]> err.no Git - linux-2.6/blob - drivers/firewire/fw-sbp2.c
firewire: fw-sbp2: always enable IRQs before calling command ORB callback
[linux-2.6] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/blkdev.h>
39 #include <linux/string.h>
40 #include <linux/timer.h>
41
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_dbg.h>
45 #include <scsi/scsi_device.h>
46 #include <scsi/scsi_host.h>
47
48 #include "fw-transaction.h"
49 #include "fw-topology.h"
50 #include "fw-device.h"
51
52 /*
53  * So far only bridges from Oxford Semiconductor are known to support
54  * concurrent logins. Depending on firmware, four or two concurrent logins
55  * are possible on OXFW911 and newer Oxsemi bridges.
56  *
57  * Concurrent logins are useful together with cluster filesystems.
58  */
59 static int sbp2_param_exclusive_login = 1;
60 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
61 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
62                  "(default = Y, use N for concurrent initiators)");
63
64 /* I don't know why the SCSI stack doesn't define something like this... */
65 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
66
67 static const char sbp2_driver_name[] = "sbp2";
68
69 struct sbp2_device {
70         struct kref kref;
71         struct fw_unit *unit;
72         struct fw_address_handler address_handler;
73         struct list_head orb_list;
74         u64 management_agent_address;
75         u64 command_block_agent_address;
76         u32 workarounds;
77         int login_id;
78
79         /*
80          * We cache these addresses and only update them once we've
81          * logged in or reconnected to the sbp2 device.  That way, any
82          * IO to the device will automatically fail and get retried if
83          * it happens in a window where the device is not ready to
84          * handle it (e.g. after a bus reset but before we reconnect).
85          */
86         int node_id;
87         int address_high;
88         int generation;
89
90         int retries;
91         struct delayed_work work;
92 };
93
94 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
95 #define SBP2_MAX_SECTORS                255     /* Max sectors supported */
96 #define SBP2_ORB_TIMEOUT                2000    /* Timeout in ms */
97
98 #define SBP2_ORB_NULL                   0x80000000
99
100 #define SBP2_DIRECTION_TO_MEDIA         0x0
101 #define SBP2_DIRECTION_FROM_MEDIA       0x1
102
103 /* Unit directory keys */
104 #define SBP2_COMMAND_SET_SPECIFIER      0x38
105 #define SBP2_COMMAND_SET                0x39
106 #define SBP2_COMMAND_SET_REVISION       0x3b
107 #define SBP2_FIRMWARE_REVISION          0x3c
108
109 /* Flags for detected oddities and brokeness */
110 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
111 #define SBP2_WORKAROUND_INQUIRY_36      0x2
112 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
113 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
114 #define SBP2_WORKAROUND_OVERRIDE        0x100
115
116 /* Management orb opcodes */
117 #define SBP2_LOGIN_REQUEST              0x0
118 #define SBP2_QUERY_LOGINS_REQUEST       0x1
119 #define SBP2_RECONNECT_REQUEST          0x3
120 #define SBP2_SET_PASSWORD_REQUEST       0x4
121 #define SBP2_LOGOUT_REQUEST             0x7
122 #define SBP2_ABORT_TASK_REQUEST         0xb
123 #define SBP2_ABORT_TASK_SET             0xc
124 #define SBP2_LOGICAL_UNIT_RESET         0xe
125 #define SBP2_TARGET_RESET_REQUEST       0xf
126
127 /* Offsets for command block agent registers */
128 #define SBP2_AGENT_STATE                0x00
129 #define SBP2_AGENT_RESET                0x04
130 #define SBP2_ORB_POINTER                0x08
131 #define SBP2_DOORBELL                   0x10
132 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
133
134 /* Status write response codes */
135 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
136 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
137 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
138 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
139
140 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
141 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
142 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
143 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
144 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
145 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
146 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
147 #define STATUS_GET_DATA(v)              ((v).data)
148
149 struct sbp2_status {
150         u32 status;
151         u32 orb_low;
152         u8 data[24];
153 };
154
155 struct sbp2_pointer {
156         u32 high;
157         u32 low;
158 };
159
160 struct sbp2_orb {
161         struct fw_transaction t;
162         struct kref kref;
163         dma_addr_t request_bus;
164         int rcode;
165         struct sbp2_pointer pointer;
166         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
167         struct list_head link;
168 };
169
170 #define MANAGEMENT_ORB_LUN(v)                   ((v))
171 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
172 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
173 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
174 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
175 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
176
177 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
178 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
179
180 struct sbp2_management_orb {
181         struct sbp2_orb base;
182         struct {
183                 struct sbp2_pointer password;
184                 struct sbp2_pointer response;
185                 u32 misc;
186                 u32 length;
187                 struct sbp2_pointer status_fifo;
188         } request;
189         __be32 response[4];
190         dma_addr_t response_bus;
191         struct completion done;
192         struct sbp2_status status;
193 };
194
195 #define LOGIN_RESPONSE_GET_LOGIN_ID(v)  ((v).misc & 0xffff)
196 #define LOGIN_RESPONSE_GET_LENGTH(v)    (((v).misc >> 16) & 0xffff)
197
198 struct sbp2_login_response {
199         u32 misc;
200         struct sbp2_pointer command_block_agent;
201         u32 reconnect_hold;
202 };
203 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
204 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
205 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
206 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
207 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
208 #define COMMAND_ORB_DIRECTION(v)        ((v) << 27)
209 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
210 #define COMMAND_ORB_NOTIFY              ((1) << 31)
211
212 struct sbp2_command_orb {
213         struct sbp2_orb base;
214         struct {
215                 struct sbp2_pointer next;
216                 struct sbp2_pointer data_descriptor;
217                 u32 misc;
218                 u8 command_block[12];
219         } request;
220         struct scsi_cmnd *cmd;
221         scsi_done_fn_t done;
222         struct fw_unit *unit;
223
224         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
225         dma_addr_t page_table_bus;
226 };
227
228 /*
229  * List of devices with known bugs.
