]> err.no Git - linux-2.6/blob - drivers/ide/ide-io.c
ide: remove ide_cmd() helper
[linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61
62         /*
63          * if failfast is set on a request, override number of sectors and
64          * complete the whole request right now
65          */
66         if (blk_noretry_request(rq) && end_io_error(uptodate))
67                 nr_bytes = rq->hard_nr_sectors << 9;
68
69         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70                 rq->errors = -EIO;
71
72         /*
73          * decide whether to reenable DMA -- 3 is a random magic for now,
74          * if we DMA timeout more than 3 times, just stay in PIO
75          */
76         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77                 drive->state = 0;
78                 HWGROUP(drive)->hwif->ide_dma_on(drive);
79         }
80
81         if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82                 add_disk_randomness(rq->rq_disk);
83                 if (dequeue) {
84                         if (!list_empty(&rq->queuelist))
85                                 blkdev_dequeue_request(rq);
86                         HWGROUP(drive)->rq = NULL;
87                 }
88                 end_that_request_last(rq, uptodate);
89                 ret = 0;
90         }
91
92         return ret;
93 }
94
95 /**
96  *      ide_end_request         -       complete an IDE I/O
97  *      @drive: IDE device for the I/O
98  *      @uptodate:
99  *      @nr_sectors: number of sectors completed
100  *
101  *      This is our end_request wrapper function. We complete the I/O
102  *      update random number input and dequeue the request, which if
103  *      it was tagged may be out of order.
104  */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108         unsigned int nr_bytes = nr_sectors << 9;
109         struct request *rq;
110         unsigned long flags;
111         int ret = 1;
112
113         /*
114          * room for locking improvements here, the calls below don't
115          * need the queue lock held at all
116          */
117         spin_lock_irqsave(&ide_lock, flags);
118         rq = HWGROUP(drive)->rq;
119
120         if (!nr_bytes) {
121                 if (blk_pc_request(rq))
122                         nr_bytes = rq->data_len;
123                 else
124                         nr_bytes = rq->hard_cur_sectors << 9;
125         }
126
127         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129         spin_unlock_irqrestore(&ide_lock, flags);
130         return ret;
131 }
132 EXPORT_SYMBOL(ide_end_request);
133
134 /*
135  * Power Management state machine. This one is rather trivial for now,
136  * we should probably add more, like switching back to PIO on suspend
137  * to help some BIOSes, re-do the door locking on resume, etc...
138  */
139
140 enum {
141         ide_pm_flush_cache      = ide_pm_state_start_suspend,
142         idedisk_pm_standby,
143
144         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
145         idedisk_pm_idle,
146         ide_pm_restore_dma,
147 };
148
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 {
151         struct request_pm_state *pm = rq->data;
152
153         if (drive->media != ide_disk)
154                 return;
155
156         switch (pm->pm_step) {
157         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
158                 if (pm->pm_state == PM_EVENT_FREEZE)
159                         pm->pm_step = ide_pm_state_completed;
160                 else
161                         pm->pm_step = idedisk_pm_standby;
162                 break;
163         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
164                 pm->pm_step = ide_pm_state_completed;
165                 break;
166         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
167                 pm->pm_step = idedisk_pm_idle;
168                 break;
169         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
170                 pm->pm_step = ide_pm_restore_dma;
171                 break;
172         }
173 }
174
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 {
177         struct request_pm_state *pm = rq->data;
178         ide_task_t *args = rq->special;
179
180         memset(args, 0, sizeof(*args));
181
182         switch (pm->pm_step) {
183         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
184                 if (drive->media != ide_disk)
185                         break;
186                 /* Not supported? Switch to next step now. */
187                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188                         ide_complete_power_step(drive, rq, 0, 0);
189                         return ide_stopped;
190                 }
191                 if (ide_id_has_flush_cache_ext(drive->id))
192                         args->tf.command = WIN_FLUSH_CACHE_EXT;
193                 else
194                         args->tf.command = WIN_FLUSH_CACHE;
195                 goto out_do_tf;
196
197         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
198                 args->tf.command = WIN_STANDBYNOW1;
199                 goto out_do_tf;
200
201         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
202                 ide_set_max_pio(drive);
203                 /*
204                  * skip idedisk_pm_idle for ATAPI devices
205                  */
206                 if (drive->media != ide_disk)
207                         pm->pm_step = ide_pm_restore_dma;
208                 else
209                         ide_complete_power_step(drive, rq, 0, 0);
210                 return ide_stopped;
211
212         case idedisk_pm_idle:           /* Resume step 2 (idle) */
213                 args->tf.command = WIN_IDLEIMMEDIATE;
214                 goto out_do_tf;
215
216         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
217                 /*
218                  * Right now, all we do is call ide_set_dma(drive),
219                  * we could be smarter and check for current xfer_speed
220                  * in struct drive etc...
221                  */
222                 if (drive->hwif->ide_dma_on == NULL)
223                         break;
224                 drive->hwif->dma_off_quietly(drive);
225                 /*
226                  * TODO: respect ->using_dma setting
227                  */
228                 ide_set_dma(drive);
229                 break;
230         }
231         pm->pm_step = ide_pm_state_completed;
232         return ide_stopped;
233
234 out_do_tf:
235         args->tf_flags = IDE_TFLAG_OUT_TF;
236         if (drive->addressing == 1)
237                 args->tf_flags |= (IDE_TFLAG_LBA48 | IDE_TFLAG_OUT_HOB);
238         args->command_type = IDE_DRIVE_TASK_NO_DATA;
239         args->handler      = task_no_data_intr;
240         return do_rw_taskfile(drive, args);
241 }
242
243 /**
244  *      ide_end_dequeued_request        -       complete an IDE I/O
245  *      @drive: IDE device for the I/O
246  *      @uptodate:
247  *      @nr_sectors: number of sectors completed
248  *
249  *      Complete an I/O that is no longer on the request queue. This
250  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
251  *      We must still finish the old request but we must not tamper with the
252  *      queue in the meantime.
253  *
254  *      NOTE: This path does not handle barrier, but barrier is not supported
255  *      on ide-cd anyway.
256  */
257
258 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
259                              int uptodate, int nr_sectors)
260 {
261         unsigned long flags;
262         int ret;
263
264         spin_lock_irqsave(&ide_lock, flags);
265         BUG_ON(!blk_rq_started(rq));
266         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
267         spin_unlock_irqrestore(&ide_lock, flags);
268
269         return ret;
270 }
271 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
272
273
274 /**
275  *      ide_complete_pm_request - end the current Power Management request
276  *      @drive: target drive
277  *      @rq: request
278  *
279  *      This function cleans up the current PM request and stops the queue
280  *      if necessary.
