]> err.no Git - linux-2.6/blob - drivers/firewire/fw-sbp2.c
f2a9a33b47a1f2b615609cb0b8a13b4361074e79
[linux-2.6] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/blkdev.h>
39 #include <linux/string.h>
40 #include <linux/stringify.h>
41 #include <linux/timer.h>
42 #include <linux/workqueue.h>
43 #include <asm/system.h>
44
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_cmnd.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_host.h>
49
50 #include "fw-transaction.h"
51 #include "fw-topology.h"
52 #include "fw-device.h"
53
54 /*
55  * So far only bridges from Oxford Semiconductor are known to support
56  * concurrent logins. Depending on firmware, four or two concurrent logins
57  * are possible on OXFW911 and newer Oxsemi bridges.
58  *
59  * Concurrent logins are useful together with cluster filesystems.
60  */
61 static int sbp2_param_exclusive_login = 1;
62 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
63 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
64                  "(default = Y, use N for concurrent initiators)");
65
66 /*
67  * Flags for firmware oddities
68  *
69  * - 128kB max transfer
70  *   Limit transfer size. Necessary for some old bridges.
71  *
72  * - 36 byte inquiry
73  *   When scsi_mod probes the device, let the inquiry command look like that
74  *   from MS Windows.
75  *
76  * - skip mode page 8
77  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
78  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
79  *
80  * - fix capacity
81  *   Tell sd_mod to correct the last sector number reported by read_capacity.
82  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
83  *   Don't use this with devices which don't have this bug.
84  *
85  * - override internal blacklist
86  *   Instead of adding to the built-in blacklist, use only the workarounds
87  *   specified in the module load parameter.
88  *   Useful if a blacklist entry interfered with a non-broken device.
89  */
90 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
91 #define SBP2_WORKAROUND_INQUIRY_36      0x2
92 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
93 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
94 #define SBP2_WORKAROUND_OVERRIDE        0x100
95
96 static int sbp2_param_workarounds;
97 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
98 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
99         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
100         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
101         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
102         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
103         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
104         ", or a combination)");
105
106 /* I don't know why the SCSI stack doesn't define something like this... */
107 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
108
109 static const char sbp2_driver_name[] = "sbp2";
110
111 /*
112  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
113  * and one struct scsi_device per sbp2_logical_unit.
114  */
115 struct sbp2_logical_unit {
116         struct sbp2_target *tgt;
117         struct list_head link;
118         struct scsi_device *sdev;
119         struct fw_address_handler address_handler;
120         struct list_head orb_list;
121
122         u64 command_block_agent_address;
123         u16 lun;
124         int login_id;
125
126         /*
127          * The generation is updated once we've logged in or reconnected
128          * to the logical unit.  Thus, I/O to the device will automatically
129          * fail and get retried if it happens in a window where the device
130          * is not ready, e.g. after a bus reset but before we reconnect.
131          */
132         int generation;
133         int retries;
134         struct delayed_work work;
135 };
136
137 /*
138  * We create one struct sbp2_target per IEEE 1212 Unit Directory
139  * and one struct Scsi_Host per sbp2_target.
140  */
141 struct sbp2_target {
142         struct kref kref;
143         struct fw_unit *unit;
144         struct list_head lu_list;
145
146         u64 management_agent_address;
147         int directory_id;
148         int node_id;
149         int address_high;
150         unsigned int workarounds;
151         unsigned int mgt_orb_timeout;
152 };
153
154 /*
155  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
156  * provided in the config rom. Most devices do provide a value, which
157  * we'll use for login management orbs, but with some sane limits.
158  */
159 #define SBP2_MIN_LOGIN_ORB_TIMEOUT      5000U   /* Timeout in ms */
160 #define SBP2_MAX_LOGIN_ORB_TIMEOUT      40000U  /* Timeout in ms */
161 #define SBP2_ORB_TIMEOUT                2000U   /* Timeout in ms */
162 #define SBP2_ORB_NULL                   0x80000000
163 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
164
165 #define SBP2_DIRECTION_TO_MEDIA         0x0
166 #define SBP2_DIRECTION_FROM_MEDIA       0x1
167
168 /* Unit directory keys */
169 #define SBP2_CSR_UNIT_CHARACTERISTICS   0x3a
170 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
171 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
172 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
173
174 /* Management orb opcodes */
175 #define SBP2_LOGIN_REQUEST              0x0
176 #define SBP2_QUERY_LOGINS_REQUEST       0x1
177 #define SBP2_RECONNECT_REQUEST          0x3
178 #define SBP2_SET_PASSWORD_REQUEST       0x4
179 #define SBP2_LOGOUT_REQUEST             0x7
180 #define SBP2_ABORT_TASK_REQUEST         0xb
181 #define SBP2_ABORT_TASK_SET             0xc
182 #define SBP2_LOGICAL_UNIT_RESET         0xe
183 #define SBP2_TARGET_RESET_REQUEST       0xf
184
185 /* Offsets for command block agent registers */
186 #define SBP2_AGENT_STATE                0x00
187 #define SBP2_AGENT_RESET                0x04
188 #define SBP2_ORB_POINTER                0x08
189 #define SBP2_DOORBELL                   0x10
190 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
191
192 /* Status write response codes */
193 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
194 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
195 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
196 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
197
198 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
199 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
200 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
201 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
202 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
203 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
204 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
205 #define STATUS_GET_DATA(v)              ((v).data)
206
207 struct sbp2_status {
208         u32 status;
209         u32 orb_low;
210         u8 data[24];
211 };
212
213 struct sbp2_pointer {
214         u32 high;
215         u32 low;
216 };
217
218 struct sbp2_orb {
219         struct fw_transaction t;
220         struct kref kref;
221         dma_addr_t request_bus;
222         int rcode;
223         struct sbp2_pointer pointer;
224         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
225         struct list_head link;
226 };
227
228 #define MANAGEMENT_ORB_LUN(v)                   ((v))
229 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
