]> err.no Git - linux-2.6/blob - drivers/ide/ide-io.c
ide: don't enable local IRQs for PIO-in in driver_cmd_intr() (take 2)
[linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61
62         /*
63          * if failfast is set on a request, override number of sectors and
64          * complete the whole request right now
65          */
66         if (blk_noretry_request(rq) && end_io_error(uptodate))
67                 nr_bytes = rq->hard_nr_sectors << 9;
68
69         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70                 rq->errors = -EIO;
71
72         /*
73          * decide whether to reenable DMA -- 3 is a random magic for now,
74          * if we DMA timeout more than 3 times, just stay in PIO
75          */
76         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77                 drive->state = 0;
78                 ide_dma_on(drive);
79         }
80
81         if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82                 add_disk_randomness(rq->rq_disk);
83                 if (dequeue) {
84                         if (!list_empty(&rq->queuelist))
85                                 blkdev_dequeue_request(rq);
86                         HWGROUP(drive)->rq = NULL;
87                 }
88                 end_that_request_last(rq, uptodate);
89                 ret = 0;
90         }
91
92         return ret;
93 }
94
95 /**
96  *      ide_end_request         -       complete an IDE I/O
97  *      @drive: IDE device for the I/O
98  *      @uptodate:
99  *      @nr_sectors: number of sectors completed
100  *
101  *      This is our end_request wrapper function. We complete the I/O
102  *      update random number input and dequeue the request, which if
103  *      it was tagged may be out of order.
104  */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108         unsigned int nr_bytes = nr_sectors << 9;
109         struct request *rq;
110         unsigned long flags;
111         int ret = 1;
112
113         /*
114          * room for locking improvements here, the calls below don't
115          * need the queue lock held at all
116          */
117         spin_lock_irqsave(&ide_lock, flags);
118         rq = HWGROUP(drive)->rq;
119
120         if (!nr_bytes) {
121                 if (blk_pc_request(rq))
122                         nr_bytes = rq->data_len;
123                 else
124                         nr_bytes = rq->hard_cur_sectors << 9;
125         }
126
127         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129         spin_unlock_irqrestore(&ide_lock, flags);
130         return ret;
131 }
132 EXPORT_SYMBOL(ide_end_request);
133
134 /*
135  * Power Management state machine. This one is rather trivial for now,
136  * we should probably add more, like switching back to PIO on suspend
137  * to help some BIOSes, re-do the door locking on resume, etc...
138  */
139
140 enum {
141         ide_pm_flush_cache      = ide_pm_state_start_suspend,
142         idedisk_pm_standby,
143
144         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
145         idedisk_pm_idle,
146         ide_pm_restore_dma,
147 };
148
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 {
151         struct request_pm_state *pm = rq->data;
152
153         if (drive->media != ide_disk)
154                 return;
155
156         switch (pm->pm_step) {
157         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
158                 if (pm->pm_state == PM_EVENT_FREEZE)
159                         pm->pm_step = ide_pm_state_completed;
160                 else
161                         pm->pm_step = idedisk_pm_standby;
162                 break;
163         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
164                 pm->pm_step = ide_pm_state_completed;
165                 break;
166         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
167                 pm->pm_step = idedisk_pm_idle;
168                 break;
169         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
170                 pm->pm_step = ide_pm_restore_dma;
171                 break;
172         }
173 }
174
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 {
177         struct request_pm_state *pm = rq->data;
178         ide_task_t *args = rq->special;
179
180         memset(args, 0, sizeof(*args));
181
182         switch (pm->pm_step) {
183         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
184                 if (drive->media != ide_disk)
185                         break;
186                 /* Not supported? Switch to next step now. */
187                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188                         ide_complete_power_step(drive, rq, 0, 0);
189                         return ide_stopped;
190                 }
191                 if (ide_id_has_flush_cache_ext(drive->id))
192                         args->tf.command = WIN_FLUSH_CACHE_EXT;
193                 else
194                         args->tf.command = WIN_FLUSH_CACHE;
195                 goto out_do_tf;
196
197         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
198                 args->tf.command = WIN_STANDBYNOW1;
199                 goto out_do_tf;
200
201         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
202                 ide_set_max_pio(drive);
203                 /*
204                  * skip idedisk_pm_idle for ATAPI devices
205                  */
206                 if (drive->media != ide_disk)
207                         pm->pm_step = ide_pm_restore_dma;
208                 else
209                         ide_complete_power_step(drive, rq, 0, 0);
210                 return ide_stopped;
211
212         case idedisk_pm_idle:           /* Resume step 2 (idle) */
213                 args->tf.command = WIN_IDLEIMMEDIATE;
214                 goto out_do_tf;
215
216         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
217                 /*
218                  * Right now, all we do is call ide_set_dma(drive),
219                  * we could be smarter and check for current xfer_speed
220                  * in struct drive etc...
221                  */
222                 if (drive->hwif->dma_host_set == NULL)
223                         break;
224                 /*
225                  * TODO: respect ->using_dma setting
226                  */
227                 ide_set_dma(drive);
228                 break;
229         }
230         pm->pm_step = ide_pm_state_completed;
231         return ide_stopped;
232
233 out_do_tf:
234         args->tf_flags   = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
235         args->data_phase = TASKFILE_NO_DATA;
236         return do_rw_taskfile(drive, args);
237 }
238
239 /**
240  *      ide_end_dequeued_request        -       complete an IDE I/O
241  *      @drive: IDE device for the I/O
242  *      @uptodate:
243  *      @nr_sectors: number of sectors completed
244  *
245  *      Complete an I/O that is no longer on the request queue. This
246  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
247  *      We must still finish the old request but we must not tamper with the
248  *      queue in the meantime.
249  *
250  *      NOTE: This path does not handle barrier, but barrier is not supported
251  *      on ide-cd anyway.
252  */
253
254 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255                              int uptodate, int nr_sectors)
256 {
257         unsigned long flags;
258         int ret;
259
260         spin_lock_irqsave(&ide_lock, flags);
261         BUG_ON(!blk_rq_started(rq));
262         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
263         spin_unlock_irqrestore(&ide_lock, flags);
264
265         return ret;
266 }
267 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
268
269
270 /**
271  *      ide_complete_pm_request - end the current Power Management request
272  *      @drive: target drive
273  *      @rq: request
274  *
275  *      This function cleans up the current PM request and stops the queue
276  *      if necessary.
