]> err.no Git - linux-2.6/blob - drivers/ide/ide-io.c
ide: use ide_tf_load() in execute_drive_cmd()
[linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61
62         /*
63          * if failfast is set on a request, override number of sectors and
64          * complete the whole request right now
65          */
66         if (blk_noretry_request(rq) && end_io_error(uptodate))
67                 nr_bytes = rq->hard_nr_sectors << 9;
68
69         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70                 rq->errors = -EIO;
71
72         /*
73          * decide whether to reenable DMA -- 3 is a random magic for now,
74          * if we DMA timeout more than 3 times, just stay in PIO
75          */
76         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77                 drive->state = 0;
78                 HWGROUP(drive)->hwif->ide_dma_on(drive);
79         }
80
81         if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82                 add_disk_randomness(rq->rq_disk);
83                 if (dequeue) {
84                         if (!list_empty(&rq->queuelist))
85                                 blkdev_dequeue_request(rq);
86                         HWGROUP(drive)->rq = NULL;
87                 }
88                 end_that_request_last(rq, uptodate);
89                 ret = 0;
90         }
91
92         return ret;
93 }
94
95 /**
96  *      ide_end_request         -       complete an IDE I/O
97  *      @drive: IDE device for the I/O
98  *      @uptodate:
99  *      @nr_sectors: number of sectors completed
100  *
101  *      This is our end_request wrapper function. We complete the I/O
102  *      update random number input and dequeue the request, which if
103  *      it was tagged may be out of order.
104  */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108         unsigned int nr_bytes = nr_sectors << 9;
109         struct request *rq;
110         unsigned long flags;
111         int ret = 1;
112
113         /*
114          * room for locking improvements here, the calls below don't
115          * need the queue lock held at all
116          */
117         spin_lock_irqsave(&ide_lock, flags);
118         rq = HWGROUP(drive)->rq;
119
120         if (!nr_bytes) {
121                 if (blk_pc_request(rq))
122                         nr_bytes = rq->data_len;
123                 else
124                         nr_bytes = rq->hard_cur_sectors << 9;
125         }
126
127         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129         spin_unlock_irqrestore(&ide_lock, flags);
130         return ret;
131 }
132 EXPORT_SYMBOL(ide_end_request);
133
134 /*
135  * Power Management state machine. This one is rather trivial for now,
136  * we should probably add more, like switching back to PIO on suspend
137  * to help some BIOSes, re-do the door locking on resume, etc...
138  */
139
140 enum {
141         ide_pm_flush_cache      = ide_pm_state_start_suspend,
142         idedisk_pm_standby,
143
144         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
145         idedisk_pm_idle,
146         ide_pm_restore_dma,
147 };
148
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 {
151         struct request_pm_state *pm = rq->data;
152
153         if (drive->media != ide_disk)
154                 return;
155
156         switch (pm->pm_step) {
157         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
158                 if (pm->pm_state == PM_EVENT_FREEZE)
159                         pm->pm_step = ide_pm_state_completed;
160                 else
161                         pm->pm_step = idedisk_pm_standby;
162                 break;
163         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
164                 pm->pm_step = ide_pm_state_completed;
165                 break;
166         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
167                 pm->pm_step = idedisk_pm_idle;
168                 break;
169         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
170                 pm->pm_step = ide_pm_restore_dma;
171                 break;
172         }
173 }
174
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 {
177         struct request_pm_state *pm = rq->data;
178         ide_task_t *args = rq->special;
179
180         memset(args, 0, sizeof(*args));
181
182         switch (pm->pm_step) {
183         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
184                 if (drive->media != ide_disk)
185                         break;
186                 /* Not supported? Switch to next step now. */
187                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188                         ide_complete_power_step(drive, rq, 0, 0);
189                         return ide_stopped;
190                 }
191                 if (ide_id_has_flush_cache_ext(drive->id))
192                         args->tf.command = WIN_FLUSH_CACHE_EXT;
193                 else
194                         args->tf.command = WIN_FLUSH_CACHE;
195                 goto out_do_tf;
196
197         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
198                 args->tf.command = WIN_STANDBYNOW1;
199                 goto out_do_tf;
200
201         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
202                 ide_set_max_pio(drive);
203                 /*
204                  * skip idedisk_pm_idle for ATAPI devices
205                  */
206                 if (drive->media != ide_disk)
207                         pm->pm_step = ide_pm_restore_dma;
208                 else
209                         ide_complete_power_step(drive, rq, 0, 0);
210                 return ide_stopped;
211
212         case idedisk_pm_idle:           /* Resume step 2 (idle) */
213                 args->tf.command = WIN_IDLEIMMEDIATE;
214                 goto out_do_tf;
215
216         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
217                 /*
218                  * Right now, all we do is call ide_set_dma(drive),
219                  * we could be smarter and check for current xfer_speed
220                  * in struct drive etc...
221                  */
222                 if (drive->hwif->ide_dma_on == NULL)
223                         break;
224                 drive->hwif->dma_off_quietly(drive);
225                 /*
226                  * TODO: respect ->using_dma setting
227                  */
228                 ide_set_dma(drive);
229                 break;
230         }
231         pm->pm_step = ide_pm_state_completed;
232         return ide_stopped;
233
234 out_do_tf:
235         args->tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
236         if (drive->addressing == 1)
237                 args->tf_flags |= (IDE_TFLAG_LBA48 | IDE_TFLAG_OUT_HOB);
238         args->command_type = IDE_DRIVE_TASK_NO_DATA;
239         args->handler      = task_no_data_intr;
240         return do_rw_taskfile(drive, args);
241 }
242
243 /**
244  *      ide_end_dequeued_request        -       complete an IDE I/O
245  *      @drive: IDE device for the I/O
246  *      @uptodate:
247  *      @nr_sectors: number of sectors completed
248  *
249  *      Complete an I/O that is no longer on the request queue. This
250  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
251  *      We must still finish the old request but we must not tamper with the
252  *      queue in the meantime.
253  *
254  *      NOTE: This path does not handle barrier, but barrier is not supported
255  *      on ide-cd anyway.
256  */
257
258 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
259                              int uptodate, int nr_sectors)
260 {
261         unsigned long flags;
262         int ret;
263
264         spin_lock_irqsave(&ide_lock, flags);
265         BUG_ON(!blk_rq_started(rq));
266         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
267         spin_unlock_irqrestore(&ide_lock, flags);
268
269         return ret;
270 }
271 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
272
273
274 /**
275  *      ide_complete_pm_request - end the current Power Management request
276  *      @drive: target drive
277  *      @rq: request
278  *
279  *      This function cleans up the current PM request and stops the queue
280  *      if necessary.