230 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
231 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
232 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
233 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
234
235 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
236 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
237
238 struct sbp2_management_orb {
239         struct sbp2_orb base;
240         struct {
241                 struct sbp2_pointer password;
242                 struct sbp2_pointer response;
243                 u32 misc;
244                 u32 length;
245                 struct sbp2_pointer status_fifo;
246         } request;
247         __be32 response[4];
248         dma_addr_t response_bus;
249         struct completion done;
250         struct sbp2_status status;
251 };
252
253 #define LOGIN_RESPONSE_GET_LOGIN_ID(v)  ((v).misc & 0xffff)
254 #define LOGIN_RESPONSE_GET_LENGTH(v)    (((v).misc >> 16) & 0xffff)
255
256 struct sbp2_login_response {
257         u32 misc;
258         struct sbp2_pointer command_block_agent;
259         u32 reconnect_hold;
260 };
261 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
262 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
263 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
264 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
265 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
266 #define COMMAND_ORB_DIRECTION(v)        ((v) << 27)
267 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
268 #define COMMAND_ORB_NOTIFY              ((1) << 31)
269
270 struct sbp2_command_orb {
271         struct sbp2_orb base;
272         struct {
273                 struct sbp2_pointer next;
274                 struct sbp2_pointer data_descriptor;
275                 u32 misc;
276                 u8 command_block[12];
277         } request;
278         struct scsi_cmnd *cmd;
279         scsi_done_fn_t done;
280         struct sbp2_logical_unit *lu;
281
282         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
283         dma_addr_t page_table_bus;
284 };
285
286 /*
287  * List of devices with known bugs.
288  *
289  * The firmware_revision field, masked with 0xffff00, is the best
290  * indicator for the type of bridge chip of a device.  It yields a few
291  * false positives but this did not break correctly behaving devices
292  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
293  * from the config rom can never match that.
294  */
295 static const struct {
296         u32 firmware_revision;
297         u32 model;
298         unsigned int workarounds;
299 } sbp2_workarounds_table[] = {
300         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
301                 .firmware_revision      = 0x002800,
302                 .model                  = 0x001010,
303                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
304                                           SBP2_WORKAROUND_MODE_SENSE_8,
305         },
306         /* Initio bridges, actually only needed for some older ones */ {
307                 .firmware_revision      = 0x000200,
308                 .model                  = ~0,
309                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
310         },
311         /* Symbios bridge */ {
312                 .firmware_revision      = 0xa0b800,
313                 .model                  = ~0,
314                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
315         },
316
317         /*
318          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
319          * these iPods do not feature the read_capacity bug according
320          * to one report.  Read_capacity behaviour as well as model_id
321          * could change due to Apple-supplied firmware updates though.
322          */
323
324         /* iPod 4th generation. */ {
325                 .firmware_revision      = 0x0a2700,
326                 .model                  = 0x000021,
327                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
328         },
329         /* iPod mini */ {
330                 .firmware_revision      = 0x0a2700,
331                 .model                  = 0x000023,
332                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
333         },
334         /* iPod Photo */ {
335                 .firmware_revision      = 0x0a2700,
336                 .model                  = 0x00007e,
337                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
338         }
339 };
340
341 static void
342 free_orb(struct kref *kref)
343 {
344         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
345
346         kfree(orb);
347 }
348
349 static void
350 sbp2_status_write(struct fw_card *card, struct fw_request *request,
351                   int tcode, int destination, int source,
352                   int generation, int speed,
353                   unsigned long long offset,
354                   void *payload, size_t length, void *callback_data)
355 {
356         struct sbp2_logical_unit *lu = callback_data;
357         struct sbp2_orb *orb;
358         struct sbp2_status status;
359         size_t header_size;
360         unsigned long flags;
361
362         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
363             length == 0 || length > sizeof(status)) {
364                 fw_send_response(card, request, RCODE_TYPE_ERROR);
365                 return;
366         }
367
368         header_size = min(length, 2 * sizeof(u32));
369         fw_memcpy_from_be32(&status, payload, header_size);
370         if (length > header_size)
371                 memcpy(status.data, payload + 8, length - header_size);
372         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
373                 fw_notify("non-orb related status write, not handled\n");
374                 fw_send_response(card, request, RCODE_COMPLETE);
375                 return;
376         }
377
378         /* Lookup the orb corresponding to this status write. */
379         spin_lock_irqsave(&card->lock, flags);
380         list_for_each_entry(orb, &lu->orb_list, link) {
381                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
382                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
383                         orb->rcode = RCODE_COMPLETE;
384                         list_del(&orb->link);
385                         break;
386                 }
387         }
388         spin_unlock_irqrestore(&card->lock, flags);
389
390         if (&orb->link != &lu->orb_list)
391                 orb->callback(orb, &status);
392         else
393                 fw_error("status write for unknown orb\n");
394
395         kref_put(&orb->kref, free_orb);
396
397         fw_send_response(card, request, RCODE_COMPLETE);
398 }
399
400 static void
401 complete_transaction(struct fw_card *card, int rcode,
402                      void *payload, size_t length, void *data)
403 {
404         struct sbp2_orb *orb = data;
405         unsigned long flags;
406
407         /*
408          * This is a little tricky.  We can get the status write for
409          * the orb before we get this callback.  The status write
410          * handler above will assume the orb pointer transaction was
411          * successful and set the rcode to RCODE_COMPLETE for the orb.