230  *
231  * The firmware_revision field, masked with 0xffff00, is the best
232  * indicator for the type of bridge chip of a device.  It yields a few
233  * false positives but this did not break correctly behaving devices
234  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
235  * from the config rom can never match that.
236  */
237 static const struct {
238         u32 firmware_revision;
239         u32 model;
240         unsigned workarounds;
241 } sbp2_workarounds_table[] = {
242         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
243                 .firmware_revision      = 0x002800,
244                 .model                  = 0x001010,
245                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
246                                           SBP2_WORKAROUND_MODE_SENSE_8,
247         },
248         /* Initio bridges, actually only needed for some older ones */ {
249                 .firmware_revision      = 0x000200,
250                 .model                  = ~0,
251                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
252         },
253         /* Symbios bridge */ {
254                 .firmware_revision      = 0xa0b800,
255                 .model                  = ~0,
256                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
257         },
258
259         /*
260          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
261          * these iPods do not feature the read_capacity bug according
262          * to one report.  Read_capacity behaviour as well as model_id
263          * could change due to Apple-supplied firmware updates though.
264          */
265
266         /* iPod 4th generation. */ {
267                 .firmware_revision      = 0x0a2700,
268                 .model                  = 0x000021,
269                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
270         },
271         /* iPod mini */ {
272                 .firmware_revision      = 0x0a2700,
273                 .model                  = 0x000023,
274                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
275         },
276         /* iPod Photo */ {
277                 .firmware_revision      = 0x0a2700,
278                 .model                  = 0x00007e,
279                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
280         }
281 };
282
283 static void
284 free_orb(struct kref *kref)
285 {
286         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
287
288         kfree(orb);
289 }
290
291 static void
292 sbp2_status_write(struct fw_card *card, struct fw_request *request,
293                   int tcode, int destination, int source,
294                   int generation, int speed,
295                   unsigned long long offset,
296                   void *payload, size_t length, void *callback_data)
297 {
298         struct sbp2_device *sd = callback_data;
299         struct sbp2_orb *orb;
300         struct sbp2_status status;
301         size_t header_size;
302         unsigned long flags;
303
304         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
305             length == 0 || length > sizeof(status)) {
306                 fw_send_response(card, request, RCODE_TYPE_ERROR);
307                 return;
308         }
309
310         header_size = min(length, 2 * sizeof(u32));
311         fw_memcpy_from_be32(&status, payload, header_size);
312         if (length > header_size)
313                 memcpy(status.data, payload + 8, length - header_size);
314         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
315                 fw_notify("non-orb related status write, not handled\n");
316                 fw_send_response(card, request, RCODE_COMPLETE);
317                 return;
318         }
319
320         /* Lookup the orb corresponding to this status write. */
321         spin_lock_irqsave(&card->lock, flags);
322         list_for_each_entry(orb, &sd->orb_list, link) {
323                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
324                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
325                         orb->rcode = RCODE_COMPLETE;
326                         list_del(&orb->link);
327                         break;
328                 }
329         }
330         spin_unlock_irqrestore(&card->lock, flags);
331
332         if (&orb->link != &sd->orb_list)
333                 orb->callback(orb, &status);
334         else
335                 fw_error("status write for unknown orb\n");
336
337         kref_put(&orb->kref, free_orb);
338
339         fw_send_response(card, request, RCODE_COMPLETE);
340 }
341
342 static void
343 complete_transaction(struct fw_card *card, int rcode,
344                      void *payload, size_t length, void *data)
345 {
346         struct sbp2_orb *orb = data;
347         unsigned long flags;
348
349         /*
350          * This is a little tricky.  We can get the status write for
351          * the orb before we get this callback.  The status write
352          * handler above will assume the orb pointer transaction was
353          * successful and set the rcode to RCODE_COMPLETE for the orb.
354          * So this callback only sets the rcode if it hasn't already
355          * been set and only does the cleanup if the transaction
356          * failed and we didn't already get a status write.