281  */
282 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
283 {
284         unsigned long flags;
285
286 #ifdef DEBUG_PM
287         printk("%s: completing PM request, %s\n", drive->name,
288                blk_pm_suspend_request(rq) ? "suspend" : "resume");
289 #endif
290         spin_lock_irqsave(&ide_lock, flags);
291         if (blk_pm_suspend_request(rq)) {
292                 blk_stop_queue(drive->queue);
293         } else {
294                 drive->blocked = 0;
295                 blk_start_queue(drive->queue);
296         }
297         blkdev_dequeue_request(rq);
298         HWGROUP(drive)->rq = NULL;
299         end_that_request_last(rq, 1);
300         spin_unlock_irqrestore(&ide_lock, flags);
301 }
302
303 /**
304  *      ide_end_drive_cmd       -       end an explicit drive command
305  *      @drive: command 
306  *      @stat: status bits
307  *      @err: error bits
308  *
309  *      Clean up after success/failure of an explicit drive command.
310  *      These get thrown onto the queue so they are synchronized with
311  *      real I/O operations on the drive.
312  *
313  *      In LBA48 mode we have to read the register set twice to get
314  *      all the extra information out.
315  */
316  
317 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
318 {
319         ide_hwif_t *hwif = HWIF(drive);
320         unsigned long flags;
321         struct request *rq;
322
323         spin_lock_irqsave(&ide_lock, flags);
324         rq = HWGROUP(drive)->rq;
325         spin_unlock_irqrestore(&ide_lock, flags);
326
327         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
328                 u8 *args = (u8 *) rq->buffer;
329                 if (rq->errors == 0)
330                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
331
332                 if (args) {
333                         args[0] = stat;
334                         args[1] = err;
335                         args[2] = hwif->INB(IDE_NSECTOR_REG);
336                 }
337         } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
338                 u8 *args = (u8 *) rq->buffer;
339                 if (rq->errors == 0)
340                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
341
342                 if (args) {
343                         args[0] = stat;
344                         args[1] = err;
345                         /* be sure we're looking at the low order bits */
346                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
347                         args[2] = hwif->INB(IDE_NSECTOR_REG);
348                         args[3] = hwif->INB(IDE_SECTOR_REG);
349                         args[4] = hwif->INB(IDE_LCYL_REG);
350                         args[5] = hwif->INB(IDE_HCYL_REG);
351                         args[6] = hwif->INB(IDE_SELECT_REG);
352                 }
353         } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
354                 ide_task_t *args = (ide_task_t *) rq->special;
355                 if (rq->errors == 0)
356                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
357                         
358                 if (args) {
359                         struct ide_taskfile *tf = &args->tf;
360
361                         if (args->tf_in_flags.b.data) {
362                                 u16 data = hwif->INW(IDE_DATA_REG);
363
364                                 tf->data = data & 0xff;
365                                 tf->hob_data = (data >> 8) & 0xff;
366                         }
367                         tf->error = err;
368                         /* be sure we're looking at the low order bits */
369                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
370                         tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
371                         tf->lbal   = hwif->INB(IDE_SECTOR_REG);
372                         tf->lbam   = hwif->INB(IDE_LCYL_REG);
373                         tf->lbah   = hwif->INB(IDE_HCYL_REG);
374                         tf->device = hwif->INB(IDE_SELECT_REG);
375                         tf->status = stat;
376
377                         if (drive->addressing == 1) {
378                                 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
379                                 tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
380                                 tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
381                                 tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
382                                 tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
383                                 tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
384                         }
385                 }
386         } else if (blk_pm_request(rq)) {
387                 struct request_pm_state *pm = rq->data;
388 #ifdef DEBUG_PM
389                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
390                         drive->name, rq->pm->pm_step, stat, err);
391 #endif
392                 ide_complete_power_step(drive, rq, stat, err);
393                 if (pm->pm_step == ide_pm_state_completed)
394                         ide_complete_pm_request(drive, rq);
395                 return;
396         }
397
398         spin_lock_irqsave(&ide_lock, flags);
399         blkdev_dequeue_request(rq);
400         HWGROUP(drive)->rq = NULL;
401         rq->errors = err;
402         end_that_request_last(rq, !rq->errors);
403         spin_unlock_irqrestore(&ide_lock, flags);
404 }
405
406 EXPORT_SYMBOL(ide_end_drive_cmd);
407
408 /**
409  *      try_to_flush_leftover_data      -       flush junk
410  *      @drive: drive to flush
411  *
412  *      try_to_flush_leftover_data() is invoked in response to a drive
413  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
414  *      resetting the drive, this routine tries to clear the condition
415  *      by read a sector's worth of data from the drive.  Of course,
416  *      this may not help if the drive is *waiting* for data from *us*.
417  */
418 static void try_to_flush_leftover_data (ide_drive_t *drive)
419 {
420         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
421
422         if (drive->media != ide_disk)
423                 return;
424         while (i > 0) {
425                 u32 buffer[16];
426                 u32 wcount = (i > 16) ? 16 : i;
427
428                 i -= wcount;
429                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
430         }
431 }
432
433 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
434 {
435         if (rq->rq_disk) {
436                 ide_driver_t *drv;
437
438                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
439                 drv->end_request(drive, 0, 0);
440         } else
441                 ide_end_request(drive, 0, 0);
442 }
443
444 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
445 {
446         ide_hwif_t *hwif = drive->hwif;
447
448         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
449                 /* other bits are useless when BUSY */
450                 rq->errors |= ERROR_RESET;
451         } else if (stat & ERR_STAT) {
452                 /* err has different meaning on cdrom and tape */
453                 if (err == ABRT_ERR) {
454                         if (drive->select.b.lba &&
455                             /* some newer drives don't support WIN_SPECIFY */
456                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
457                                 return ide_stopped;
458                 } else if ((err & BAD_CRC) == BAD_CRC) {
459                         /* UDMA crc error, just retry the operation */
460                         drive->crc_count++;
461                 } else if (err & (BBD_ERR | ECC_ERR)) {
462                         /* retries won't help these */
463                         rq->errors = ERROR_MAX;
464                 } else if (err & TRK0_ERR) {
465                         /* help it find track zero */
466                         rq->errors |= ERROR_RECAL;
467                 }
468         }
469
470         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
471             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
472                 try_to_flush_leftover_data(drive);
473
474         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
475                 ide_kill_rq(drive, rq);
476                 return ide_stopped;
477         }
478
479         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
480                 rq->errors |= ERROR_RESET;
481
482         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
483                 ++rq->errors;
484                 return ide_do_reset(drive);
485         }
486
487         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
488                 drive->special.b.recalibrate = 1;
489
490         ++rq->errors;
491
492         return ide_stopped;
493 }
494
495 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
496 {
497         ide_hwif_t *hwif = drive->hwif;
498
499         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
500                 /* other bits are useless when BUSY */
501                 rq->errors |= ERROR_RESET;
502         } else {
503                 /* add decoding error stuff */
504         }
505
506         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
507                 /* force an abort */
508                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
509
510         if (rq->errors >= ERROR_MAX) {
511                 ide_kill_rq(drive, rq);
512         } else {
513                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
514                         ++rq->errors;
515                         return ide_do_reset(drive);
516                 }
517                 ++rq->errors;
518         }
519
520         return ide_stopped;
521 }
522
523 ide_startstop_t
524 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
525 {
526         if (drive->media == ide_disk)
527                 return ide_ata_error(drive, rq, stat, err);
528         return ide_atapi_error(drive, rq, stat, err);
529 }
530
531 EXPORT_SYMBOL_GPL(__ide_error);
532
533 /**
534  *      ide_error       -       handle an error on the IDE
535  *      @drive: drive the error occurred on
536  *      @msg: message to report
537  *      @stat: status bits
538  *
539  *      ide_error() takes action based on the error returned by the drive.