277  */
278 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
279 {
280         unsigned long flags;
281
282 #ifdef DEBUG_PM
283         printk("%s: completing PM request, %s\n", drive->name,
284                blk_pm_suspend_request(rq) ? "suspend" : "resume");
285 #endif
286         spin_lock_irqsave(&ide_lock, flags);
287         if (blk_pm_suspend_request(rq)) {
288                 blk_stop_queue(drive->queue);
289         } else {
290                 drive->blocked = 0;
291                 blk_start_queue(drive->queue);
292         }
293         blkdev_dequeue_request(rq);
294         HWGROUP(drive)->rq = NULL;
295         end_that_request_last(rq, 1);
296         spin_unlock_irqrestore(&ide_lock, flags);
297 }
298
299 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
300 {
301         ide_hwif_t *hwif = drive->hwif;
302         struct ide_taskfile *tf = &task->tf;
303
304         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
305                 u16 data = hwif->INW(IDE_DATA_REG);
306
307                 tf->data = data & 0xff;
308                 tf->hob_data = (data >> 8) & 0xff;
309         }
310
311         /* be sure we're looking at the low order bits */
312         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
313
314         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
315                 tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
316         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
317                 tf->lbal   = hwif->INB(IDE_SECTOR_REG);
318         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
319                 tf->lbam   = hwif->INB(IDE_LCYL_REG);
320         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
321                 tf->lbah   = hwif->INB(IDE_HCYL_REG);
322         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
323                 tf->device = hwif->INB(IDE_SELECT_REG);
324
325         if (task->tf_flags & IDE_TFLAG_LBA48) {
326                 hwif->OUTB(drive->ctl | 0x80, IDE_CONTROL_REG);
327
328                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
329                         tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
330                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
331                         tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
332                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
333                         tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
334                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
335                         tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
336                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
337                         tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
338         }
339 }
340
341 /**
342  *      ide_end_drive_cmd       -       end an explicit drive command
343  *      @drive: command 
344  *      @stat: status bits
345  *      @err: error bits
346  *
347  *      Clean up after success/failure of an explicit drive command.
348  *      These get thrown onto the queue so they are synchronized with
349  *      real I/O operations on the drive.
350  *
351  *      In LBA48 mode we have to read the register set twice to get
352  *      all the extra information out.
353  */
354  
355 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
356 {
357         ide_hwif_t *hwif = HWIF(drive);
358         unsigned long flags;
359         struct request *rq;
360
361         spin_lock_irqsave(&ide_lock, flags);
362         rq = HWGROUP(drive)->rq;
363         spin_unlock_irqrestore(&ide_lock, flags);
364
365         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
366                 u8 *args = (u8 *) rq->buffer;
367                 if (rq->errors == 0)
368                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
369
370                 if (args) {
371                         args[0] = stat;
372                         args[1] = err;
373                         /* be sure we're looking at the low order bits */
374                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
375                         args[2] = hwif->INB(IDE_NSECTOR_REG);
376                 }
377         } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
378                 ide_task_t *args = (ide_task_t *) rq->special;
379                 if (rq->errors == 0)
380                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
381                         
382                 if (args) {
383                         struct ide_taskfile *tf = &args->tf;
384
385                         tf->error = err;
386                         tf->status = stat;
387
388                         ide_tf_read(drive, args);
389                 }
390         } else if (blk_pm_request(rq)) {
391                 struct request_pm_state *pm = rq->data;
392 #ifdef DEBUG_PM
393                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
394                         drive->name, rq->pm->pm_step, stat, err);
395 #endif
396                 ide_complete_power_step(drive, rq, stat, err);
397                 if (pm->pm_step == ide_pm_state_completed)
398                         ide_complete_pm_request(drive, rq);
399                 return;
400         }
401
402         spin_lock_irqsave(&ide_lock, flags);
403         blkdev_dequeue_request(rq);
404         HWGROUP(drive)->rq = NULL;
405         rq->errors = err;
406         end_that_request_last(rq, !rq->errors);
407         spin_unlock_irqrestore(&ide_lock, flags);
408 }
409
410 EXPORT_SYMBOL(ide_end_drive_cmd);
411
412 /**
413  *      try_to_flush_leftover_data      -       flush junk
414  *      @drive: drive to flush
415  *
416  *      try_to_flush_leftover_data() is invoked in response to a drive
417  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
418  *      resetting the drive, this routine tries to clear the condition
419  *      by read a sector's worth of data from the drive.  Of course,
420  *      this may not help if the drive is *waiting* for data from *us*.
421  */
422 static void try_to_flush_leftover_data (ide_drive_t *drive)
423 {
424         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
425
426         if (drive->media != ide_disk)
427                 return;
428         while (i > 0) {
429                 u32 buffer[16];
430                 u32 wcount = (i > 16) ? 16 : i;
431
432                 i -= wcount;
433                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
434         }
435 }
436
437 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
438 {
439         if (rq->rq_disk) {
440                 ide_driver_t *drv;
441
442                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
443                 drv->end_request(drive, 0, 0);
444         } else
445                 ide_end_request(drive, 0, 0);
446 }
447
448 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
449 {
450         ide_hwif_t *hwif = drive->hwif;
451
452         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
453                 /* other bits are useless when BUSY */
454                 rq->errors |= ERROR_RESET;
455         } else if (stat & ERR_STAT) {
456                 /* err has different meaning on cdrom and tape */
457                 if (err == ABRT_ERR) {
458                         if (drive->select.b.lba &&
459                             /* some newer drives don't support WIN_SPECIFY */
460                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
461                                 return ide_stopped;
462                 } else if ((err & BAD_CRC) == BAD_CRC) {
463                         /* UDMA crc error, just retry the operation */
464                         drive->crc_count++;
465                 } else if (err & (BBD_ERR | ECC_ERR)) {
466                         /* retries won't help these */
467                         rq->errors = ERROR_MAX;
468                 } else if (err & TRK0_ERR) {
469                         /* help it find track zero */
470                         rq->errors |= ERROR_RECAL;
471                 }
472         }
473
474         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
475             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
476                 try_to_flush_leftover_data(drive);
477
478         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
479                 ide_kill_rq(drive, rq);
480                 return ide_stopped;
481         }
482
483         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
484                 rq->errors |= ERROR_RESET;
485
486         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
487                 ++rq->errors;
488                 return ide_do_reset(drive);
489         }
490
491         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
492                 drive->special.b.recalibrate = 1;
493
494         ++rq->errors;
495
496         return ide_stopped;
497 }
498
499 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
500 {
501         ide_hwif_t *hwif = drive->hwif;
502
503         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
504                 /* other bits are useless when BUSY */
505                 rq->errors |= ERROR_RESET;
506         } else {
507                 /* add decoding error stuff */
508         }
509
510         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
511                 /* force an abort */
512                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
513
514         if (rq->errors >= ERROR_MAX) {
515                 ide_kill_rq(drive, rq);
516         } else {
517                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
518                         ++rq->errors;
519                         return ide_do_reset(drive);
520                 }
521                 ++rq->errors;
522         }
523
524         return ide_stopped;
525 }
526
527 ide_startstop_t
528 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
529 {
530         if (drive->media == ide_disk)
531                 return ide_ata_error(drive, rq, stat, err);
532         return ide_atapi_error(drive, rq, stat, err);
533 }
534
535 EXPORT_SYMBOL_GPL(__ide_error);
536
537 /**
538  *      ide_error       -       handle an error on the IDE
539  *      @drive: drive the error occurred on
540  *      @msg: message to report
541  *      @stat: status bits
542  *
543  *      ide_error() takes action based on the error returned by the drive.
