4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
54 #include <asm/uaccess.h>
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58 int uptodate, unsigned int nr_bytes, int dequeue)
64 error = uptodate ? uptodate : -EIO;
67 * if failfast is set on a request, override number of sectors and
68 * complete the whole request right now
70 if (blk_noretry_request(rq) && error)
71 nr_bytes = rq->hard_nr_sectors << 9;
73 if (!blk_fs_request(rq) && error && !rq->errors)
77 * decide whether to reenable DMA -- 3 is a random magic for now,
78 * if we DMA timeout more than 3 times, just stay in PIO
80 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
85 if (!__blk_end_request(rq, error, nr_bytes)) {
87 HWGROUP(drive)->rq = NULL;
95 * ide_end_request - complete an IDE I/O
96 * @drive: IDE device for the I/O
98 * @nr_sectors: number of sectors completed
100 * This is our end_request wrapper function. We complete the I/O
101 * update random number input and dequeue the request, which if
102 * it was tagged may be out of order.
105 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 unsigned int nr_bytes = nr_sectors << 9;
113 * room for locking improvements here, the calls below don't
114 * need the queue lock held at all
116 spin_lock_irqsave(&ide_lock, flags);
117 rq = HWGROUP(drive)->rq;
120 if (blk_pc_request(rq))
121 nr_bytes = rq->data_len;
123 nr_bytes = rq->hard_cur_sectors << 9;
126 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128 spin_unlock_irqrestore(&ide_lock, flags);
131 EXPORT_SYMBOL(ide_end_request);
134 * Power Management state machine. This one is rather trivial for now,
135 * we should probably add more, like switching back to PIO on suspend
136 * to help some BIOSes, re-do the door locking on resume, etc...
140 ide_pm_flush_cache = ide_pm_state_start_suspend,
143 idedisk_pm_restore_pio = ide_pm_state_start_resume,
148 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 struct request_pm_state *pm = rq->data;
152 if (drive->media != ide_disk)
155 switch (pm->pm_step) {
156 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
157 if (pm->pm_state == PM_EVENT_FREEZE)
158 pm->pm_step = ide_pm_state_completed;
160 pm->pm_step = idedisk_pm_standby;
162 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
163 pm->pm_step = ide_pm_state_completed;
165 case idedisk_pm_restore_pio: /* Resume step 1 complete */
166 pm->pm_step = idedisk_pm_idle;
168 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
169 pm->pm_step = ide_pm_restore_dma;
174 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 struct request_pm_state *pm = rq->data;
177 ide_task_t *args = rq->special;
179 memset(args, 0, sizeof(*args));
181 switch (pm->pm_step) {
182 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
183 if (drive->media != ide_disk)
185 /* Not supported? Switch to next step now. */
186 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
187 ide_complete_power_step(drive, rq, 0, 0);
190 if (ide_id_has_flush_cache_ext(drive->id))
191 args->tf.command = WIN_FLUSH_CACHE_EXT;
193 args->tf.command = WIN_FLUSH_CACHE;
196 case idedisk_pm_standby: /* Suspend step 2 (standby) */
197 args->tf.command = WIN_STANDBYNOW1;
200 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
201 ide_set_max_pio(drive);
203 * skip idedisk_pm_idle for ATAPI devices
205 if (drive->media != ide_disk)
206 pm->pm_step = ide_pm_restore_dma;
208 ide_complete_power_step(drive, rq, 0, 0);
211 case idedisk_pm_idle: /* Resume step 2 (idle) */
212 args->tf.command = WIN_IDLEIMMEDIATE;
215 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
217 * Right now, all we do is call ide_set_dma(drive),
218 * we could be smarter and check for current xfer_speed
219 * in struct drive etc...
221 if (drive->hwif->dma_ops == NULL)
224 * TODO: respect ->using_dma setting
229 pm->pm_step = ide_pm_state_completed;
233 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
234 args->data_phase = TASKFILE_NO_DATA;
235 return do_rw_taskfile(drive, args);
239 * ide_end_dequeued_request - complete an IDE I/O
240 * @drive: IDE device for the I/O
242 * @nr_sectors: number of sectors completed
244 * Complete an I/O that is no longer on the request queue. This
245 * typically occurs when we pull the request and issue a REQUEST_SENSE.
246 * We must still finish the old request but we must not tamper with the
247 * queue in the meantime.