412          * So this callback only sets the rcode if it hasn't already
413          * been set and only does the cleanup if the transaction
414          * failed and we didn't already get a status write.
415          */
416         spin_lock_irqsave(&card->lock, flags);
417
418         if (orb->rcode == -1)
419                 orb->rcode = rcode;
420         if (orb->rcode != RCODE_COMPLETE) {
421                 list_del(&orb->link);
422                 spin_unlock_irqrestore(&card->lock, flags);
423                 orb->callback(orb, NULL);
424         } else {
425                 spin_unlock_irqrestore(&card->lock, flags);
426         }
427
428         kref_put(&orb->kref, free_orb);
429 }
430
431 static void
432 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
433               int node_id, int generation, u64 offset)
434 {
435         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
436         unsigned long flags;
437
438         orb->pointer.high = 0;
439         orb->pointer.low = orb->request_bus;
440         fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
441
442         spin_lock_irqsave(&device->card->lock, flags);
443         list_add_tail(&orb->link, &lu->orb_list);
444         spin_unlock_irqrestore(&device->card->lock, flags);
445
446         /* Take a ref for the orb list and for the transaction callback. */
447         kref_get(&orb->kref);
448         kref_get(&orb->kref);
449
450         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
451                         node_id, generation, device->max_speed, offset,
452                         &orb->pointer, sizeof(orb->pointer),
453                         complete_transaction, orb);
454 }
455
456 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
457 {
458         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
459         struct sbp2_orb *orb, *next;
460         struct list_head list;
461         unsigned long flags;
462         int retval = -ENOENT;
463
464         INIT_LIST_HEAD(&list);
465         spin_lock_irqsave(&device->card->lock, flags);
466         list_splice_init(&lu->orb_list, &list);
467         spin_unlock_irqrestore(&device->card->lock, flags);
468
469         list_for_each_entry_safe(orb, next, &list, link) {
470                 retval = 0;
471                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
472                         continue;
473
474                 orb->rcode = RCODE_CANCELLED;
475                 orb->callback(orb, NULL);
476         }
477
478         return retval;
479 }
480
481 static void
482 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
483 {
484         struct sbp2_management_orb *orb =
485                 container_of(base_orb, struct sbp2_management_orb, base);
486
487         if (status)
488                 memcpy(&orb->status, status, sizeof(*status));
489         complete(&orb->done);
490 }
491
492 static int
493 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
494                          int generation, int function, int lun_or_login_id,
495                          void *response)
496 {
497         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
498         struct sbp2_management_orb *orb;
499         unsigned int timeout;
500         int retval = -ENOMEM;
501
502         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
503         if (orb == NULL)
504                 return -ENOMEM;
505
506         kref_init(&orb->base.kref);
507         orb->response_bus =
508                 dma_map_single(device->card->device, &orb->response,
509                                sizeof(orb->response), DMA_FROM_DEVICE);
510         if (dma_mapping_error(orb->response_bus))
511                 goto fail_mapping_response;
512
513         orb->request.response.high    = 0;
514         orb->request.response.low     = orb->response_bus;
515
516         orb->request.misc =
517                 MANAGEMENT_ORB_NOTIFY |
518                 MANAGEMENT_ORB_FUNCTION(function) |
519                 MANAGEMENT_ORB_LUN(lun_or_login_id);
520         orb->request.length =
521                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
522
523         orb->request.status_fifo.high = lu->address_handler.offset >> 32;
524         orb->request.status_fifo.low  = lu->address_handler.offset;
525
526         if (function == SBP2_LOGIN_REQUEST) {
527                 /* Ask for 2^2 == 4 seconds reconnect grace period */
528                 orb->request.misc |=
529                         MANAGEMENT_ORB_RECONNECT(2) |
530                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
531                 timeout = lu->tgt->mgt_orb_timeout;
532         } else {
533                 timeout = SBP2_ORB_TIMEOUT;
534         }
535
536         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
537
538         init_completion(&orb->done);
539         orb->base.callback = complete_management_orb;
540
541         orb->base.request_bus =
542                 dma_map_single(device->card->device, &orb->request,
543                                sizeof(orb->request), DMA_TO_DEVICE);
544         if (dma_mapping_error(orb->base.request_bus))
545                 goto fail_mapping_request;
546
547         sbp2_send_orb(&orb->base, lu, node_id, generation,
548                       lu->tgt->management_agent_address);
549
550         wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
551
552         retval = -EIO;
553         if (sbp2_cancel_orbs(lu) == 0) {
554                 fw_error("orb reply timed out, rcode=0x%02x\n",
555                          orb->base.rcode);
556                 goto out;
557         }
558
559         if (orb->base.rcode != RCODE_COMPLETE) {
560                 fw_error("management write failed, rcode 0x%02x\n",
561                          orb->base.rcode);
562                 goto out;
563         }
564
565         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
566             STATUS_GET_SBP_STATUS(orb->status) != 0) {
567                 fw_error("error status: %d:%d\n",
568                          STATUS_GET_RESPONSE(orb->status),
