]> err.no Git - linux-2.6/blob - drivers/ide/ide-io.c
ide: remove atapi_feature_t
[linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61
62         /*
63          * if failfast is set on a request, override number of sectors and
64          * complete the whole request right now
65          */
66         if (blk_noretry_request(rq) && end_io_error(uptodate))
67                 nr_bytes = rq->hard_nr_sectors << 9;
68
69         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70                 rq->errors = -EIO;
71
72         /*
73          * decide whether to reenable DMA -- 3 is a random magic for now,
74          * if we DMA timeout more than 3 times, just stay in PIO
75          */
76         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77                 drive->state = 0;
78                 HWGROUP(drive)->hwif->ide_dma_on(drive);
79         }
80
81         if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82                 add_disk_randomness(rq->rq_disk);
83                 if (dequeue) {
84                         if (!list_empty(&rq->queuelist))
85                                 blkdev_dequeue_request(rq);
86                         HWGROUP(drive)->rq = NULL;
87                 }
88                 end_that_request_last(rq, uptodate);
89                 ret = 0;
90         }
91
92         return ret;
93 }
94
95 /**
96  *      ide_end_request         -       complete an IDE I/O
97  *      @drive: IDE device for the I/O
98  *      @uptodate:
99  *      @nr_sectors: number of sectors completed
100  *
101  *      This is our end_request wrapper function. We complete the I/O
102  *      update random number input and dequeue the request, which if
103  *      it was tagged may be out of order.
104  */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108         unsigned int nr_bytes = nr_sectors << 9;
109         struct request *rq;
110         unsigned long flags;
111         int ret = 1;
112
113         /*
114          * room for locking improvements here, the calls below don't
115          * need the queue lock held at all
116          */
117         spin_lock_irqsave(&ide_lock, flags);
118         rq = HWGROUP(drive)->rq;
119
120         if (!nr_bytes) {
121                 if (blk_pc_request(rq))
122                         nr_bytes = rq->data_len;
123                 else
124                         nr_bytes = rq->hard_cur_sectors << 9;
125         }
126
127         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129         spin_unlock_irqrestore(&ide_lock, flags);
130         return ret;
131 }
132 EXPORT_SYMBOL(ide_end_request);
133
134 /*
135  * Power Management state machine. This one is rather trivial for now,
136  * we should probably add more, like switching back to PIO on suspend
137  * to help some BIOSes, re-do the door locking on resume, etc...
138  */
139
140 enum {
141         ide_pm_flush_cache      = ide_pm_state_start_suspend,
142         idedisk_pm_standby,
143
144         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
145         idedisk_pm_idle,
146         ide_pm_restore_dma,
147 };
148
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 {
151         struct request_pm_state *pm = rq->data;
152
153         if (drive->media != ide_disk)
154                 return;
155
156         switch (pm->pm_step) {
157         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
158                 if (pm->pm_state == PM_EVENT_FREEZE)
159                         pm->pm_step = ide_pm_state_completed;
160                 else
161                         pm->pm_step = idedisk_pm_standby;
162                 break;
163         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
164                 pm->pm_step = ide_pm_state_completed;
165                 break;
166         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
167                 pm->pm_step = idedisk_pm_idle;
168                 break;
169         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
170                 pm->pm_step = ide_pm_restore_dma;
171                 break;
172         }
173 }
174
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 {
177         struct request_pm_state *pm = rq->data;
178         ide_task_t *args = rq->special;
179
180         memset(args, 0, sizeof(*args));
181
182         switch (pm->pm_step) {
183         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
184                 if (drive->media != ide_disk)
185                         break;
186                 /* Not supported? Switch to next step now. */
187                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188                         ide_complete_power_step(drive, rq, 0, 0);
189                         return ide_stopped;
190                 }
191                 if (ide_id_has_flush_cache_ext(drive->id))
192                         args->tf.command = WIN_FLUSH_CACHE_EXT;
193                 else
194                         args->tf.command = WIN_FLUSH_CACHE;
195                 goto out_do_tf;
196
197         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
198                 args->tf.command = WIN_STANDBYNOW1;
199                 goto out_do_tf;
200
201         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
202                 ide_set_max_pio(drive);
203                 /*
204                  * skip idedisk_pm_idle for ATAPI devices
205                  */
206                 if (drive->media != ide_disk)
207                         pm->pm_step = ide_pm_restore_dma;
208                 else
209                         ide_complete_power_step(drive, rq, 0, 0);
210                 return ide_stopped;
211
212         case idedisk_pm_idle:           /* Resume step 2 (idle) */
213                 args->tf.command = WIN_IDLEIMMEDIATE;
214                 goto out_do_tf;
215
216         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
217                 /*
218                  * Right now, all we do is call ide_set_dma(drive),
219                  * we could be smarter and check for current xfer_speed
220                  * in struct drive etc...
221                  */
222                 if (drive->hwif->ide_dma_on == NULL)
223                         break;
224                 drive->hwif->dma_off_quietly(drive);
225                 /*
226                  * TODO: respect ->using_dma setting
227                  */
228                 ide_set_dma(drive);
229                 break;
230         }
231         pm->pm_step = ide_pm_state_completed;
232         return ide_stopped;
233
234 out_do_tf:
235         args->tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
236         args->command_type = IDE_DRIVE_TASK_NO_DATA;
237         args->handler      = task_no_data_intr;
238         return do_rw_taskfile(drive, args);
239 }
240
241 /**
242  *      ide_end_dequeued_request        -       complete an IDE I/O
243  *      @drive: IDE device for the I/O
244  *      @uptodate:
245  *      @nr_sectors: number of sectors completed
246  *
247  *      Complete an I/O that is no longer on the request queue. This
248  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
249  *      We must still finish the old request but we must not tamper with the
250  *      queue in the meantime.
251  *
252  *      NOTE: This path does not handle barrier, but barrier is not supported
253  *      on ide-cd anyway.
254  */
255
256 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
257                              int uptodate, int nr_sectors)
258 {
259         unsigned long flags;
260         int ret;
261
262         spin_lock_irqsave(&ide_lock, flags);
263         BUG_ON(!blk_rq_started(rq));
264         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
265         spin_unlock_irqrestore(&ide_lock, flags);
266
267         return ret;
268 }
269 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
270
271
272 /**
273  *      ide_complete_pm_request - end the current Power Management request
274  *      @drive: target drive
275  *      @rq: request
276  *
277  *      This function cleans up the current PM request and stops the queue
278  *      if necessary.