249 * NOTE: This path does not handle barrier, but barrier is not supported
253 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
254 int uptodate, int nr_sectors)
259 spin_lock_irqsave(&ide_lock, flags);
260 BUG_ON(!blk_rq_started(rq));
261 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
262 spin_unlock_irqrestore(&ide_lock, flags);
266 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
270 * ide_complete_pm_request - end the current Power Management request
271 * @drive: target drive
274 * This function cleans up the current PM request and stops the queue
277 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
282 printk("%s: completing PM request, %s\n", drive->name,
283 blk_pm_suspend_request(rq) ? "suspend" : "resume");
285 spin_lock_irqsave(&ide_lock, flags);
286 if (blk_pm_suspend_request(rq)) {
287 blk_stop_queue(drive->queue);
290 blk_start_queue(drive->queue);
292 HWGROUP(drive)->rq = NULL;
293 if (__blk_end_request(rq, 0, 0))
295 spin_unlock_irqrestore(&ide_lock, flags);
299 * ide_end_drive_cmd - end an explicit drive command
304 * Clean up after success/failure of an explicit drive command.
305 * These get thrown onto the queue so they are synchronized with
306 * real I/O operations on the drive.
308 * In LBA48 mode we have to read the register set twice to get
309 * all the extra information out.
312 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
317 spin_lock_irqsave(&ide_lock, flags);
318 rq = HWGROUP(drive)->rq;
319 spin_unlock_irqrestore(&ide_lock, flags);
321 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
322 ide_task_t *task = (ide_task_t *)rq->special;
325 rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT);
328 struct ide_taskfile *tf = &task->tf;
333 drive->hwif->tp_ops->tf_read(drive, task);
335 if (task->tf_flags & IDE_TFLAG_DYN)
338 } else if (blk_pm_request(rq)) {
339 struct request_pm_state *pm = rq->data;
341 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
342 drive->name, rq->pm->pm_step, stat, err);
344 ide_complete_power_step(drive, rq, stat, err);
345 if (pm->pm_step == ide_pm_state_completed)
346 ide_complete_pm_request(drive, rq);
350 spin_lock_irqsave(&ide_lock, flags);
351 HWGROUP(drive)->rq = NULL;
353 if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
356 spin_unlock_irqrestore(&ide_lock, flags);
359 EXPORT_SYMBOL(ide_end_drive_cmd);
361 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
366 drv = *(ide_driver_t **)rq->rq_disk->private_data;
367 drv->end_request(drive, 0, 0);
369 ide_end_request(drive, 0, 0);
372 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
374 ide_hwif_t *hwif = drive->hwif;
376 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
377 /* other bits are useless when BUSY */
378 rq->errors |= ERROR_RESET;
379 } else if (stat & ERR_STAT) {
380 /* err has different meaning on cdrom and tape */
381 if (err == ABRT_ERR) {
382 if (drive->select.b.lba &&
383 /* some newer drives don't support WIN_SPECIFY */
384 hwif->tp_ops->read_status(hwif) == WIN_SPECIFY)
386 } else if ((err & BAD_CRC) == BAD_CRC) {
387 /* UDMA crc error, just retry the operation */
389 } else if (err & (BBD_ERR | ECC_ERR)) {
390 /* retries won't help these */
391 rq->errors = ERROR_MAX;
392 } else if (err & TRK0_ERR) {
393 /* help it find track zero */
394 rq->errors |= ERROR_RECAL;
398 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
399 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
400 int nsect = drive->mult_count ? drive->mult_count : 1;
402 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
405 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
406 ide_kill_rq(drive, rq);
410 if (hwif->tp_ops->read_status(hwif) & (BUSY_STAT | DRQ_STAT))
411 rq->errors |= ERROR_RESET;
413 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
415 return ide_do_reset(drive);
418 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
419 drive->special.b.recalibrate = 1;
426 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
428 ide_hwif_t *hwif = drive->hwif;
430 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
431 /* other bits are useless when BUSY */
432 rq->errors |= ERROR_RESET;
434 /* add decoding error stuff */
437 if (hwif->tp_ops->read_status(hwif) & (BUSY_STAT | DRQ_STAT))
439 hwif->tp_ops->exec_command(hwif, WIN_IDLEIMMEDIATE);
441 if (rq->errors >= ERROR_MAX) {
442 ide_kill_rq(drive, rq);
444 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
446 return ide_do_reset(drive);
455 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
457 if (drive->media == ide_disk)
458 return ide_ata_error(drive, rq, stat, err);
459 return ide_atapi_error(drive, rq, stat, err);
462 EXPORT_SYMBOL_GPL(__ide_error);
465 * ide_error - handle an error on the IDE
466 * @drive: drive the error occurred on
467 * @msg: message to report
470 * ide_error() takes action based on the error returned by the drive.
471 * For normal I/O that may well include retries. We deal with
472 * both new-style (taskfile) and old style command handling here.
