]> err.no Git - linux-2.6/blob - drivers/firewire/fw-ohci.c
b98d81967f70bc60b25a837f07db06ebc4ba34b2
[linux-2.6] / drivers / firewire / fw-ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33
34 #include <asm/page.h>
35 #include <asm/system.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "fw-ohci.h"
42 #include "fw-transaction.h"
43
44 #define DESCRIPTOR_OUTPUT_MORE          0
45 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
46 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
47 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
48 #define DESCRIPTOR_STATUS               (1 << 11)
49 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
50 #define DESCRIPTOR_PING                 (1 << 7)
51 #define DESCRIPTOR_YY                   (1 << 6)
52 #define DESCRIPTOR_NO_IRQ               (0 << 4)
53 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
54 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
55 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
56 #define DESCRIPTOR_WAIT                 (3 << 0)
57
58 struct descriptor {
59         __le16 req_count;
60         __le16 control;
61         __le32 data_address;
62         __le32 branch_address;
63         __le16 res_count;
64         __le16 transfer_status;
65 } __attribute__((aligned(16)));
66
67 struct db_descriptor {
68         __le16 first_size;
69         __le16 control;
70         __le16 second_req_count;
71         __le16 first_req_count;
72         __le32 branch_address;
73         __le16 second_res_count;
74         __le16 first_res_count;
75         __le32 reserved0;
76         __le32 first_buffer;
77         __le32 second_buffer;
78         __le32 reserved1;
79 } __attribute__((aligned(16)));
80
81 #define CONTROL_SET(regs)       (regs)
82 #define CONTROL_CLEAR(regs)     ((regs) + 4)
83 #define COMMAND_PTR(regs)       ((regs) + 12)
84 #define CONTEXT_MATCH(regs)     ((regs) + 16)
85
86 struct ar_buffer {
87         struct descriptor descriptor;
88         struct ar_buffer *next;
89         __le32 data[0];
90 };
91
92 struct ar_context {
93         struct fw_ohci *ohci;
94         struct ar_buffer *current_buffer;
95         struct ar_buffer *last_buffer;
96         void *pointer;
97         u32 regs;
98         struct tasklet_struct tasklet;
99 };
100
101 struct context;
102
103 typedef int (*descriptor_callback_t)(struct context *ctx,
104                                      struct descriptor *d,
105                                      struct descriptor *last);
106
107 /*
108  * A buffer that contains a block of DMA-able coherent memory used for
109  * storing a portion of a DMA descriptor program.
110  */
111 struct descriptor_buffer {
112         struct list_head list;
113         dma_addr_t buffer_bus;
114         size_t buffer_size;
115         size_t used;
116         struct descriptor buffer[0];
117 };
118
119 struct context {
120         struct fw_ohci *ohci;
121         u32 regs;
122         int total_allocation;
123
124         /*
125          * List of page-sized buffers for storing DMA descriptors.
126          * Head of list contains buffers in use and tail of list contains
127          * free buffers.
128          */
129         struct list_head buffer_list;
130
131         /*
132          * Pointer to a buffer inside buffer_list that contains the tail
133          * end of the current DMA program.
134          */
135         struct descriptor_buffer *buffer_tail;
136
137         /*
138          * The descriptor containing the branch address of the first
139          * descriptor that has not yet been filled by the device.
140          */
141         struct descriptor *last;
142
143         /*
144          * The last descriptor in the DMA program.  It contains the branch
145          * address that must be updated upon appending a new descriptor.
146          */
147         struct descriptor *prev;
148
149         descriptor_callback_t callback;
150
151         struct tasklet_struct tasklet;
152 };
153
154 #define IT_HEADER_SY(v)          ((v) <<  0)
155 #define IT_HEADER_TCODE(v)       ((v) <<  4)
156 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
157 #define IT_HEADER_TAG(v)         ((v) << 14)
158 #define IT_HEADER_SPEED(v)       ((v) << 16)
159 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
160
161 struct iso_context {
162         struct fw_iso_context base;
163         struct context context;
164         int excess_bytes;
165         void *header;
166         size_t header_length;
167 };
168
169 #define CONFIG_ROM_SIZE 1024
170
171 struct fw_ohci {
172         struct fw_card card;
173
174         u32 version;
175         __iomem char *registers;
176         dma_addr_t self_id_bus;
177         __le32 *self_id_cpu;
178         struct tasklet_struct bus_reset_tasklet;
179         int node_id;
180         int generation;
181         int request_generation;
182         u32 bus_seconds;
183         bool old_uninorth;
184
185         /*
186          * Spinlock for accessing fw_ohci data.  Never call out of
187          * this driver with this lock held.