544  *      For normal I/O that may well include retries. We deal with
545  *      both new-style (taskfile) and old style command handling here.
546  *      In the case of taskfile command handling there is work left to
547  *      do
548  */
549  
550 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
551 {
552         struct request *rq;
553         u8 err;
554
555         err = ide_dump_status(drive, msg, stat);
556
557         if ((rq = HWGROUP(drive)->rq) == NULL)
558                 return ide_stopped;
559
560         /* retry only "normal" I/O: */
561         if (!blk_fs_request(rq)) {
562                 rq->errors = 1;
563                 ide_end_drive_cmd(drive, stat, err);
564                 return ide_stopped;
565         }
566
567         if (rq->rq_disk) {
568                 ide_driver_t *drv;
569
570                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
571                 return drv->error(drive, rq, stat, err);
572         } else
573                 return __ide_error(drive, rq, stat, err);
574 }
575
576 EXPORT_SYMBOL_GPL(ide_error);
577
578 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
579 {
580         if (drive->media != ide_disk)
581                 rq->errors |= ERROR_RESET;
582
583         ide_kill_rq(drive, rq);
584
585         return ide_stopped;
586 }
587
588 EXPORT_SYMBOL_GPL(__ide_abort);
589
590 /**
591  *      ide_abort       -       abort pending IDE operations
592  *      @drive: drive the error occurred on
593  *      @msg: message to report
594  *
595  *      ide_abort kills and cleans up when we are about to do a 
596  *      host initiated reset on active commands. Longer term we
597  *      want handlers to have sensible abort handling themselves
598  *
599  *      This differs fundamentally from ide_error because in 
600  *      this case the command is doing just fine when we
601  *      blow it away.
602  */
603  
604 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
605 {
606         struct request *rq;
607
608         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
609                 return ide_stopped;
610
611         /* retry only "normal" I/O: */
612         if (!blk_fs_request(rq)) {
613                 rq->errors = 1;
614                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
615                 return ide_stopped;
616         }
617
618         if (rq->rq_disk) {
619                 ide_driver_t *drv;
620
621                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
622                 return drv->abort(drive, rq);
623         } else
624                 return __ide_abort(drive, rq);
625 }
626
627 /**
628  *      drive_cmd_intr          -       drive command completion interrupt
629  *      @drive: drive the completion interrupt occurred on
630  *
631  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
632  *      We do any necessary data reading and then wait for the drive to
633  *      go non busy. At that point we may read the error data and complete
634  *      the request
635  */
636  
637 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
638 {
639         struct request *rq = HWGROUP(drive)->rq;
640         ide_hwif_t *hwif = HWIF(drive);
641         u8 *args = (u8 *)rq->buffer, pio_in = (args && args[3]) ? 1 : 0, stat;
642
643         if (pio_in) {
644                 u8 io_32bit = drive->io_32bit;
645                 stat = hwif->INB(IDE_STATUS_REG);
646                 if ((stat & DRQ_STAT) == 0)
647                         goto out;
648                 drive->io_32bit = 0;
649                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
650                 drive->io_32bit = io_32bit;
651                 stat = wait_drive_not_busy(drive);
652         } else {
653                 local_irq_enable_in_hardirq();
654                 stat = hwif->INB(IDE_STATUS_REG);
655         }
656 out:
657         if (!OK_STAT(stat, READY_STAT, BAD_STAT))
658                 return ide_error(drive, "drive_cmd", stat);
659                 /* calls ide_end_drive_cmd */
660         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
661         return ide_stopped;
662 }
663
664 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
665 {
666         tf->nsect   = drive->sect;
667         tf->lbal    = drive->sect;
668         tf->lbam    = drive->cyl;
669         tf->lbah    = drive->cyl >> 8;
670         tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
671         tf->command = WIN_SPECIFY;
672 }
673
674 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
675 {
676         tf->nsect   = drive->sect;
677         tf->command = WIN_RESTORE;
678 }
679
680 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
681 {
682         tf->nsect   = drive->mult_req;
683         tf->command = WIN_SETMULT;
684 }
685
686 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
687 {
688         special_t *s = &drive->special;
689         ide_task_t args;
690
691         memset(&args, 0, sizeof(ide_task_t));
692         args.data_phase = TASKFILE_NO_DATA;
693
694         if (s->b.set_geometry) {
695                 s->b.set_geometry = 0;
696                 ide_tf_set_specify_cmd(drive, &args.tf);
697         } else if (s->b.recalibrate) {
698                 s->b.recalibrate = 0;
699                 ide_tf_set_restore_cmd(drive, &args.tf);
700         } else if (s->b.set_multmode) {
701                 s->b.set_multmode = 0;
702                 if (drive->mult_req > drive->id->max_multsect)
703                         drive->mult_req = drive->id->max_multsect;
704                 ide_tf_set_setmult_cmd(drive, &args.tf);
705         } else if (s->all) {
706                 int special = s->all;
707                 s->all = 0;
708                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
709                 return ide_stopped;
710         }
711
712         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
713                         IDE_TFLAG_CUSTOM_HANDLER;
714
715         do_rw_taskfile(drive, &args);
716
717         return ide_started;
718 }
719
720 /*
721  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
722  */
723 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
724 {
725         switch (req_pio) {
726         case 202:
727         case 201:
728         case 200:
729         case 102:
730         case 101:
731         case 100:
732                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
733         case 9:
734         case 8:
735                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
736         case 7:
737         case 6:
738                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
739         default:
740                 return 0;
741         }
742 }
743
744 /**
745  *      do_special              -       issue some special commands
746  *      @drive: drive the command is for
747  *
748  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
749  *      commands to a drive.  It used to do much more, but has been scaled
750  *      back.