540  *      For normal I/O that may well include retries. We deal with
541  *      both new-style (taskfile) and old style command handling here.
542  *      In the case of taskfile command handling there is work left to
543  *      do
544  */
545  
546 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
547 {
548         struct request *rq;
549         u8 err;
550
551         err = ide_dump_status(drive, msg, stat);
552
553         if ((rq = HWGROUP(drive)->rq) == NULL)
554                 return ide_stopped;
555
556         /* retry only "normal" I/O: */
557         if (!blk_fs_request(rq)) {
558                 rq->errors = 1;
559                 ide_end_drive_cmd(drive, stat, err);
560                 return ide_stopped;
561         }
562
563         if (rq->rq_disk) {
564                 ide_driver_t *drv;
565
566                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
567                 return drv->error(drive, rq, stat, err);
568         } else
569                 return __ide_error(drive, rq, stat, err);
570 }
571
572 EXPORT_SYMBOL_GPL(ide_error);
573
574 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
575 {
576         if (drive->media != ide_disk)
577                 rq->errors |= ERROR_RESET;
578
579         ide_kill_rq(drive, rq);
580
581         return ide_stopped;
582 }
583
584 EXPORT_SYMBOL_GPL(__ide_abort);
585
586 /**
587  *      ide_abort       -       abort pending IDE operations
588  *      @drive: drive the error occurred on
589  *      @msg: message to report
590  *
591  *      ide_abort kills and cleans up when we are about to do a 
592  *      host initiated reset on active commands. Longer term we
593  *      want handlers to have sensible abort handling themselves
594  *
595  *      This differs fundamentally from ide_error because in 
596  *      this case the command is doing just fine when we
597  *      blow it away.
598  */
599  
600 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
601 {
602         struct request *rq;
603
604         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
605                 return ide_stopped;
606
607         /* retry only "normal" I/O: */
608         if (!blk_fs_request(rq)) {
609                 rq->errors = 1;
610                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
611                 return ide_stopped;
612         }
613
614         if (rq->rq_disk) {
615                 ide_driver_t *drv;
616
617                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
618                 return drv->abort(drive, rq);
619         } else
620                 return __ide_abort(drive, rq);
621 }
622
623 /**
624  *      drive_cmd_intr          -       drive command completion interrupt
625  *      @drive: drive the completion interrupt occurred on
626  *
627  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
628  *      We do any necessary data reading and then wait for the drive to
629  *      go non busy. At that point we may read the error data and complete
630  *      the request
631  */
632  
633 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
634 {
635         struct request *rq = HWGROUP(drive)->rq;
636         ide_hwif_t *hwif = HWIF(drive);
637         u8 *args = (u8 *) rq->buffer;
638         u8 stat = hwif->INB(IDE_STATUS_REG);
639         int retries = 10;
640
641         local_irq_enable_in_hardirq();
642         if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
643             (stat & DRQ_STAT) && args && args[3]) {
644                 u8 io_32bit = drive->io_32bit;
645                 drive->io_32bit = 0;
646                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
647                 drive->io_32bit = io_32bit;
648                 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
649                         udelay(100);
650         }
651
652         if (!OK_STAT(stat, READY_STAT, BAD_STAT))
653                 return ide_error(drive, "drive_cmd", stat);
654                 /* calls ide_end_drive_cmd */
655         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
656         return ide_stopped;
657 }
658
659 static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
660 {
661         task->tf.nsect   = drive->sect;
662         task->tf.lbal    = drive->sect;
663         task->tf.lbam    = drive->cyl;
664         task->tf.lbah    = drive->cyl >> 8;
665         task->tf.device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
666         task->tf.command = WIN_SPECIFY;
667
668         task->handler = &set_geometry_intr;
669 }
670
671 static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
672 {
673         task->tf.nsect   = drive->sect;
674         task->tf.command = WIN_RESTORE;
675
676         task->handler = &recal_intr;
677 }
678
679 static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
680 {
681         task->tf.nsect   = drive->mult_req;
682         task->tf.command = WIN_SETMULT;
683
684         task->handler = &set_multmode_intr;
685 }
686
687 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
688 {
689         special_t *s = &drive->special;
690         ide_task_t args;
691
692         memset(&args, 0, sizeof(ide_task_t));
693         args.command_type = IDE_DRIVE_TASK_NO_DATA;
694
695         if (s->b.set_geometry) {
696                 s->b.set_geometry = 0;
697                 ide_init_specify_cmd(drive, &args);
698         } else if (s->b.recalibrate) {
699                 s->b.recalibrate = 0;
700                 ide_init_restore_cmd(drive, &args);
701         } else if (s->b.set_multmode) {
702                 s->b.set_multmode = 0;
703                 if (drive->mult_req > drive->id->max_multsect)
704                         drive->mult_req = drive->id->max_multsect;
705                 ide_init_setmult_cmd(drive, &args);
706         } else if (s->all) {
707                 int special = s->all;
708                 s->all = 0;
709                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
710                 return ide_stopped;
711         }
712
713         args.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
714         if (drive->addressing == 1)
715                 args.tf_flags |= (IDE_TFLAG_LBA48 | IDE_TFLAG_OUT_HOB);
716
717         do_rw_taskfile(drive, &args);
718
719         return ide_started;
720 }
721
722 /*
723  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
724  */
725 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
726 {
727         switch (req_pio) {
728         case 202:
729         case 201:
730         case 200:
731         case 102:
732         case 101:
733         case 100:
734                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
735         case 9:
736         case 8:
737                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
738         case 7:
739         case 6:
740                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
741         default:
742                 return 0;
743         }
744 }
745
746 /**
747  *      do_special              -       issue some special commands
748  *      @drive: drive the command is for
749  *
750  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
751  *      commands to a drive.  It used to do much more, but has been scaled
752  *      back.
