incestuous relationship with the DMA
1245 * logic that wants cleaning up.
1248 void ide_timer_expiry (unsigned long data)
1250 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1251 ide_handler_t *handler;
1252 ide_expiry_t *expiry;
1253 unsigned long flags;
1254 unsigned long wait = -1;
1256 spin_lock_irqsave(&ide_lock, flags);
1258 if (((handler = hwgroup->handler) == NULL) ||
1259 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1261 * Either a marginal timeout occurred
1262 * (got the interrupt just as timer expired),
1263 * or we were "sleeping" to give other devices a chance.
1264 * Either way, we don't really want to complain about anything.
1266 if (hwgroup->sleeping) {
1267 hwgroup->sleeping = 0;
1271 ide_drive_t *drive = hwgroup->drive;
1273 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1274 hwgroup->handler = NULL;
1277 ide_startstop_t startstop = ide_stopped;
1278 if (!hwgroup->busy) {
1279 hwgroup->busy = 1; /* paranoia */
1280 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1282 if ((expiry = hwgroup->expiry) != NULL) {
1284 if ((wait = expiry(drive)) > 0) {
1286 hwgroup->timer.expires = jiffies + wait;
1287 hwgroup->req_gen_timer = hwgroup->req_gen;
1288 add_timer(&hwgroup->timer);
1289 spin_unlock_irqrestore(&ide_lock, flags);
1293 hwgroup->handler = NULL;
1295 * We need to simulate a real interrupt when invoking
1296 * the handler() function, which means we need to
1297 * globally mask the specific IRQ:
1299 spin_unlock(&ide_lock);
1301 /* disable_irq_nosync ?? */
1302 disable_irq(hwif->irq);
1304 * as if we were handling an interrupt */
1305 local_irq_disable();
1306 if (hwgroup->polling) {
1307 startstop = handler(drive);
1308 } else if (drive_is_ready(drive)) {
1309 if (drive->waiting_for_dma)
1310 hwif->dma_ops->dma_lost_irq(drive);
1311 (void)ide_ack_intr(hwif);
1312 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1313 startstop = handler(drive);
1315 if (drive->waiting_for_dma) {
1316 startstop = ide_dma_timeout_retry(drive, wait);
1319 ide_error(drive, "irq timeout",
1320 ide_read_status(drive));
1322 drive->service_time = jiffies - drive->service_start;
1323 spin_lock_irq(&ide_lock);
1324 enable_irq(hwif->irq);
1325 if (startstop == ide_stopped)
1329 ide_do_request(hwgroup, IDE_NO_IRQ);
1330 spin_unlock_irqrestore(&ide_lock, flags);
1334 * unexpected_intr - handle an unexpected IDE interrupt
1335 * @irq: interrupt line
1336 * @hwgroup: hwgroup being processed
1338 * There's nothing really useful we can do with an unexpected interrupt,
1339 * other than reading the status register (to clear it), and logging it.
1340 * There should be no way that an irq can happen before we're ready for it,
1341 * so we needn't worry much about losing an "important" interrupt here.
1343 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1344 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1345 * looks "good", we just ignore the interrupt completely.
1347 * This routine assumes __cli() is in effect when called.