569                          STATUS_GET_SBP_STATUS(orb->status));
570                 goto out;
571         }
572
573         retval = 0;
574  out:
575         dma_unmap_single(device->card->device, orb->base.request_bus,
576                          sizeof(orb->request), DMA_TO_DEVICE);
577  fail_mapping_request:
578         dma_unmap_single(device->card->device, orb->response_bus,
579                          sizeof(orb->response), DMA_FROM_DEVICE);
580  fail_mapping_response:
581         if (response)
582                 fw_memcpy_from_be32(response,
583                                     orb->response, sizeof(orb->response));
584         kref_put(&orb->base.kref, free_orb);
585
586         return retval;
587 }
588
589 static void
590 complete_agent_reset_write(struct fw_card *card, int rcode,
591                            void *payload, size_t length, void *data)
592 {
593         struct fw_transaction *t = data;
594
595         kfree(t);
596 }
597
598 static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
599 {
600         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
601         struct fw_transaction *t;
602         static u32 zero;
603
604         t = kzalloc(sizeof(*t), GFP_ATOMIC);
605         if (t == NULL)
606                 return -ENOMEM;
607
608         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
609                         lu->tgt->node_id, lu->generation, device->max_speed,
610                         lu->command_block_agent_address + SBP2_AGENT_RESET,
611                         &zero, sizeof(zero), complete_agent_reset_write, t);
612
613         return 0;
614 }
615
616 static void sbp2_release_target(struct kref *kref)
617 {
618         struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
619         struct sbp2_logical_unit *lu, *next;
620         struct Scsi_Host *shost =
621                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
622         struct fw_device *device = fw_device(tgt->unit->device.parent);
623
624         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
625                 if (lu->sdev)
626                         scsi_remove_device(lu->sdev);
627
628                 if (!fw_device_is_shutdown(device))
629                         sbp2_send_management_orb(lu, tgt->node_id,
630                                         lu->generation, SBP2_LOGOUT_REQUEST,
631                                         lu->login_id, NULL);
632
633                 fw_core_remove_address_handler(&lu->address_handler);
634                 list_del(&lu->link);
635                 kfree(lu);
636         }
637         scsi_remove_host(shost);
638         fw_notify("released %s\n", tgt->unit->device.bus_id);
639
640         put_device(&tgt->unit->device);
641         scsi_host_put(shost);
642 }
643
644 static struct workqueue_struct *sbp2_wq;
645
646 /*
647  * Always get the target's kref when scheduling work on one its units.
648  * Each workqueue job is responsible to call sbp2_target_put() upon return.
649  */
650 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
651 {
652         if (queue_delayed_work(sbp2_wq, &lu->work, delay))
653                 kref_get(&lu->tgt->kref);
654 }
655
656 static void sbp2_target_put(struct sbp2_target *tgt)
657 {
658         kref_put(&tgt->kref, sbp2_release_target);
659 }
660
661 static void sbp2_reconnect(struct work_struct *work);
662
663 static void sbp2_login(struct work_struct *work)
664 {
665         struct sbp2_logical_unit *lu =
666                 container_of(work, struct sbp2_logical_unit, work.work);
667         struct Scsi_Host *shost =
668                 container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
669         struct scsi_device *sdev;
670         struct scsi_lun eight_bytes_lun;
671         struct fw_unit *unit = lu->tgt->unit;
672         struct fw_device *device = fw_device(unit->device.parent);
673         struct sbp2_login_response response;
674         int generation, node_id, local_node_id;
675
676         generation    = device->generation;
677         smp_rmb();    /* node_id must not be older than generation */
678         node_id       = device->node_id;
679         local_node_id = device->card->node_id;
680
681         if (sbp2_send_management_orb(lu, node_id, generation,
682                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
683                 if (lu->retries++ < 5)
684                         sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
685                 else
686                         fw_error("failed to login to %s LUN %04x\n",
687                                  unit->device.bus_id, lu->lun);
688                 goto out;
689         }
690
691         lu->generation        = generation;
692         lu->tgt->node_id      = node_id;
693         lu->tgt->address_high = local_node_id << 16;
694
695         /* Get command block agent offset and login id. */
696         lu->command_block_agent_address =
697                 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
698                 response.command_block_agent.low;
699         lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
700
701         fw_notify("logged in to %s LUN %04x (%d retries)\n",
702                   unit->device.bus_id, lu->lun, lu->retries);
703
704 #if 0
705         /* FIXME: The linux1394 sbp2 does this last step. */
706         sbp2_set_busy_timeout(scsi_id);
707 #endif
708
709         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
710         sbp2_agent_reset(lu);
711
712         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
713         eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
714         eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
715
716         sdev = __scsi_add_device(shost, 0, 0,
717                                  scsilun_to_int(&eight_bytes_lun), lu);
718         if (IS_ERR(sdev)) {
719                 sbp2_send_management_orb(lu, node_id, generation,
720                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
721                 /*
722                  * Set this back to sbp2_login so we fall back and
723                  * retry login on bus reset.