751  */
752
753 static ide_startstop_t do_special (ide_drive_t *drive)
754 {
755         special_t *s = &drive->special;
756
757 #ifdef DEBUG
758         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
759 #endif
760         if (s->b.set_tune) {
761                 ide_hwif_t *hwif = drive->hwif;
762                 u8 req_pio = drive->tune_req;
763
764                 s->b.set_tune = 0;
765
766                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
767
768                         if (hwif->set_pio_mode == NULL)
769                                 return ide_stopped;
770
771                         /*
772                          * take ide_lock for drive->[no_]unmask/[no_]io_32bit
773                          */
774                         if (req_pio == 8 || req_pio == 9) {
775                                 unsigned long flags;
776
777                                 spin_lock_irqsave(&ide_lock, flags);
778                                 hwif->set_pio_mode(drive, req_pio);
779                                 spin_unlock_irqrestore(&ide_lock, flags);
780                         } else
781                                 hwif->set_pio_mode(drive, req_pio);
782                 } else {
783                         int keep_dma = drive->using_dma;
784
785                         ide_set_pio(drive, req_pio);
786
787                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
788                                 if (keep_dma)
789                                         ide_dma_on(drive);
790                         }
791                 }
792
793                 return ide_stopped;
794         } else {
795                 if (drive->media == ide_disk)
796                         return ide_disk_special(drive);
797
798                 s->all = 0;
799                 drive->mult_req = 0;
800                 return ide_stopped;
801         }
802 }
803
804 void ide_map_sg(ide_drive_t *drive, struct request *rq)
805 {
806         ide_hwif_t *hwif = drive->hwif;
807         struct scatterlist *sg = hwif->sg_table;
808
809         if (hwif->sg_mapped)    /* needed by ide-scsi */
810                 return;
811
812         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
813                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
814         } else {
815                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
816                 hwif->sg_nents = 1;
817         }
818 }
819
820 EXPORT_SYMBOL_GPL(ide_map_sg);
821
822 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
823 {
824         ide_hwif_t *hwif = drive->hwif;
825
826         hwif->nsect = hwif->nleft = rq->nr_sectors;
827         hwif->cursg_ofs = 0;
828         hwif->cursg = NULL;
829 }
830
831 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
832
833 /**
834  *      execute_drive_command   -       issue special drive command
835  *      @drive: the drive to issue the command on
836  *      @rq: the request structure holding the command
837  *
838  *      execute_drive_cmd() issues a special drive command,  usually 
839  *      initiated by ioctl() from the external hdparm program. The
840  *      command can be a drive command, drive task or taskfile 
841  *      operation. Weirdly you can call it with NULL to wait for
842  *      all commands to finish. Don't do this as that is due to change
843  */
844
845 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
846                 struct request *rq)
847 {
848         ide_hwif_t *hwif = HWIF(drive);
849         u8 *args = rq->buffer;
850         ide_task_t ltask;
851         struct ide_taskfile *tf = &ltask.tf;
852
853         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
854                 ide_task_t *task = rq->special;
855  
856                 if (task == NULL)
857                         goto done;
858
859                 hwif->data_phase = task->data_phase;
860
861                 switch (hwif->data_phase) {
862                 case TASKFILE_MULTI_OUT:
863                 case TASKFILE_OUT:
864                 case TASKFILE_MULTI_IN:
865                 case TASKFILE_IN:
866                         ide_init_sg_cmd(drive, rq);
867                         ide_map_sg(drive, rq);
868                 default:
869                         break;
870                 }
871
872                 return do_rw_taskfile(drive, task);
873         }
874
875         if (args == NULL)
876                 goto done;
877
878         memset(&ltask, 0, sizeof(ltask));
879         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
880 #ifdef DEBUG
881                 printk("%s: DRIVE_CMD\n", drive->name);
882 #endif
883                 tf->feature = args[2];
884                 if (args[0] == WIN_SMART) {
885                         tf->nsect = args[3];
886                         tf->lbal  = args[1];
887                         tf->lbam  = 0x4f;
888                         tf->lbah  = 0xc2;
889                         ltask.tf_flags = IDE_TFLAG_OUT_TF;
890                 } else {
891                         tf->nsect = args[1];
892                         ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
893                                          IDE_TFLAG_OUT_NSECT;
894                 }
895         }
896         tf->command = args[0];
897         ide_tf_load(drive, &ltask);
898         ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
899         return ide_started;
900
901 done:
902         /*
903          * NULL is actually a valid way of waiting for
904          * all current requests to be flushed from the queue.
905          */
906 #ifdef DEBUG
907         printk("%s: DRIVE_CMD (null)\n", drive->name);
908 #endif
909         ide_end_drive_cmd(drive,
910                         hwif->INB(IDE_STATUS_REG),
911                         hwif->INB(IDE_ERROR_REG));
912         return ide_stopped;
913 }
914
915 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
916 {
917         struct request_pm_state *pm = rq->data;
918
919         if (blk_pm_suspend_request(rq) &&
920             pm->pm_step == ide_pm_state_start_suspend)
921                 /* Mark drive blocked when starting the suspend sequence. */
922                 drive->blocked = 1;
923         else if (blk_pm_resume_request(rq) &&
924                  pm->pm_step == ide_pm_state_start_resume) {
925                 /* 
926                  * The first thing we do on wakeup is to wait for BSY bit to
927                  * go away (with a looong timeout) as a drive on this hwif may
928                  * just be POSTing itself.
929                  * We do that before even selecting as the "other" device on
930                  * the bus may be broken enough to walk on our toes at this
931                  * point.
932                  */
933                 int rc;
934 #ifdef DEBUG_PM
935                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
936 #endif
937                 rc = ide_wait_not_busy(HWIF(drive), 35000);
938                 if (rc)
939                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
940                 SELECT_DRIVE(drive);
941                 ide_set_irq(drive, 1);
942                 rc = ide_wait_not_busy(HWIF(drive), 100000);
943                 if (rc)
944                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
945         }
946 }
947
948 /**
949  *      start_request   -       start of I/O and command issuing for IDE
950  *
951  *      start_request() initiates handling of a new I/O request. It
952  *      accepts commands and I/O (read/write) requests. It also does
953  *      the final remapping for weird stuff like EZDrive. Once 
954  *      device mapper can work sector level the EZDrive stuff can go away
955  *
956  *      FIXME: this function needs a rename
957  */
958  
959 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
960 {
961         ide_startstop_t startstop;
962         sector_t block;
963
964         BUG_ON(!blk_rq_started(rq));
965
966 #ifdef DEBUG
967         printk("%s: start_request: current=0x%08lx\n",
968                 HWIF(drive)->name, (unsigned long) rq);
969 #endif
970
971         /* bail early if we've exceeded max_failures */
972         if (drive->max_failures && (drive->failures > drive->max_failures)) {
973                 rq->cmd_flags |= REQ_FAILED;
974                 goto kill_rq;
975         }
976
977         block    = rq->sector;
978         if (blk_fs_request(rq) &&
979             (drive->media == ide_disk || drive->media == ide_floppy)) {
980                 block += drive->sect0;
981         }
982         /* Yecch - this will shift the entire interval,
983            possibly killing some innocent following sector */
984         if (block == 0 && drive->remap_0_to_1 == 1)
985                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
986
987         if (blk_pm_request(rq))
988                 ide_check_pm_state(drive, rq);
989
990         SELECT_DRIVE(drive);
991         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
992                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
993                 return startstop;
994         }
995         if (!drive->special.all) {
996                 ide_driver_t *drv;
997
998                 /*
999                  * We reset the drive so we need to issue a SETFEATURES.