1349 * If an unexpected interrupt happens on irq15 while we are handling irq14
1350 * and if the two interfaces are "serialized" (CMD640), then it looks like
1351 * we could screw up by interfering with a new request being set up for
1354 * In reality, this is a non-issue. The new command is not sent unless
1355 * the drive is ready to accept one, in which case we know the drive is
1356 * not trying to interrupt us. And ide_set_handler() is always invoked
1357 * before completing the issuance of any new drive command, so we will not
1358 * be accidentally invoked as a result of any valid command completion
1361 * Note that we must walk the entire hwgroup here. We know which hwif
1362 * is doing the current command, but we don't know which hwif burped
1366 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1369 ide_hwif_t *hwif = hwgroup->hwif;
1372 * handle the unexpected interrupt
1375 if (hwif->irq == irq) {
1376 stat = hwif->INB(hwif->io_ports.status_addr);
1377 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1378 /* Try to not flood the console with msgs */
1379 static unsigned long last_msgtime, count;
1381 if (time_after(jiffies, last_msgtime + HZ)) {
1382 last_msgtime = jiffies;
1383 printk(KERN_ERR "%s%s: unexpected interrupt, "
1384 "status=0x%02x, count=%ld\n",
1386 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1390 } while ((hwif = hwif->next) != hwgroup->hwif);
1394 * ide_intr - default IDE interrupt handler
1395 * @irq: interrupt number
1396 * @dev_id: hwif group
1397 * @regs: unused weirdness from the kernel irq layer
1399 * This is the default IRQ handler for the IDE layer. You should
1400 * not need to override it. If you do be aware it is subtle in
1403 * hwgroup->hwif is the interface in the group currently performing
1404 * a command. hwgroup->drive is the drive and hwgroup->handler is
1405 * the IRQ handler to call. As we issue a command the handlers
1406 * step through multiple states, reassigning the handler to the
1407 * next step in the process. Unlike a smart SCSI controller IDE
1408 * expects the main processor to sequence the various transfer
1409 * stages. We also manage a poll timer to catch up with most
1410 * timeout situations. There are still a few where the handlers
1411 * don't ever decide to give up.
1413 * The handler eventually returns ide_stopped to indicate the
1414 * request completed. At this point we issue the next request
1415 * on the hwgroup and the process begins again.
1418 irqreturn_t ide_intr (int irq, void *dev_id)
1420 unsigned long flags;
1421 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1424 ide_handler_t *handler;
1425 ide_startstop_t startstop;
1427 spin_lock_irqsave(&ide_lock, flags);
1428 hwif = hwgroup->hwif;
1430 if (!ide_ack_intr(hwif)) {
1431 spin_unlock_irqrestore(&ide_lock, flags);
1435 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1437 * Not expecting an interrupt from this drive.
1438 * That means this could be:
1439 * (1) an interrupt from another PCI device
1440 * sharing the same PCI INT# as us.
1441 * or (2) a drive just entered sleep or standby mode,
1442 * and is interrupting to let us know.
1443 * or (3) a spurious interrupt of unknown origin.
1445 * For PCI, we cannot tell the difference,
1446 * so in that case we just ignore it and hope it goes away.
1448 * FIXME: unexpected_intr should be hwif-> then we can
1449 * remove all the ifdef PCI crap
1451 #ifdef CONFIG_BLK_DEV_IDEPCI
1452 if (hwif->chipset != ide_pci)
1453 #endif /* CONFIG_BLK_DEV_IDEPCI */
1456 * Probably not a shared PCI interrupt,
1457 * so we can safely try to do something about it:
1459 unexpected_intr(irq, hwgroup);
1460 #ifdef CONFIG_BLK_DEV_IDEPCI
1463 * Whack the status register, just in case
1464 * we have a leftover pending IRQ.
1466 (void) hwif->INB(hwif->io_ports.status_addr);
1467 #endif /* CONFIG_BLK_DEV_IDEPCI */
1469 spin_unlock_irqrestore(&ide_lock, flags);
1472 drive = hwgroup->drive;
1475 * This should NEVER happen, and there isn't much
1476 * we could do about it here.
1478 * [Note - this can occur if the drive is hot unplugged]
1480 spin_unlock_irqrestore(&ide_lock, flags);
1483 if (!drive_is_ready(drive)) {
1485 * This happens regularly when we share a PCI IRQ with
1486 * another device. Unfortunately, it can also happen
1487 * with some buggy drives that trigger the IRQ before
1488 * their status register is up to date. Hopefully we have
1489 * enough advance overhead that the latter isn't a problem.
1491 spin_unlock_irqrestore(&ide_lock, flags);
1494 if (!hwgroup->busy) {
1495 hwgroup->busy = 1; /* paranoia */
1496 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1498 hwgroup->handler = NULL;
1500 del_timer(&hwgroup->timer);
1501 spin_unlock(&ide_lock);
1503 /* Some controllers might set DMA INTR no matter DMA or PIO;
1504 * bmdma status might need to be cleared even for
1505 * PIO interrupts to prevent spurious/lost irq.
1507 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1508 /* ide_dma_end() needs bmdma status for error checking.