279  */
280 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
281 {
282         unsigned long flags;
283
284 #ifdef DEBUG_PM
285         printk("%s: completing PM request, %s\n", drive->name,
286                blk_pm_suspend_request(rq) ? "suspend" : "resume");
287 #endif
288         spin_lock_irqsave(&ide_lock, flags);
289         if (blk_pm_suspend_request(rq)) {
290                 blk_stop_queue(drive->queue);
291         } else {
292                 drive->blocked = 0;
293                 blk_start_queue(drive->queue);
294         }
295         blkdev_dequeue_request(rq);
296         HWGROUP(drive)->rq = NULL;
297         end_that_request_last(rq, 1);
298         spin_unlock_irqrestore(&ide_lock, flags);
299 }
300
301 /**
302  *      ide_end_drive_cmd       -       end an explicit drive command
303  *      @drive: command 
304  *      @stat: status bits
305  *      @err: error bits
306  *
307  *      Clean up after success/failure of an explicit drive command.
308  *      These get thrown onto the queue so they are synchronized with
309  *      real I/O operations on the drive.
310  *
311  *      In LBA48 mode we have to read the register set twice to get
312  *      all the extra information out.
313  */
314  
315 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
316 {
317         ide_hwif_t *hwif = HWIF(drive);
318         unsigned long flags;
319         struct request *rq;
320
321         spin_lock_irqsave(&ide_lock, flags);
322         rq = HWGROUP(drive)->rq;
323         spin_unlock_irqrestore(&ide_lock, flags);
324
325         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
326                 u8 *args = (u8 *) rq->buffer;
327                 if (rq->errors == 0)
328                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
329
330                 if (args) {
331                         args[0] = stat;
332                         args[1] = err;
333                         args[2] = hwif->INB(IDE_NSECTOR_REG);
334                 }
335         } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
336                 ide_task_t *args = (ide_task_t *) rq->special;
337                 if (rq->errors == 0)
338                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
339                         
340                 if (args) {
341                         struct ide_taskfile *tf = &args->tf;
342
343                         if (args->tf_in_flags.b.data) {
344                                 u16 data = hwif->INW(IDE_DATA_REG);
345
346                                 tf->data = data & 0xff;
347                                 tf->hob_data = (data >> 8) & 0xff;
348                         }
349                         tf->error = err;
350                         /* be sure we're looking at the low order bits */
351                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
352                         tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
353                         tf->lbal   = hwif->INB(IDE_SECTOR_REG);
354                         tf->lbam   = hwif->INB(IDE_LCYL_REG);
355                         tf->lbah   = hwif->INB(IDE_HCYL_REG);
356                         tf->device = hwif->INB(IDE_SELECT_REG);
357                         tf->status = stat;
358
359                         if (args->tf_flags & IDE_TFLAG_LBA48) {
360                                 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
361                                 tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
362                                 tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
363                                 tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
364                                 tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
365                                 tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
366                         }
367                 }
368         } else if (blk_pm_request(rq)) {
369                 struct request_pm_state *pm = rq->data;
370 #ifdef DEBUG_PM
371                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
372                         drive->name, rq->pm->pm_step, stat, err);
373 #endif
374                 ide_complete_power_step(drive, rq, stat, err);
375                 if (pm->pm_step == ide_pm_state_completed)
376                         ide_complete_pm_request(drive, rq);
377                 return;
378         }
379
380         spin_lock_irqsave(&ide_lock, flags);
381         blkdev_dequeue_request(rq);
382         HWGROUP(drive)->rq = NULL;
383         rq->errors = err;
384         end_that_request_last(rq, !rq->errors);
385         spin_unlock_irqrestore(&ide_lock, flags);
386 }
387
388 EXPORT_SYMBOL(ide_end_drive_cmd);
389
390 /**
391  *      try_to_flush_leftover_data      -       flush junk
392  *      @drive: drive to flush
393  *
394  *      try_to_flush_leftover_data() is invoked in response to a drive
395  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
396  *      resetting the drive, this routine tries to clear the condition
397  *      by read a sector's worth of data from the drive.  Of course,
398  *      this may not help if the drive is *waiting* for data from *us*.
399  */
400 static void try_to_flush_leftover_data (ide_drive_t *drive)
401 {
402         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
403
404         if (drive->media != ide_disk)
405                 return;
406         while (i > 0) {
407                 u32 buffer[16];
408                 u32 wcount = (i > 16) ? 16 : i;
409
410                 i -= wcount;
411                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
412         }
413 }
414
415 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
416 {
417         if (rq->rq_disk) {
418                 ide_driver_t *drv;
419
420                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
421                 drv->end_request(drive, 0, 0);
422         } else
423                 ide_end_request(drive, 0, 0);
424 }
425
426 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
427 {
428         ide_hwif_t *hwif = drive->hwif;
429
430         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
431                 /* other bits are useless when BUSY */
432                 rq->errors |= ERROR_RESET;
433         } else if (stat & ERR_STAT) {
434                 /* err has different meaning on cdrom and tape */
435                 if (err == ABRT_ERR) {
436                         if (drive->select.b.lba &&
437                             /* some newer drives don't support WIN_SPECIFY */
438                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
439                                 return ide_stopped;
440                 } else if ((err & BAD_CRC) == BAD_CRC) {
441                         /* UDMA crc error, just retry the operation */
442                         drive->crc_count++;
443                 } else if (err & (BBD_ERR | ECC_ERR)) {
444                         /* retries won't help these */
445                         rq->errors = ERROR_MAX;
446                 } else if (err & TRK0_ERR) {
447                         /* help it find track zero */
448                         rq->errors |= ERROR_RECAL;
449                 }
450         }
451
452         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
453             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
454                 try_to_flush_leftover_data(drive);
455
456         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
457                 ide_kill_rq(drive, rq);
458                 return ide_stopped;
459         }
460
461         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
462                 rq->errors |= ERROR_RESET;
463
464         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
465                 ++rq->errors;
466                 return ide_do_reset(drive);
467         }
468
469         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
470                 drive->special.b.recalibrate = 1;
471
472         ++rq->errors;
473
474         return ide_stopped;
475 }
476
477 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
478 {
479         ide_hwif_t *hwif = drive->hwif;
480
481         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
482                 /* other bits are useless when BUSY */
483                 rq->errors |= ERROR_RESET;
484         } else {
485                 /* add decoding error stuff */
486         }
487
488         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
489                 /* force an abort */
490                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
491
492         if (rq->errors >= ERROR_MAX) {
493                 ide_kill_rq(drive, rq);
494         } else {
495                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
496                         ++rq->errors;
497                         return ide_do_reset(drive);
498                 }
499                 ++rq->errors;
500         }
501
502         return ide_stopped;
503 }
504
505 ide_startstop_t
506 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
507 {
508         if (drive->media == ide_disk)
509                 return ide_ata_error(drive, rq, stat, err);
510         return ide_atapi_error(drive, rq, stat, err);
511 }
512
513 EXPORT_SYMBOL_GPL(__ide_error);
514
515 /**
516  *      ide_error       -       handle an error on the IDE
517  *      @drive: drive the error occurred on
518  *      @msg: message to report
519  *      @stat: status bits
520  *
521  *      ide_error() takes action based on the error returned by the drive.