1000                  * Do it _after_ do_special() restored device parameters.
1001                  */
1002                 if (drive->current_speed == 0xff)
1003                         ide_config_drive_speed(drive, drive->desired_speed);
1004
1005                 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1006                     rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1007                         return execute_drive_cmd(drive, rq);
1008                 else if (blk_pm_request(rq)) {
1009                         struct request_pm_state *pm = rq->data;
1010 #ifdef DEBUG_PM
1011                         printk("%s: start_power_step(step: %d)\n",
1012                                 drive->name, rq->pm->pm_step);
1013 #endif
1014                         startstop = ide_start_power_step(drive, rq);
1015                         if (startstop == ide_stopped &&
1016                             pm->pm_step == ide_pm_state_completed)
1017                                 ide_complete_pm_request(drive, rq);
1018                         return startstop;
1019                 }
1020
1021                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1022                 return drv->do_request(drive, rq, block);
1023         }
1024         return do_special(drive);
1025 kill_rq:
1026         ide_kill_rq(drive, rq);
1027         return ide_stopped;
1028 }
1029
1030 /**
1031  *      ide_stall_queue         -       pause an IDE device
1032  *      @drive: drive to stall
1033  *      @timeout: time to stall for (jiffies)
1034  *
1035  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
1036  *      to the hwgroup by sleeping for timeout jiffies.
1037  */
1038  
1039 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1040 {
1041         if (timeout > WAIT_WORSTCASE)
1042                 timeout = WAIT_WORSTCASE;
1043         drive->sleep = timeout + jiffies;
1044         drive->sleeping = 1;
1045 }
1046
1047 EXPORT_SYMBOL(ide_stall_queue);
1048
1049 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
1050
1051 /**
1052  *      choose_drive            -       select a drive to service
1053  *      @hwgroup: hardware group to select on
1054  *
1055  *      choose_drive() selects the next drive which will be serviced.
1056  *      This is necessary because the IDE layer can't issue commands
1057  *      to both drives on the same cable, unlike SCSI.
1058  */
1059  
1060 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1061 {
1062         ide_drive_t *drive, *best;
1063
1064 repeat: 
1065         best = NULL;
1066         drive = hwgroup->drive;
1067
1068         /*
1069          * drive is doing pre-flush, ordered write, post-flush sequence. even
1070          * though that is 3 requests, it must be seen as a single transaction.
1071          * we must not preempt this drive until that is complete
1072          */
1073         if (blk_queue_flushing(drive->queue)) {
1074                 /*
1075                  * small race where queue could get replugged during
1076                  * the 3-request flush cycle, just yank the plug since
1077                  * we want it to finish asap
1078                  */
1079                 blk_remove_plug(drive->queue);
1080                 return drive;
1081         }
1082
1083         do {
1084                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1085                     && !elv_queue_empty(drive->queue)) {
1086                         if (!best
1087                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1088                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1089                         {
1090                                 if (!blk_queue_plugged(drive->queue))
1091                                         best = drive;
1092                         }
1093                 }
1094         } while ((drive = drive->next) != hwgroup->drive);
1095         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1096                 long t = (signed long)(WAKEUP(best) - jiffies);
1097                 if (t >= WAIT_MIN_SLEEP) {
1098                 /*
1099                  * We *may* have some time to spare, but first let's see if
1100                  * someone can potentially benefit from our nice mood today..
1101                  */
1102                         drive = best->next;
1103                         do {
1104                                 if (!drive->sleeping
1105                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1106                                  && time_before(WAKEUP(drive), jiffies + t))
1107                                 {
1108                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1109                                         goto repeat;
1110                                 }
1111                         } while ((drive = drive->next) != best);
1112                 }
1113         }
1114         return best;
1115 }
1116
1117 /*
1118  * Issue a new request to a drive from hwgroup
1119  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1120  *
1121  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1122  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1123  * may have both interfaces in a single hwgroup to "serialize" access.
1124  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1125  * together into one hwgroup for serialized access.
1126  *
1127  * Note also that several hwgroups can end up sharing a single IRQ,
1128  * possibly along with many other devices.  This is especially common in
1129  * PCI-based systems with off-board IDE controller cards.
1130  *
1131  * The IDE driver uses the single global ide_lock spinlock to protect
1132  * access to the request queues, and to protect the hwgroup->busy flag.
1133  *
1134  * The first thread into the driver for a particular hwgroup sets the
1135  * hwgroup->busy flag to indicate that this hwgroup is now active,
1136  * and then initiates processing of the top request from the request queue.
1137  *
1138  * Other threads attempting entry notice the busy setting, and will simply
1139  * queue their new requests and exit immediately.  Note that hwgroup->busy
1140  * remains set even when the driver is merely awaiting the next interrupt.
1141  * Thus, the meaning is "this hwgroup is busy processing a request".
1142  *
1143  * When processing of a request completes, the completing thread or IRQ-handler
1144  * will start the next request from the queue.  If no more work remains,
1145  * the driver will clear the hwgroup->busy flag and exit.
1146  *
1147  * The ide_lock (spinlock) is used to protect all access to the
1148  * hwgroup->busy flag, but is otherwise not needed for most processing in
1149  * the driver.  This makes the driver much more friendlier to shared IRQs
1150  * than previous designs, while remaining 100% (?) SMP safe and capable.
1151  */
1152 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1153 {
1154         ide_drive_t     *drive;
1155         ide_hwif_t      *hwif;
1156         struct request  *rq;
1157         ide_startstop_t startstop;
1158         int             loops = 0;
1159
1160         /* for atari only: POSSIBLY BROKEN HERE(?) */
1161         ide_get_lock(ide_intr, hwgroup);
1162
1163         /* caller must own ide_lock */
1164         BUG_ON(!irqs_disabled());
1165
1166         while (!hwgroup->busy) {
1167                 hwgroup->busy = 1;
1168                 drive = choose_drive(hwgroup);
1169                 if (drive == NULL) {
1170                         int sleeping = 0;
1171                         unsigned long sleep = 0; /* shut up, gcc */
1172                         hwgroup->rq = NULL;
1173                         drive = hwgroup->drive;
1174                         do {
1175                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1176                                         sleeping = 1;
1177                                         sleep = drive->sleep;
1178                                 }
1179                         } while ((drive = drive->next) != hwgroup->drive);
1180                         if (sleeping) {
1181                 /*
1182                  * Take a short snooze, and then wake up this hwgroup again.
1183                  * This gives other hwgroups on the same a chance to
1184                  * play fairly with us, just in case there are big differences
1185                  * in relative throughputs.. don't want to hog the cpu too much.