281  */
282 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
283 {
284         unsigned long flags;
285
286 #ifdef DEBUG_PM
287         printk("%s: completing PM request, %s\n", drive->name,
288                blk_pm_suspend_request(rq) ? "suspend" : "resume");
289 #endif
290         spin_lock_irqsave(&ide_lock, flags);
291         if (blk_pm_suspend_request(rq)) {
292                 blk_stop_queue(drive->queue);
293         } else {
294                 drive->blocked = 0;
295                 blk_start_queue(drive->queue);
296         }
297         blkdev_dequeue_request(rq);
298         HWGROUP(drive)->rq = NULL;
299         end_that_request_last(rq, 1);
300         spin_unlock_irqrestore(&ide_lock, flags);
301 }
302
303 /**
304  *      ide_end_drive_cmd       -       end an explicit drive command
305  *      @drive: command 
306  *      @stat: status bits
307  *      @err: error bits
308  *
309  *      Clean up after success/failure of an explicit drive command.
310  *      These get thrown onto the queue so they are synchronized with
311  *      real I/O operations on the drive.
312  *
313  *      In LBA48 mode we have to read the register set twice to get
314  *      all the extra information out.
315  */
316  
317 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
318 {
319         ide_hwif_t *hwif = HWIF(drive);
320         unsigned long flags;
321         struct request *rq;
322
323         spin_lock_irqsave(&ide_lock, flags);
324         rq = HWGROUP(drive)->rq;
325         spin_unlock_irqrestore(&ide_lock, flags);
326
327         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
328                 u8 *args = (u8 *) rq->buffer;
329                 if (rq->errors == 0)
330                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
331
332                 if (args) {
333                         args[0] = stat;
334                         args[1] = err;
335                         args[2] = hwif->INB(IDE_NSECTOR_REG);
336                 }
337         } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
338                 u8 *args = (u8 *) rq->buffer;
339                 if (rq->errors == 0)
340                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
341
342                 if (args) {
343                         args[0] = stat;
344                         args[1] = err;
345                         /* be sure we're looking at the low order bits */
346                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
347                         args[2] = hwif->INB(IDE_NSECTOR_REG);
348                         args[3] = hwif->INB(IDE_SECTOR_REG);
349                         args[4] = hwif->INB(IDE_LCYL_REG);
350                         args[5] = hwif->INB(IDE_HCYL_REG);
351                         args[6] = hwif->INB(IDE_SELECT_REG);
352                 }
353         } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
354                 ide_task_t *args = (ide_task_t *) rq->special;
355                 if (rq->errors == 0)
356                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
357                         
358                 if (args) {
359                         struct ide_taskfile *tf = &args->tf;
360
361                         if (args->tf_in_flags.b.data) {
362                                 u16 data = hwif->INW(IDE_DATA_REG);
363
364                                 tf->data = data & 0xff;
365                                 tf->hob_data = (data >> 8) & 0xff;
366                         }
367                         tf->error = err;
368                         /* be sure we're looking at the low order bits */
369                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
370                         tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
371                         tf->lbal   = hwif->INB(IDE_SECTOR_REG);
372                         tf->lbam   = hwif->INB(IDE_LCYL_REG);
373                         tf->lbah   = hwif->INB(IDE_HCYL_REG);
374                         tf->device = hwif->INB(IDE_SELECT_REG);
375                         tf->status = stat;
376
377                         if (drive->addressing == 1) {
378                                 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
379                                 tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
380                                 tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
381                                 tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
382                                 tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
383                                 tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
384                         }
385                 }
386         } else if (blk_pm_request(rq)) {
387                 struct request_pm_state *pm = rq->data;
388 #ifdef DEBUG_PM
389                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
390                         drive->name, rq->pm->pm_step, stat, err);
391 #endif
392                 ide_complete_power_step(drive, rq, stat, err);
393                 if (pm->pm_step == ide_pm_state_completed)
394                         ide_complete_pm_request(drive, rq);
395                 return;
396         }
397
398         spin_lock_irqsave(&ide_lock, flags);
399         blkdev_dequeue_request(rq);
400         HWGROUP(drive)->rq = NULL;
401         rq->errors = err;
402         end_that_request_last(rq, !rq->errors);
403         spin_unlock_irqrestore(&ide_lock, flags);
404 }
405
406 EXPORT_SYMBOL(ide_end_drive_cmd);
407
408 /**
409  *      try_to_flush_leftover_data      -       flush junk
410  *      @drive: drive to flush
411  *
412  *      try_to_flush_leftover_data() is invoked in response to a drive
413  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
414  *      resetting the drive, this routine tries to clear the condition
415  *      by read a sector's worth of data from the drive.  Of course,
416  *      this may not help if the drive is *waiting* for data from *us*.
417  */
418 static void try_to_flush_leftover_data (ide_drive_t *drive)
419 {
420         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
421
422         if (drive->media != ide_disk)
423                 return;
424         while (i > 0) {
425                 u32 buffer[16];
426                 u32 wcount = (i > 16) ? 16 : i;
427
428                 i -= wcount;
429                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
430         }
431 }
432
433 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
434 {
435         if (rq->rq_disk) {
436                 ide_driver_t *drv;
437
438                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
439                 drv->end_request(drive, 0, 0);
440         } else
441                 ide_end_request(drive, 0, 0);
442 }
443
444 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
445 {
446         ide_hwif_t *hwif = drive->hwif;
447
448         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
449                 /* other bits are useless when BUSY */
450                 rq->errors |= ERROR_RESET;
451         } else if (stat & ERR_STAT) {
452                 /* err has different meaning on cdrom and tape */
453                 if (err == ABRT_ERR) {
454                         if (drive->select.b.lba &&
455                             /* some newer drives don't support WIN_SPECIFY */
456                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
457                                 return ide_stopped;
458                 } else if ((err & BAD_CRC) == BAD_CRC) {
459                         /* UDMA crc error, just retry the operation */
460                         drive->crc_count++;
461                 } else if (err & (BBD_ERR | ECC_ERR)) {
462                         /* retries won't help these */
463                         rq->errors = ERROR_MAX;
464                 } else if (err & TRK0_ERR) {
465                         /* help it find track zero */
466                         rq->errors |= ERROR_RECAL;
467                 }
468         }
469
470         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
471             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
472                 try_to_flush_leftover_data(drive);
473
474         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
475                 ide_kill_rq(drive, rq);
476                 return ide_stopped;
477         }
478
479         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
480                 rq->errors |= ERROR_RESET;
481
482         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
483                 ++rq->errors;
484                 return ide_do_reset(drive);
485         }
486
487         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
488                 drive->special.b.recalibrate = 1;
489
490         ++rq->errors;
491
492         return ide_stopped;
493 }
494
495 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
496 {
497         ide_hwif_t *hwif = drive->hwif;
498
499         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
500                 /* other bits are useless when BUSY */
501                 rq->errors |= ERROR_RESET;
502         } else {
503                 /* add decoding error stuff */
504         }
505
506         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
507                 /* force an abort */
508                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
509
510         if (rq->errors >= ERROR_MAX) {
511                 ide_kill_rq(drive, rq);
512         } else {
513                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
514                         ++rq->errors;
515                         return ide_do_reset(drive);
516                 }
517                 ++rq->errors;
518         }
519
520         return ide_stopped;
521 }
522
523 ide_startstop_t
524 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
525 {
526         if (drive->media == ide_disk)
527                 return ide_ata_error(drive, rq, stat, err);
528         return ide_atapi_error(drive, rq, stat, err);
529 }
530
531 EXPORT_SYMBOL_GPL(__ide_error);
532
533 /**
534  *      ide_error       -       handle an error on the IDE
535  *      @drive: drive the error occurred on
536  *      @msg: message to report
537  *      @stat: status bits
538  *
539  *      ide_error() takes action based on the error returned by the drive.