753  */
754
755 static ide_startstop_t do_special (ide_drive_t *drive)
756 {
757         special_t *s = &drive->special;
758
759 #ifdef DEBUG
760         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
761 #endif
762         if (s->b.set_tune) {
763                 ide_hwif_t *hwif = drive->hwif;
764                 u8 req_pio = drive->tune_req;
765
766                 s->b.set_tune = 0;
767
768                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
769
770                         if (hwif->set_pio_mode == NULL)
771                                 return ide_stopped;
772
773                         /*
774                          * take ide_lock for drive->[no_]unmask/[no_]io_32bit
775                          */
776                         if (req_pio == 8 || req_pio == 9) {
777                                 unsigned long flags;
778
779                                 spin_lock_irqsave(&ide_lock, flags);
780                                 hwif->set_pio_mode(drive, req_pio);
781                                 spin_unlock_irqrestore(&ide_lock, flags);
782                         } else
783                                 hwif->set_pio_mode(drive, req_pio);
784                 } else {
785                         int keep_dma = drive->using_dma;
786
787                         ide_set_pio(drive, req_pio);
788
789                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
790                                 if (keep_dma)
791                                         hwif->ide_dma_on(drive);
792                         }
793                 }
794
795                 return ide_stopped;
796         } else {
797                 if (drive->media == ide_disk)
798                         return ide_disk_special(drive);
799
800                 s->all = 0;
801                 drive->mult_req = 0;
802                 return ide_stopped;
803         }
804 }
805
806 void ide_map_sg(ide_drive_t *drive, struct request *rq)
807 {
808         ide_hwif_t *hwif = drive->hwif;
809         struct scatterlist *sg = hwif->sg_table;
810
811         if (hwif->sg_mapped)    /* needed by ide-scsi */
812                 return;
813
814         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
815                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
816         } else {
817                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
818                 hwif->sg_nents = 1;
819         }
820 }
821
822 EXPORT_SYMBOL_GPL(ide_map_sg);
823
824 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
825 {
826         ide_hwif_t *hwif = drive->hwif;
827
828         hwif->nsect = hwif->nleft = rq->nr_sectors;
829         hwif->cursg_ofs = 0;
830         hwif->cursg = NULL;
831 }
832
833 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
834
835 /**
836  *      execute_drive_command   -       issue special drive command
837  *      @drive: the drive to issue the command on
838  *      @rq: the request structure holding the command
839  *
840  *      execute_drive_cmd() issues a special drive command,  usually 
841  *      initiated by ioctl() from the external hdparm program. The
842  *      command can be a drive command, drive task or taskfile 
843  *      operation. Weirdly you can call it with NULL to wait for
844  *      all commands to finish. Don't do this as that is due to change
845  */
846
847 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
848                 struct request *rq)
849 {
850         ide_hwif_t *hwif = HWIF(drive);
851         u8 *args = rq->buffer;
852         ide_task_t ltask;
853         struct ide_taskfile *tf = &ltask.tf;
854
855         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
856                 ide_task_t *task = rq->special;
857  
858                 if (task == NULL)
859                         goto done;
860
861                 hwif->data_phase = task->data_phase;
862
863                 switch (hwif->data_phase) {
864                 case TASKFILE_MULTI_OUT:
865                 case TASKFILE_OUT:
866                 case TASKFILE_MULTI_IN:
867                 case TASKFILE_IN:
868                         ide_init_sg_cmd(drive, rq);
869                         ide_map_sg(drive, rq);
870                 default:
871                         break;
872                 }
873
874                 task->tf_flags |= IDE_TFLAG_OUT_DEVICE;
875
876                 if (task->tf_flags & IDE_TFLAG_FLAGGED)
877                         return flagged_taskfile(drive, task);
878
879                 task->tf_flags |= IDE_TFLAG_OUT_TF;
880                 if (drive->addressing == 1)
881                         task->tf_flags |= (IDE_TFLAG_LBA48 | IDE_TFLAG_OUT_HOB);
882
883                 return do_rw_taskfile(drive, task);
884         }
885
886         if (args == NULL)
887                 goto done;
888
889         memset(&ltask, 0, sizeof(ltask));
890         if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
891 #ifdef DEBUG
892                 printk("%s: DRIVE_TASK_CMD\n", drive->name);
893 #endif
894                 memcpy(&ltask.tf_array[7], &args[1], 6);
895                 ltask.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
896         } else { /* rq->cmd_type == REQ_TYPE_ATA_CMD */
897 #ifdef DEBUG
898                 printk("%s: DRIVE_CMD\n", drive->name);
899 #endif
900                 tf->feature = args[2];
901                 if (args[0] == WIN_SMART) {
902                         tf->nsect = args[3];
903                         tf->lbal  = args[1];
904                         tf->lbam  = 0x4f;
905                         tf->lbah  = 0xc2;
906                         ltask.tf_flags = IDE_TFLAG_OUT_TF;
907                 } else {
908                         tf->nsect = args[1];
909                         ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
910                                          IDE_TFLAG_OUT_NSECT;
911                 }
912         }
913         tf->command = args[0];
914         ide_tf_load(drive, &ltask);
915         ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_CMD, NULL);
916         return ide_started;
917
918 done:
919         /*
920          * NULL is actually a valid way of waiting for
921          * all current requests to be flushed from the queue.
922          */
923 #ifdef DEBUG
924         printk("%s: DRIVE_CMD (null)\n", drive->name);
925 #endif
926         ide_end_drive_cmd(drive,
927                         hwif->INB(IDE_STATUS_REG),
928                         hwif->INB(IDE_ERROR_REG));
929         return ide_stopped;
930 }
931
932 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
933 {
934         struct request_pm_state *pm = rq->data;
935
936         if (blk_pm_suspend_request(rq) &&
937             pm->pm_step == ide_pm_state_start_suspend)
938                 /* Mark drive blocked when starting the suspend sequence. */
939                 drive->blocked = 1;
940         else if (blk_pm_resume_request(rq) &&
941                  pm->pm_step == ide_pm_state_start_resume) {
942                 /* 
943                  * The first thing we do on wakeup is to wait for BSY bit to
944                  * go away (with a looong timeout) as a drive on this hwif may
945                  * just be POSTing itself.
946                  * We do that before even selecting as the "other" device on
947                  * the bus may be broken enough to walk on our toes at this
948                  * point.
949                  */
950                 int rc;
951 #ifdef DEBUG_PM
952                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
953 #endif
954                 rc = ide_wait_not_busy(HWIF(drive), 35000);
955                 if (rc)
956                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
957                 SELECT_DRIVE(drive);
958                 if (IDE_CONTROL_REG)
959                         HWIF(drive)->OUTB(drive->ctl, IDE_CONTROL_REG);
960                 rc = ide_wait_not_busy(HWIF(drive), 100000);
961                 if (rc)
962                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
963         }
964 }
965
966 /**
967  *      start_request   -       start of I/O and command issuing for IDE
968  *
969  *      start_request() initiates handling of a new I/O request. It
970  *      accepts commands and I/O (read/write) requests. It also does
971  *      the final remapping for weird stuff like EZDrive. Once 
972  *      device mapper can work sector level the EZDrive stuff can go away
973  *
974  *      FIXME: this function needs a rename
975  */
976  
977 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
978 {
979         ide_startstop_t startstop;
980         sector_t block;
981
982         BUG_ON(!blk_rq_started(rq));
983
984 #ifdef DEBUG
985         printk("%s: start_request: current=0x%08lx\n",
986                 HWIF(drive)->name, (unsigned long) rq);
987 #endif
988
989         /* bail early if we've exceeded max_failures */
990         if (drive->max_failures && (drive->failures > drive->max_failures)) {
991                 rq->cmd_flags |= REQ_FAILED;
992                 goto kill_rq;
993         }
994
995         block    = rq->sector;
996         if (blk_fs_request(rq) &&
997             (drive->media == ide_disk || drive->media == ide_floppy)) {
998                 block += drive->sect0;
999         }
1000         /* Yecch - this will shift the entire interval,
1001            possibly killing some innocent following sector */
1002         if (block == 0 && drive->remap_0_to_1 == 1)
1003                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
1004
1005         if (blk_pm_request(rq))
1006                 ide_check_pm_state(drive, rq);
1007
1008         SELECT_DRIVE(drive);
1009         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1010                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1011                 return startstop;
1012         }
1013         if (!drive->special.all) {
1014                 ide_driver_t *drv;
1015
1016                 /*
1017                  * We reset the drive so we need to issue a SETFEATURES.