1186                  */
1187                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1188                                         sleep = jiffies + WAIT_MIN_SLEEP;
1189 #if 1
1190                                 if (timer_pending(&hwgroup->timer))
1191                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1192 #endif
1193                                 /* so that ide_timer_expiry knows what to do */
1194                                 hwgroup->sleeping = 1;
1195                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1196                                 mod_timer(&hwgroup->timer, sleep);
1197                                 /* we purposely leave hwgroup->busy==1
1198                                  * while sleeping */
1199                         } else {
1200                                 /* Ugly, but how can we sleep for the lock
1201                                  * otherwise? perhaps from tq_disk?
1202                                  */
1203
1204                                 /* for atari only */
1205                                 ide_release_lock();
1206                                 hwgroup->busy = 0;
1207                         }
1208
1209                         /* no more work for this hwgroup (for now) */
1210                         return;
1211                 }
1212         again:
1213                 hwif = HWIF(drive);
1214                 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1215                         /*
1216                          * set nIEN for previous hwif, drives in the
1217                          * quirk_list may not like intr setups/cleanups
1218                          */
1219                         if (drive->quirk_list != 1)
1220                                 ide_set_irq(drive, 0);
1221                 }
1222                 hwgroup->hwif = hwif;
1223                 hwgroup->drive = drive;
1224                 drive->sleeping = 0;
1225                 drive->service_start = jiffies;
1226
1227                 if (blk_queue_plugged(drive->queue)) {
1228                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1229                         break;
1230                 }
1231
1232                 /*
1233                  * we know that the queue isn't empty, but this can happen
1234                  * if the q->prep_rq_fn() decides to kill a request
1235                  */
1236                 rq = elv_next_request(drive->queue);
1237                 if (!rq) {
1238                         hwgroup->busy = 0;
1239                         break;
1240                 }
1241
1242                 /*
1243                  * Sanity: don't accept a request that isn't a PM request
1244                  * if we are currently power managed. This is very important as
1245                  * blk_stop_queue() doesn't prevent the elv_next_request()
1246                  * above to return us whatever is in the queue. Since we call
1247                  * ide_do_request() ourselves, we end up taking requests while
1248                  * the queue is blocked...
1249                  * 
1250                  * We let requests forced at head of queue with ide-preempt
1251                  * though. I hope that doesn't happen too much, hopefully not
1252                  * unless the subdriver triggers such a thing in its own PM
1253                  * state machine.
1254                  *
1255                  * We count how many times we loop here to make sure we service
1256                  * all drives in the hwgroup without looping for ever
1257                  */
1258                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1259                         drive = drive->next ? drive->next : hwgroup->drive;
1260                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1261                                 goto again;
1262                         /* We clear busy, there should be no pending ATA command at this point. */
1263                         hwgroup->busy = 0;
1264                         break;
1265                 }
1266
1267                 hwgroup->rq = rq;
1268
1269                 /*
1270                  * Some systems have trouble with IDE IRQs arriving while
1271                  * the driver is still setting things up.  So, here we disable
1272                  * the IRQ used by this interface while the request is being started.
1273                  * This may look bad at first, but pretty much the same thing
1274                  * happens anyway when any interrupt comes in, IDE or otherwise
1275                  *  -- the kernel masks the IRQ while it is being handled.
1276                  */
1277                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1278                         disable_irq_nosync(hwif->irq);
1279                 spin_unlock(&ide_lock);
1280                 local_irq_enable_in_hardirq();
1281                         /* allow other IRQs while we start this request */
1282                 startstop = start_request(drive, rq);
1283                 spin_lock_irq(&ide_lock);
1284                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1285                         enable_irq(hwif->irq);
1286                 if (startstop == ide_stopped)
1287                         hwgroup->busy = 0;
1288         }
1289 }
1290
1291 /*
1292  * Passes the stuff to ide_do_request
1293  */
1294 void do_ide_request(struct request_queue *q)
1295 {
1296         ide_drive_t *drive = q->queuedata;
1297
1298         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1299 }
1300
1301 /*
1302  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1303  * retry the current request in pio mode instead of risking tossing it
1304  * all away
1305  */
1306 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1307 {
1308         ide_hwif_t *hwif = HWIF(drive);
1309         struct request *rq;
1310         ide_startstop_t ret = ide_stopped;
1311
1312         /*
1313          * end current dma transaction
1314          */
1315
1316         if (error < 0) {
1317                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1318                 (void)HWIF(drive)->ide_dma_end(drive);
1319                 ret = ide_error(drive, "dma timeout error",
1320                                                 hwif->INB(IDE_STATUS_REG));
1321         } else {
1322                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1323                 hwif->dma_timeout(drive);
1324         }
1325
1326         /*
1327          * disable dma for now, but remember that we did so because of
1328          * a timeout -- we'll reenable after we finish this next request
1329          * (or rather the first chunk of it) in pio.
1330          */
1331         drive->retry_pio++;
1332         drive->state = DMA_PIO_RETRY;
1333         ide_dma_off_quietly(drive);
1334
1335         /*
1336          * un-busy drive etc (hwgroup->busy is cleared on return) and
1337          * make sure request is sane
1338          */
1339         rq = HWGROUP(drive)->rq;
1340
1341         if (!rq)
1342                 goto out;
1343
1344         HWGROUP(drive)->rq = NULL;
1345
1346         rq->errors = 0;
1347
1348         if (!rq->bio)
1349                 goto out;
1350
1351         rq->sector = rq->bio->bi_sector;
1352         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1353         rq->hard_cur_sectors = rq->current_nr_sectors;
1354         rq->buffer = bio_data(rq->bio);
1355 out:
1356         return ret;
1357 }
1358
1359 /**
1360  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1361  *      @data: timer callback magic (hwgroup)
1362  *
1363  *      An IDE command has timed out before the expected drive return
1364  *      occurred. At this point we attempt to clean up the current
1365  *      mess. If the current handler includes an expiry handler then
1366  *      we invoke the expiry handler, and providing it is happy the
1367  *      work is done. If that fails we apply generic recovery rules
1368  *      invoking the handler and checking the drive DMA status. We
1369  *      have an excessively incestuous relationship with the DMA
1370  *      logic that wants cleaning up.
1371  */
1372  
1373 void ide_timer_expiry (unsigned long data)
1374 {
1375         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1376         ide_handler_t   *handler;
1377         ide_expiry_t    *expiry;
1378         unsigned long   flags;
1379         unsigned long   wait = -1;
1380
1381         spin_lock_irqsave(&ide_lock, flags);
1382
1383         if (((handler = hwgroup->handler) == NULL) ||
1384             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1385                 /*
1386                  * Either a marginal timeout occurred
1387                  * (got the interrupt just as timer expired),
1388                  * or we were "sleeping" to give other devices a chance.
1389                  * Either way, we don't really want to complain about anything.