540  *      For normal I/O that may well include retries. We deal with
541  *      both new-style (taskfile) and old style command handling here.
542  *      In the case of taskfile command handling there is work left to
543  *      do
544  */
545  
546 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
547 {
548         struct request *rq;
549         u8 err;
550
551         err = ide_dump_status(drive, msg, stat);
552
553         if ((rq = HWGROUP(drive)->rq) == NULL)
554                 return ide_stopped;
555
556         /* retry only "normal" I/O: */
557         if (!blk_fs_request(rq)) {
558                 rq->errors = 1;
559                 ide_end_drive_cmd(drive, stat, err);
560                 return ide_stopped;
561         }
562
563         if (rq->rq_disk) {
564                 ide_driver_t *drv;
565
566                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
567                 return drv->error(drive, rq, stat, err);
568         } else
569                 return __ide_error(drive, rq, stat, err);
570 }
571
572 EXPORT_SYMBOL_GPL(ide_error);
573
574 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
575 {
576         if (drive->media != ide_disk)
577                 rq->errors |= ERROR_RESET;
578
579         ide_kill_rq(drive, rq);
580
581         return ide_stopped;
582 }
583
584 EXPORT_SYMBOL_GPL(__ide_abort);
585
586 /**
587  *      ide_abort       -       abort pending IDE operations
588  *      @drive: drive the error occurred on
589  *      @msg: message to report
590  *
591  *      ide_abort kills and cleans up when we are about to do a 
592  *      host initiated reset on active commands. Longer term we
593  *      want handlers to have sensible abort handling themselves
594  *
595  *      This differs fundamentally from ide_error because in 
596  *      this case the command is doing just fine when we
597  *      blow it away.
598  */
599  
600 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
601 {
602         struct request *rq;
603
604         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
605                 return ide_stopped;
606
607         /* retry only "normal" I/O: */
608         if (!blk_fs_request(rq)) {
609                 rq->errors = 1;
610                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
611                 return ide_stopped;
612         }
613
614         if (rq->rq_disk) {
615                 ide_driver_t *drv;
616
617                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
618                 return drv->abort(drive, rq);
619         } else
620                 return __ide_abort(drive, rq);
621 }
622
623 /**
624  *      drive_cmd_intr          -       drive command completion interrupt
625  *      @drive: drive the completion interrupt occurred on
626  *
627  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
628  *      We do any necessary data reading and then wait for the drive to
629  *      go non busy. At that point we may read the error data and complete
630  *      the request
631  */
632  
633 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
634 {
635         struct request *rq = HWGROUP(drive)->rq;
636         ide_hwif_t *hwif = HWIF(drive);
637         u8 *args = (u8 *) rq->buffer;
638         u8 stat = hwif->INB(IDE_STATUS_REG);
639         int retries = 10;
640
641         local_irq_enable_in_hardirq();
642         if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
643             (stat & DRQ_STAT) && args && args[3]) {
644                 u8 io_32bit = drive->io_32bit;
645                 drive->io_32bit = 0;
646                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
647                 drive->io_32bit = io_32bit;
648                 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
649                         udelay(100);
650         }
651
652         if (!OK_STAT(stat, READY_STAT, BAD_STAT))
653                 return ide_error(drive, "drive_cmd", stat);
654                 /* calls ide_end_drive_cmd */
655         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
656         return ide_stopped;
657 }
658
659 static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
660 {
661         task->tf.nsect   = drive->sect;
662         task->tf.lbal    = drive->sect;
663         task->tf.lbam    = drive->cyl;
664         task->tf.lbah    = drive->cyl >> 8;
665         task->tf.device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
666         task->tf.command = WIN_SPECIFY;
667
668         task->handler = &set_geometry_intr;
669 }
670
671 static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
672 {
673         task->tf.nsect   = drive->sect;
674         task->tf.command = WIN_RESTORE;
675
676         task->handler = &recal_intr;
677 }
678
679 static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
680 {
681         task->tf.nsect   = drive->mult_req;
682         task->tf.command = WIN_SETMULT;
683
684         task->handler = &set_multmode_intr;
685 }
686
687 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
688 {
689         special_t *s = &drive->special;
690         ide_task_t args;
691
692         memset(&args, 0, sizeof(ide_task_t));
693         args.command_type = IDE_DRIVE_TASK_NO_DATA;
694
695         if (s->b.set_geometry) {
696                 s->b.set_geometry = 0;
697                 ide_init_specify_cmd(drive, &args);
698         } else if (s->b.recalibrate) {
699                 s->b.recalibrate = 0;
700                 ide_init_restore_cmd(drive, &args);
701         } else if (s->b.set_multmode) {
702                 s->b.set_multmode = 0;
703                 if (drive->mult_req > drive->id->max_multsect)
704                         drive->mult_req = drive->id->max_multsect;
705                 ide_init_setmult_cmd(drive, &args);
706         } else if (s->all) {
707                 int special = s->all;
708                 s->all = 0;
709                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
710                 return ide_stopped;
711         }
712
713         args.tf_flags = IDE_TFLAG_OUT_TF;
714         if (drive->addressing == 1)
715                 args.tf_flags |= (IDE_TFLAG_LBA48 | IDE_TFLAG_OUT_HOB);
716
717         do_rw_taskfile(drive, &args);
718
719         return ide_started;
720 }
721
722 /*
723  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
724  */
725 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
726 {
727         switch (req_pio) {
728         case 202:
729         case 201:
730         case 200:
731         case 102:
732         case 101:
733         case 100:
734                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
735         case 9:
736         case 8:
737                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
738         case 7:
739         case 6:
740                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
741         default:
742                 return 0;
743         }
744 }
745
746 /**
747  *      do_special              -       issue some special commands
748  *      @drive: drive the command is for
749  *
750  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
751  *      commands to a drive.  It used to do much more, but has been scaled
752  *      back.