1018                  * Do it _after_ do_special() restored device parameters.
1019                  */
1020                 if (drive->current_speed == 0xff)
1021                         ide_config_drive_speed(drive, drive->desired_speed);
1022
1023                 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1024                     rq->cmd_type == REQ_TYPE_ATA_TASK ||
1025                     rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1026                         return execute_drive_cmd(drive, rq);
1027                 else if (blk_pm_request(rq)) {
1028                         struct request_pm_state *pm = rq->data;
1029 #ifdef DEBUG_PM
1030                         printk("%s: start_power_step(step: %d)\n",
1031                                 drive->name, rq->pm->pm_step);
1032 #endif
1033                         startstop = ide_start_power_step(drive, rq);
1034                         if (startstop == ide_stopped &&
1035                             pm->pm_step == ide_pm_state_completed)
1036                                 ide_complete_pm_request(drive, rq);
1037                         return startstop;
1038                 }
1039
1040                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1041                 return drv->do_request(drive, rq, block);
1042         }
1043         return do_special(drive);
1044 kill_rq:
1045         ide_kill_rq(drive, rq);
1046         return ide_stopped;
1047 }
1048
1049 /**
1050  *      ide_stall_queue         -       pause an IDE device
1051  *      @drive: drive to stall
1052  *      @timeout: time to stall for (jiffies)
1053  *
1054  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
1055  *      to the hwgroup by sleeping for timeout jiffies.
1056  */
1057  
1058 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1059 {
1060         if (timeout > WAIT_WORSTCASE)
1061                 timeout = WAIT_WORSTCASE;
1062         drive->sleep = timeout + jiffies;
1063         drive->sleeping = 1;
1064 }
1065
1066 EXPORT_SYMBOL(ide_stall_queue);
1067
1068 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
1069
1070 /**
1071  *      choose_drive            -       select a drive to service
1072  *      @hwgroup: hardware group to select on
1073  *
1074  *      choose_drive() selects the next drive which will be serviced.
1075  *      This is necessary because the IDE layer can't issue commands
1076  *      to both drives on the same cable, unlike SCSI.
1077  */
1078  
1079 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1080 {
1081         ide_drive_t *drive, *best;
1082
1083 repeat: 
1084         best = NULL;
1085         drive = hwgroup->drive;
1086
1087         /*
1088          * drive is doing pre-flush, ordered write, post-flush sequence. even
1089          * though that is 3 requests, it must be seen as a single transaction.
1090          * we must not preempt this drive until that is complete
1091          */
1092         if (blk_queue_flushing(drive->queue)) {
1093                 /*
1094                  * small race where queue could get replugged during
1095                  * the 3-request flush cycle, just yank the plug since
1096                  * we want it to finish asap
1097                  */
1098                 blk_remove_plug(drive->queue);
1099                 return drive;
1100         }
1101
1102         do {
1103                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1104                     && !elv_queue_empty(drive->queue)) {
1105                         if (!best
1106                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1107                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1108                         {
1109                                 if (!blk_queue_plugged(drive->queue))
1110                                         best = drive;
1111                         }
1112                 }
1113         } while ((drive = drive->next) != hwgroup->drive);
1114         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1115                 long t = (signed long)(WAKEUP(best) - jiffies);
1116                 if (t >= WAIT_MIN_SLEEP) {
1117                 /*
1118                  * We *may* have some time to spare, but first let's see if
1119                  * someone can potentially benefit from our nice mood today..
1120                  */
1121                         drive = best->next;
1122                         do {
1123                                 if (!drive->sleeping
1124                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1125                                  && time_before(WAKEUP(drive), jiffies + t))
1126                                 {
1127                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1128                                         goto repeat;
1129                                 }
1130                         } while ((drive = drive->next) != best);
1131                 }
1132         }
1133         return best;
1134 }
1135
1136 /*
1137  * Issue a new request to a drive from hwgroup
1138  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1139  *
1140  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1141  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1142  * may have both interfaces in a single hwgroup to "serialize" access.
1143  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1144  * together into one hwgroup for serialized access.
1145  *
1146  * Note also that several hwgroups can end up sharing a single IRQ,
1147  * possibly along with many other devices.  This is especially common in
1148  * PCI-based systems with off-board IDE controller cards.
1149  *
1150  * The IDE driver uses the single global ide_lock spinlock to protect
1151  * access to the request queues, and to protect the hwgroup->busy flag.
1152  *
1153  * The first thread into the driver for a particular hwgroup sets the
1154  * hwgroup->busy flag to indicate that this hwgroup is now active,
1155  * and then initiates processing of the top request from the request queue.
1156  *
1157  * Other threads attempting entry notice the busy setting, and will simply
1158  * queue their new requests and exit immediately.  Note that hwgroup->busy
1159  * remains set even when the driver is merely awaiting the next interrupt.
1160  * Thus, the meaning is "this hwgroup is busy processing a request".
1161  *
1162  * When processing of a request completes, the completing thread or IRQ-handler
1163  * will start the next request from the queue.  If no more work remains,
1164  * the driver will clear the hwgroup->busy flag and exit.
1165  *
1166  * The ide_lock (spinlock) is used to protect all access to the
1167  * hwgroup->busy flag, but is otherwise not needed for most processing in
1168  * the driver.  This makes the driver much more friendlier to shared IRQs
1169  * than previous designs, while remaining 100% (?) SMP safe and capable.
1170  */
1171 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1172 {
1173         ide_drive_t     *drive;
1174         ide_hwif_t      *hwif;
1175         struct request  *rq;
1176         ide_startstop_t startstop;
1177         int             loops = 0;
1178
1179         /* for atari only: POSSIBLY BROKEN HERE(?) */
1180         ide_get_lock(ide_intr, hwgroup);
1181
1182         /* caller must own ide_lock */
1183         BUG_ON(!irqs_disabled());
1184
1185         while (!hwgroup->busy) {
1186                 hwgroup->busy = 1;
1187                 drive = choose_drive(hwgroup);
1188                 if (drive == NULL) {
1189                         int sleeping = 0;
1190                         unsigned long sleep = 0; /* shut up, gcc */
1191                         hwgroup->rq = NULL;
1192                         drive = hwgroup->drive;
1193                         do {
1194                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1195                                         sleeping = 1;
1196                                         sleep = drive->sleep;
1197                                 }
1198                         } while ((drive = drive->next) != hwgroup->drive);
1199                         if (sleeping) {
1200                 /*
1201                  * Take a short snooze, and then wake up this hwgroup again.