357          */
358         spin_lock_irqsave(&card->lock, flags);
359
360         if (orb->rcode == -1)
361                 orb->rcode = rcode;
362         if (orb->rcode != RCODE_COMPLETE) {
363                 list_del(&orb->link);
364                 spin_unlock_irqrestore(&card->lock, flags);
365                 orb->callback(orb, NULL);
366         } else {
367                 spin_unlock_irqrestore(&card->lock, flags);
368         }
369
370         kref_put(&orb->kref, free_orb);
371 }
372
373 static void
374 sbp2_send_orb(struct sbp2_orb *orb, struct fw_unit *unit,
375               int node_id, int generation, u64 offset)
376 {
377         struct fw_device *device = fw_device(unit->device.parent);
378         struct sbp2_device *sd = unit->device.driver_data;
379         unsigned long flags;
380
381         orb->pointer.high = 0;
382         orb->pointer.low = orb->request_bus;
383         fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
384
385         spin_lock_irqsave(&device->card->lock, flags);
386         list_add_tail(&orb->link, &sd->orb_list);
387         spin_unlock_irqrestore(&device->card->lock, flags);
388
389         /* Take a ref for the orb list and for the transaction callback. */
390         kref_get(&orb->kref);
391         kref_get(&orb->kref);
392
393         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
394                         node_id, generation, device->max_speed, offset,
395                         &orb->pointer, sizeof(orb->pointer),
396                         complete_transaction, orb);
397 }
398
399 static int sbp2_cancel_orbs(struct fw_unit *unit)
400 {
401         struct fw_device *device = fw_device(unit->device.parent);
402         struct sbp2_device *sd = unit->device.driver_data;
403         struct sbp2_orb *orb, *next;
404         struct list_head list;
405         unsigned long flags;
406         int retval = -ENOENT;
407
408         INIT_LIST_HEAD(&list);
409         spin_lock_irqsave(&device->card->lock, flags);
410         list_splice_init(&sd->orb_list, &list);
411         spin_unlock_irqrestore(&device->card->lock, flags);
412
413         list_for_each_entry_safe(orb, next, &list, link) {
414                 retval = 0;
415                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
416                         continue;
417
418                 orb->rcode = RCODE_CANCELLED;
419                 orb->callback(orb, NULL);
420         }
421
422         return retval;
423 }
424
425 static void
426 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
427 {
428         struct sbp2_management_orb *orb =
429                 container_of(base_orb, struct sbp2_management_orb, base);
430
431         if (status)
432                 memcpy(&orb->status, status, sizeof(*status));
433         complete(&orb->done);
434 }
435
436 static int
437 sbp2_send_management_orb(struct fw_unit *unit, int node_id, int generation,
438                          int function, int lun, void *response)
439 {
440         struct fw_device *device = fw_device(unit->device.parent);
441         struct sbp2_device *sd = unit->device.driver_data;
442         struct sbp2_management_orb *orb;
443         int retval = -ENOMEM;
444
445         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
446         if (orb == NULL)
447                 return -ENOMEM;
448
449         kref_init(&orb->base.kref);
450         orb->response_bus =
451                 dma_map_single(device->card->device, &orb->response,
452                                sizeof(orb->response), DMA_FROM_DEVICE);
453         if (dma_mapping_error(orb->response_bus))
454                 goto fail_mapping_response;
455
456         orb->request.response.high    = 0;
457         orb->request.response.low     = orb->response_bus;
458
459         orb->request.misc =
460                 MANAGEMENT_ORB_NOTIFY |
461                 MANAGEMENT_ORB_FUNCTION(function) |
462                 MANAGEMENT_ORB_LUN(lun);
463         orb->request.length =
464                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
465
466         orb->request.status_fifo.high = sd->address_handler.offset >> 32;
467         orb->request.status_fifo.low  = sd->address_handler.offset;
468
469         if (function == SBP2_LOGIN_REQUEST) {
470                 orb->request.misc |=
471                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login) |
472                         MANAGEMENT_ORB_RECONNECT(0);
473         }
474
475         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
476
477         init_completion(&orb->done);
478         orb->base.callback = complete_management_orb;
479
480         orb->base.request_bus =
481                 dma_map_single(device->card->device, &orb->request,
482                                sizeof(orb->request), DMA_TO_DEVICE);
483         if (dma_mapping_error(orb->base.request_bus))
484                 goto fail_mapping_request;
485
486         sbp2_send_orb(&orb->base, unit,
487                       node_id, generation, sd->management_agent_address);
488
489         wait_for_completion_timeout(&orb->done,
490                                     msecs_to_jiffies(SBP2_ORB_TIMEOUT));
491
492         retval = -EIO;
493         if (sbp2_cancel_orbs(unit) == 0) {
494                 fw_error("orb reply timed out, rcode=0x%02x\n",
495                          orb->base.rcode);
496                 goto out;
497         }
498
499         if (orb->base.rcode != RCODE_COMPLETE) {
500                 fw_error("management write failed, rcode 0x%02x\n",
501                          orb->base.rcode);
502                 goto out;
503         }
504
505         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