473 * In the case of taskfile command handling there is work left to
477 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
482 err = ide_dump_status(drive, msg, stat);
484 if ((rq = HWGROUP(drive)->rq) == NULL)
487 /* retry only "normal" I/O: */
488 if (!blk_fs_request(rq)) {
490 ide_end_drive_cmd(drive, stat, err);
497 drv = *(ide_driver_t **)rq->rq_disk->private_data;
498 return drv->error(drive, rq, stat, err);
500 return __ide_error(drive, rq, stat, err);
503 EXPORT_SYMBOL_GPL(ide_error);
505 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
507 tf->nsect = drive->sect;
508 tf->lbal = drive->sect;
509 tf->lbam = drive->cyl;
510 tf->lbah = drive->cyl >> 8;
511 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
512 tf->command = WIN_SPECIFY;
515 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
517 tf->nsect = drive->sect;
518 tf->command = WIN_RESTORE;
521 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
523 tf->nsect = drive->mult_req;
524 tf->command = WIN_SETMULT;
527 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
529 special_t *s = &drive->special;
532 memset(&args, 0, sizeof(ide_task_t));
533 args.data_phase = TASKFILE_NO_DATA;
535 if (s->b.set_geometry) {
536 s->b.set_geometry = 0;
537 ide_tf_set_specify_cmd(drive, &args.tf);
538 } else if (s->b.recalibrate) {
539 s->b.recalibrate = 0;
540 ide_tf_set_restore_cmd(drive, &args.tf);
541 } else if (s->b.set_multmode) {
542 s->b.set_multmode = 0;
543 if (drive->mult_req > drive->id->max_multsect)
544 drive->mult_req = drive->id->max_multsect;
545 ide_tf_set_setmult_cmd(drive, &args.tf);
547 int special = s->all;
549 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
553 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
554 IDE_TFLAG_CUSTOM_HANDLER;
556 do_rw_taskfile(drive, &args);
562 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
564 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
573 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
576 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
579 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
586 * do_special - issue some special commands
587 * @drive: drive the command is for
589 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
590 * commands to a drive. It used to do much more, but has been scaled
594 static ide_startstop_t do_special (ide_drive_t *drive)
596 special_t *s = &drive->special;
599 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
602 ide_hwif_t *hwif = drive->hwif;
603 const struct ide_port_ops *port_ops = hwif->port_ops;
604 u8 req_pio = drive->tune_req;
608 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
610 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
612 if (req_pio == 8 || req_pio == 9) {
615 spin_lock_irqsave(&ide_lock, flags);
616 port_ops->set_pio_mode(drive, req_pio);
617 spin_unlock_irqrestore(&ide_lock, flags);
619 port_ops->set_pio_mode(drive, req_pio);
621 int keep_dma = drive->using_dma;
623 ide_set_pio(drive, req_pio);
625 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
633 if (drive->media == ide_disk)
634 return ide_disk_special(drive);
642 void ide_map_sg(ide_drive_t *drive, struct request *rq)
644 ide_hwif_t *hwif = drive->hwif;
645 struct scatterlist *sg = hwif->sg_table;
647 if (hwif->sg_mapped) /* needed by ide-scsi */
650 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
651 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
653 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
658 EXPORT_SYMBOL_GPL(ide_map_sg);
660 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
662 ide_hwif_t *hwif = drive->hwif;
664 hwif->nsect = hwif->nleft = rq->nr_sectors;
669 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
672 * execute_drive_command - issue special drive command
673 * @drive: the drive to issue the command on
674 * @rq: the request structure holding the command
676 * execute_drive_cmd() issues a special drive command, usually
677 * initiated by ioctl() from the external hdparm program. The
678 * command can be a drive command, drive task or taskfile
679 * operation. Weirdly you can call it with NULL to wait for
680 * all commands to finish. Don't do this as that is due to change
683 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
686 ide_hwif_t *hwif = HWIF(drive);
687 ide_task_t *task = rq->special;
690 hwif->data_phase = task->data_phase;
692 switch (hwif->data_phase) {
693 case TASKFILE_MULTI_OUT:
695 case TASKFILE_MULTI_IN:
697 ide_init_sg_cmd(drive, rq);
698 ide_map_sg(drive, rq);
703 return do_rw_taskfile(drive, task);
707 * NULL is actually a valid way of waiting for
708 * all current requests to be flushed from the queue.