1202                  * This gives other hwgroups on the same a chance to
1203                  * play fairly with us, just in case there are big differences
1204                  * in relative throughputs.. don't want to hog the cpu too much.
1205                  */
1206                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1207                                         sleep = jiffies + WAIT_MIN_SLEEP;
1208 #if 1
1209                                 if (timer_pending(&hwgroup->timer))
1210                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1211 #endif
1212                                 /* so that ide_timer_expiry knows what to do */
1213                                 hwgroup->sleeping = 1;
1214                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1215                                 mod_timer(&hwgroup->timer, sleep);
1216                                 /* we purposely leave hwgroup->busy==1
1217                                  * while sleeping */
1218                         } else {
1219                                 /* Ugly, but how can we sleep for the lock
1220                                  * otherwise? perhaps from tq_disk?
1221                                  */
1222
1223                                 /* for atari only */
1224                                 ide_release_lock();
1225                                 hwgroup->busy = 0;
1226                         }
1227
1228                         /* no more work for this hwgroup (for now) */
1229                         return;
1230                 }
1231         again:
1232                 hwif = HWIF(drive);
1233                 if (hwgroup->hwif->sharing_irq &&
1234                     hwif != hwgroup->hwif &&
1235                     hwif->io_ports[IDE_CONTROL_OFFSET]) {
1236                         /* set nIEN for previous hwif */
1237                         SELECT_INTERRUPT(drive);
1238                 }
1239                 hwgroup->hwif = hwif;
1240                 hwgroup->drive = drive;
1241                 drive->sleeping = 0;
1242                 drive->service_start = jiffies;
1243
1244                 if (blk_queue_plugged(drive->queue)) {
1245                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1246                         break;
1247                 }
1248
1249                 /*
1250                  * we know that the queue isn't empty, but this can happen
1251                  * if the q->prep_rq_fn() decides to kill a request
1252                  */
1253                 rq = elv_next_request(drive->queue);
1254                 if (!rq) {
1255                         hwgroup->busy = 0;
1256                         break;
1257                 }
1258
1259                 /*
1260                  * Sanity: don't accept a request that isn't a PM request
1261                  * if we are currently power managed. This is very important as
1262                  * blk_stop_queue() doesn't prevent the elv_next_request()
1263                  * above to return us whatever is in the queue. Since we call
1264                  * ide_do_request() ourselves, we end up taking requests while
1265                  * the queue is blocked...
1266                  * 
1267                  * We let requests forced at head of queue with ide-preempt
1268                  * though. I hope that doesn't happen too much, hopefully not
1269                  * unless the subdriver triggers such a thing in its own PM
1270                  * state machine.
1271                  *
1272                  * We count how many times we loop here to make sure we service
1273                  * all drives in the hwgroup without looping for ever
1274                  */
1275                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1276                         drive = drive->next ? drive->next : hwgroup->drive;
1277                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1278                                 goto again;
1279                         /* We clear busy, there should be no pending ATA command at this point. */
1280                         hwgroup->busy = 0;
1281                         break;
1282                 }
1283
1284                 hwgroup->rq = rq;
1285
1286                 /*
1287                  * Some systems have trouble with IDE IRQs arriving while
1288                  * the driver is still setting things up.  So, here we disable
1289                  * the IRQ used by this interface while the request is being started.
1290                  * This may look bad at first, but pretty much the same thing
1291                  * happens anyway when any interrupt comes in, IDE or otherwise
1292                  *  -- the kernel masks the IRQ while it is being handled.
1293                  */
1294                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1295                         disable_irq_nosync(hwif->irq);
1296                 spin_unlock(&ide_lock);
1297                 local_irq_enable_in_hardirq();
1298                         /* allow other IRQs while we start this request */
1299                 startstop = start_request(drive, rq);
1300                 spin_lock_irq(&ide_lock);
1301                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1302                         enable_irq(hwif->irq);
1303                 if (startstop == ide_stopped)
1304                         hwgroup->busy = 0;
1305         }
1306 }
1307
1308 /*
1309  * Passes the stuff to ide_do_request
1310  */
1311 void do_ide_request(struct request_queue *q)
1312 {
1313         ide_drive_t *drive = q->queuedata;
1314
1315         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1316 }
1317
1318 /*
1319  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1320  * retry the current request in pio mode instead of risking tossing it
1321  * all away
1322  */
1323 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1324 {
1325         ide_hwif_t *hwif = HWIF(drive);
1326         struct request *rq;
1327         ide_startstop_t ret = ide_stopped;
1328
1329         /*
1330          * end current dma transaction
1331          */
1332
1333         if (error < 0) {
1334                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1335                 (void)HWIF(drive)->ide_dma_end(drive);
1336                 ret = ide_error(drive, "dma timeout error",
1337                                                 hwif->INB(IDE_STATUS_REG));
1338         } else {
1339                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1340                 hwif->dma_timeout(drive);
1341         }
1342
1343         /*
1344          * disable dma for now, but remember that we did so because of
1345          * a timeout -- we'll reenable after we finish this next request
1346          * (or rather the first chunk of it) in pio.
1347          */
1348         drive->retry_pio++;
1349         drive->state = DMA_PIO_RETRY;
1350         hwif->dma_off_quietly(drive);
1351
1352         /*
1353          * un-busy drive etc (hwgroup->busy is cleared on return) and
1354          * make sure request is sane
1355          */
1356         rq = HWGROUP(drive)->rq;
1357
1358         if (!rq)
1359                 goto out;
1360
1361         HWGROUP(drive)->rq = NULL;
1362
1363         rq->errors = 0;
1364
1365         if (!rq->bio)
1366                 goto out;
1367
1368         rq->sector = rq->bio->bi_sector;
1369         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1370         rq->hard_cur_sectors = rq->current_nr_sectors;
1371         rq->buffer = bio_data(rq->bio);
1372 out:
1373         return ret;
1374 }
1375
1376 /**
1377  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1378  *      @data: timer callback magic (hwgroup)
1379  *
1380  *      An IDE command has timed out before the expected drive return
1381  *      occurred. At this point we attempt to clean up the current
1382  *      mess. If the current handler includes an expiry handler then
1383  *      we invoke the expiry handler, and providing it is happy the
1384  *      work is done. If that fails we apply generic recovery rules
1385  *      invoking the handler and checking the drive DMA status. We
1386  *      have an excessively incestuous relationship with the DMA
1387  *      logic that wants cleaning up.