522  *      For normal I/O that may well include retries. We deal with
523  *      both new-style (taskfile) and old style command handling here.
524  *      In the case of taskfile command handling there is work left to
525  *      do
526  */
527  
528 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
529 {
530         struct request *rq;
531         u8 err;
532
533         err = ide_dump_status(drive, msg, stat);
534
535         if ((rq = HWGROUP(drive)->rq) == NULL)
536                 return ide_stopped;
537
538         /* retry only "normal" I/O: */
539         if (!blk_fs_request(rq)) {
540                 rq->errors = 1;
541                 ide_end_drive_cmd(drive, stat, err);
542                 return ide_stopped;
543         }
544
545         if (rq->rq_disk) {
546                 ide_driver_t *drv;
547
548                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
549                 return drv->error(drive, rq, stat, err);
550         } else
551                 return __ide_error(drive, rq, stat, err);
552 }
553
554 EXPORT_SYMBOL_GPL(ide_error);
555
556 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
557 {
558         if (drive->media != ide_disk)
559                 rq->errors |= ERROR_RESET;
560
561         ide_kill_rq(drive, rq);
562
563         return ide_stopped;
564 }
565
566 EXPORT_SYMBOL_GPL(__ide_abort);
567
568 /**
569  *      ide_abort       -       abort pending IDE operations
570  *      @drive: drive the error occurred on
571  *      @msg: message to report
572  *
573  *      ide_abort kills and cleans up when we are about to do a 
574  *      host initiated reset on active commands. Longer term we
575  *      want handlers to have sensible abort handling themselves
576  *
577  *      This differs fundamentally from ide_error because in 
578  *      this case the command is doing just fine when we
579  *      blow it away.
580  */
581  
582 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
583 {
584         struct request *rq;
585
586         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
587                 return ide_stopped;
588
589         /* retry only "normal" I/O: */
590         if (!blk_fs_request(rq)) {
591                 rq->errors = 1;
592                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
593                 return ide_stopped;
594         }
595
596         if (rq->rq_disk) {
597                 ide_driver_t *drv;
598
599                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
600                 return drv->abort(drive, rq);
601         } else
602                 return __ide_abort(drive, rq);
603 }
604
605 /**
606  *      drive_cmd_intr          -       drive command completion interrupt
607  *      @drive: drive the completion interrupt occurred on
608  *
609  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
610  *      We do any necessary data reading and then wait for the drive to
611  *      go non busy. At that point we may read the error data and complete
612  *      the request
613  */
614  
615 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
616 {
617         struct request *rq = HWGROUP(drive)->rq;
618         ide_hwif_t *hwif = HWIF(drive);
619         u8 *args = (u8 *) rq->buffer;
620         u8 stat = hwif->INB(IDE_STATUS_REG);
621         int retries = 10;
622
623         local_irq_enable_in_hardirq();
624         if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
625             (stat & DRQ_STAT) && args && args[3]) {
626                 u8 io_32bit = drive->io_32bit;
627                 drive->io_32bit = 0;
628                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
629                 drive->io_32bit = io_32bit;
630                 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
631                         udelay(100);
632         }
633
634         if (!OK_STAT(stat, READY_STAT, BAD_STAT))
635                 return ide_error(drive, "drive_cmd", stat);
636                 /* calls ide_end_drive_cmd */
637         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
638         return ide_stopped;
639 }
640
641 static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
642 {
643         task->tf.nsect   = drive->sect;
644         task->tf.lbal    = drive->sect;
645         task->tf.lbam    = drive->cyl;
646         task->tf.lbah    = drive->cyl >> 8;
647         task->tf.device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
648         task->tf.command = WIN_SPECIFY;
649
650         task->handler = &set_geometry_intr;
651 }
652
653 static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
654 {
655         task->tf.nsect   = drive->sect;
656         task->tf.command = WIN_RESTORE;
657
658         task->handler = &recal_intr;
659 }
660
661 static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
662 {
663         task->tf.nsect   = drive->mult_req;
664         task->tf.command = WIN_SETMULT;
665
666         task->handler = &set_multmode_intr;
667 }
668
669 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
670 {
671         special_t *s = &drive->special;
672         ide_task_t args;
673
674         memset(&args, 0, sizeof(ide_task_t));
675         args.command_type = IDE_DRIVE_TASK_NO_DATA;
676
677         if (s->b.set_geometry) {
678                 s->b.set_geometry = 0;
679                 ide_init_specify_cmd(drive, &args);
680         } else if (s->b.recalibrate) {
681                 s->b.recalibrate = 0;
682                 ide_init_restore_cmd(drive, &args);
683         } else if (s->b.set_multmode) {
684                 s->b.set_multmode = 0;
685                 if (drive->mult_req > drive->id->max_multsect)
686                         drive->mult_req = drive->id->max_multsect;
687                 ide_init_setmult_cmd(drive, &args);
688         } else if (s->all) {
689                 int special = s->all;
690                 s->all = 0;
691                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
692                 return ide_stopped;
693         }
694
695         args.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
696
697         do_rw_taskfile(drive, &args);
698
699         return ide_started;
700 }
701
702 /*
703  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
704  */
705 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
706 {
707         switch (req_pio) {
708         case 202:
709         case 201:
710         case 200:
711         case 102:
712         case 101:
713         case 100:
714                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
715         case 9:
716         case 8:
717                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
718         case 7:
719         case 6:
720                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
721         default:
722                 return 0;
723         }
724 }
725
726 /**
727  *      do_special              -       issue some special commands
728  *      @drive: drive the command is for
729  *
730  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
731  *      commands to a drive.  It used to do much more, but has been scaled
732  *      back.