506             STATUS_GET_SBP_STATUS(orb->status) != 0) {
507                 fw_error("error status: %d:%d\n",
508                          STATUS_GET_RESPONSE(orb->status),
509                          STATUS_GET_SBP_STATUS(orb->status));
510                 goto out;
511         }
512
513         retval = 0;
514  out:
515         dma_unmap_single(device->card->device, orb->base.request_bus,
516                          sizeof(orb->request), DMA_TO_DEVICE);
517  fail_mapping_request:
518         dma_unmap_single(device->card->device, orb->response_bus,
519                          sizeof(orb->response), DMA_FROM_DEVICE);
520  fail_mapping_response:
521         if (response)
522                 fw_memcpy_from_be32(response,
523                                     orb->response, sizeof(orb->response));
524         kref_put(&orb->base.kref, free_orb);
525
526         return retval;
527 }
528
529 static void
530 complete_agent_reset_write(struct fw_card *card, int rcode,
531                            void *payload, size_t length, void *data)
532 {
533         struct fw_transaction *t = data;
534
535         kfree(t);
536 }
537
538 static int sbp2_agent_reset(struct fw_unit *unit)
539 {
540         struct fw_device *device = fw_device(unit->device.parent);
541         struct sbp2_device *sd = unit->device.driver_data;
542         struct fw_transaction *t;
543         static u32 zero;
544
545         t = kzalloc(sizeof(*t), GFP_ATOMIC);
546         if (t == NULL)
547                 return -ENOMEM;
548
549         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
550                         sd->node_id, sd->generation, device->max_speed,
551                         sd->command_block_agent_address + SBP2_AGENT_RESET,
552                         &zero, sizeof(zero), complete_agent_reset_write, t);
553
554         return 0;
555 }
556
557 static void sbp2_reconnect(struct work_struct *work);
558 static struct scsi_host_template scsi_driver_template;
559
560 static void release_sbp2_device(struct kref *kref)
561 {
562         struct sbp2_device *sd = container_of(kref, struct sbp2_device, kref);
563         struct Scsi_Host *host =
564                 container_of((void *)sd, struct Scsi_Host, hostdata[0]);
565
566         scsi_remove_host(host);
567         sbp2_send_management_orb(sd->unit, sd->node_id, sd->generation,
568                                  SBP2_LOGOUT_REQUEST, sd->login_id, NULL);
569         fw_core_remove_address_handler(&sd->address_handler);
570         fw_notify("removed sbp2 unit %s\n", sd->unit->device.bus_id);
571         put_device(&sd->unit->device);
572         scsi_host_put(host);
573 }
574
575 static void sbp2_login(struct work_struct *work)
576 {
577         struct sbp2_device *sd =
578                 container_of(work, struct sbp2_device, work.work);
579         struct Scsi_Host *host =
580                 container_of((void *)sd, struct Scsi_Host, hostdata[0]);
581         struct fw_unit *unit = sd->unit;
582         struct fw_device *device = fw_device(unit->device.parent);
583         struct sbp2_login_response response;
584         int generation, node_id, local_node_id, lun, retval;
585
586         /* FIXME: Make this work for multi-lun devices. */
587         lun = 0;
588
589         generation    = device->card->generation;
590         node_id       = device->node->node_id;
591         local_node_id = device->card->local_node->node_id;
592
593         if (sbp2_send_management_orb(unit, node_id, generation,
594                                      SBP2_LOGIN_REQUEST, lun, &response) < 0) {
595                 if (sd->retries++ < 5) {
596                         schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
597                 } else {
598                         fw_error("failed to login to %s\n",
599                                  unit->device.bus_id);
600                         kref_put(&sd->kref, release_sbp2_device);
601                 }
602                 return;
603         }
604
605         sd->generation   = generation;
606         sd->node_id      = node_id;
607         sd->address_high = local_node_id << 16;
608
609         /* Get command block agent offset and login id. */
610         sd->command_block_agent_address =
611                 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
612                 response.command_block_agent.low;
613         sd->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
614
615         fw_notify("logged in to sbp2 unit %s (%d retries)\n",
616                   unit->device.bus_id, sd->retries);
617         fw_notify(" - management_agent_address:    0x%012llx\n",
618                   (unsigned long long) sd->management_agent_address);
619         fw_notify(" - command_block_agent_address: 0x%012llx\n",
620                   (unsigned long long) sd->command_block_agent_address);
621         fw_notify(" - status write address:        0x%012llx\n",
622                   (unsigned long long) sd->address_handler.offset);
623
624 #if 0
625         /* FIXME: The linux1394 sbp2 does this last step. */
626         sbp2_set_busy_timeout(scsi_id);
627 #endif
628
629         PREPARE_DELAYED_WORK(&sd->work, sbp2_reconnect);
630         sbp2_agent_reset(unit);
631
632         /* FIXME: Loop over luns here. */
633         lun = 0;
634         retval = scsi_add_device(host, 0, 0, lun);
635         if (retval < 0) {
636                 sbp2_send_management_orb(unit, sd->node_id, sd->generation,
637                                          SBP2_LOGOUT_REQUEST, sd->login_id,
638                                          NULL);
639                 /*
640                  * Set this back to sbp2_login so we fall back and
641                  * retry login on bus reset.