1390                  */
1391                 if (hwgroup->sleeping) {
1392                         hwgroup->sleeping = 0;
1393                         hwgroup->busy = 0;
1394                 }
1395         } else {
1396                 ide_drive_t *drive = hwgroup->drive;
1397                 if (!drive) {
1398                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1399                         hwgroup->handler = NULL;
1400                 } else {
1401                         ide_hwif_t *hwif;
1402                         ide_startstop_t startstop = ide_stopped;
1403                         if (!hwgroup->busy) {
1404                                 hwgroup->busy = 1;      /* paranoia */
1405                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1406                         }
1407                         if ((expiry = hwgroup->expiry) != NULL) {
1408                                 /* continue */
1409                                 if ((wait = expiry(drive)) > 0) {
1410                                         /* reset timer */
1411                                         hwgroup->timer.expires  = jiffies + wait;
1412                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1413                                         add_timer(&hwgroup->timer);
1414                                         spin_unlock_irqrestore(&ide_lock, flags);
1415                                         return;
1416                                 }
1417                         }
1418                         hwgroup->handler = NULL;
1419                         /*
1420                          * We need to simulate a real interrupt when invoking
1421                          * the handler() function, which means we need to
1422                          * globally mask the specific IRQ:
1423                          */
1424                         spin_unlock(&ide_lock);
1425                         hwif  = HWIF(drive);
1426                         /* disable_irq_nosync ?? */
1427                         disable_irq(hwif->irq);
1428                         /* local CPU only,
1429                          * as if we were handling an interrupt */
1430                         local_irq_disable();
1431                         if (hwgroup->polling) {
1432                                 startstop = handler(drive);
1433                         } else if (drive_is_ready(drive)) {
1434                                 if (drive->waiting_for_dma)
1435                                         hwgroup->hwif->dma_lost_irq(drive);
1436                                 (void)ide_ack_intr(hwif);
1437                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1438                                 startstop = handler(drive);
1439                         } else {
1440                                 if (drive->waiting_for_dma) {
1441                                         startstop = ide_dma_timeout_retry(drive, wait);
1442                                 } else
1443                                         startstop =
1444                                         ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1445                         }
1446                         drive->service_time = jiffies - drive->service_start;
1447                         spin_lock_irq(&ide_lock);
1448                         enable_irq(hwif->irq);
1449                         if (startstop == ide_stopped)
1450                                 hwgroup->busy = 0;
1451                 }
1452         }
1453         ide_do_request(hwgroup, IDE_NO_IRQ);
1454         spin_unlock_irqrestore(&ide_lock, flags);
1455 }
1456
1457 /**
1458  *      unexpected_intr         -       handle an unexpected IDE interrupt
1459  *      @irq: interrupt line
1460  *      @hwgroup: hwgroup being processed
1461  *
1462  *      There's nothing really useful we can do with an unexpected interrupt,
1463  *      other than reading the status register (to clear it), and logging it.
1464  *      There should be no way that an irq can happen before we're ready for it,
1465  *      so we needn't worry much about losing an "important" interrupt here.
1466  *
1467  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1468  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1469  *      looks "good", we just ignore the interrupt completely.
1470  *
1471  *      This routine assumes __cli() is in effect when called.
1472  *
1473  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1474  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1475  *      we could screw up by interfering with a new request being set up for 
1476  *      irq15.
1477  *
1478  *      In reality, this is a non-issue.  The new command is not sent unless 
1479  *      the drive is ready to accept one, in which case we know the drive is
1480  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1481  *      before completing the issuance of any new drive command, so we will not
1482  *      be accidentally invoked as a result of any valid command completion
1483  *      interrupt.
1484  *
1485  *      Note that we must walk the entire hwgroup here. We know which hwif
1486  *      is doing the current command, but we don't know which hwif burped
1487  *      mysteriously.
1488  */
1489  
1490 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1491 {
1492         u8 stat;
1493         ide_hwif_t *hwif = hwgroup->hwif;
1494
1495         /*
1496          * handle the unexpected interrupt
1497          */
1498         do {
1499                 if (hwif->irq == irq) {
1500                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1501                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1502                                 /* Try to not flood the console with msgs */
1503                                 static unsigned long last_msgtime, count;
1504                                 ++count;
1505                                 if (time_after(jiffies, last_msgtime + HZ)) {
1506                                         last_msgtime = jiffies;
1507                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1508                                                 "status=0x%02x, count=%ld\n",
1509                                                 hwif->name,
1510                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1511                                 }
1512                         }
1513                 }
1514         } while ((hwif = hwif->next) != hwgroup->hwif);
1515 }
1516
1517 /**
1518  *      ide_intr        -       default IDE interrupt handler
1519  *      @irq: interrupt number
1520  *      @dev_id: hwif group
1521  *      @regs: unused weirdness from the kernel irq layer
1522  *
1523  *      This is the default IRQ handler for the IDE layer. You should
1524  *      not need to override it. If you do be aware it is subtle in
1525  *      places
1526  *
1527  *      hwgroup->hwif is the interface in the group currently performing
1528  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1529  *      the IRQ handler to call. As we issue a command the handlers
1530  *      step through multiple states, reassigning the handler to the
1531  *      next step in the process. Unlike a smart SCSI controller IDE
1532  *      expects the main processor to sequence the various transfer
1533  *      stages. We also manage a poll timer to catch up with most
1534  *      timeout situations. There are still a few where the handlers
1535  *      don't ever decide to give up.
1536  *
1537  *      The handler eventually returns ide_stopped to indicate the
1538  *      request completed. At this point we issue the next request
1539  *      on the hwgroup and the process begins again.
1540  */
1541  
1542 irqreturn_t ide_intr (int irq, void *dev_id)
1543 {
1544         unsigned long flags;
1545         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1546         ide_hwif_t *hwif;
1547         ide_drive_t *drive;
1548         ide_handler_t *handler;
1549         ide_startstop_t startstop;
1550
1551         spin_lock_irqsave(&ide_lock, flags);
1552         hwif = hwgroup->hwif;
1553
1554         if (!ide_ack_intr(hwif)) {
1555                 spin_unlock_irqrestore(&ide_lock, flags);
1556                 return IRQ_NONE;
1557         }
1558
1559         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1560                 /*
1561                  * Not expecting an interrupt from this drive.
1562                  * That means this could be:
1563                  *      (1) an interrupt from another PCI device
1564                  *      sharing the same PCI INT# as us.
1565                  * or   (2) a drive just entered sleep or standby mode,
1566                  *      and is interrupting to let us know.
1567                  * or   (3) a spurious interrupt of unknown origin.
1568                  *
1569                  * For PCI, we cannot tell the difference,
1570                  * so in that case we just ignore it and hope it goes away.