753  */
754
755 static ide_startstop_t do_special (ide_drive_t *drive)
756 {
757         special_t *s = &drive->special;
758
759 #ifdef DEBUG
760         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
761 #endif
762         if (s->b.set_tune) {
763                 ide_hwif_t *hwif = drive->hwif;
764                 u8 req_pio = drive->tune_req;
765
766                 s->b.set_tune = 0;
767
768                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
769
770                         if (hwif->set_pio_mode == NULL)
771                                 return ide_stopped;
772
773                         /*
774                          * take ide_lock for drive->[no_]unmask/[no_]io_32bit
775                          */
776                         if (req_pio == 8 || req_pio == 9) {
777                                 unsigned long flags;
778
779                                 spin_lock_irqsave(&ide_lock, flags);
780                                 hwif->set_pio_mode(drive, req_pio);
781                                 spin_unlock_irqrestore(&ide_lock, flags);
782                         } else
783                                 hwif->set_pio_mode(drive, req_pio);
784                 } else {
785                         int keep_dma = drive->using_dma;
786
787                         ide_set_pio(drive, req_pio);
788
789                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
790                                 if (keep_dma)
791                                         hwif->ide_dma_on(drive);
792                         }
793                 }
794
795                 return ide_stopped;
796         } else {
797                 if (drive->media == ide_disk)
798                         return ide_disk_special(drive);
799
800                 s->all = 0;
801                 drive->mult_req = 0;
802                 return ide_stopped;
803         }
804 }
805
806 void ide_map_sg(ide_drive_t *drive, struct request *rq)
807 {
808         ide_hwif_t *hwif = drive->hwif;
809         struct scatterlist *sg = hwif->sg_table;
810
811         if (hwif->sg_mapped)    /* needed by ide-scsi */
812                 return;
813
814         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
815                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
816         } else {
817                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
818                 hwif->sg_nents = 1;
819         }
820 }
821
822 EXPORT_SYMBOL_GPL(ide_map_sg);
823
824 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
825 {
826         ide_hwif_t *hwif = drive->hwif;
827
828         hwif->nsect = hwif->nleft = rq->nr_sectors;
829         hwif->cursg_ofs = 0;
830         hwif->cursg = NULL;
831 }
832
833 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
834
835 /**
836  *      execute_drive_command   -       issue special drive command
837  *      @drive: the drive to issue the command on
838  *      @rq: the request structure holding the command
839  *
840  *      execute_drive_cmd() issues a special drive command,  usually 
841  *      initiated by ioctl() from the external hdparm program. The
842  *      command can be a drive command, drive task or taskfile 
843  *      operation. Weirdly you can call it with NULL to wait for
844  *      all commands to finish. Don't do this as that is due to change
845  */
846
847 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
848                 struct request *rq)
849 {
850         ide_hwif_t *hwif = HWIF(drive);
851         u8 *args = rq->buffer;
852
853         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
854                 ide_task_t *task = rq->special;
855  
856                 if (task == NULL)
857                         goto done;
858
859                 hwif->data_phase = task->data_phase;
860
861                 switch (hwif->data_phase) {
862                 case TASKFILE_MULTI_OUT:
863                 case TASKFILE_OUT:
864                 case TASKFILE_MULTI_IN:
865                 case TASKFILE_IN:
866                         ide_init_sg_cmd(drive, rq);
867                         ide_map_sg(drive, rq);
868                 default:
869                         break;
870                 }
871
872                 if (task->tf_flags & IDE_TFLAG_FLAGGED)
873                         return flagged_taskfile(drive, task);
874
875                 task->tf_flags |= IDE_TFLAG_OUT_TF;
876                 if (drive->addressing == 1)
877                         task->tf_flags |= (IDE_TFLAG_LBA48 | IDE_TFLAG_OUT_HOB);
878
879                 return do_rw_taskfile(drive, task);
880         }
881
882         if (args == NULL)
883                 goto done;
884
885         if (IDE_CONTROL_REG)
886                 hwif->OUTB(drive->ctl, IDE_CONTROL_REG); /* clear nIEN */
887
888         SELECT_MASK(drive, 0);
889
890         if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
891 #ifdef DEBUG
892                 printk("%s: DRIVE_TASK_CMD ", drive->name);
893                 printk("cmd=0x%02x ", args[0]);
894                 printk("fr=0x%02x ", args[1]);
895                 printk("ns=0x%02x ", args[2]);
896                 printk("sc=0x%02x ", args[3]);
897                 printk("lcyl=0x%02x ", args[4]);
898                 printk("hcyl=0x%02x ", args[5]);
899                 printk("sel=0x%02x\n", args[6]);
900 #endif
901                 hwif->OUTB(args[1], IDE_FEATURE_REG);
902                 hwif->OUTB(args[2], IDE_NSECTOR_REG);
903                 hwif->OUTB(args[3], IDE_SECTOR_REG);
904                 hwif->OUTB(args[4], IDE_LCYL_REG);
905                 hwif->OUTB(args[5], IDE_HCYL_REG);
906                 hwif->OUTB((args[6] & 0xEF)|drive->select.all, IDE_SELECT_REG);
907         } else { /* rq->cmd_type == REQ_TYPE_ATA_CMD */
908 #ifdef DEBUG
909                 printk("%s: DRIVE_CMD ", drive->name);
910                 printk("cmd=0x%02x ", args[0]);
911                 printk("sc=0x%02x ", args[1]);
912                 printk("fr=0x%02x ", args[2]);
913                 printk("xx=0x%02x\n", args[3]);
914 #endif
915                 hwif->OUTB(args[2], IDE_FEATURE_REG);
916                 if (args[0] == WIN_SMART) {
917                         hwif->OUTB(args[3],IDE_NSECTOR_REG);
918                         hwif->OUTB(args[1],IDE_SECTOR_REG);
919                         hwif->OUTB(0x4f, IDE_LCYL_REG);
920                         hwif->OUTB(0xc2, IDE_HCYL_REG);
921                 } else
922                         hwif->OUTB(args[1], IDE_NSECTOR_REG);
923         }
924
925         ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_CMD, NULL);
926         return ide_started;
927
928 done:
929         /*
930          * NULL is actually a valid way of waiting for
931          * all current requests to be flushed from the queue.
932          */
933 #ifdef DEBUG
934         printk("%s: DRIVE_CMD (null)\n", drive->name);
935 #endif
936         ide_end_drive_cmd(drive,
937                         hwif->INB(IDE_STATUS_REG),
938                         hwif->INB(IDE_ERROR_REG));
939         return ide_stopped;
940 }
941
942 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
943 {
944         struct request_pm_state *pm = rq->data;
945
946         if (blk_pm_suspend_request(rq) &&
947             pm->pm_step == ide_pm_state_start_suspend)
948                 /* Mark drive blocked when starting the suspend sequence. */
949                 drive->blocked = 1;
950         else if (blk_pm_resume_request(rq) &&
951                  pm->pm_step == ide_pm_state_start_resume) {
952                 /* 
953                  * The first thing we do on wakeup is to wait for BSY bit to
954                  * go away (with a looong timeout) as a drive on this hwif may
955                  * just be POSTing itself.
956                  * We do that before even selecting as the "other" device on
957                  * the bus may be broken enough to walk on our toes at this
958                  * point.