733  */
734
735 static ide_startstop_t do_special (ide_drive_t *drive)
736 {
737         special_t *s = &drive->special;
738
739 #ifdef DEBUG
740         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
741 #endif
742         if (s->b.set_tune) {
743                 ide_hwif_t *hwif = drive->hwif;
744                 u8 req_pio = drive->tune_req;
745
746                 s->b.set_tune = 0;
747
748                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
749
750                         if (hwif->set_pio_mode == NULL)
751                                 return ide_stopped;
752
753                         /*
754                          * take ide_lock for drive->[no_]unmask/[no_]io_32bit
755                          */
756                         if (req_pio == 8 || req_pio == 9) {
757                                 unsigned long flags;
758
759                                 spin_lock_irqsave(&ide_lock, flags);
760                                 hwif->set_pio_mode(drive, req_pio);
761                                 spin_unlock_irqrestore(&ide_lock, flags);
762                         } else
763                                 hwif->set_pio_mode(drive, req_pio);
764                 } else {
765                         int keep_dma = drive->using_dma;
766
767                         ide_set_pio(drive, req_pio);
768
769                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
770                                 if (keep_dma)
771                                         hwif->ide_dma_on(drive);
772                         }
773                 }
774
775                 return ide_stopped;
776         } else {
777                 if (drive->media == ide_disk)
778                         return ide_disk_special(drive);
779
780                 s->all = 0;
781                 drive->mult_req = 0;
782                 return ide_stopped;
783         }
784 }
785
786 void ide_map_sg(ide_drive_t *drive, struct request *rq)
787 {
788         ide_hwif_t *hwif = drive->hwif;
789         struct scatterlist *sg = hwif->sg_table;
790
791         if (hwif->sg_mapped)    /* needed by ide-scsi */
792                 return;
793
794         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
795                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
796         } else {
797                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
798                 hwif->sg_nents = 1;
799         }
800 }
801
802 EXPORT_SYMBOL_GPL(ide_map_sg);
803
804 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
805 {
806         ide_hwif_t *hwif = drive->hwif;
807
808         hwif->nsect = hwif->nleft = rq->nr_sectors;
809         hwif->cursg_ofs = 0;
810         hwif->cursg = NULL;
811 }
812
813 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
814
815 /**
816  *      execute_drive_command   -       issue special drive command
817  *      @drive: the drive to issue the command on
818  *      @rq: the request structure holding the command
819  *
820  *      execute_drive_cmd() issues a special drive command,  usually 
821  *      initiated by ioctl() from the external hdparm program. The
822  *      command can be a drive command, drive task or taskfile 
823  *      operation. Weirdly you can call it with NULL to wait for
824  *      all commands to finish. Don't do this as that is due to change
825  */
826
827 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
828                 struct request *rq)
829 {
830         ide_hwif_t *hwif = HWIF(drive);
831         u8 *args = rq->buffer;
832         ide_task_t ltask;
833         struct ide_taskfile *tf = &ltask.tf;
834
835         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
836                 ide_task_t *task = rq->special;
837  
838                 if (task == NULL)
839                         goto done;
840
841                 hwif->data_phase = task->data_phase;
842
843                 switch (hwif->data_phase) {
844                 case TASKFILE_MULTI_OUT:
845                 case TASKFILE_OUT:
846                 case TASKFILE_MULTI_IN:
847                 case TASKFILE_IN:
848                         ide_init_sg_cmd(drive, rq);
849                         ide_map_sg(drive, rq);
850                 default:
851                         break;
852                 }
853
854                 if (task->tf_flags & IDE_TFLAG_FLAGGED)
855                         return flagged_taskfile(drive, task);
856
857                 return do_rw_taskfile(drive, task);
858         }
859
860         if (args == NULL)
861                 goto done;
862
863         memset(&ltask, 0, sizeof(ltask));
864         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
865 #ifdef DEBUG
866                 printk("%s: DRIVE_CMD\n", drive->name);
867 #endif
868                 tf->feature = args[2];
869                 if (args[0] == WIN_SMART) {
870                         tf->nsect = args[3];
871                         tf->lbal  = args[1];
872                         tf->lbam  = 0x4f;
873                         tf->lbah  = 0xc2;
874                         ltask.tf_flags = IDE_TFLAG_OUT_TF;
875                 } else {
876                         tf->nsect = args[1];
877                         ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
878                                          IDE_TFLAG_OUT_NSECT;
879                 }
880         }
881         tf->command = args[0];
882         ide_tf_load(drive, &ltask);
883         ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
884         return ide_started;
885
886 done:
887         /*
888          * NULL is actually a valid way of waiting for
889          * all current requests to be flushed from the queue.
890          */
891 #ifdef DEBUG
892         printk("%s: DRIVE_CMD (null)\n", drive->name);
893 #endif
894         ide_end_drive_cmd(drive,
895                         hwif->INB(IDE_STATUS_REG),
896                         hwif->INB(IDE_ERROR_REG));
897         return ide_stopped;
898 }
899
900 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
901 {
902         struct request_pm_state *pm = rq->data;
903
904         if (blk_pm_suspend_request(rq) &&
905             pm->pm_step == ide_pm_state_start_suspend)
906                 /* Mark drive blocked when starting the suspend sequence. */
907                 drive->blocked = 1;
908         else if (blk_pm_resume_request(rq) &&
909                  pm->pm_step == ide_pm_state_start_resume) {
910                 /* 
911                  * The first thing we do on wakeup is to wait for BSY bit to
912                  * go away (with a looong timeout) as a drive on this hwif may
913                  * just be POSTing itself.
914                  * We do that before even selecting as the "other" device on
915                  * the bus may be broken enough to walk on our toes at this
916                  * point.
917                  */
918                 int rc;
919 #ifdef DEBUG_PM
920                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
921 #endif
922                 rc = ide_wait_not_busy(HWIF(drive), 35000);
923                 if (rc)
924                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
925                 SELECT_DRIVE(drive);
926                 if (IDE_CONTROL_REG)
927                         HWIF(drive)->OUTB(drive->ctl, IDE_CONTROL_REG);
928                 rc = ide_wait_not_busy(HWIF(drive), 100000);
929                 if (rc)
930                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
931         }
932 }
933
934 /**
935  *      start_request   -       start of I/O and command issuing for IDE
936  *
937  *      start_request() initiates handling of a new I/O request. It
938  *      accepts commands and I/O (read/write) requests. It also does
939  *      the final remapping for weird stuff like EZDrive. Once 
940  *      device mapper can work sector level the EZDrive stuff can go away
941  *
942  *      FIXME: this function needs a rename
943  */
944  
945 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
946 {
947         ide_startstop_t startstop;
948         sector_t block;
949
950         BUG_ON(!blk_rq_started(rq));
951
952 #ifdef DEBUG
953         printk("%s: start_request: current=0x%08lx\n",
954                 HWIF(drive)->name, (unsigned long) rq);
955 #endif
956
957         /* bail early if we've exceeded max_failures */
958         if (drive->max_failures && (drive->failures > drive->max_failures)) {
959                 rq->cmd_flags |= REQ_FAILED;
960                 goto kill_rq;
961         }
962
963         block    = rq->sector;
964         if (blk_fs_request(rq) &&
965             (drive->media == ide_disk || drive->media == ide_floppy)) {
966                 block += drive->sect0;
967         }
968         /* Yecch - this will shift the entire interval,
969            possibly killing some innocent following sector */
970         if (block == 0 && drive->remap_0_to_1 == 1)
971                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
972
973         if (blk_pm_request(rq))
974                 ide_check_pm_state(drive, rq);
975
976         SELECT_DRIVE(drive);
977         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
978                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
979                 return startstop;
980         }
981         if (!drive->special.all) {
982                 ide_driver_t *drv;
983
984                 /*
985                  * We reset the drive so we need to issue a SETFEATURES.