711 printk("%s: DRIVE_CMD (null)\n", drive->name);
713 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
714 ide_read_error(drive));
719 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
721 switch (rq->cmd[0]) {
722 case REQ_DRIVE_RESET:
723 return ide_do_reset(drive);
725 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
726 ide_end_request(drive, 0, 0);
731 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
733 struct request_pm_state *pm = rq->data;
735 if (blk_pm_suspend_request(rq) &&
736 pm->pm_step == ide_pm_state_start_suspend)
737 /* Mark drive blocked when starting the suspend sequence. */
739 else if (blk_pm_resume_request(rq) &&
740 pm->pm_step == ide_pm_state_start_resume) {
742 * The first thing we do on wakeup is to wait for BSY bit to
743 * go away (with a looong timeout) as a drive on this hwif may
744 * just be POSTing itself.
745 * We do that before even selecting as the "other" device on
746 * the bus may be broken enough to walk on our toes at this
749 ide_hwif_t *hwif = drive->hwif;
752 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
754 rc = ide_wait_not_busy(hwif, 35000);
756 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
758 hwif->tp_ops->set_irq(hwif, 1);
759 rc = ide_wait_not_busy(hwif, 100000);
761 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
766 * start_request - start of I/O and command issuing for IDE
768 * start_request() initiates handling of a new I/O request. It
769 * accepts commands and I/O (read/write) requests. It also does
770 * the final remapping for weird stuff like EZDrive. Once
771 * device mapper can work sector level the EZDrive stuff can go away
773 * FIXME: this function needs a rename
776 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
778 ide_startstop_t startstop;
781 BUG_ON(!blk_rq_started(rq));
784 printk("%s: start_request: current=0x%08lx\n",
785 HWIF(drive)->name, (unsigned long) rq);
788 /* bail early if we've exceeded max_failures */
789 if (drive->max_failures && (drive->failures > drive->max_failures)) {
790 rq->cmd_flags |= REQ_FAILED;
795 if (blk_fs_request(rq) &&
796 (drive->media == ide_disk || drive->media == ide_floppy)) {
797 block += drive->sect0;
799 /* Yecch - this will shift the entire interval,
800 possibly killing some innocent following sector */
801 if (block == 0 && drive->remap_0_to_1 == 1)
802 block = 1; /* redirect MBR access to EZ-Drive partn table */
804 if (blk_pm_request(rq))
805 ide_check_pm_state(drive, rq);
808 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
809 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
812 if (!drive->special.all) {
816 * We reset the drive so we need to issue a SETFEATURES.
817 * Do it _after_ do_special() restored device parameters.
819 if (drive->current_speed == 0xff)
820 ide_config_drive_speed(drive, drive->desired_speed);
822 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
823 return execute_drive_cmd(drive, rq);
824 else if (blk_pm_request(rq)) {
825 struct request_pm_state *pm = rq->data;
827 printk("%s: start_power_step(step: %d)\n",
828 drive->name, rq->pm->pm_step);
830 startstop = ide_start_power_step(drive, rq);
831 if (startstop == ide_stopped &&
832 pm->pm_step == ide_pm_state_completed)
833 ide_complete_pm_request(drive, rq);
835 } else if (!rq->rq_disk && blk_special_request(rq))
837 * TODO: Once all ULDs have been modified to
838 * check for specific op codes rather than
839 * blindly accepting any special request, the
840 * check for ->rq_disk above may be replaced
841 * by a more suitable mechanism or even
844 return ide_special_rq(drive, rq);
846 drv = *(ide_driver_t **)rq->rq_disk->private_data;
847 return drv->do_request(drive, rq, block);
849 return do_special(drive);
851 ide_kill_rq(drive, rq);
856 * ide_stall_queue - pause an IDE device
857 * @drive: drive to stall
858 * @timeout: time to stall for (jiffies)
860 * ide_stall_queue() can be used by a drive to give excess bandwidth back
861 * to the hwgroup by sleeping for timeout jiffies.
864 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
866 if (timeout > WAIT_WORSTCASE)
867 timeout = WAIT_WORSTCASE;
868 drive->sleep = timeout + jiffies;
872 EXPORT_SYMBOL(ide_stall_queue);
874 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
877 * choose_drive - select a drive to service
878 * @hwgroup: hardware group to select on
880 * choose_drive() selects the next drive which will be serviced.
881 * This is necessary because the IDE layer can't issue commands
882 * to both drives on the same cable, unlike SCSI.
885 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
887 ide_drive_t *drive, *best;
891 drive = hwgroup->drive;
894 * drive is doing pre-flush, ordered write, post-flush sequence. even
895 * though that is 3 requests, it must be seen as a single transaction.