959                  */
960                 int rc;
961 #ifdef DEBUG_PM
962                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
963 #endif
964                 rc = ide_wait_not_busy(HWIF(drive), 35000);
965                 if (rc)
966                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
967                 SELECT_DRIVE(drive);
968                 if (IDE_CONTROL_REG)
969                         HWIF(drive)->OUTB(drive->ctl, IDE_CONTROL_REG);
970                 rc = ide_wait_not_busy(HWIF(drive), 100000);
971                 if (rc)
972                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
973         }
974 }
975
976 /**
977  *      start_request   -       start of I/O and command issuing for IDE
978  *
979  *      start_request() initiates handling of a new I/O request. It
980  *      accepts commands and I/O (read/write) requests. It also does
981  *      the final remapping for weird stuff like EZDrive. Once 
982  *      device mapper can work sector level the EZDrive stuff can go away
983  *
984  *      FIXME: this function needs a rename
985  */
986  
987 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
988 {
989         ide_startstop_t startstop;
990         sector_t block;
991
992         BUG_ON(!blk_rq_started(rq));
993
994 #ifdef DEBUG
995         printk("%s: start_request: current=0x%08lx\n",
996                 HWIF(drive)->name, (unsigned long) rq);
997 #endif
998
999         /* bail early if we've exceeded max_failures */
1000         if (drive->max_failures && (drive->failures > drive->max_failures)) {
1001                 rq->cmd_flags |= REQ_FAILED;
1002                 goto kill_rq;
1003         }
1004
1005         block    = rq->sector;
1006         if (blk_fs_request(rq) &&
1007             (drive->media == ide_disk || drive->media == ide_floppy)) {
1008                 block += drive->sect0;
1009         }
1010         /* Yecch - this will shift the entire interval,
1011            possibly killing some innocent following sector */
1012         if (block == 0 && drive->remap_0_to_1 == 1)
1013                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
1014
1015         if (blk_pm_request(rq))
1016                 ide_check_pm_state(drive, rq);
1017
1018         SELECT_DRIVE(drive);
1019         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1020                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1021                 return startstop;
1022         }
1023         if (!drive->special.all) {
1024                 ide_driver_t *drv;
1025
1026                 /*
1027                  * We reset the drive so we need to issue a SETFEATURES.
1028                  * Do it _after_ do_special() restored device parameters.
1029                  */
1030                 if (drive->current_speed == 0xff)
1031                         ide_config_drive_speed(drive, drive->desired_speed);
1032
1033                 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1034                     rq->cmd_type == REQ_TYPE_ATA_TASK ||
1035                     rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1036                         return execute_drive_cmd(drive, rq);
1037                 else if (blk_pm_request(rq)) {
1038                         struct request_pm_state *pm = rq->data;
1039 #ifdef DEBUG_PM
1040                         printk("%s: start_power_step(step: %d)\n",
1041                                 drive->name, rq->pm->pm_step);
1042 #endif
1043                         startstop = ide_start_power_step(drive, rq);
1044                         if (startstop == ide_stopped &&
1045                             pm->pm_step == ide_pm_state_completed)
1046                                 ide_complete_pm_request(drive, rq);
1047                         return startstop;
1048                 }
1049
1050                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1051                 return drv->do_request(drive, rq, block);
1052         }
1053         return do_special(drive);
1054 kill_rq:
1055         ide_kill_rq(drive, rq);
1056         return ide_stopped;
1057 }
1058
1059 /**
1060  *      ide_stall_queue         -       pause an IDE device
1061  *      @drive: drive to stall
1062  *      @timeout: time to stall for (jiffies)
1063  *
1064  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
1065  *      to the hwgroup by sleeping for timeout jiffies.
1066  */
1067  
1068 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1069 {
1070         if (timeout > WAIT_WORSTCASE)
1071                 timeout = WAIT_WORSTCASE;
1072         drive->sleep = timeout + jiffies;
1073         drive->sleeping = 1;
1074 }
1075
1076 EXPORT_SYMBOL(ide_stall_queue);
1077
1078 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
1079
1080 /**
1081  *      choose_drive            -       select a drive to service
1082  *      @hwgroup: hardware group to select on
1083  *
1084  *      choose_drive() selects the next drive which will be serviced.
1085  *      This is necessary because the IDE layer can't issue commands
1086  *      to both drives on the same cable, unlike SCSI.
1087  */
1088  
1089 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1090 {
1091         ide_drive_t *drive, *best;
1092
1093 repeat: 
1094         best = NULL;
1095         drive = hwgroup->drive;
1096
1097         /*
1098          * drive is doing pre-flush, ordered write, post-flush sequence. even
1099          * though that is 3 requests, it must be seen as a single transaction.
1100          * we must not preempt this drive until that is complete
1101          */
1102         if (blk_queue_flushing(drive->queue)) {
1103                 /*
1104                  * small race where queue could get replugged during
1105                  * the 3-request flush cycle, just yank the plug since
1106                  * we want it to finish asap
1107                  */
1108                 blk_remove_plug(drive->queue);
1109                 return drive;
1110         }
1111
1112         do {
1113                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1114                     && !elv_queue_empty(drive->queue)) {
1115                         if (!best
1116                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1117                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1118                         {
1119                                 if (!blk_queue_plugged(drive->queue))
1120                                         best = drive;
1121                         }
1122                 }
1123         } while ((drive = drive->next) != hwgroup->drive);
1124         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1125                 long t = (signed long)(WAKEUP(best) - jiffies);
1126                 if (t >= WAIT_MIN_SLEEP) {
1127                 /*
1128                  * We *may* have some time to spare, but first let's see if
1129                  * someone can potentially benefit from our nice mood today..
1130                  */
1131                         drive = best->next;
1132                         do {
1133                                 if (!drive->sleeping
1134                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1135                                  && time_before(WAKEUP(drive), jiffies + t))
1136                                 {
1137                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1138                                         goto repeat;
1139                                 }
1140                         } while ((drive = drive->next) != best);
1141                 }
1142         }
1143         return best;
1144 }
1145
1146 /*
1147  * Issue a new request to a drive from hwgroup
1148  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1149  *
1150  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1151  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1152  * may have both interfaces in a single hwgroup to "serialize" access.
1153  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1154  * together into one hwgroup for serialized access.
1155  *
1156  * Note also that several hwgroups can end up sharing a single IRQ,
1157  * possibly along with many other devices.  This is especially common in
1158  * PCI-based systems with off-board IDE controller cards.
1159  *
1160  * The IDE driver uses the single global ide_lock spinlock to protect
1161  * access to the request queues, and to protect the hwgroup->busy flag.
1162  *
1163  * The first thread into the driver for a particular hwgroup sets the
1164  * hwgroup->busy flag to indicate that this hwgroup is now active,
1165  * and then initiates processing of the top request from the request queue.
1166  *
1167  * Other threads attempting entry notice the busy setting, and will simply
1168  * queue their new requests and exit immediately.  Note that hwgroup->busy
1169  * remains set even when the driver is merely awaiting the next interrupt.
1170  * Thus, the meaning is "this hwgroup is busy processing a request".
1171  *
1172  * When processing of a request completes, the completing thread or IRQ-handler
1173  * will start the next request from the queue.  If no more work remains,
1174  * the driver will clear the hwgroup->busy flag and exit.
1175  *
1176  * The ide_lock (spinlock) is used to protect all access to the
1177  * hwgroup->busy flag, but is otherwise not needed for most processing in
1178  * the driver.  This makes the driver much more friendlier to shared IRQs
1179  * than previous designs, while remaining 100% (?) SMP safe and capable.