986                  * Do it _after_ do_special() restored device parameters.
987                  */
988                 if (drive->current_speed == 0xff)
989                         ide_config_drive_speed(drive, drive->desired_speed);
990
991                 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
992                     rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
993                         return execute_drive_cmd(drive, rq);
994                 else if (blk_pm_request(rq)) {
995                         struct request_pm_state *pm = rq->data;
996 #ifdef DEBUG_PM
997                         printk("%s: start_power_step(step: %d)\n",
998                                 drive->name, rq->pm->pm_step);
999 #endif
1000                         startstop = ide_start_power_step(drive, rq);
1001                         if (startstop == ide_stopped &&
1002                             pm->pm_step == ide_pm_state_completed)
1003                                 ide_complete_pm_request(drive, rq);
1004                         return startstop;
1005                 }
1006
1007                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1008                 return drv->do_request(drive, rq, block);
1009         }
1010         return do_special(drive);
1011 kill_rq:
1012         ide_kill_rq(drive, rq);
1013         return ide_stopped;
1014 }
1015
1016 /**
1017  *      ide_stall_queue         -       pause an IDE device
1018  *      @drive: drive to stall
1019  *      @timeout: time to stall for (jiffies)
1020  *
1021  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
1022  *      to the hwgroup by sleeping for timeout jiffies.
1023  */
1024  
1025 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1026 {
1027         if (timeout > WAIT_WORSTCASE)
1028                 timeout = WAIT_WORSTCASE;
1029         drive->sleep = timeout + jiffies;
1030         drive->sleeping = 1;
1031 }
1032
1033 EXPORT_SYMBOL(ide_stall_queue);
1034
1035 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
1036
1037 /**
1038  *      choose_drive            -       select a drive to service
1039  *      @hwgroup: hardware group to select on
1040  *
1041  *      choose_drive() selects the next drive which will be serviced.
1042  *      This is necessary because the IDE layer can't issue commands
1043  *      to both drives on the same cable, unlike SCSI.
1044  */
1045  
1046 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1047 {
1048         ide_drive_t *drive, *best;
1049
1050 repeat: 
1051         best = NULL;
1052         drive = hwgroup->drive;
1053
1054         /*
1055          * drive is doing pre-flush, ordered write, post-flush sequence. even
1056          * though that is 3 requests, it must be seen as a single transaction.
1057          * we must not preempt this drive until that is complete
1058          */
1059         if (blk_queue_flushing(drive->queue)) {
1060                 /*
1061                  * small race where queue could get replugged during
1062                  * the 3-request flush cycle, just yank the plug since
1063                  * we want it to finish asap
1064                  */
1065                 blk_remove_plug(drive->queue);
1066                 return drive;
1067         }
1068
1069         do {
1070                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1071                     && !elv_queue_empty(drive->queue)) {
1072                         if (!best
1073                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1074                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1075                         {
1076                                 if (!blk_queue_plugged(drive->queue))
1077                                         best = drive;
1078                         }
1079                 }
1080         } while ((drive = drive->next) != hwgroup->drive);
1081         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1082                 long t = (signed long)(WAKEUP(best) - jiffies);
1083                 if (t >= WAIT_MIN_SLEEP) {
1084                 /*
1085                  * We *may* have some time to spare, but first let's see if
1086                  * someone can potentially benefit from our nice mood today..
1087                  */
1088                         drive = best->next;
1089                         do {
1090                                 if (!drive->sleeping
1091                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1092                                  && time_before(WAKEUP(drive), jiffies + t))
1093                                 {
1094                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1095                                         goto repeat;
1096                                 }
1097                         } while ((drive = drive->next) != best);
1098                 }
1099         }
1100         return best;
1101 }
1102
1103 /*
1104  * Issue a new request to a drive from hwgroup
1105  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1106  *
1107  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1108  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1109  * may have both interfaces in a single hwgroup to "serialize" access.
1110  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1111  * together into one hwgroup for serialized access.
1112  *
1113  * Note also that several hwgroups can end up sharing a single IRQ,
1114  * possibly along with many other devices.  This is especially common in
1115  * PCI-based systems with off-board IDE controller cards.
1116  *
1117  * The IDE driver uses the single global ide_lock spinlock to protect
1118  * access to the request queues, and to protect the hwgroup->busy flag.
1119  *
1120  * The first thread into the driver for a particular hwgroup sets the
1121  * hwgroup->busy flag to indicate that this hwgroup is now active,
1122  * and then initiates processing of the top request from the request queue.
1123  *
1124  * Other threads attempting entry notice the busy setting, and will simply
1125  * queue their new requests and exit immediately.  Note that hwgroup->busy
1126  * remains set even when the driver is merely awaiting the next interrupt.
1127  * Thus, the meaning is "this hwgroup is busy processing a request".
1128  *
1129  * When processing of a request completes, the completing thread or IRQ-handler
1130  * will start the next request from the queue.  If no more work remains,
1131  * the driver will clear the hwgroup->busy flag and exit.
1132  *
1133  * The ide_lock (spinlock) is used to protect all access to the
1134  * hwgroup->busy flag, but is otherwise not needed for most processing in
1135  * the driver.  This makes the driver much more friendlier to shared IRQs
1136  * than previous designs, while remaining 100% (?) SMP safe and capable.
1137  */
1138 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1139 {
1140         ide_drive_t     *drive;
1141         ide_hwif_t      *hwif;
1142         struct request  *rq;
1143         ide_startstop_t startstop;
1144         int             loops = 0;
1145
1146         /* for atari only: POSSIBLY BROKEN HERE(?) */
1147         ide_get_lock(ide_intr, hwgroup);
1148
1149         /* caller must own ide_lock */
1150         BUG_ON(!irqs_disabled());
1151
1152         while (!hwgroup->busy) {
1153                 hwgroup->busy = 1;
1154                 drive = choose_drive(hwgroup);
1155                 if (drive == NULL) {
1156                         int sleeping = 0;
1157                         unsigned long sleep = 0; /* shut up, gcc */
1158                         hwgroup->rq = NULL;
1159                         drive = hwgroup->drive;
1160                         do {
1161                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1162                                         sleeping = 1;
1163                                         sleep = drive->sleep;
1164                                 }
1165                         } while ((drive = drive->next) != hwgroup->drive);
1166                         if (sleeping) {
1167                 /*
1168                  * Take a short snooze, and then wake up this hwgroup again.
1169                  * This gives other hwgroups on the same a chance to
1170                  * play fairly with us, just in case there are big differences
1171                  * in relative throughputs.. don't want to hog the cpu too much.