642                  */
643                 PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
644         }
645         kref_put(&sd->kref, release_sbp2_device);
646 }
647
648 static int sbp2_probe(struct device *dev)
649 {
650         struct fw_unit *unit = fw_unit(dev);
651         struct fw_device *device = fw_device(unit->device.parent);
652         struct sbp2_device *sd;
653         struct fw_csr_iterator ci;
654         struct Scsi_Host *host;
655         int i, key, value, err;
656         u32 model, firmware_revision;
657
658         err = -ENOMEM;
659         host = scsi_host_alloc(&scsi_driver_template, sizeof(*sd));
660         if (host == NULL)
661                 goto fail;
662
663         sd = (struct sbp2_device *) host->hostdata;
664         unit->device.driver_data = sd;
665         sd->unit = unit;
666         INIT_LIST_HEAD(&sd->orb_list);
667         kref_init(&sd->kref);
668
669         sd->address_handler.length = 0x100;
670         sd->address_handler.address_callback = sbp2_status_write;
671         sd->address_handler.callback_data = sd;
672
673         err = fw_core_add_address_handler(&sd->address_handler,
674                                           &fw_high_memory_region);
675         if (err < 0)
676                 goto fail_host;
677
678         err = fw_device_enable_phys_dma(device);
679         if (err < 0)
680                 goto fail_address_handler;
681
682         err = scsi_add_host(host, &unit->device);
683         if (err < 0)
684                 goto fail_address_handler;
685
686         /*
687          * Scan unit directory to get management agent address,
688          * firmware revison and model.  Initialize firmware_revision
689          * and model to values that wont match anything in our table.
690          */
691         firmware_revision = 0xff000000;
692         model = 0xff000000;
693         fw_csr_iterator_init(&ci, unit->directory);
694         while (fw_csr_iterator_next(&ci, &key, &value)) {
695                 switch (key) {
696                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
697                         sd->management_agent_address =
698                                 0xfffff0000000ULL + 4 * value;
699                         break;
700                 case SBP2_FIRMWARE_REVISION:
701                         firmware_revision = value;
702                         break;
703                 case CSR_MODEL:
704                         model = value;
705                         break;
706                 }
707         }
708
709         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
710                 if (sbp2_workarounds_table[i].firmware_revision !=
711                     (firmware_revision & 0xffffff00))
712                         continue;
713                 if (sbp2_workarounds_table[i].model != model &&
714                     sbp2_workarounds_table[i].model != ~0)
715                         continue;
716                 sd->workarounds |= sbp2_workarounds_table[i].workarounds;
717                 break;
718         }
719
720         if (sd->workarounds)
721                 fw_notify("Workarounds for node %s: 0x%x "
722                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
723                           unit->device.bus_id,
724                           sd->workarounds, firmware_revision, model);
725
726         get_device(&unit->device);
727
728         /*
729          * We schedule work to do the login so we can easily
730          * reschedule retries. Always get the ref before scheduling
731          * work.
732          */
733         INIT_DELAYED_WORK(&sd->work, sbp2_login);
734         if (schedule_delayed_work(&sd->work, 0))
735                 kref_get(&sd->kref);
736
737         return 0;
738
739  fail_address_handler:
740         fw_core_remove_address_handler(&sd->address_handler);
741  fail_host:
742         scsi_host_put(host);
743  fail:
744         return err;
745 }
746
747 static int sbp2_remove(struct device *dev)
748 {
749         struct fw_unit *unit = fw_unit(dev);
750         struct sbp2_device *sd = unit->device.driver_data;
751
752         kref_put(&sd->kref, release_sbp2_device);
753
754         return 0;
755 }
756
757 static void sbp2_reconnect(struct work_struct *work)
758 {
759         struct sbp2_device *sd =
760                 container_of(work, struct sbp2_device, work.work);
761         struct fw_unit *unit = sd->unit;
762         struct fw_device *device = fw_device(unit->device.parent);
763         int generation, node_id, local_node_id;
764
765         generation    = device->card->generation;
766         node_id       = device->node->node_id;
767         local_node_id = device->card->local_node->node_id;
768
769         if (sbp2_send_management_orb(unit, node_id, generation,
770                                      SBP2_RECONNECT_REQUEST,
771                                      sd->login_id, NULL) < 0) {
772                 if (sd->retries++ >= 5) {
773                         fw_error("failed to reconnect to %s\n",
774                                  unit->device.bus_id);
775                         /* Fall back and try to log in again. */
776                         sd->retries = 0;
777                         PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
778                 }
779                 schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
780                 return;
781         }
782
783         sd->generation   = generation;
784         sd->node_id      = node_id;
785         sd->address_high = local_node_id << 16;
786
787         fw_notify("reconnected to unit %s (%d retries)\n",
788                   unit->device.bus_id, sd->retries);
789         sbp2_agent_reset(unit);
790         sbp2_cancel_orbs(unit);
791         kref_put(&sd->kref, release_sbp2_device);