1180  */
1181 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1182 {
1183         ide_drive_t     *drive;
1184         ide_hwif_t      *hwif;
1185         struct request  *rq;
1186         ide_startstop_t startstop;
1187         int             loops = 0;
1188
1189         /* for atari only: POSSIBLY BROKEN HERE(?) */
1190         ide_get_lock(ide_intr, hwgroup);
1191
1192         /* caller must own ide_lock */
1193         BUG_ON(!irqs_disabled());
1194
1195         while (!hwgroup->busy) {
1196                 hwgroup->busy = 1;
1197                 drive = choose_drive(hwgroup);
1198                 if (drive == NULL) {
1199                         int sleeping = 0;
1200                         unsigned long sleep = 0; /* shut up, gcc */
1201                         hwgroup->rq = NULL;
1202                         drive = hwgroup->drive;
1203                         do {
1204                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1205                                         sleeping = 1;
1206                                         sleep = drive->sleep;
1207                                 }
1208                         } while ((drive = drive->next) != hwgroup->drive);
1209                         if (sleeping) {
1210                 /*
1211                  * Take a short snooze, and then wake up this hwgroup again.
1212                  * This gives other hwgroups on the same a chance to
1213                  * play fairly with us, just in case there are big differences
1214                  * in relative throughputs.. don't want to hog the cpu too much.
1215                  */
1216                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1217                                         sleep = jiffies + WAIT_MIN_SLEEP;
1218 #if 1
1219                                 if (timer_pending(&hwgroup->timer))
1220                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1221 #endif
1222                                 /* so that ide_timer_expiry knows what to do */
1223                                 hwgroup->sleeping = 1;
1224                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1225                                 mod_timer(&hwgroup->timer, sleep);
1226                                 /* we purposely leave hwgroup->busy==1
1227                                  * while sleeping */
1228                         } else {
1229                                 /* Ugly, but how can we sleep for the lock
1230                                  * otherwise? perhaps from tq_disk?
1231                                  */
1232
1233                                 /* for atari only */
1234                                 ide_release_lock();
1235                                 hwgroup->busy = 0;
1236                         }
1237
1238                         /* no more work for this hwgroup (for now) */
1239                         return;
1240                 }
1241         again:
1242                 hwif = HWIF(drive);
1243                 if (hwgroup->hwif->sharing_irq &&
1244                     hwif != hwgroup->hwif &&
1245                     hwif->io_ports[IDE_CONTROL_OFFSET]) {
1246                         /* set nIEN for previous hwif */
1247                         SELECT_INTERRUPT(drive);
1248                 }
1249                 hwgroup->hwif = hwif;
1250                 hwgroup->drive = drive;
1251                 drive->sleeping = 0;
1252                 drive->service_start = jiffies;
1253
1254                 if (blk_queue_plugged(drive->queue)) {
1255                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1256                         break;
1257                 }
1258
1259                 /*
1260                  * we know that the queue isn't empty, but this can happen
1261                  * if the q->prep_rq_fn() decides to kill a request
1262                  */
1263                 rq = elv_next_request(drive->queue);
1264                 if (!rq) {
1265                         hwgroup->busy = 0;
1266                         break;
1267                 }
1268
1269                 /*
1270                  * Sanity: don't accept a request that isn't a PM request
1271                  * if we are currently power managed. This is very important as
1272                  * blk_stop_queue() doesn't prevent the elv_next_request()
1273                  * above to return us whatever is in the queue. Since we call
1274                  * ide_do_request() ourselves, we end up taking requests while
1275                  * the queue is blocked...
1276                  * 
1277                  * We let requests forced at head of queue with ide-preempt
1278                  * though. I hope that doesn't happen too much, hopefully not
1279                  * unless the subdriver triggers such a thing in its own PM
1280                  * state machine.
1281                  *
1282                  * We count how many times we loop here to make sure we service
1283                  * all drives in the hwgroup without looping for ever
1284                  */
1285                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1286                         drive = drive->next ? drive->next : hwgroup->drive;
1287                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1288                                 goto again;
1289                         /* We clear busy, there should be no pending ATA command at this point. */
1290                         hwgroup->busy = 0;
1291                         break;
1292                 }
1293
1294                 hwgroup->rq = rq;
1295
1296                 /*
1297                  * Some systems have trouble with IDE IRQs arriving while
1298                  * the driver is still setting things up.  So, here we disable
1299                  * the IRQ used by this interface while the request is being started.
1300                  * This may look bad at first, but pretty much the same thing
1301                  * happens anyway when any interrupt comes in, IDE or otherwise
1302                  *  -- the kernel masks the IRQ while it is being handled.
1303                  */
1304                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1305                         disable_irq_nosync(hwif->irq);
1306                 spin_unlock(&ide_lock);
1307                 local_irq_enable_in_hardirq();
1308                         /* allow other IRQs while we start this request */
1309                 startstop = start_request(drive, rq);
1310                 spin_lock_irq(&ide_lock);
1311                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1312                         enable_irq(hwif->irq);
1313                 if (startstop == ide_stopped)
1314                         hwgroup->busy = 0;
1315         }
1316 }
1317
1318 /*
1319  * Passes the stuff to ide_do_request
1320  */
1321 void do_ide_request(struct request_queue *q)
1322 {
1323         ide_drive_t *drive = q->queuedata;
1324
1325         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1326 }
1327
1328 /*
1329  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1330  * retry the current request in pio mode instead of risking tossing it
1331  * all away
1332  */
1333 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1334 {
1335         ide_hwif_t *hwif = HWIF(drive);
1336         struct request *rq;
1337         ide_startstop_t ret = ide_stopped;
1338
1339         /*
1340          * end current dma transaction
1341          */
1342
1343         if (error < 0) {
1344                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1345                 (void)HWIF(drive)->ide_dma_end(drive);
1346                 ret = ide_error(drive, "dma timeout error",
1347                                                 hwif->INB(IDE_STATUS_REG));
1348         } else {
1349                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1350                 hwif->dma_timeout(drive);
1351         }
1352
1353         /*
1354          * disable dma for now, but remember that we did so because of
1355          * a timeout -- we'll reenable after we finish this next request
1356          * (or rather the first chunk of it) in pio.
1357          */
1358         drive->retry_pio++;
1359         drive->state = DMA_PIO_RETRY;
1360         hwif->dma_off_quietly(drive);
1361
1362         /*
1363          * un-busy drive etc (hwgroup->busy is cleared on return) and
1364          * make sure request is sane
1365          */
1366         rq = HWGROUP(drive)->rq;
1367
1368         if (!rq)
1369                 goto out;
1370
1371         HWGROUP(drive)->rq = NULL;
1372
1373         rq->errors = 0;
1374
1375         if (!rq->bio)
1376                 goto out;
1377
1378         rq->sector = rq->bio->bi_sector;
1379         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1380         rq->hard_cur_sectors = rq->current_nr_sectors;
1381         rq->buffer = bio_data(rq->bio);
1382 out:
1383         return ret;
1384 }
1385
1386 /**
1387  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1388  *      @data: timer callback magic (hwgroup)
1389  *
1390  *      An IDE command has timed out before the expected drive return
1391  *      occurred. At this point we attempt to clean up the current
1392  *      mess. If the current handler includes an expiry handler then
1393  *      we invoke the expiry handler, and providing it is happy the
1394  *      work is done. If that fails we apply generic recovery rules
1395  *      invoking the handler and checking the drive DMA status. We
1396  *      have an excessively incestuous relationship with the DMA
1397  *      logic that wants cleaning up.