896 * we must not preempt this drive until that is complete
898 if (blk_queue_flushing(drive->queue)) {
900 * small race where queue could get replugged during
901 * the 3-request flush cycle, just yank the plug since
902 * we want it to finish asap
904 blk_remove_plug(drive->queue);
909 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
910 && !elv_queue_empty(drive->queue)) {
912 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
913 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
915 if (!blk_queue_plugged(drive->queue))
919 } while ((drive = drive->next) != hwgroup->drive);
920 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
921 long t = (signed long)(WAKEUP(best) - jiffies);
922 if (t >= WAIT_MIN_SLEEP) {
924 * We *may* have some time to spare, but first let's see if
925 * someone can potentially benefit from our nice mood today..
930 && time_before(jiffies - best->service_time, WAKEUP(drive))
931 && time_before(WAKEUP(drive), jiffies + t))
933 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
936 } while ((drive = drive->next) != best);
943 * Issue a new request to a drive from hwgroup
944 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
946 * A hwgroup is a serialized group of IDE interfaces. Usually there is
947 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
948 * may have both interfaces in a single hwgroup to "serialize" access.
949 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
950 * together into one hwgroup for serialized access.
952 * Note also that several hwgroups can end up sharing a single IRQ,
953 * possibly along with many other devices. This is especially common in
954 * PCI-based systems with off-board IDE controller cards.
956 * The IDE driver uses the single global ide_lock spinlock to protect
957 * access to the request queues, and to protect the hwgroup->busy flag.
959 * The first thread into the driver for a particular hwgroup sets the
960 * hwgroup->busy flag to indicate that this hwgroup is now active,
961 * and then initiates processing of the top request from the request queue.
963 * Other threads attempting entry notice the busy setting, and will simply
964 * queue their new requests and exit immediately. Note that hwgroup->busy
965 * remains set even when the driver is merely awaiting the next interrupt.
966 * Thus, the meaning is "this hwgroup is busy processing a request".
968 * When processing of a request completes, the completing thread or IRQ-handler
969 * will start the next request from the queue. If no more work remains,
970 * the driver will clear the hwgroup->busy flag and exit.
972 * The ide_lock (spinlock) is used to protect all access to the
973 * hwgroup->busy flag, but is otherwise not needed for most processing in
974 * the driver. This makes the driver much more friendlier to shared IRQs
975 * than previous designs, while remaining 100% (?) SMP safe and capable.
977 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
982 ide_startstop_t startstop;
985 /* for atari only: POSSIBLY BROKEN HERE(?) */
986 ide_get_lock(ide_intr, hwgroup);
988 /* caller must own ide_lock */
989 BUG_ON(!irqs_disabled());
991 while (!hwgroup->busy) {
993 drive = choose_drive(hwgroup);
996 unsigned long sleep = 0; /* shut up, gcc */
998 drive = hwgroup->drive;
1000 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1002 sleep = drive->sleep;
1004 } while ((drive = drive->next) != hwgroup->drive);
1007 * Take a short snooze, and then wake up this hwgroup again.
1008 * This gives other hwgroups on the same a chance to
1009 * play fairly with us, just in case there are big differences
1010 * in relative throughputs.. don't want to hog the cpu too much.
1012 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1013 sleep = jiffies + WAIT_MIN_SLEEP;
1015 if (timer_pending(&hwgroup->timer))
1016 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1018 /* so that ide_timer_expiry knows what to do */
1019 hwgroup->sleeping = 1;
1020 hwgroup->req_gen_timer = hwgroup->req_gen;
1021 mod_timer(&hwgroup->timer, sleep);
1022 /* we purposely leave hwgroup->busy==1
1025 /* Ugly, but how can we sleep for the lock
1026 * otherwise? perhaps from tq_disk?
1029 /* for atari only */
1034 /* no more work for this hwgroup (for now) */
1039 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1041 * set nIEN for previous hwif, drives in the
1042 * quirk_list may not like intr setups/cleanups
1044 if (drive->quirk_list != 1)
1045 hwif->tp_ops->set_irq(hwif, 0);
1047 hwgroup->hwif = hwif;
1048 hwgroup->drive = drive;
1049 drive->sleeping = 0;
1050 drive->service_start = jiffies;
1052 if (blk_queue_plugged(drive->queue)) {
1053 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1058 * we know that the queue isn't empty, but this can happen
1059 * if the q->prep_rq_fn() decides to kill a request
1061 rq = elv_next_request(drive->queue);
1068 * Sanity: don't accept a request that isn't a PM request
1069 * if we are currently power managed. This is very important as
1070 * blk_stop_queue() doesn't prevent the elv_next_request()
1071 * above to return us whatever is in the queue. Since we call
1072 * ide_do_request() ourselves, we end up taking requests while
1073 * the queue is blocked...