1172                  */
1173                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1174                                         sleep = jiffies + WAIT_MIN_SLEEP;
1175 #if 1
1176                                 if (timer_pending(&hwgroup->timer))
1177                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1178 #endif
1179                                 /* so that ide_timer_expiry knows what to do */
1180                                 hwgroup->sleeping = 1;
1181                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1182                                 mod_timer(&hwgroup->timer, sleep);
1183                                 /* we purposely leave hwgroup->busy==1
1184                                  * while sleeping */
1185                         } else {
1186                                 /* Ugly, but how can we sleep for the lock
1187                                  * otherwise? perhaps from tq_disk?
1188                                  */
1189
1190                                 /* for atari only */
1191                                 ide_release_lock();
1192                                 hwgroup->busy = 0;
1193                         }
1194
1195                         /* no more work for this hwgroup (for now) */
1196                         return;
1197                 }
1198         again:
1199                 hwif = HWIF(drive);
1200                 if (hwgroup->hwif->sharing_irq &&
1201                     hwif != hwgroup->hwif &&
1202                     hwif->io_ports[IDE_CONTROL_OFFSET]) {
1203                         /* set nIEN for previous hwif */
1204                         SELECT_INTERRUPT(drive);
1205                 }
1206                 hwgroup->hwif = hwif;
1207                 hwgroup->drive = drive;
1208                 drive->sleeping = 0;
1209                 drive->service_start = jiffies;
1210
1211                 if (blk_queue_plugged(drive->queue)) {
1212                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1213                         break;
1214                 }
1215
1216                 /*
1217                  * we know that the queue isn't empty, but this can happen
1218                  * if the q->prep_rq_fn() decides to kill a request
1219                  */
1220                 rq = elv_next_request(drive->queue);
1221                 if (!rq) {
1222                         hwgroup->busy = 0;
1223                         break;
1224                 }
1225
1226                 /*
1227                  * Sanity: don't accept a request that isn't a PM request
1228                  * if we are currently power managed. This is very important as
1229                  * blk_stop_queue() doesn't prevent the elv_next_request()
1230                  * above to return us whatever is in the queue. Since we call
1231                  * ide_do_request() ourselves, we end up taking requests while
1232                  * the queue is blocked...
1233                  * 
1234                  * We let requests forced at head of queue with ide-preempt
1235                  * though. I hope that doesn't happen too much, hopefully not
1236                  * unless the subdriver triggers such a thing in its own PM
1237                  * state machine.
1238                  *
1239                  * We count how many times we loop here to make sure we service
1240                  * all drives in the hwgroup without looping for ever
1241                  */
1242                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1243                         drive = drive->next ? drive->next : hwgroup->drive;
1244                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1245                                 goto again;
1246                         /* We clear busy, there should be no pending ATA command at this point. */
1247                         hwgroup->busy = 0;
1248                         break;
1249                 }
1250
1251                 hwgroup->rq = rq;
1252
1253                 /*
1254                  * Some systems have trouble with IDE IRQs arriving while
1255                  * the driver is still setting things up.  So, here we disable
1256                  * the IRQ used by this interface while the request is being started.
1257                  * This may look bad at first, but pretty much the same thing
1258                  * happens anyway when any interrupt comes in, IDE or otherwise
1259                  *  -- the kernel masks the IRQ while it is being handled.
1260                  */
1261                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1262                         disable_irq_nosync(hwif->irq);
1263                 spin_unlock(&ide_lock);
1264                 local_irq_enable_in_hardirq();
1265                         /* allow other IRQs while we start this request */
1266                 startstop = start_request(drive, rq);
1267                 spin_lock_irq(&ide_lock);
1268                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1269                         enable_irq(hwif->irq);
1270                 if (startstop == ide_stopped)
1271                         hwgroup->busy = 0;
1272         }
1273 }
1274
1275 /*
1276  * Passes the stuff to ide_do_request
1277  */
1278 void do_ide_request(struct request_queue *q)
1279 {
1280         ide_drive_t *drive = q->queuedata;
1281
1282         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1283 }
1284
1285 /*
1286  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1287  * retry the current request in pio mode instead of risking tossing it
1288  * all away
1289  */
1290 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1291 {
1292         ide_hwif_t *hwif = HWIF(drive);
1293         struct request *rq;
1294         ide_startstop_t ret = ide_stopped;
1295
1296         /*
1297          * end current dma transaction
1298          */
1299
1300         if (error < 0) {
1301                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1302                 (void)HWIF(drive)->ide_dma_end(drive);
1303                 ret = ide_error(drive, "dma timeout error",
1304                                                 hwif->INB(IDE_STATUS_REG));
1305         } else {
1306                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1307                 hwif->dma_timeout(drive);
1308         }
1309
1310         /*
1311          * disable dma for now, but remember that we did so because of
1312          * a timeout -- we'll reenable after we finish this next request
1313          * (or rather the first chunk of it) in pio.
1314          */
1315         drive->retry_pio++;
1316         drive->state = DMA_PIO_RETRY;
1317         hwif->dma_off_quietly(drive);
1318
1319         /*
1320          * un-busy drive etc (hwgroup->busy is cleared on return) and
1321          * make sure request is sane
1322          */
1323         rq = HWGROUP(drive)->rq;
1324
1325         if (!rq)
1326                 goto out;
1327
1328         HWGROUP(drive)->rq = NULL;
1329
1330         rq->errors = 0;
1331
1332         if (!rq->bio)
1333                 goto out;
1334
1335         rq->sector = rq->bio->bi_sector;
1336         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1337         rq->hard_cur_sectors = rq->current_nr_sectors;
1338         rq->buffer = bio_data(rq->bio);
1339 out:
1340         return ret;
1341 }
1342
1343 /**
1344  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1345  *      @data: timer callback magic (hwgroup)
1346  *
1347  *      An IDE command has timed out before the expected drive return
1348  *      occurred. At this point we attempt to clean up the current
1349  *      mess. If the current handler includes an expiry handler then
1350  *      we invoke the expiry handler, and providing it is happy the
1351  *      work is done. If that fails we apply generic recovery rules
1352  *      invoking the handler and checking the drive DMA status. We
1353  *      have an excessively incestuous relationship with the DMA
1354  *      logic that wants cleaning up.
1355  */
1356  
1357 void ide_timer_expiry (unsigned long data)
1358 {
1359         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1360         ide_handler_t   *handler;
1361         ide_expiry_t    *expiry;
1362         unsigned long   flags;
1363         unsigned long   wait = -1;
1364
1365         spin_lock_irqsave(&ide_lock, flags);
1366
1367         if (((handler = hwgroup->handler) == NULL) ||
1368             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1369                 /*
1370                  * Either a marginal timeout occurred
1371                  * (got the interrupt just as timer expired),
1372                  * or we were "sleeping" to give other devices a chance.