1388  */
1389  
1390 void ide_timer_expiry (unsigned long data)
1391 {
1392         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1393         ide_handler_t   *handler;
1394         ide_expiry_t    *expiry;
1395         unsigned long   flags;
1396         unsigned long   wait = -1;
1397
1398         spin_lock_irqsave(&ide_lock, flags);
1399
1400         if (((handler = hwgroup->handler) == NULL) ||
1401             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1402                 /*
1403                  * Either a marginal timeout occurred
1404                  * (got the interrupt just as timer expired),
1405                  * or we were "sleeping" to give other devices a chance.
1406                  * Either way, we don't really want to complain about anything.
1407                  */
1408                 if (hwgroup->sleeping) {
1409                         hwgroup->sleeping = 0;
1410                         hwgroup->busy = 0;
1411                 }
1412         } else {
1413                 ide_drive_t *drive = hwgroup->drive;
1414                 if (!drive) {
1415                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1416                         hwgroup->handler = NULL;
1417                 } else {
1418                         ide_hwif_t *hwif;
1419                         ide_startstop_t startstop = ide_stopped;
1420                         if (!hwgroup->busy) {
1421                                 hwgroup->busy = 1;      /* paranoia */
1422                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1423                         }
1424                         if ((expiry = hwgroup->expiry) != NULL) {
1425                                 /* continue */
1426                                 if ((wait = expiry(drive)) > 0) {
1427                                         /* reset timer */
1428                                         hwgroup->timer.expires  = jiffies + wait;
1429                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1430                                         add_timer(&hwgroup->timer);
1431                                         spin_unlock_irqrestore(&ide_lock, flags);
1432                                         return;
1433                                 }
1434                         }
1435                         hwgroup->handler = NULL;
1436                         /*
1437                          * We need to simulate a real interrupt when invoking
1438                          * the handler() function, which means we need to
1439                          * globally mask the specific IRQ:
1440                          */
1441                         spin_unlock(&ide_lock);
1442                         hwif  = HWIF(drive);
1443                         /* disable_irq_nosync ?? */
1444                         disable_irq(hwif->irq);
1445                         /* local CPU only,
1446                          * as if we were handling an interrupt */
1447                         local_irq_disable();
1448                         if (hwgroup->polling) {
1449                                 startstop = handler(drive);
1450                         } else if (drive_is_ready(drive)) {
1451                                 if (drive->waiting_for_dma)
1452                                         hwgroup->hwif->dma_lost_irq(drive);
1453                                 (void)ide_ack_intr(hwif);
1454                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1455                                 startstop = handler(drive);
1456                         } else {
1457                                 if (drive->waiting_for_dma) {
1458                                         startstop = ide_dma_timeout_retry(drive, wait);
1459                                 } else
1460                                         startstop =
1461                                         ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1462                         }
1463                         drive->service_time = jiffies - drive->service_start;
1464                         spin_lock_irq(&ide_lock);
1465                         enable_irq(hwif->irq);
1466                         if (startstop == ide_stopped)
1467                                 hwgroup->busy = 0;
1468                 }
1469         }
1470         ide_do_request(hwgroup, IDE_NO_IRQ);
1471         spin_unlock_irqrestore(&ide_lock, flags);
1472 }
1473
1474 /**
1475  *      unexpected_intr         -       handle an unexpected IDE interrupt
1476  *      @irq: interrupt line
1477  *      @hwgroup: hwgroup being processed
1478  *
1479  *      There's nothing really useful we can do with an unexpected interrupt,
1480  *      other than reading the status register (to clear it), and logging it.
1481  *      There should be no way that an irq can happen before we're ready for it,
1482  *      so we needn't worry much about losing an "important" interrupt here.
1483  *
1484  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1485  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1486  *      looks "good", we just ignore the interrupt completely.
1487  *
1488  *      This routine assumes __cli() is in effect when called.
1489  *
1490  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1491  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1492  *      we could screw up by interfering with a new request being set up for 
1493  *      irq15.
1494  *
1495  *      In reality, this is a non-issue.  The new command is not sent unless 
1496  *      the drive is ready to accept one, in which case we know the drive is
1497  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1498  *      before completing the issuance of any new drive command, so we will not
1499  *      be accidentally invoked as a result of any valid command completion
1500  *      interrupt.
1501  *
1502  *      Note that we must walk the entire hwgroup here. We know which hwif
1503  *      is doing the current command, but we don't know which hwif burped
1504  *      mysteriously.
1505  */
1506  
1507 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1508 {
1509         u8 stat;
1510         ide_hwif_t *hwif = hwgroup->hwif;
1511
1512         /*
1513          * handle the unexpected interrupt
1514          */
1515         do {
1516                 if (hwif->irq == irq) {
1517                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1518                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1519                                 /* Try to not flood the console with msgs */
1520                                 static unsigned long last_msgtime, count;
1521                                 ++count;
1522                                 if (time_after(jiffies, last_msgtime + HZ)) {
1523                                         last_msgtime = jiffies;
1524                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1525                                                 "status=0x%02x, count=%ld\n",
1526                                                 hwif->name,
1527                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1528                                 }
1529                         }
1530                 }
1531         } while ((hwif = hwif->next) != hwgroup->hwif);
1532 }
1533
1534 /**
1535  *      ide_intr        -       default IDE interrupt handler
1536  *      @irq: interrupt number
1537  *      @dev_id: hwif group
1538  *      @regs: unused weirdness from the kernel irq layer
1539  *
1540  *      This is the default IRQ handler for the IDE layer. You should
1541  *      not need to override it. If you do be aware it is subtle in
1542  *      places
1543  *
1544  *      hwgroup->hwif is the interface in the group currently performing
1545  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1546  *      the IRQ handler to call. As we issue a command the handlers
1547  *      step through multiple states, reassigning the handler to the
1548  *      next step in the process. Unlike a smart SCSI controller IDE
1549  *      expects the main processor to sequence the various transfer
1550  *      stages. We also manage a poll timer to catch up with most
1551  *      timeout situations. There are still a few where the handlers
1552  *      don't ever decide to give up.
1553  *
1554  *      The handler eventually returns ide_stopped to indicate the
1555  *      request completed. At this point we issue the next request
1556  *      on the hwgroup and the process begins again.
1557  */
1558  
1559 irqreturn_t ide_intr (int irq, void *dev_id)
1560 {
1561         unsigned long flags;
1562         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1563         ide_hwif_t *hwif;
1564         ide_drive_t *drive;
1565         ide_handler_t *handler;
1566         ide_startstop_t startstop;
1567
1568         spin_lock_irqsave(&ide_lock, flags);
1569         hwif = hwgroup->hwif;
1570
1571         if (!ide_ack_intr(hwif)) {
1572                 spin_unlock_irqrestore(&ide_lock, flags);
1573                 return IRQ_NONE;
1574         }
1575
1576         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1577                 /*
1578                  * Not expecting an interrupt from this drive.
1579                  * That means this could be:
1580                  *      (1) an interrupt from another PCI device
1581                  *      sharing the same PCI INT# as us.