1075 * We let requests forced at head of queue with ide-preempt
1076 * though. I hope that doesn't happen too much, hopefully not
1077 * unless the subdriver triggers such a thing in its own PM
1080 * We count how many times we loop here to make sure we service
1081 * all drives in the hwgroup without looping for ever
1083 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1084 drive = drive->next ? drive->next : hwgroup->drive;
1085 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1087 /* We clear busy, there should be no pending ATA command at this point. */
1095 * Some systems have trouble with IDE IRQs arriving while
1096 * the driver is still setting things up. So, here we disable
1097 * the IRQ used by this interface while the request is being started.
1098 * This may look bad at first, but pretty much the same thing
1099 * happens anyway when any interrupt comes in, IDE or otherwise
1100 * -- the kernel masks the IRQ while it is being handled.
1102 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1103 disable_irq_nosync(hwif->irq);
1104 spin_unlock(&ide_lock);
1105 local_irq_enable_in_hardirq();
1106 /* allow other IRQs while we start this request */
1107 startstop = start_request(drive, rq);
1108 spin_lock_irq(&ide_lock);
1109 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1110 enable_irq(hwif->irq);
1111 if (startstop == ide_stopped)
1117 * Passes the stuff to ide_do_request
1119 void do_ide_request(struct request_queue *q)
1121 ide_drive_t *drive = q->queuedata;
1123 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1127 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1128 * retry the current request in pio mode instead of risking tossing it
1131 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1133 ide_hwif_t *hwif = HWIF(drive);
1135 ide_startstop_t ret = ide_stopped;
1138 * end current dma transaction
1142 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1143 (void)hwif->dma_ops->dma_end(drive);
1144 ret = ide_error(drive, "dma timeout error",
1145 hwif->tp_ops->read_status(hwif));
1147 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1148 hwif->dma_ops->dma_timeout(drive);
1152 * disable dma for now, but remember that we did so because of
1153 * a timeout -- we'll reenable after we finish this next request
1154 * (or rather the first chunk of it) in pio.
1157 drive->state = DMA_PIO_RETRY;
1158 ide_dma_off_quietly(drive);
1161 * un-busy drive etc (hwgroup->busy is cleared on return) and
1162 * make sure request is sane
1164 rq = HWGROUP(drive)->rq;
1169 HWGROUP(drive)->rq = NULL;
1176 rq->sector = rq->bio->bi_sector;
1177 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1178 rq->hard_cur_sectors = rq->current_nr_sectors;
1179 rq->buffer = bio_data(rq->bio);
1185 * ide_timer_expiry - handle lack of an IDE interrupt
1186 * @data: timer callback magic (hwgroup)
1188 * An IDE command has timed out before the expected drive return
1189 * occurred. At this point we attempt to clean up the current
1190 * mess. If the current handler includes an expiry handler then
1191 * we invoke the expiry handler, and providing it is happy the
1192 * work is done. If that fails we apply generic recovery rules
1193 * invoking the handler and checking the drive DMA status. We
1194 * have an excessively incestuous relationship with the DMA
1195 * logic that wants cleaning up.
1198 void ide_timer_expiry (unsigned long data)
1200 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1201 ide_handler_t *handler;
1202 ide_expiry_t *expiry;
1203 unsigned long flags;
1204 unsigned long wait = -1;
1206 spin_lock_irqsave(&ide_lock, flags);
1208 if (((handler = hwgroup->handler) == NULL) ||
1209 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1211 * Either a marginal timeout occurred
1212 * (got the interrupt just as timer expired),
1213 * or we were "sleeping" to give other devices a chance.
1214 * Either way, we don't really want to complain about anything.