1571                  *
1572                  * FIXME: unexpected_intr should be hwif-> then we can
1573                  * remove all the ifdef PCI crap
1574                  */
1575 #ifdef CONFIG_BLK_DEV_IDEPCI
1576                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1577 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1578                 {
1579                         /*
1580                          * Probably not a shared PCI interrupt,
1581                          * so we can safely try to do something about it:
1582                          */
1583                         unexpected_intr(irq, hwgroup);
1584 #ifdef CONFIG_BLK_DEV_IDEPCI
1585                 } else {
1586                         /*
1587                          * Whack the status register, just in case
1588                          * we have a leftover pending IRQ.
1589                          */
1590                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1591 #endif /* CONFIG_BLK_DEV_IDEPCI */
1592                 }
1593                 spin_unlock_irqrestore(&ide_lock, flags);
1594                 return IRQ_NONE;
1595         }
1596         drive = hwgroup->drive;
1597         if (!drive) {
1598                 /*
1599                  * This should NEVER happen, and there isn't much
1600                  * we could do about it here.
1601                  *
1602                  * [Note - this can occur if the drive is hot unplugged]
1603                  */
1604                 spin_unlock_irqrestore(&ide_lock, flags);
1605                 return IRQ_HANDLED;
1606         }
1607         if (!drive_is_ready(drive)) {
1608                 /*
1609                  * This happens regularly when we share a PCI IRQ with
1610                  * another device.  Unfortunately, it can also happen
1611                  * with some buggy drives that trigger the IRQ before
1612                  * their status register is up to date.  Hopefully we have
1613                  * enough advance overhead that the latter isn't a problem.
1614                  */
1615                 spin_unlock_irqrestore(&ide_lock, flags);
1616                 return IRQ_NONE;
1617         }
1618         if (!hwgroup->busy) {
1619                 hwgroup->busy = 1;      /* paranoia */
1620                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1621         }
1622         hwgroup->handler = NULL;
1623         hwgroup->req_gen++;
1624         del_timer(&hwgroup->timer);
1625         spin_unlock(&ide_lock);
1626
1627         /* Some controllers might set DMA INTR no matter DMA or PIO;
1628          * bmdma status might need to be cleared even for
1629          * PIO interrupts to prevent spurious/lost irq.
1630          */
1631         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1632                 /* ide_dma_end() needs bmdma status for error checking.
1633                  * So, skip clearing bmdma status here and leave it
1634                  * to ide_dma_end() if this is dma interrupt.
1635                  */
1636                 hwif->ide_dma_clear_irq(drive);
1637
1638         if (drive->unmask)
1639                 local_irq_enable_in_hardirq();
1640         /* service this interrupt, may set handler for next interrupt */
1641         startstop = handler(drive);
1642         spin_lock_irq(&ide_lock);
1643
1644         /*
1645          * Note that handler() may have set things up for another
1646          * interrupt to occur soon, but it cannot happen until
1647          * we exit from this routine, because it will be the
1648          * same irq as is currently being serviced here, and Linux
1649          * won't allow another of the same (on any CPU) until we return.
1650          */
1651         drive->service_time = jiffies - drive->service_start;
1652         if (startstop == ide_stopped) {
1653                 if (hwgroup->handler == NULL) { /* paranoia */
1654                         hwgroup->busy = 0;
1655                         ide_do_request(hwgroup, hwif->irq);
1656                 } else {
1657                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1658                                 "on exit\n", drive->name);
1659                 }
1660         }
1661         spin_unlock_irqrestore(&ide_lock, flags);
1662         return IRQ_HANDLED;
1663 }
1664
1665 /**
1666  *      ide_init_drive_cmd      -       initialize a drive command request
1667  *      @rq: request object
1668  *
1669  *      Initialize a request before we fill it in and send it down to
1670  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1671  *      now it doesn't do a lot, but if that changes abusers will have a
1672  *      nasty surprise.
1673  */
1674
1675 void ide_init_drive_cmd (struct request *rq)
1676 {
1677         memset(rq, 0, sizeof(*rq));
1678         rq->ref_count = 1;
1679 }
1680
1681 EXPORT_SYMBOL(ide_init_drive_cmd);
1682
1683 /**
1684  *      ide_do_drive_cmd        -       issue IDE special command
1685  *      @drive: device to issue command
1686  *      @rq: request to issue
1687  *      @action: action for processing
1688  *
1689  *      This function issues a special IDE device request
1690  *      onto the request queue.
1691  *
1692  *      If action is ide_wait, then the rq is queued at the end of the
1693  *      request queue, and the function sleeps until it has been processed.
1694  *      This is for use when invoked from an ioctl handler.
1695  *
1696  *      If action is ide_preempt, then the rq is queued at the head of
1697  *      the request queue, displacing the currently-being-processed
1698  *      request and this function returns immediately without waiting
1699  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1700  *      intended for careful use by the ATAPI tape/cdrom driver code.
1701  *
1702  *      If action is ide_end, then the rq is queued at the end of the
1703  *      request queue, and the function returns immediately without waiting
1704  *      for the new rq to be completed. This is again intended for careful
1705  *      use by the ATAPI tape/cdrom driver code.
1706  */
1707  
1708 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1709 {
1710         unsigned long flags;
1711         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1712         DECLARE_COMPLETION_ONSTACK(wait);
1713         int where = ELEVATOR_INSERT_BACK, err;
1714         int must_wait = (action == ide_wait || action == ide_head_wait);
1715
1716         rq->errors = 0;
1717
1718         /*
1719          * we need to hold an extra reference to request for safe inspection
1720          * after completion
1721          */
1722         if (must_wait) {
1723                 rq->ref_count++;
1724                 rq->end_io_data = &wait;
1725                 rq->end_io = blk_end_sync_rq;
1726         }
1727
1728         spin_lock_irqsave(&ide_lock, flags);
1729         if (action == ide_preempt)
1730                 hwgroup->rq = NULL;
1731         if (action == ide_preempt || action == ide_head_wait) {
1732                 where = ELEVATOR_INSERT_FRONT;
1733                 rq->cmd_flags |= REQ_PREEMPT;
1734         }
1735         __elv_add_request(drive->queue, rq, where, 0);
1736         ide_do_request(hwgroup, IDE_NO_IRQ);
1737         spin_unlock_irqrestore(&ide_lock, flags);
1738
1739         err = 0;
1740         if (must_wait) {
1741                 wait_for_completion(&wait);
1742                 if (rq->errors)
1743                         err = -EIO;
1744
1745                 blk_put_request(rq);
1746         }
1747
1748         return err;
1749 }
1750
1751 EXPORT_SYMBOL(ide_do_drive_cmd);
1752
1753 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1754 {
1755         ide_task_t task;
1756
1757         memset(&task, 0, sizeof(task));
1758         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1759                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1760         task.tf.feature = dma;          /* Use PIO/DMA */
1761         task.tf.lbam    = bcount & 0xff;
1762         task.tf.lbah    = (bcount >> 8) & 0xff;
1763
1764         ide_tf_load(drive, &task);
1765 }
1766
1767 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);