792 }
793
794 static void sbp2_update(struct fw_unit *unit)
795 {
796         struct fw_device *device = fw_device(unit->device.parent);
797         struct sbp2_device *sd = unit->device.driver_data;
798
799         sd->retries = 0;
800         fw_device_enable_phys_dma(device);
801         if (schedule_delayed_work(&sd->work, 0))
802                 kref_get(&sd->kref);
803 }
804
805 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
806 #define SBP2_SW_VERSION_ENTRY   0x00010483
807
808 static const struct fw_device_id sbp2_id_table[] = {
809         {
810                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
811                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
812                 .version      = SBP2_SW_VERSION_ENTRY,
813         },
814         { }
815 };
816
817 static struct fw_driver sbp2_driver = {
818         .driver   = {
819                 .owner  = THIS_MODULE,
820                 .name   = sbp2_driver_name,
821                 .bus    = &fw_bus_type,
822                 .probe  = sbp2_probe,
823                 .remove = sbp2_remove,
824         },
825         .update   = sbp2_update,
826         .id_table = sbp2_id_table,
827 };
828
829 static unsigned int
830 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
831 {
832         int sam_status;
833
834         sense_data[0] = 0x70;
835         sense_data[1] = 0x0;
836         sense_data[2] = sbp2_status[1];
837         sense_data[3] = sbp2_status[4];
838         sense_data[4] = sbp2_status[5];
839         sense_data[5] = sbp2_status[6];
840         sense_data[6] = sbp2_status[7];
841         sense_data[7] = 10;
842         sense_data[8] = sbp2_status[8];
843         sense_data[9] = sbp2_status[9];
844         sense_data[10] = sbp2_status[10];
845         sense_data[11] = sbp2_status[11];
846         sense_data[12] = sbp2_status[2];
847         sense_data[13] = sbp2_status[3];
848         sense_data[14] = sbp2_status[12];
849         sense_data[15] = sbp2_status[13];
850
851         sam_status = sbp2_status[0] & 0x3f;
852
853         switch (sam_status) {
854         case SAM_STAT_GOOD:
855         case SAM_STAT_CHECK_CONDITION:
856         case SAM_STAT_CONDITION_MET:
857         case SAM_STAT_BUSY:
858         case SAM_STAT_RESERVATION_CONFLICT:
859         case SAM_STAT_COMMAND_TERMINATED:
860                 return DID_OK << 16 | sam_status;
861
862         default:
863                 return DID_ERROR << 16;
864         }
865 }
866
867 static void
868 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
869 {
870         struct sbp2_command_orb *orb =
871                 container_of(base_orb, struct sbp2_command_orb, base);
872         struct fw_unit *unit = orb->unit;
873         struct fw_device *device = fw_device(unit->device.parent);
874         int result;
875
876         if (status != NULL) {
877                 if (STATUS_GET_DEAD(*status))
878                         sbp2_agent_reset(unit);
879
880                 switch (STATUS_GET_RESPONSE(*status)) {
881                 case SBP2_STATUS_REQUEST_COMPLETE:
882                         result = DID_OK << 16;
883                         break;
884                 case SBP2_STATUS_TRANSPORT_FAILURE:
885                         result = DID_BUS_BUSY << 16;
886                         break;
887                 case SBP2_STATUS_ILLEGAL_REQUEST:
888                 case SBP2_STATUS_VENDOR_DEPENDENT:
889                 default:
890                         result = DID_ERROR << 16;
891                         break;
892                 }
893
894                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
895                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
896                                                            orb->cmd->sense_buffer);
897         } else {
898                 /*
899                  * If the orb completes with status == NULL, something
900                  * went wrong, typically a bus reset happened mid-orb
901                  * or when sending the write (less likely).
902                  */
903                 result = DID_BUS_BUSY << 16;
904         }
905
906         dma_unmap_single(device->card->device, orb->base.request_bus,
907                          sizeof(orb->request), DMA_TO_DEVICE);
908
909         if (scsi_sg_count(orb->cmd) > 0)
910                 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
911                              scsi_sg_count(orb->cmd),
912                              orb->cmd->sc_data_direction);
913
914         if (orb->page_table_bus != 0)
915                 dma_unmap_single(device->card->device, orb->page_table_bus,
916                                  sizeof(orb->page_table), DMA_TO_DEVICE);
917
918         orb->cmd->result = result;
919         orb->done(orb->cmd);
920 }
921
922 static int sbp2_command_orb_map_scatterlist(struct sbp2_command_orb *orb)
923 {
924         struct sbp2_device *sd =
925                 (struct sbp2_device *)orb->cmd->device->host->hostdata;
926         struct fw_unit *unit = sd->unit;
927         struct fw_device *device = fw_device(unit->device.parent);
928         struct scatterlist *sg;
929         int sg_len, l, i, j, count;
930         dma_addr_t sg_addr;
931
932         sg = scsi_sglist(orb->cmd);
933         count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
934                            orb->cmd->sc_data_direction);
935         if (count == 0)
936                 goto fail;
937
938         /*
939          * Handle the special case where there is only one element in
940          * the scatter list by converting it to an immediate block
941          * request. This is also a workaround for broken devices such
942          * as the second generation iPod which doesn't support page
943          * tables.