1582                  * or   (2) a drive just entered sleep or standby mode,
1583                  *      and is interrupting to let us know.
1584                  * or   (3) a spurious interrupt of unknown origin.
1585                  *
1586                  * For PCI, we cannot tell the difference,
1587                  * so in that case we just ignore it and hope it goes away.
1588                  *
1589                  * FIXME: unexpected_intr should be hwif-> then we can
1590                  * remove all the ifdef PCI crap
1591                  */
1592 #ifdef CONFIG_BLK_DEV_IDEPCI
1593                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1594 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1595                 {
1596                         /*
1597                          * Probably not a shared PCI interrupt,
1598                          * so we can safely try to do something about it:
1599                          */
1600                         unexpected_intr(irq, hwgroup);
1601 #ifdef CONFIG_BLK_DEV_IDEPCI
1602                 } else {
1603                         /*
1604                          * Whack the status register, just in case
1605                          * we have a leftover pending IRQ.
1606                          */
1607                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1608 #endif /* CONFIG_BLK_DEV_IDEPCI */
1609                 }
1610                 spin_unlock_irqrestore(&ide_lock, flags);
1611                 return IRQ_NONE;
1612         }
1613         drive = hwgroup->drive;
1614         if (!drive) {
1615                 /*
1616                  * This should NEVER happen, and there isn't much
1617                  * we could do about it here.
1618                  *
1619                  * [Note - this can occur if the drive is hot unplugged]
1620                  */
1621                 spin_unlock_irqrestore(&ide_lock, flags);
1622                 return IRQ_HANDLED;
1623         }
1624         if (!drive_is_ready(drive)) {
1625                 /*
1626                  * This happens regularly when we share a PCI IRQ with
1627                  * another device.  Unfortunately, it can also happen
1628                  * with some buggy drives that trigger the IRQ before
1629                  * their status register is up to date.  Hopefully we have
1630                  * enough advance overhead that the latter isn't a problem.
1631                  */
1632                 spin_unlock_irqrestore(&ide_lock, flags);
1633                 return IRQ_NONE;
1634         }
1635         if (!hwgroup->busy) {
1636                 hwgroup->busy = 1;      /* paranoia */
1637                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1638         }
1639         hwgroup->handler = NULL;
1640         hwgroup->req_gen++;
1641         del_timer(&hwgroup->timer);
1642         spin_unlock(&ide_lock);
1643
1644         /* Some controllers might set DMA INTR no matter DMA or PIO;
1645          * bmdma status might need to be cleared even for
1646          * PIO interrupts to prevent spurious/lost irq.
1647          */
1648         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1649                 /* ide_dma_end() needs bmdma status for error checking.
1650                  * So, skip clearing bmdma status here and leave it
1651                  * to ide_dma_end() if this is dma interrupt.
1652                  */
1653                 hwif->ide_dma_clear_irq(drive);
1654
1655         if (drive->unmask)
1656                 local_irq_enable_in_hardirq();
1657         /* service this interrupt, may set handler for next interrupt */
1658         startstop = handler(drive);
1659         spin_lock_irq(&ide_lock);
1660
1661         /*
1662          * Note that handler() may have set things up for another
1663          * interrupt to occur soon, but it cannot happen until
1664          * we exit from this routine, because it will be the
1665          * same irq as is currently being serviced here, and Linux
1666          * won't allow another of the same (on any CPU) until we return.
1667          */
1668         drive->service_time = jiffies - drive->service_start;
1669         if (startstop == ide_stopped) {
1670                 if (hwgroup->handler == NULL) { /* paranoia */
1671                         hwgroup->busy = 0;
1672                         ide_do_request(hwgroup, hwif->irq);
1673                 } else {
1674                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1675                                 "on exit\n", drive->name);
1676                 }
1677         }
1678         spin_unlock_irqrestore(&ide_lock, flags);
1679         return IRQ_HANDLED;
1680 }
1681
1682 /**
1683  *      ide_init_drive_cmd      -       initialize a drive command request
1684  *      @rq: request object
1685  *
1686  *      Initialize a request before we fill it in and send it down to
1687  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1688  *      now it doesn't do a lot, but if that changes abusers will have a
1689  *      nasty surprise.
1690  */
1691
1692 void ide_init_drive_cmd (struct request *rq)
1693 {
1694         memset(rq, 0, sizeof(*rq));
1695         rq->cmd_type = REQ_TYPE_ATA_CMD;
1696         rq->ref_count = 1;
1697 }
1698
1699 EXPORT_SYMBOL(ide_init_drive_cmd);
1700
1701 /**
1702  *      ide_do_drive_cmd        -       issue IDE special command
1703  *      @drive: device to issue command
1704  *      @rq: request to issue
1705  *      @action: action for processing
1706  *
1707  *      This function issues a special IDE device request
1708  *      onto the request queue.
1709  *
1710  *      If action is ide_wait, then the rq is queued at the end of the
1711  *      request queue, and the function sleeps until it has been processed.
1712  *      This is for use when invoked from an ioctl handler.
1713  *
1714  *      If action is ide_preempt, then the rq is queued at the head of
1715  *      the request queue, displacing the currently-being-processed
1716  *      request and this function returns immediately without waiting
1717  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1718  *      intended for careful use by the ATAPI tape/cdrom driver code.
1719  *
1720  *      If action is ide_end, then the rq is queued at the end of the
1721  *      request queue, and the function returns immediately without waiting
1722  *      for the new rq to be completed. This is again intended for careful
1723  *      use by the ATAPI tape/cdrom driver code.
1724  */
1725  
1726 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1727 {
1728         unsigned long flags;
1729         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1730         DECLARE_COMPLETION_ONSTACK(wait);
1731         int where = ELEVATOR_INSERT_BACK, err;
1732         int must_wait = (action == ide_wait || action == ide_head_wait);
1733
1734         rq->errors = 0;
1735
1736         /*
1737          * we need to hold an extra reference to request for safe inspection
1738          * after completion
1739          */
1740         if (must_wait) {
1741                 rq->ref_count++;
1742                 rq->end_io_data = &wait;
1743                 rq->end_io = blk_end_sync_rq;
1744         }
1745
1746         spin_lock_irqsave(&ide_lock, flags);
1747         if (action == ide_preempt)
1748                 hwgroup->rq = NULL;
1749         if (action == ide_preempt || action == ide_head_wait) {
1750                 where = ELEVATOR_INSERT_FRONT;
1751                 rq->cmd_flags |= REQ_PREEMPT;
1752         }
1753         __elv_add_request(drive->queue, rq, where, 0);
1754         ide_do_request(hwgroup, IDE_NO_IRQ);
1755         spin_unlock_irqrestore(&ide_lock, flags);
1756
1757         err = 0;
1758         if (must_wait) {
1759                 wait_for_completion(&wait);
1760                 if (rq->errors)
1761                         err = -EIO;
1762
1763                 blk_put_request(rq);
1764         }
1765
1766         return err;
1767 }
1768
1769 EXPORT_SYMBOL(ide_do_drive_cmd);