1509 * So, skip clearing bmdma status here and leave it
1510 * to ide_dma_end() if this is dma interrupt.
1512 hwif->ide_dma_clear_irq(drive);
1515 local_irq_enable_in_hardirq();
1516 /* service this interrupt, may set handler for next interrupt */
1517 startstop = handler(drive);
1518 spin_lock_irq(&ide_lock);
1521 * Note that handler() may have set things up for another
1522 * interrupt to occur soon, but it cannot happen until
1523 * we exit from this routine, because it will be the
1524 * same irq as is currently being serviced here, and Linux
1525 * won't allow another of the same (on any CPU) until we return.
1527 drive->service_time = jiffies - drive->service_start;
1528 if (startstop == ide_stopped) {
1529 if (hwgroup->handler == NULL) { /* paranoia */
1531 ide_do_request(hwgroup, hwif->irq);
1533 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1534 "on exit\n", drive->name);
1537 spin_unlock_irqrestore(&ide_lock, flags);
1542 * ide_init_drive_cmd - initialize a drive command request
1543 * @rq: request object
1545 * Initialize a request before we fill it in and send it down to
1546 * ide_do_drive_cmd. Commands must be set up by this function. Right
1547 * now it doesn't do a lot, but if that changes abusers will have a
1551 void ide_init_drive_cmd (struct request *rq)
1553 memset(rq, 0, sizeof(*rq));
1557 EXPORT_SYMBOL(ide_init_drive_cmd);
1560 * ide_do_drive_cmd - issue IDE special command
1561 * @drive: device to issue command
1562 * @rq: request to issue
1563 * @action: action for processing
1565 * This function issues a special IDE device request
1566 * onto the request queue.
1568 * If action is ide_wait, then the rq is queued at the end of the
1569 * request queue, and the function sleeps until it has been processed.
1570 * This is for use when invoked from an ioctl handler.
1572 * If action is ide_preempt, then the rq is queued at the head of
1573 * the request queue, displacing the currently-being-processed
1574 * request and this function returns immediately without waiting
1575 * for the new rq to be completed. This is VERY DANGEROUS, and is
1576 * intended for careful use by the ATAPI tape/cdrom driver code.
1578 * If action is ide_end, then the rq is queued at the end of the
1579 * request queue, and the function returns immediately without waiting
1580 * for the new rq to be completed. This is again intended for careful
1581 * use by the ATAPI tape/cdrom driver code.
1584 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1586 unsigned long flags;
1587 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1588 DECLARE_COMPLETION_ONSTACK(wait);
1589 int where = ELEVATOR_INSERT_BACK, err;
1590 int must_wait = (action == ide_wait || action == ide_head_wait);
1595 * we need to hold an extra reference to request for safe inspection
1600 rq->end_io_data = &wait;
1601 rq->end_io = blk_end_sync_rq;
1604 spin_lock_irqsave(&ide_lock, flags);
1605 if (action == ide_preempt)
1607 if (action == ide_preempt || action == ide_head_wait) {
1608 where = ELEVATOR_INSERT_FRONT;
1609 rq->cmd_flags |= REQ_PREEMPT;
1611 __elv_add_request(drive->queue, rq, where, 0);
1612 ide_do_request(hwgroup, IDE_NO_IRQ);
1613 spin_unlock_irqrestore(&ide_lock, flags);
1617 wait_for_completion(&wait);
1621 blk_put_request(rq);
1627 EXPORT_SYMBOL(ide_do_drive_cmd);
1629 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1633 memset(&task, 0, sizeof(task));
1634 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1635 IDE_TFLAG_OUT_FEATURE | tf_flags;
1636 task.tf.feature = dma; /* Use PIO/DMA */
1637 task.tf.lbam = bcount & 0xff;
1638 task.tf.lbah = (bcount >> 8) & 0xff;
1640 ide_tf_dump(drive->name, &task.tf);
1641 drive->hwif->tf_load(drive, &task);
1644 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1646 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1648 ide_hwif_t *hwif = drive->hwif;
1653 hwif->output_data(drive, NULL, buf, min(4, len));
1655 hwif->input_data(drive, NULL, buf, min(4, len));
1659 EXPORT_SYMBOL_GPL(ide_pad_transfer);