944          */
945         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
946                 orb->request.data_descriptor.high = sd->address_high;
947                 orb->request.data_descriptor.low  = sg_dma_address(sg);
948                 orb->request.misc |=
949                         COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
950                 return 0;
951         }
952
953         /*
954          * Convert the scatterlist to an sbp2 page table.  If any
955          * scatterlist entries are too big for sbp2, we split them as we
956          * go.  Even if we ask the block I/O layer to not give us sg
957          * elements larger than 65535 bytes, some IOMMUs may merge sg elements
958          * during DMA mapping, and Linux currently doesn't prevent this.
959          */
960         for (i = 0, j = 0; i < count; i++) {
961                 sg_len = sg_dma_len(sg + i);
962                 sg_addr = sg_dma_address(sg + i);
963                 while (sg_len) {
964                         /* FIXME: This won't get us out of the pinch. */
965                         if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
966                                 fw_error("page table overflow\n");
967                                 goto fail_page_table;
968                         }
969                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
970                         orb->page_table[j].low = sg_addr;
971                         orb->page_table[j].high = (l << 16);
972                         sg_addr += l;
973                         sg_len -= l;
974                         j++;
975                 }
976         }
977
978         fw_memcpy_to_be32(orb->page_table, orb->page_table,
979                           sizeof(orb->page_table[0]) * j);
980         orb->page_table_bus =
981                 dma_map_single(device->card->device, orb->page_table,
982                                sizeof(orb->page_table), DMA_TO_DEVICE);
983         if (dma_mapping_error(orb->page_table_bus))
984                 goto fail_page_table;
985
986         /*
987          * The data_descriptor pointer is the one case where we need
988          * to fill in the node ID part of the address.  All other
989          * pointers assume that the data referenced reside on the
990          * initiator (i.e. us), but data_descriptor can refer to data
991          * on other nodes so we need to put our ID in descriptor.high.
992          */
993         orb->request.data_descriptor.high = sd->address_high;
994         orb->request.data_descriptor.low  = orb->page_table_bus;
995         orb->request.misc |=
996                 COMMAND_ORB_PAGE_TABLE_PRESENT |
997                 COMMAND_ORB_DATA_SIZE(j);
998
999         return 0;
1000
1001  fail_page_table:
1002         dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1003                      orb->cmd->sc_data_direction);
1004  fail:
1005         return -ENOMEM;
1006 }
1007
1008 /* SCSI stack integration */
1009
1010 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1011 {
1012         struct sbp2_device *sd =
1013                 (struct sbp2_device *)cmd->device->host->hostdata;
1014         struct fw_unit *unit = sd->unit;
1015         struct fw_device *device = fw_device(unit->device.parent);
1016         struct sbp2_command_orb *orb;
1017         unsigned max_payload;
1018
1019         /*
1020          * Bidirectional commands are not yet implemented, and unknown
1021          * transfer direction not handled.
1022          */
1023         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1024                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1025                 cmd->result = DID_ERROR << 16;
1026                 done(cmd);
1027                 return 0;
1028         }
1029
1030         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1031         if (orb == NULL) {
1032                 fw_notify("failed to alloc orb\n");
1033                 goto fail_alloc;
1034         }
1035
1036         /* Initialize rcode to something not RCODE_COMPLETE. */
1037         orb->base.rcode = -1;
1038         kref_init(&orb->base.kref);
1039
1040         orb->unit = unit;
1041         orb->done = done;
1042         orb->cmd  = cmd;
1043
1044         orb->request.next.high   = SBP2_ORB_NULL;
1045         orb->request.next.low    = 0x0;
1046         /*
1047          * At speed 100 we can do 512 bytes per packet, at speed 200,
1048          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1049          * specifies the max payload size as 2 ^ (max_payload + 2), so
1050          * if we set this to max_speed + 7, we get the right value.