1373                  * Either way, we don't really want to complain about anything.
1374                  */
1375                 if (hwgroup->sleeping) {
1376                         hwgroup->sleeping = 0;
1377                         hwgroup->busy = 0;
1378                 }
1379         } else {
1380                 ide_drive_t *drive = hwgroup->drive;
1381                 if (!drive) {
1382                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1383                         hwgroup->handler = NULL;
1384                 } else {
1385                         ide_hwif_t *hwif;
1386                         ide_startstop_t startstop = ide_stopped;
1387                         if (!hwgroup->busy) {
1388                                 hwgroup->busy = 1;      /* paranoia */
1389                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1390                         }
1391                         if ((expiry = hwgroup->expiry) != NULL) {
1392                                 /* continue */
1393                                 if ((wait = expiry(drive)) > 0) {
1394                                         /* reset timer */
1395                                         hwgroup->timer.expires  = jiffies + wait;
1396                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1397                                         add_timer(&hwgroup->timer);
1398                                         spin_unlock_irqrestore(&ide_lock, flags);
1399                                         return;
1400                                 }
1401                         }
1402                         hwgroup->handler = NULL;
1403                         /*
1404                          * We need to simulate a real interrupt when invoking
1405                          * the handler() function, which means we need to
1406                          * globally mask the specific IRQ:
1407                          */
1408                         spin_unlock(&ide_lock);
1409                         hwif  = HWIF(drive);
1410                         /* disable_irq_nosync ?? */
1411                         disable_irq(hwif->irq);
1412                         /* local CPU only,
1413                          * as if we were handling an interrupt */
1414                         local_irq_disable();
1415                         if (hwgroup->polling) {
1416                                 startstop = handler(drive);
1417                         } else if (drive_is_ready(drive)) {
1418                                 if (drive->waiting_for_dma)
1419                                         hwgroup->hwif->dma_lost_irq(drive);
1420                                 (void)ide_ack_intr(hwif);
1421                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1422                                 startstop = handler(drive);
1423                         } else {
1424                                 if (drive->waiting_for_dma) {
1425                                         startstop = ide_dma_timeout_retry(drive, wait);
1426                                 } else
1427                                         startstop =
1428                                         ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1429                         }
1430                         drive->service_time = jiffies - drive->service_start;
1431                         spin_lock_irq(&ide_lock);
1432                         enable_irq(hwif->irq);
1433                         if (startstop == ide_stopped)
1434                                 hwgroup->busy = 0;
1435                 }
1436         }
1437         ide_do_request(hwgroup, IDE_NO_IRQ);
1438         spin_unlock_irqrestore(&ide_lock, flags);
1439 }
1440
1441 /**
1442  *      unexpected_intr         -       handle an unexpected IDE interrupt
1443  *      @irq: interrupt line
1444  *      @hwgroup: hwgroup being processed
1445  *
1446  *      There's nothing really useful we can do with an unexpected interrupt,
1447  *      other than reading the status register (to clear it), and logging it.
1448  *      There should be no way that an irq can happen before we're ready for it,
1449  *      so we needn't worry much about losing an "important" interrupt here.
1450  *
1451  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1452  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1453  *      looks "good", we just ignore the interrupt completely.
1454  *
1455  *      This routine assumes __cli() is in effect when called.
1456  *
1457  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1458  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1459  *      we could screw up by interfering with a new request being set up for 
1460  *      irq15.
1461  *
1462  *      In reality, this is a non-issue.  The new command is not sent unless 
1463  *      the drive is ready to accept one, in which case we know the drive is
1464  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1465  *      before completing the issuance of any new drive command, so we will not
1466  *      be accidentally invoked as a result of any valid command completion
1467  *      interrupt.
1468  *
1469  *      Note that we must walk the entire hwgroup here. We know which hwif
1470  *      is doing the current command, but we don't know which hwif burped
1471  *      mysteriously.
1472  */
1473  
1474 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1475 {
1476         u8 stat;
1477         ide_hwif_t *hwif = hwgroup->hwif;
1478
1479         /*
1480          * handle the unexpected interrupt
1481          */
1482         do {
1483                 if (hwif->irq == irq) {
1484                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1485                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1486                                 /* Try to not flood the console with msgs */
1487                                 static unsigned long last_msgtime, count;
1488                                 ++count;
1489                                 if (time_after(jiffies, last_msgtime + HZ)) {
1490                                         last_msgtime = jiffies;
1491                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1492                                                 "status=0x%02x, count=%ld\n",
1493                                                 hwif->name,
1494                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1495                                 }
1496                         }
1497                 }
1498         } while ((hwif = hwif->next) != hwgroup->hwif);
1499 }
1500
1501 /**
1502  *      ide_intr        -       default IDE interrupt handler
1503  *      @irq: interrupt number
1504  *      @dev_id: hwif group
1505  *      @regs: unused weirdness from the kernel irq layer
1506  *
1507  *      This is the default IRQ handler for the IDE layer. You should
1508  *      not need to override it. If you do be aware it is subtle in
1509  *      places
1510  *
1511  *      hwgroup->hwif is the interface in the group currently performing
1512  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1513  *      the IRQ handler to call. As we issue a command the handlers
1514  *      step through multiple states, reassigning the handler to the
1515  *      next step in the process. Unlike a smart SCSI controller IDE
1516  *      expects the main processor to sequence the various transfer
1517  *      stages. We also manage a poll timer to catch up with most
1518  *      timeout situations. There are still a few where the handlers
1519  *      don't ever decide to give up.
1520  *
1521  *      The handler eventually returns ide_stopped to indicate the
1522  *      request completed. At this point we issue the next request
1523  *      on the hwgroup and the process begins again.
1524  */
1525  
1526 irqreturn_t ide_intr (int irq, void *dev_id)
1527 {
1528         unsigned long flags;
1529         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1530         ide_hwif_t *hwif;
1531         ide_drive_t *drive;
1532         ide_handler_t *handler;
1533         ide_startstop_t startstop;
1534
1535         spin_lock_irqsave(&ide_lock, flags);
1536         hwif = hwgroup->hwif;
1537
1538         if (!ide_ack_intr(hwif)) {
1539                 spin_unlock_irqrestore(&ide_lock, flags);
1540                 return IRQ_NONE;
1541         }
1542
1543         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1544                 /*
1545                  * Not expecting an interrupt from this drive.
1546                  * That means this could be:
1547                  *      (1) an interrupt from another PCI device
1548                  *      sharing the same PCI INT# as us.
1549                  * or   (2) a drive just entered sleep or standby mode,
1550                  *      and is interrupting to let us know.
1551                  * or   (3) a spurious interrupt of unknown origin.
1552                  *
1553                  * For PCI, we cannot tell the difference,
1554                  * so in that case we just ignore it and hope it goes away.