1216 if (hwgroup->sleeping) {
1217 hwgroup->sleeping = 0;
1221 ide_drive_t *drive = hwgroup->drive;
1223 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1224 hwgroup->handler = NULL;
1227 ide_startstop_t startstop = ide_stopped;
1228 if (!hwgroup->busy) {
1229 hwgroup->busy = 1; /* paranoia */
1230 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1232 if ((expiry = hwgroup->expiry) != NULL) {
1234 if ((wait = expiry(drive)) > 0) {
1236 hwgroup->timer.expires = jiffies + wait;
1237 hwgroup->req_gen_timer = hwgroup->req_gen;
1238 add_timer(&hwgroup->timer);
1239 spin_unlock_irqrestore(&ide_lock, flags);
1243 hwgroup->handler = NULL;
1245 * We need to simulate a real interrupt when invoking
1246 * the handler() function, which means we need to
1247 * globally mask the specific IRQ:
1249 spin_unlock(&ide_lock);
1251 /* disable_irq_nosync ?? */
1252 disable_irq(hwif->irq);
1254 * as if we were handling an interrupt */
1255 local_irq_disable();
1256 if (hwgroup->polling) {
1257 startstop = handler(drive);
1258 } else if (drive_is_ready(drive)) {
1259 if (drive->waiting_for_dma)
1260 hwif->dma_ops->dma_lost_irq(drive);
1261 (void)ide_ack_intr(hwif);
1262 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1263 startstop = handler(drive);
1265 if (drive->waiting_for_dma) {
1266 startstop = ide_dma_timeout_retry(drive, wait);
1269 ide_error(drive, "irq timeout",
1270 hwif->tp_ops->read_status(hwif));
1272 drive->service_time = jiffies - drive->service_start;
1273 spin_lock_irq(&ide_lock);
1274 enable_irq(hwif->irq);
1275 if (startstop == ide_stopped)
1279 ide_do_request(hwgroup, IDE_NO_IRQ);
1280 spin_unlock_irqrestore(&ide_lock, flags);
1284 * unexpected_intr - handle an unexpected IDE interrupt
1285 * @irq: interrupt line
1286 * @hwgroup: hwgroup being processed
1288 * There's nothing really useful we can do with an unexpected interrupt,
1289 * other than reading the status register (to clear it), and logging it.
1290 * There should be no way that an irq can happen before we're ready for it,
1291 * so we needn't worry much about losing an "important" interrupt here.
1293 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1294 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1295 * looks "good", we just ignore the interrupt completely.
1297 * This routine assumes __cli() is in effect when called.
1299 * If an unexpected interrupt happens on irq15 while we are handling irq14
1300 * and if the two interfaces are "serialized" (CMD640), then it looks like
1301 * we could screw up by interfering with a new request being set up for
1304 * In reality, this is a non-issue. The new command is not sent unless
1305 * the drive is ready to accept one, in which case we know the drive is
1306 * not trying to interrupt us. And ide_set_handler() is always invoked
1307 * before completing the issuance of any new drive command, so we will not
1308 * be accidentally invoked as a result of any valid command completion
1311 * Note that we must walk the entire hwgroup here. We know which hwif
1312 * is doing the current command, but we don't know which hwif burped
1316 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1319 ide_hwif_t *hwif = hwgroup->hwif;
1322 * handle the unexpected interrupt
1325 if (hwif->irq == irq) {
1326 stat = hwif->tp_ops->read_status(hwif);
1328 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1329 /* Try to not flood the console with msgs */
1330 static unsigned long last_msgtime, count;
1332 if (time_after(jiffies, last_msgtime + HZ)) {
1333 last_msgtime = jiffies;
1334 printk(KERN_ERR "%s%s: unexpected interrupt, "
1335 "status=0x%02x, count=%ld\n",
1337 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1341 } while ((hwif = hwif->next) != hwgroup->hwif);
1345 * ide_intr - default IDE interrupt handler
1346 * @irq: interrupt number
1347 * @dev_id: hwif group
1348 * @regs: unused weirdness from the kernel irq layer
1350 * This is the default IRQ handler for the IDE layer. You should
1351 * not need to override it. If you do be aware it is subtle in
1354 * hwgroup->hwif is the interface in the group currently performing
1355 * a command. hwgroup->drive is the drive and hwgroup->handler is
1356 * the IRQ handler to call. As we issue a command the handlers
1357 * step through multiple states, reassigning the handler to the
1358 * next step in the process. Unlike a smart SCSI controller IDE
1359 * expects the main processor to sequence the various transfer
1360 * stages. We also manage a poll timer to catch up with most
1361 * timeout situations. There are still a few where the handlers
1362 * don't ever decide to give up.
1364 * The handler eventually returns ide_stopped to indicate the
1365 * request completed. At this point we issue the next request
1366 * on the hwgroup and the process begins again.
1369 irqreturn_t ide_intr (int irq, void *dev_id)
1371 unsigned long flags;
1372 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1375 ide_handler_t *handler;
1376 ide_startstop_t startstop;
1378 spin_lock_irqsave(&ide_lock, flags);
1379 hwif = hwgroup->hwif;
1381 if (!ide_ack_intr(hwif)) {
1382 spin_unlock_irqrestore(&ide_lock, flags);
1386 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1388 * Not expecting an interrupt from this drive.
1389 * That means this could be:
1390 * (1) an interrupt from another PCI device
1391 * sharing the same PCI INT# as us.
1392 * or (2) a drive just entered sleep or standby mode,
1393 * and is interrupting to let us know.
1394 * or (3) a spurious interrupt of unknown origin.