1051          */
1052         max_payload = min(device->max_speed + 7,
1053                           device->card->max_receive - 1);
1054         orb->request.misc =
1055                 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1056                 COMMAND_ORB_SPEED(device->max_speed) |
1057                 COMMAND_ORB_NOTIFY;
1058
1059         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1060                 orb->request.misc |=
1061                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1062         else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1063                 orb->request.misc |=
1064                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1065
1066         if (scsi_sg_count(cmd) && sbp2_command_orb_map_scatterlist(orb) < 0)
1067                 goto fail_mapping;
1068
1069         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1070
1071         memset(orb->request.command_block,
1072                0, sizeof(orb->request.command_block));
1073         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1074
1075         orb->base.callback = complete_command_orb;
1076         orb->base.request_bus =
1077                 dma_map_single(device->card->device, &orb->request,
1078                                sizeof(orb->request), DMA_TO_DEVICE);
1079         if (dma_mapping_error(orb->base.request_bus))
1080                 goto fail_mapping;
1081
1082         sbp2_send_orb(&orb->base, unit, sd->node_id, sd->generation,
1083                       sd->command_block_agent_address + SBP2_ORB_POINTER);
1084
1085         kref_put(&orb->base.kref, free_orb);
1086         return 0;
1087
1088  fail_mapping:
1089         kref_put(&orb->base.kref, free_orb);
1090  fail_alloc:
1091         return SCSI_MLQUEUE_HOST_BUSY;
1092 }
1093
1094 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1095 {
1096         struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
1097
1098         sdev->allow_restart = 1;
1099
1100         if (sd->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1101                 sdev->inquiry_len = 36;
1102         return 0;
1103 }
1104
1105 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1106 {
1107         struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
1108         struct fw_unit *unit = sd->unit;
1109
1110         sdev->use_10_for_rw = 1;
1111
1112         if (sdev->type == TYPE_ROM)
1113                 sdev->use_10_for_ms = 1;
1114         if (sdev->type == TYPE_DISK &&
1115             sd->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1116                 sdev->skip_ms_page_8 = 1;
1117         if (sd->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) {
1118                 fw_notify("setting fix_capacity for %s\n", unit->device.bus_id);
1119                 sdev->fix_capacity = 1;
1120         }
1121         if (sd->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1122                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1123         return 0;
1124 }
1125
1126 /*
1127  * Called by scsi stack when something has really gone wrong.  Usually
1128  * called when a command has timed-out for some reason.
1129  */
1130 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1131 {
1132         struct sbp2_device *sd =
1133                 (struct sbp2_device *)cmd->device->host->hostdata;
1134         struct fw_unit *unit = sd->unit;
1135
1136         fw_notify("sbp2_scsi_abort\n");
1137         sbp2_agent_reset(unit);
1138         sbp2_cancel_orbs(unit);
1139
1140         return SUCCESS;
1141 }
1142
1143 /*
1144  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1145  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1146  *
1147  * This is the concatenation of target port identifier and logical unit
1148  * identifier as per SAM-2...SAM-4 annex A.
1149  */
1150 static ssize_t
1151 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1152                             char *buf)
1153 {
1154         struct scsi_device *sdev = to_scsi_device(dev);
1155         struct sbp2_device *sd;
1156         struct fw_unit *unit;
1157         struct fw_device *device;
1158         u32 directory_id;
1159         struct fw_csr_iterator ci;
1160         int key, value, lun;
1161
1162         if (!sdev)
1163                 return 0;
1164         sd = (struct sbp2_device *)sdev->host->hostdata;
1165         unit = sd->unit;
1166         device = fw_device(unit->device.parent);
1167
1168         /* implicit directory ID */
1169         directory_id = ((unit->directory - device->config_rom) * 4
1170                         + CSR_CONFIG_ROM) & 0xffffff;
1171
1172         /* explicit directory ID, overrides implicit ID if present */
1173         fw_csr_iterator_init(&ci, unit->directory);
1174         while (fw_csr_iterator_next(&ci, &key, &value))
1175                 if (key == CSR_DIRECTORY_ID) {
1176                         directory_id = value;
1177                         break;
1178                 }
1179
1180         /* FIXME: Make this work for multi-lun devices. */
1181         lun = 0;
1182
1183         return sprintf(buf, "%08x%08x:%06x:%04x\n",
1184                         device->config_rom[3], device->config_rom[4],
1185                         directory_id, lun);
1186 }
1187
1188 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1189
1190 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1191         &dev_attr_ieee1394_id,
1192         NULL
1193 };
1194
1195 static struct scsi_host_template scsi_driver_template = {
1196         .module                 = THIS_MODULE,
1197         .name                   = "SBP-2 IEEE-1394",
1198         .proc_name              = sbp2_driver_name,
1199         .queuecommand           = sbp2_scsi_queuecommand,
1200         .slave_alloc            = sbp2_scsi_slave_alloc,
1201         .slave_configure        = sbp2_scsi_slave_configure,
1202         .eh_abort_handler       = sbp2_scsi_abort,
1203         .this_id                = -1,
1204         .sg_tablesize           = SG_ALL,
1205         .use_clustering         = ENABLE_CLUSTERING,
1206         .cmd_per_lun            = 1,
1207         .can_queue              = 1,
1208         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1209 };
1210
1211 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1212 MODULE_DESCRIPTION("SCSI over IEEE1394");
1213 MODULE_LICENSE("GPL");
1214 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1215
1216 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1217 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1218 MODULE_ALIAS("sbp2");
1219 #endif
1220
1221 static int __init sbp2_init(void)
1222 {
1223         return driver_register(&sbp2_driver.driver);
1224 }
1225
1226 static void __exit sbp2_cleanup(void)
1227 {
1228         driver_unregister(&sbp2_driver.driver);
1229 }
1230
1231 module_init(sbp2_init);
1232 module_exit(sbp2_cleanup);