1398  */
1399  
1400 void ide_timer_expiry (unsigned long data)
1401 {
1402         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1403         ide_handler_t   *handler;
1404         ide_expiry_t    *expiry;
1405         unsigned long   flags;
1406         unsigned long   wait = -1;
1407
1408         spin_lock_irqsave(&ide_lock, flags);
1409
1410         if (((handler = hwgroup->handler) == NULL) ||
1411             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1412                 /*
1413                  * Either a marginal timeout occurred
1414                  * (got the interrupt just as timer expired),
1415                  * or we were "sleeping" to give other devices a chance.
1416                  * Either way, we don't really want to complain about anything.
1417                  */
1418                 if (hwgroup->sleeping) {
1419                         hwgroup->sleeping = 0;
1420                         hwgroup->busy = 0;
1421                 }
1422         } else {
1423                 ide_drive_t *drive = hwgroup->drive;
1424                 if (!drive) {
1425                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1426                         hwgroup->handler = NULL;
1427                 } else {
1428                         ide_hwif_t *hwif;
1429                         ide_startstop_t startstop = ide_stopped;
1430                         if (!hwgroup->busy) {
1431                                 hwgroup->busy = 1;      /* paranoia */
1432                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1433                         }
1434                         if ((expiry = hwgroup->expiry) != NULL) {
1435                                 /* continue */
1436                                 if ((wait = expiry(drive)) > 0) {
1437                                         /* reset timer */
1438                                         hwgroup->timer.expires  = jiffies + wait;
1439                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1440                                         add_timer(&hwgroup->timer);
1441                                         spin_unlock_irqrestore(&ide_lock, flags);
1442                                         return;
1443                                 }
1444                         }
1445                         hwgroup->handler = NULL;
1446                         /*
1447                          * We need to simulate a real interrupt when invoking
1448                          * the handler() function, which means we need to
1449                          * globally mask the specific IRQ:
1450                          */
1451                         spin_unlock(&ide_lock);
1452                         hwif  = HWIF(drive);
1453                         /* disable_irq_nosync ?? */
1454                         disable_irq(hwif->irq);
1455                         /* local CPU only,
1456                          * as if we were handling an interrupt */
1457                         local_irq_disable();
1458                         if (hwgroup->polling) {
1459                                 startstop = handler(drive);
1460                         } else if (drive_is_ready(drive)) {
1461                                 if (drive->waiting_for_dma)
1462                                         hwgroup->hwif->dma_lost_irq(drive);
1463                                 (void)ide_ack_intr(hwif);
1464                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1465                                 startstop = handler(drive);
1466                         } else {
1467                                 if (drive->waiting_for_dma) {
1468                                         startstop = ide_dma_timeout_retry(drive, wait);
1469                                 } else
1470                                         startstop =
1471                                         ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1472                         }
1473                         drive->service_time = jiffies - drive->service_start;
1474                         spin_lock_irq(&ide_lock);
1475                         enable_irq(hwif->irq);
1476                         if (startstop == ide_stopped)
1477                                 hwgroup->busy = 0;
1478                 }
1479         }
1480         ide_do_request(hwgroup, IDE_NO_IRQ);
1481         spin_unlock_irqrestore(&ide_lock, flags);
1482 }
1483
1484 /**
1485  *      unexpected_intr         -       handle an unexpected IDE interrupt
1486  *      @irq: interrupt line
1487  *      @hwgroup: hwgroup being processed
1488  *
1489  *      There's nothing really useful we can do with an unexpected interrupt,
1490  *      other than reading the status register (to clear it), and logging it.
1491  *      There should be no way that an irq can happen before we're ready for it,
1492  *      so we needn't worry much about losing an "important" interrupt here.
1493  *
1494  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1495  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1496  *      looks "good", we just ignore the interrupt completely.
1497  *
1498  *      This routine assumes __cli() is in effect when called.
1499  *
1500  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1501  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1502  *      we could screw up by interfering with a new request being set up for 
1503  *      irq15.
1504  *
1505  *      In reality, this is a non-issue.  The new command is not sent unless 
1506  *      the drive is ready to accept one, in which case we know the drive is
1507  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1508  *      before completing the issuance of any new drive command, so we will not
1509  *      be accidentally invoked as a result of any valid command completion
1510  *      interrupt.
1511  *
1512  *      Note that we must walk the entire hwgroup here. We know which hwif
1513  *      is doing the current command, but we don't know which hwif burped
1514  *      mysteriously.
1515  */
1516  
1517 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1518 {
1519         u8 stat;
1520         ide_hwif_t *hwif = hwgroup->hwif;
1521
1522         /*
1523          * handle the unexpected interrupt
1524          */
1525         do {
1526                 if (hwif->irq == irq) {
1527                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1528                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1529                                 /* Try to not flood the console with msgs */
1530                                 static unsigned long last_msgtime, count;
1531                                 ++count;
1532                                 if (time_after(jiffies, last_msgtime + HZ)) {
1533                                         last_msgtime = jiffies;
1534                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1535                                                 "status=0x%02x, count=%ld\n",
1536                                                 hwif->name,
1537                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1538                                 }
1539                         }
1540                 }
1541         } while ((hwif = hwif->next) != hwgroup->hwif);
1542 }
1543
1544 /**
1545  *      ide_intr        -       default IDE interrupt handler
1546  *      @irq: interrupt number
1547  *      @dev_id: hwif group
1548  *      @regs: unused weirdness from the kernel irq layer
1549  *
1550  *      This is the default IRQ handler for the IDE layer. You should
1551  *      not need to override it. If you do be aware it is subtle in
1552  *      places
1553  *
1554  *      hwgroup->hwif is the interface in the group currently performing
1555  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1556  *      the IRQ handler to call. As we issue a command the handlers
1557  *      step through multiple states, reassigning the handler to the
1558  *      next step in the process. Unlike a smart SCSI controller IDE
1559  *      expects the main processor to sequence the various transfer
1560  *      stages. We also manage a poll timer to catch up with most
1561  *      timeout situations. There are still a few where the handlers
1562  *      don't ever decide to give up.
1563  *
1564  *      The handler eventually returns ide_stopped to indicate the
1565  *      request completed. At this point we issue the next request
1566  *      on the hwgroup and the process begins again.
1567  */
1568  
1569 irqreturn_t ide_intr (int irq, void *dev_id)
1570 {
1571         unsigned long flags;
1572         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1573         ide_hwif_t *hwif;
1574         ide_drive_t *drive;
1575         ide_handler_t *handler;
1576         ide_startstop_t startstop;
1577
1578         spin_lock_irqsave(&ide_lock, flags);
1579         hwif = hwgroup->hwif;
1580
1581         if (!ide_ack_intr(hwif)) {
1582                 spin_unlock_irqrestore(&ide_lock, flags);
1583                 return IRQ_NONE;
1584         }
1585
1586         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1587                 /*
1588                  * Not expecting an interrupt from this drive.