724                  */
725                 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
726         } else {
727                 lu->sdev = sdev;
728                 scsi_device_put(sdev);
729         }
730  out:
731         sbp2_target_put(lu->tgt);
732 }
733
734 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
735 {
736         struct sbp2_logical_unit *lu;
737
738         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
739         if (!lu)
740                 return -ENOMEM;
741
742         lu->address_handler.length           = 0x100;
743         lu->address_handler.address_callback = sbp2_status_write;
744         lu->address_handler.callback_data    = lu;
745
746         if (fw_core_add_address_handler(&lu->address_handler,
747                                         &fw_high_memory_region) < 0) {
748                 kfree(lu);
749                 return -ENOMEM;
750         }
751
752         lu->tgt  = tgt;
753         lu->sdev = NULL;
754         lu->lun  = lun_entry & 0xffff;
755         lu->retries = 0;
756         INIT_LIST_HEAD(&lu->orb_list);
757         INIT_DELAYED_WORK(&lu->work, sbp2_login);
758
759         list_add_tail(&lu->link, &tgt->lu_list);
760         return 0;
761 }
762
763 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
764 {
765         struct fw_csr_iterator ci;
766         int key, value;
767
768         fw_csr_iterator_init(&ci, directory);
769         while (fw_csr_iterator_next(&ci, &key, &value))
770                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
771                     sbp2_add_logical_unit(tgt, value) < 0)
772                         return -ENOMEM;
773         return 0;
774 }
775
776 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
777                               u32 *model, u32 *firmware_revision)
778 {
779         struct fw_csr_iterator ci;
780         int key, value;
781         unsigned int timeout;
782
783         fw_csr_iterator_init(&ci, directory);
784         while (fw_csr_iterator_next(&ci, &key, &value)) {
785                 switch (key) {
786
787                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
788                         tgt->management_agent_address =
789                                         CSR_REGISTER_BASE + 4 * value;
790                         break;
791
792                 case CSR_DIRECTORY_ID:
793                         tgt->directory_id = value;
794                         break;
795
796                 case CSR_MODEL:
797                         *model = value;
798                         break;
799
800                 case SBP2_CSR_FIRMWARE_REVISION:
801                         *firmware_revision = value;
802                         break;
803
804                 case SBP2_CSR_UNIT_CHARACTERISTICS:
805                         /* the timeout value is stored in 500ms units */
806                         timeout = ((unsigned int) value >> 8 & 0xff) * 500;
807                         timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
808                         tgt->mgt_orb_timeout =
809                                   min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
810
811                         if (timeout > tgt->mgt_orb_timeout)
812                                 fw_notify("%s: config rom contains %ds "
813                                           "management ORB timeout, limiting "
814                                           "to %ds\n", tgt->unit->device.bus_id,
815                                           timeout / 1000,
816                                           tgt->mgt_orb_timeout / 1000);
817                         break;
818
819                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
820                         if (sbp2_add_logical_unit(tgt, value) < 0)
821                                 return -ENOMEM;
822                         break;
823
824                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
825                         if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
826                                 return -ENOMEM;
827                         break;
828                 }
829         }
830         return 0;
831 }
832
833 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
834                                   u32 firmware_revision)
835 {
836         int i;
837         unsigned int w = sbp2_param_workarounds;
838
839         if (w)
840                 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
841                           "if you need the workarounds parameter for %s\n",
842                           tgt->unit->device.bus_id);
843
844         if (w & SBP2_WORKAROUND_OVERRIDE)
845                 goto out;
846
847         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
848
849                 if (sbp2_workarounds_table[i].firmware_revision !=
850                     (firmware_revision & 0xffffff00))
851                         continue;
852
853                 if (sbp2_workarounds_table[i].model != model &&
854                     sbp2_workarounds_table[i].model != ~0)
855                         continue;
856
857                 w |= sbp2_workarounds_table[i].workarounds;
858                 break;
859         }
860  out:
861         if (w)
862                 fw_notify("Workarounds for %s: 0x%x "
863                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
864                           tgt->unit->device.bus_id,
865                           w, firmware_revision, model);
866         tgt->workarounds = w;
867 }
868
869 static struct scsi_host_template scsi_driver_template;
870
871 static int sbp2_probe(struct device *dev)
872 {
873         struct fw_unit *unit = fw_unit(dev);
874         struct fw_device *device = fw_device(unit->device.parent);
875         struct sbp2_target *tgt;
876         struct sbp2_logical_unit *lu;
877         struct Scsi_Host *shost;
878         u32 model, firmware_revision;
879
880         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
881         if (shost == NULL)
882                 return -ENOMEM;
883
884         tgt = (struct sbp2_target *)shost->hostdata;
885         unit->device.driver_data = tgt;
886         tgt->unit = unit;
887         kref_init(&tgt->kref);
888         INIT_LIST_HEAD(&tgt->lu_list);
889
890         if (fw_device_enable_phys_dma(device) < 0)
891                 goto fail_shost_put;
892
893         if (scsi_add_host(shost, &unit->device) < 0)
894                 goto fail_shost_put;
895
896         /* Initialize to values that won't match anything in our table. */
897         firmware_revision = 0xff000000;
898         model = 0xff000000;
899
900         /* implicit directory ID */
901         tgt->directory_id = ((unit->directory - device->config_rom) * 4
902                              + CSR_CONFIG_ROM) & 0xffffff;
903