1396 * For PCI, we cannot tell the difference,
1397 * so in that case we just ignore it and hope it goes away.
1399 * FIXME: unexpected_intr should be hwif-> then we can
1400 * remove all the ifdef PCI crap
1402 #ifdef CONFIG_BLK_DEV_IDEPCI
1403 if (hwif->chipset != ide_pci)
1404 #endif /* CONFIG_BLK_DEV_IDEPCI */
1407 * Probably not a shared PCI interrupt,
1408 * so we can safely try to do something about it:
1410 unexpected_intr(irq, hwgroup);
1411 #ifdef CONFIG_BLK_DEV_IDEPCI
1414 * Whack the status register, just in case
1415 * we have a leftover pending IRQ.
1417 (void)hwif->tp_ops->read_status(hwif);
1418 #endif /* CONFIG_BLK_DEV_IDEPCI */
1420 spin_unlock_irqrestore(&ide_lock, flags);
1423 drive = hwgroup->drive;
1426 * This should NEVER happen, and there isn't much
1427 * we could do about it here.
1429 * [Note - this can occur if the drive is hot unplugged]
1431 spin_unlock_irqrestore(&ide_lock, flags);
1434 if (!drive_is_ready(drive)) {
1436 * This happens regularly when we share a PCI IRQ with
1437 * another device. Unfortunately, it can also happen
1438 * with some buggy drives that trigger the IRQ before
1439 * their status register is up to date. Hopefully we have
1440 * enough advance overhead that the latter isn't a problem.
1442 spin_unlock_irqrestore(&ide_lock, flags);
1445 if (!hwgroup->busy) {
1446 hwgroup->busy = 1; /* paranoia */
1447 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1449 hwgroup->handler = NULL;
1451 del_timer(&hwgroup->timer);
1452 spin_unlock(&ide_lock);
1454 /* Some controllers might set DMA INTR no matter DMA or PIO;
1455 * bmdma status might need to be cleared even for
1456 * PIO interrupts to prevent spurious/lost irq.
1458 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1459 /* ide_dma_end() needs bmdma status for error checking.
1460 * So, skip clearing bmdma status here and leave it
1461 * to ide_dma_end() if this is dma interrupt.
1463 hwif->ide_dma_clear_irq(drive);
1466 local_irq_enable_in_hardirq();
1467 /* service this interrupt, may set handler for next interrupt */
1468 startstop = handler(drive);
1469 spin_lock_irq(&ide_lock);
1472 * Note that handler() may have set things up for another
1473 * interrupt to occur soon, but it cannot happen until
1474 * we exit from this routine, because it will be the
1475 * same irq as is currently being serviced here, and Linux
1476 * won't allow another of the same (on any CPU) until we return.
1478 drive->service_time = jiffies - drive->service_start;
1479 if (startstop == ide_stopped) {
1480 if (hwgroup->handler == NULL) { /* paranoia */
1482 ide_do_request(hwgroup, hwif->irq);
1484 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1485 "on exit\n", drive->name);
1488 spin_unlock_irqrestore(&ide_lock, flags);
1493 * ide_do_drive_cmd - issue IDE special command
1494 * @drive: device to issue command
1495 * @rq: request to issue
1497 * This function issues a special IDE device request
1498 * onto the request queue.
1500 * the rq is queued at the head of the request queue, displacing
1501 * the currently-being-processed request and this function
1502 * returns immediately without waiting for the new rq to be
1503 * completed. This is VERY DANGEROUS, and is intended for
1504 * careful use by the ATAPI tape/cdrom driver code.
1507 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1509 unsigned long flags;
1510 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1512 spin_lock_irqsave(&ide_lock, flags);
1514 __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 1);
1515 __generic_unplug_device(drive->queue);
1516 spin_unlock_irqrestore(&ide_lock, flags);
1519 EXPORT_SYMBOL(ide_do_drive_cmd);
1521 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1523 ide_hwif_t *hwif = drive->hwif;
1526 memset(&task, 0, sizeof(task));
1527 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1528 IDE_TFLAG_OUT_FEATURE | tf_flags;
1529 task.tf.feature = dma; /* Use PIO/DMA */
1530 task.tf.lbam = bcount & 0xff;
1531 task.tf.lbah = (bcount >> 8) & 0xff;
1533 ide_tf_dump(drive->name, &task.tf);
1534 hwif->tp_ops->set_irq(hwif, 1);
1535 SELECT_MASK(drive, 0);
1536 hwif->tp_ops->tf_load(drive, &task);
1539 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1541 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1543 ide_hwif_t *hwif = drive->hwif;
1548 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1550 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1554 EXPORT_SYMBOL_GPL(ide_pad_transfer);