1589                  * That means this could be:
1590                  *      (1) an interrupt from another PCI device
1591                  *      sharing the same PCI INT# as us.
1592                  * or   (2) a drive just entered sleep or standby mode,
1593                  *      and is interrupting to let us know.
1594                  * or   (3) a spurious interrupt of unknown origin.
1595                  *
1596                  * For PCI, we cannot tell the difference,
1597                  * so in that case we just ignore it and hope it goes away.
1598                  *
1599                  * FIXME: unexpected_intr should be hwif-> then we can
1600                  * remove all the ifdef PCI crap
1601                  */
1602 #ifdef CONFIG_BLK_DEV_IDEPCI
1603                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1604 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1605                 {
1606                         /*
1607                          * Probably not a shared PCI interrupt,
1608                          * so we can safely try to do something about it:
1609                          */
1610                         unexpected_intr(irq, hwgroup);
1611 #ifdef CONFIG_BLK_DEV_IDEPCI
1612                 } else {
1613                         /*
1614                          * Whack the status register, just in case
1615                          * we have a leftover pending IRQ.
1616                          */
1617                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1618 #endif /* CONFIG_BLK_DEV_IDEPCI */
1619                 }
1620                 spin_unlock_irqrestore(&ide_lock, flags);
1621                 return IRQ_NONE;
1622         }
1623         drive = hwgroup->drive;
1624         if (!drive) {
1625                 /*
1626                  * This should NEVER happen, and there isn't much
1627                  * we could do about it here.
1628                  *
1629                  * [Note - this can occur if the drive is hot unplugged]
1630                  */
1631                 spin_unlock_irqrestore(&ide_lock, flags);
1632                 return IRQ_HANDLED;
1633         }
1634         if (!drive_is_ready(drive)) {
1635                 /*
1636                  * This happens regularly when we share a PCI IRQ with
1637                  * another device.  Unfortunately, it can also happen
1638                  * with some buggy drives that trigger the IRQ before
1639                  * their status register is up to date.  Hopefully we have
1640                  * enough advance overhead that the latter isn't a problem.
1641                  */
1642                 spin_unlock_irqrestore(&ide_lock, flags);
1643                 return IRQ_NONE;
1644         }
1645         if (!hwgroup->busy) {
1646                 hwgroup->busy = 1;      /* paranoia */
1647                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1648         }
1649         hwgroup->handler = NULL;
1650         hwgroup->req_gen++;
1651         del_timer(&hwgroup->timer);
1652         spin_unlock(&ide_lock);
1653
1654         /* Some controllers might set DMA INTR no matter DMA or PIO;
1655          * bmdma status might need to be cleared even for
1656          * PIO interrupts to prevent spurious/lost irq.
1657          */
1658         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1659                 /* ide_dma_end() needs bmdma status for error checking.
1660                  * So, skip clearing bmdma status here and leave it
1661                  * to ide_dma_end() if this is dma interrupt.
1662                  */
1663                 hwif->ide_dma_clear_irq(drive);
1664
1665         if (drive->unmask)
1666                 local_irq_enable_in_hardirq();
1667         /* service this interrupt, may set handler for next interrupt */
1668         startstop = handler(drive);
1669         spin_lock_irq(&ide_lock);
1670
1671         /*
1672          * Note that handler() may have set things up for another
1673          * interrupt to occur soon, but it cannot happen until
1674          * we exit from this routine, because it will be the
1675          * same irq as is currently being serviced here, and Linux
1676          * won't allow another of the same (on any CPU) until we return.
1677          */
1678         drive->service_time = jiffies - drive->service_start;
1679         if (startstop == ide_stopped) {
1680                 if (hwgroup->handler == NULL) { /* paranoia */
1681                         hwgroup->busy = 0;
1682                         ide_do_request(hwgroup, hwif->irq);
1683                 } else {
1684                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1685                                 "on exit\n", drive->name);
1686                 }
1687         }
1688         spin_unlock_irqrestore(&ide_lock, flags);
1689         return IRQ_HANDLED;
1690 }
1691
1692 /**
1693  *      ide_init_drive_cmd      -       initialize a drive command request
1694  *      @rq: request object
1695  *
1696  *      Initialize a request before we fill it in and send it down to
1697  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1698  *      now it doesn't do a lot, but if that changes abusers will have a
1699  *      nasty surprise.
1700  */
1701
1702 void ide_init_drive_cmd (struct request *rq)
1703 {
1704         memset(rq, 0, sizeof(*rq));
1705         rq->cmd_type = REQ_TYPE_ATA_CMD;
1706         rq->ref_count = 1;
1707 }
1708
1709 EXPORT_SYMBOL(ide_init_drive_cmd);
1710
1711 /**
1712  *      ide_do_drive_cmd        -       issue IDE special command
1713  *      @drive: device to issue command
1714  *      @rq: request to issue
1715  *      @action: action for processing
1716  *
1717  *      This function issues a special IDE device request
1718  *      onto the request queue.
1719  *
1720  *      If action is ide_wait, then the rq is queued at the end of the
1721  *      request queue, and the function sleeps until it has been processed.
1722  *      This is for use when invoked from an ioctl handler.
1723  *
1724  *      If action is ide_preempt, then the rq is queued at the head of
1725  *      the request queue, displacing the currently-being-processed
1726  *      request and this function returns immediately without waiting
1727  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1728  *      intended for careful use by the ATAPI tape/cdrom driver code.
1729  *
1730  *      If action is ide_end, then the rq is queued at the end of the
1731  *      request queue, and the function returns immediately without waiting
1732  *      for the new rq to be completed. This is again intended for careful
1733  *      use by the ATAPI tape/cdrom driver code.
1734  */
1735  
1736 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1737 {
1738         unsigned long flags;
1739         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1740         DECLARE_COMPLETION_ONSTACK(wait);
1741         int where = ELEVATOR_INSERT_BACK, err;
1742         int must_wait = (action == ide_wait || action == ide_head_wait);
1743
1744         rq->errors = 0;
1745
1746         /*
1747          * we need to hold an extra reference to request for safe inspection
1748          * after completion
1749          */
1750         if (must_wait) {
1751                 rq->ref_count++;
1752                 rq->end_io_data = &wait;
1753                 rq->end_io = blk_end_sync_rq;
1754         }
1755
1756         spin_lock_irqsave(&ide_lock, flags);
1757         if (action == ide_preempt)
1758                 hwgroup->rq = NULL;
1759         if (action == ide_preempt || action == ide_head_wait) {
1760                 where = ELEVATOR_INSERT_FRONT;
1761                 rq->cmd_flags |= REQ_PREEMPT;
1762         }
1763         __elv_add_request(drive->queue, rq, where, 0);
1764         ide_do_request(hwgroup, IDE_NO_IRQ);
1765         spin_unlock_irqrestore(&ide_lock, flags);
1766
1767         err = 0;
1768         if (must_wait) {
1769                 wait_for_completion(&wait);
1770                 if (rq->errors)
1771                         err = -EIO;
1772
1773                 blk_put_request(rq);
1774         }
1775
1776         return err;
1777 }
1778
1779 EXPORT_SYMBOL(ide_do_drive_cmd);