904         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
905                                &firmware_revision) < 0)
906                 goto fail_tgt_put;
907
908         sbp2_init_workarounds(tgt, model, firmware_revision);
909
910         get_device(&unit->device);
911
912         /* Do the login in a workqueue so we can easily reschedule retries. */
913         list_for_each_entry(lu, &tgt->lu_list, link)
914                 sbp2_queue_work(lu, 0);
915         return 0;
916
917  fail_tgt_put:
918         sbp2_target_put(tgt);
919         return -ENOMEM;
920
921  fail_shost_put:
922         scsi_host_put(shost);
923         return -ENOMEM;
924 }
925
926 static int sbp2_remove(struct device *dev)
927 {
928         struct fw_unit *unit = fw_unit(dev);
929         struct sbp2_target *tgt = unit->device.driver_data;
930
931         sbp2_target_put(tgt);
932         return 0;
933 }
934
935 static void sbp2_reconnect(struct work_struct *work)
936 {
937         struct sbp2_logical_unit *lu =
938                 container_of(work, struct sbp2_logical_unit, work.work);
939         struct fw_unit *unit = lu->tgt->unit;
940         struct fw_device *device = fw_device(unit->device.parent);
941         int generation, node_id, local_node_id;
942
943         generation    = device->generation;
944         smp_rmb();    /* node_id must not be older than generation */
945         node_id       = device->node_id;
946         local_node_id = device->card->node_id;
947
948         if (sbp2_send_management_orb(lu, node_id, generation,
949                                      SBP2_RECONNECT_REQUEST,
950                                      lu->login_id, NULL) < 0) {
951                 if (lu->retries++ >= 5) {
952                         fw_error("failed to reconnect to %s\n",
953                                  unit->device.bus_id);
954                         /* Fall back and try to log in again. */
955                         lu->retries = 0;
956                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
957                 }
958                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
959                 goto out;
960         }
961
962         lu->generation        = generation;
963         lu->tgt->node_id      = node_id;
964         lu->tgt->address_high = local_node_id << 16;
965
966         fw_notify("reconnected to %s LUN %04x (%d retries)\n",
967                   unit->device.bus_id, lu->lun, lu->retries);
968
969         sbp2_agent_reset(lu);
970         sbp2_cancel_orbs(lu);
971  out:
972         sbp2_target_put(lu->tgt);
973 }
974
975 static void sbp2_update(struct fw_unit *unit)
976 {
977         struct sbp2_target *tgt = unit->device.driver_data;
978         struct sbp2_logical_unit *lu;
979
980         fw_device_enable_phys_dma(fw_device(unit->device.parent));
981
982         /*
983          * Fw-core serializes sbp2_update() against sbp2_remove().
984          * Iteration over tgt->lu_list is therefore safe here.
985          */
986         list_for_each_entry(lu, &tgt->lu_list, link) {
987                 lu->retries = 0;
988                 sbp2_queue_work(lu, 0);
989         }
990 }
991
992 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
993 #define SBP2_SW_VERSION_ENTRY   0x00010483
994
995 static const struct fw_device_id sbp2_id_table[] = {
996         {
997                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
998                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
999                 .version      = SBP2_SW_VERSION_ENTRY,
1000         },
1001         { }
1002 };
1003
1004 static struct fw_driver sbp2_driver = {
1005         .driver   = {
1006                 .owner  = THIS_MODULE,
1007                 .name   = sbp2_driver_name,
1008                 .bus    = &fw_bus_type,
1009                 .probe  = sbp2_probe,
1010                 .remove = sbp2_remove,
1011         },
1012         .update   = sbp2_update,
1013         .id_table = sbp2_id_table,
1014 };
1015
1016 static unsigned int
1017 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1018 {
1019         int sam_status;
1020
1021         sense_data[0] = 0x70;
1022         sense_data[1] = 0x0;
1023         sense_data[2] = sbp2_status[1];
1024         sense_data[3] = sbp2_status[4];
1025         sense_data[4] = sbp2_status[5];
1026         sense_data[5] = sbp2_status[6];
1027         sense_data[6] = sbp2_status[7];
1028         sense_data[7] = 10;
1029         sense_data[8] = sbp2_status[8];
1030         sense_data[9] = sbp2_status[9];
1031         sense_data[10] = sbp2_status[10];
1032         sense_data[11] = sbp2_status[11];
1033         sense_data[12] = sbp2_status[2];
1034         sense_data[13] = sbp2_status[3];
1035         sense_data[14] = sbp2_status[12];
1036         sense_data[15] = sbp2_status[13];
1037
1038         sam_status = sbp2_status[0] & 0x3f;
1039
1040         switch (sam_status) {
1041         case SAM_STAT_GOOD:
1042         case SAM_STAT_CHECK_CONDITION:
1043         case SAM_STAT_CONDITION_MET:
1044         case SAM_STAT_BUSY:
1045         case SAM_STAT_RESERVATION_CONFLICT:
1046         case SAM_STAT_COMMAND_TERMINATED:
1047                 return DID_OK << 16 | sam_status;
1048
1049         default:
1050                 return DID_ERROR << 16;
1051         }
1052 }
1053
1054 static void
1055 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1056 {
1057         struct sbp2_command_orb *orb =
1058                 container_of(base_orb, struct sbp2_command_orb, base);
1059         struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1060         int result;
1061
1062         if (status != NULL) {
1063                 if (STATUS_GET_DEAD(*status))
1064                         sbp2_agent_reset(orb->lu);
1065
1066                 switch (STATUS_GET_RESPONSE(*status)) {
1067                 case SBP2_STATUS_REQUEST_COMPLETE:
1068                         result = DID_OK << 16;
1069                         break;
1070                 case SBP2_STATUS_TRANSPORT_FAILURE:
1071                         result = DID_BUS_BUSY << 16;
1072                         break;
1073                 case SBP2_STATUS_ILLEGAL_REQUEST:
1074                 case SBP2_STATUS_VENDOR_DEPENDENT:
1075                 default:
1076                         result = DID_ERROR << 16;
1077                         break;
1078                 }
1079
1080                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1081                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1082                                                            orb->cmd->sense_buffer);
1083         } else {
1084                 /*
1085                  * If the orb completes with status == NULL, something
1086                  * went wrong, typically a bus reset happened mid-orb
1087                  * or when sending the write (less likely).