1555                  *
1556                  * FIXME: unexpected_intr should be hwif-> then we can
1557                  * remove all the ifdef PCI crap
1558                  */
1559 #ifdef CONFIG_BLK_DEV_IDEPCI
1560                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1561 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1562                 {
1563                         /*
1564                          * Probably not a shared PCI interrupt,
1565                          * so we can safely try to do something about it:
1566                          */
1567                         unexpected_intr(irq, hwgroup);
1568 #ifdef CONFIG_BLK_DEV_IDEPCI
1569                 } else {
1570                         /*
1571                          * Whack the status register, just in case
1572                          * we have a leftover pending IRQ.
1573                          */
1574                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1575 #endif /* CONFIG_BLK_DEV_IDEPCI */
1576                 }
1577                 spin_unlock_irqrestore(&ide_lock, flags);
1578                 return IRQ_NONE;
1579         }
1580         drive = hwgroup->drive;
1581         if (!drive) {
1582                 /*
1583                  * This should NEVER happen, and there isn't much
1584                  * we could do about it here.
1585                  *
1586                  * [Note - this can occur if the drive is hot unplugged]
1587                  */
1588                 spin_unlock_irqrestore(&ide_lock, flags);
1589                 return IRQ_HANDLED;
1590         }
1591         if (!drive_is_ready(drive)) {
1592                 /*
1593                  * This happens regularly when we share a PCI IRQ with
1594                  * another device.  Unfortunately, it can also happen
1595                  * with some buggy drives that trigger the IRQ before
1596                  * their status register is up to date.  Hopefully we have
1597                  * enough advance overhead that the latter isn't a problem.
1598                  */
1599                 spin_unlock_irqrestore(&ide_lock, flags);
1600                 return IRQ_NONE;
1601         }
1602         if (!hwgroup->busy) {
1603                 hwgroup->busy = 1;      /* paranoia */
1604                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1605         }
1606         hwgroup->handler = NULL;
1607         hwgroup->req_gen++;
1608         del_timer(&hwgroup->timer);
1609         spin_unlock(&ide_lock);
1610
1611         /* Some controllers might set DMA INTR no matter DMA or PIO;
1612          * bmdma status might need to be cleared even for
1613          * PIO interrupts to prevent spurious/lost irq.
1614          */
1615         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1616                 /* ide_dma_end() needs bmdma status for error checking.
1617                  * So, skip clearing bmdma status here and leave it
1618                  * to ide_dma_end() if this is dma interrupt.
1619                  */
1620                 hwif->ide_dma_clear_irq(drive);
1621
1622         if (drive->unmask)
1623                 local_irq_enable_in_hardirq();
1624         /* service this interrupt, may set handler for next interrupt */
1625         startstop = handler(drive);
1626         spin_lock_irq(&ide_lock);
1627
1628         /*
1629          * Note that handler() may have set things up for another
1630          * interrupt to occur soon, but it cannot happen until
1631          * we exit from this routine, because it will be the
1632          * same irq as is currently being serviced here, and Linux
1633          * won't allow another of the same (on any CPU) until we return.
1634          */
1635         drive->service_time = jiffies - drive->service_start;
1636         if (startstop == ide_stopped) {
1637                 if (hwgroup->handler == NULL) { /* paranoia */
1638                         hwgroup->busy = 0;
1639                         ide_do_request(hwgroup, hwif->irq);
1640                 } else {
1641                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1642                                 "on exit\n", drive->name);
1643                 }
1644         }
1645         spin_unlock_irqrestore(&ide_lock, flags);
1646         return IRQ_HANDLED;
1647 }
1648
1649 /**
1650  *      ide_init_drive_cmd      -       initialize a drive command request
1651  *      @rq: request object
1652  *
1653  *      Initialize a request before we fill it in and send it down to
1654  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1655  *      now it doesn't do a lot, but if that changes abusers will have a
1656  *      nasty surprise.
1657  */
1658
1659 void ide_init_drive_cmd (struct request *rq)
1660 {
1661         memset(rq, 0, sizeof(*rq));
1662         rq->cmd_type = REQ_TYPE_ATA_CMD;
1663         rq->ref_count = 1;
1664 }
1665
1666 EXPORT_SYMBOL(ide_init_drive_cmd);
1667
1668 /**
1669  *      ide_do_drive_cmd        -       issue IDE special command
1670  *      @drive: device to issue command
1671  *      @rq: request to issue
1672  *      @action: action for processing
1673  *
1674  *      This function issues a special IDE device request
1675  *      onto the request queue.
1676  *
1677  *      If action is ide_wait, then the rq is queued at the end of the
1678  *      request queue, and the function sleeps until it has been processed.
1679  *      This is for use when invoked from an ioctl handler.
1680  *
1681  *      If action is ide_preempt, then the rq is queued at the head of
1682  *      the request queue, displacing the currently-being-processed
1683  *      request and this function returns immediately without waiting
1684  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1685  *      intended for careful use by the ATAPI tape/cdrom driver code.
1686  *
1687  *      If action is ide_end, then the rq is queued at the end of the
1688  *      request queue, and the function returns immediately without waiting
1689  *      for the new rq to be completed. This is again intended for careful
1690  *      use by the ATAPI tape/cdrom driver code.
1691  */
1692  
1693 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1694 {
1695         unsigned long flags;
1696         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1697         DECLARE_COMPLETION_ONSTACK(wait);
1698         int where = ELEVATOR_INSERT_BACK, err;
1699         int must_wait = (action == ide_wait || action == ide_head_wait);
1700
1701         rq->errors = 0;
1702
1703         /*
1704          * we need to hold an extra reference to request for safe inspection
1705          * after completion
1706          */
1707         if (must_wait) {
1708                 rq->ref_count++;
1709                 rq->end_io_data = &wait;
1710                 rq->end_io = blk_end_sync_rq;
1711         }
1712
1713         spin_lock_irqsave(&ide_lock, flags);
1714         if (action == ide_preempt)
1715                 hwgroup->rq = NULL;
1716         if (action == ide_preempt || action == ide_head_wait) {
1717                 where = ELEVATOR_INSERT_FRONT;
1718                 rq->cmd_flags |= REQ_PREEMPT;
1719         }
1720         __elv_add_request(drive->queue, rq, where, 0);
1721         ide_do_request(hwgroup, IDE_NO_IRQ);
1722         spin_unlock_irqrestore(&ide_lock, flags);
1723
1724         err = 0;
1725         if (must_wait) {
1726                 wait_for_completion(&wait);
1727                 if (rq->errors)
1728                         err = -EIO;
1729
1730                 blk_put_request(rq);
1731         }
1732
1733         return err;
1734 }
1735
1736 EXPORT_SYMBOL(ide_do_drive_cmd);