1088                  */
1089                 result = DID_BUS_BUSY << 16;
1090         }
1091
1092         dma_unmap_single(device->card->device, orb->base.request_bus,
1093                          sizeof(orb->request), DMA_TO_DEVICE);
1094
1095         if (scsi_sg_count(orb->cmd) > 0)
1096                 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1097                              scsi_sg_count(orb->cmd),
1098                              orb->cmd->sc_data_direction);
1099
1100         if (orb->page_table_bus != 0)
1101                 dma_unmap_single(device->card->device, orb->page_table_bus,
1102                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1103
1104         orb->cmd->result = result;
1105         orb->done(orb->cmd);
1106 }
1107
1108 static int
1109 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1110                      struct sbp2_logical_unit *lu)
1111 {
1112         struct scatterlist *sg;
1113         int sg_len, l, i, j, count;
1114         dma_addr_t sg_addr;
1115
1116         sg = scsi_sglist(orb->cmd);
1117         count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1118                            orb->cmd->sc_data_direction);
1119         if (count == 0)
1120                 goto fail;
1121
1122         /*
1123          * Handle the special case where there is only one element in
1124          * the scatter list by converting it to an immediate block
1125          * request. This is also a workaround for broken devices such
1126          * as the second generation iPod which doesn't support page
1127          * tables.
1128          */
1129         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1130                 orb->request.data_descriptor.high = lu->tgt->address_high;
1131                 orb->request.data_descriptor.low  = sg_dma_address(sg);
1132                 orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1133                 return 0;
1134         }
1135
1136         /*
1137          * Convert the scatterlist to an sbp2 page table.  If any
1138          * scatterlist entries are too big for sbp2, we split them as we
1139          * go.  Even if we ask the block I/O layer to not give us sg
1140          * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1141          * during DMA mapping, and Linux currently doesn't prevent this.
1142          */
1143         for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
1144                 sg_len = sg_dma_len(sg);
1145                 sg_addr = sg_dma_address(sg);
1146                 while (sg_len) {
1147                         /* FIXME: This won't get us out of the pinch. */
1148                         if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1149                                 fw_error("page table overflow\n");
1150                                 goto fail_page_table;
1151                         }
1152                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1153                         orb->page_table[j].low = sg_addr;
1154                         orb->page_table[j].high = (l << 16);
1155                         sg_addr += l;
1156                         sg_len -= l;
1157                         j++;
1158                 }
1159         }
1160
1161         fw_memcpy_to_be32(orb->page_table, orb->page_table,
1162                           sizeof(orb->page_table[0]) * j);
1163         orb->page_table_bus =
1164                 dma_map_single(device->card->device, orb->page_table,
1165                                sizeof(orb->page_table), DMA_TO_DEVICE);
1166         if (dma_mapping_error(orb->page_table_bus))
1167                 goto fail_page_table;
1168
1169         /*
1170          * The data_descriptor pointer is the one case where we need
1171          * to fill in the node ID part of the address.  All other
1172          * pointers assume that the data referenced reside on the
1173          * initiator (i.e. us), but data_descriptor can refer to data
1174          * on other nodes so we need to put our ID in descriptor.high.
1175          */
1176         orb->request.data_descriptor.high = lu->tgt->address_high;
1177         orb->request.data_descriptor.low  = orb->page_table_bus;
1178         orb->request.misc |=
1179                 COMMAND_ORB_PAGE_TABLE_PRESENT |
1180                 COMMAND_ORB_DATA_SIZE(j);
1181
1182         return 0;
1183
1184  fail_page_table:
1185         dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1186                      orb->cmd->sc_data_direction);
1187  fail:
1188         return -ENOMEM;
1189 }
1190
1191 /* SCSI stack integration */
1192
1193 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1194 {
1195         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1196         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1197         struct sbp2_command_orb *orb;
1198         unsigned int max_payload;
1199         int retval = SCSI_MLQUEUE_HOST_BUSY;
1200
1201         /*
1202          * Bidirectional commands are not yet implemented, and unknown
1203          * transfer direction not handled.
1204          */
1205         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1206                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1207                 cmd->result = DID_ERROR << 16;
1208                 done(cmd);
1209                 return 0;
1210         }
1211
1212         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1213         if (orb == NULL) {
1214                 fw_notify("failed to alloc orb\n");
1215                 return SCSI_MLQUEUE_HOST_BUSY;
1216         }
1217
1218         /* Initialize rcode to something not RCODE_COMPLETE. */
1219         orb->base.rcode = -1;
1220         kref_init(&orb->base.kref);
1221
1222         orb->lu   = lu;
1223         orb->done = done;
1224         orb->cmd  = cmd;
1225
1226         orb->request.next.high   = SBP2_ORB_NULL;
1227         orb->request.next.low    = 0x0;
1228         /*
1229          * At speed 100 we can do 512 bytes per packet, at speed 200,
1230          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1231          * specifies the max payload size as 2 ^ (max_payload + 2), so
1232          * if we set this to max_speed + 7, we get the right value.
1233          */
1234         max_payload = min(device->max_speed + 7,
1235                           device->card->max_receive - 1);
1236         orb->request.misc =
1237                 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1238                 COMMAND_ORB_SPEED(device->max_speed) |
1239                 COMMAND_ORB_NOTIFY;
1240
1241         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1242                 orb->request.misc |=
1243                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1244         else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1245                 orb->request.misc |=
1246                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1247
1248         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1249                 goto out;
1250
1251         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1252
1253         memset(orb->request.command_block,
1254                0, sizeof(orb->request.command_block));
1255         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1256
1257         orb->base.callback = complete_command_orb;
1258         orb->base.request_bus =
1259                 dma_map_single(device->card->device, &orb->request,
1260                                sizeof(orb->request), DMA_TO_DEVICE);
1261         if (dma_mapping_error(orb->base.request_bus))
1262                 goto out;
1263
1264         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1265                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1266         retval = 0;
1267  out:
1268         kref_put(&orb->base.kref, free_orb);
1269         return retval;
1270 }
1271
1272 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1273 {
1274         struct sbp2_logical_unit *lu = sdev->hostdata;
1275
1276         sdev->allow_restart = 1;
1277
1278         /*
1279          * Update the dma alignment (minimum alignment requirements for
1280          * start and end of DMA transfers) to be a sector
1281          */
1282         blk_queue_update_dma_alignment(sdev->request_queue, 511);
1283
1284         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1285                 sdev->inquiry_len = 36;
1286
1287         return 0;
1288 }
1289
1290 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1291 {
1292         struct sbp2_logical_unit *lu = sdev->hostdata;
1293
1294         sdev->use_10_for_rw = 1;
1295
1296         if (sdev->type == TYPE_ROM)
1297                 sdev->use_10_for_ms = 1;
1298
1299         if (sdev->type == TYPE_DISK &&
1300             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1301                 sdev->skip_ms_page_8 = 1;
1302
1303         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1304                 sdev->fix_capacity = 1;
1305
1306         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1307                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1308
1309         return 0;
1310 }
1311
1312 /*
1313  * Called by scsi stack when something has really gone wrong.  Usually
1314  * called when a command has timed-out for some reason.
1315  */
1316 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1317 {
1318         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1319
1320         fw_notify("sbp2_scsi_abort\n");
1321         sbp2_agent_reset(lu);
1322         sbp2_cancel_orbs(lu);
1323
1324         return SUCCESS;
1325 }
1326
1327 /*
1328  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1329  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1330  *
1331  * This is the concatenation of target port identifier and logical unit
1332  * identifier as per SAM-2...SAM-4 annex A.
1333  */
1334 static ssize_t
1335 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1336                             char *buf)
1337 {
1338         struct scsi_device *sdev = to_scsi_device(dev);
1339         struct sbp2_logical_unit *lu;
1340         struct fw_device *device;
1341
1342         if (!sdev)
1343                 return 0;
1344
1345         lu = sdev->hostdata;
1346         device = fw_device(lu->tgt->unit->device.parent);
1347
1348         return sprintf(buf, "%08x%08x:%06x:%04x\n",
1349                         device->config_rom[3], device->config_rom[4],
1350                         lu->tgt->directory_id, lu->lun);
1351 }
1352
1353 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1354
1355 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1356         &dev_attr_ieee1394_id,
1357         NULL
1358 };
1359
1360 static struct scsi_host_template scsi_driver_template = {
1361         .module                 = THIS_MODULE,
1362         .name                   = "SBP-2 IEEE-1394",
1363         .proc_name              = sbp2_driver_name,
1364         .queuecommand           = sbp2_scsi_queuecommand,
1365         .slave_alloc            = sbp2_scsi_slave_alloc,
1366         .slave_configure        = sbp2_scsi_slave_configure,
1367         .eh_abort_handler       = sbp2_scsi_abort,
1368         .this_id                = -1,
1369         .sg_tablesize           = SG_ALL,
1370         .use_clustering         = ENABLE_CLUSTERING,
1371         .cmd_per_lun            = 1,
1372         .can_queue              = 1,
1373         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1374 };
1375
1376 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1377 MODULE_DESCRIPTION("SCSI over IEEE1394");
1378 MODULE_LICENSE("GPL");
1379 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1380
1381 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1382 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1383 MODULE_ALIAS("sbp2");
1384 #endif
1385
1386 static int __init sbp2_init(void)
1387 {
1388         sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1389         if (!sbp2_wq)
1390                 return -ENOMEM;
1391
1392         return driver_register(&sbp2_driver.driver);
1393 }
1394
1395 static void __exit sbp2_cleanup(void)
1396 {
1397         driver_unregister(&sbp2_driver.driver);
1398         destroy_workqueue(sbp2_wq);
1399 }
1400
1401 module_init(sbp2_init);
1402 module_exit(sbp2_cleanup);