188          */
189         spinlock_t lock;
190         u32 self_id_buffer[512];
191
192         /* Config rom buffers */
193         __be32 *config_rom;
194         dma_addr_t config_rom_bus;
195         __be32 *next_config_rom;
196         dma_addr_t next_config_rom_bus;
197         u32 next_header;
198
199         struct ar_context ar_request_ctx;
200         struct ar_context ar_response_ctx;
201         struct context at_request_ctx;
202         struct context at_response_ctx;
203
204         u32 it_context_mask;
205         struct iso_context *it_context_list;
206         u32 ir_context_mask;
207         struct iso_context *ir_context_list;
208 };
209
210 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
211 {
212         return container_of(card, struct fw_ohci, card);
213 }
214
215 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
216 #define IR_CONTEXT_BUFFER_FILL          0x80000000
217 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
218 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
219 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
220 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
221
222 #define CONTEXT_RUN     0x8000
223 #define CONTEXT_WAKE    0x1000
224 #define CONTEXT_DEAD    0x0800
225 #define CONTEXT_ACTIVE  0x0400
226
227 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
228 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
229 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
230
231 #define FW_OHCI_MAJOR                   240
232 #define OHCI1394_REGISTER_SIZE          0x800
233 #define OHCI_LOOP_COUNT                 500
234 #define OHCI1394_PCI_HCI_Control        0x40
235 #define SELF_ID_BUF_SIZE                0x800
236 #define OHCI_TCODE_PHY_PACKET           0x0e
237 #define OHCI_VERSION_1_1                0x010010
238
239 static char ohci_driver_name[] = KBUILD_MODNAME;
240
241 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
242
243 #define OHCI_PARAM_DEBUG_AT_AR          1
244 #define OHCI_PARAM_DEBUG_SELFIDS        2
245 #define OHCI_PARAM_DEBUG_IRQS           4
246 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
247
248 static int param_debug;
249 module_param_named(debug, param_debug, int, 0644);
250 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
251         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
252         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
253         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
254         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
255         ", or a combination, or all = -1)");
256
257 static void log_irqs(u32 evt)
258 {
259         if (likely(!(param_debug &
260                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
261                 return;
262
263         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
264             !(evt & OHCI1394_busReset))
265                 return;
266
267         printk(KERN_DEBUG KBUILD_MODNAME ": IRQ "
268                "%08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
269                evt,
270                evt & OHCI1394_selfIDComplete    ? " selfID"             : "",
271                evt & OHCI1394_RQPkt             ? " AR_req"             : "",
272                evt & OHCI1394_RSPkt             ? " AR_resp"            : "",
273                evt & OHCI1394_reqTxComplete     ? " AT_req"             : "",
274                evt & OHCI1394_respTxComplete    ? " AT_resp"            : "",
275                evt & OHCI1394_isochRx           ? " IR"                 : "",
276                evt & OHCI1394_isochTx           ? " IT"                 : "",
277                evt & OHCI1394_postedWriteErr    ? " postedWriteErr"     : "",
278                evt & OHCI1394_cycleTooLong      ? " cycleTooLong"       : "",
279                evt & OHCI1394_cycle64Seconds    ? " cycle64Seconds"     : "",
280                evt & OHCI1394_regAccessFail     ? " regAccessFail"      : "",
281                evt & OHCI1394_busReset          ? " busReset"           : "",
282                evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
283                        OHCI1394_RSPkt | OHCI1394_reqTxComplete |
284                        OHCI1394_respTxComplete | OHCI1394_isochRx |
285                        OHCI1394_isochTx | OHCI1394_postedWriteErr |
286                        OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
287                        OHCI1394_regAccessFail | OHCI1394_busReset)
288                                                 ? " ?"                  : "");
289 }
290
291 static const char *speed[] = {
292         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
293 };
294 static const char *power[] = {
295         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
296         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
297 };
298 static const char port[] = { '.', '-', 'p', 'c', };
299
300 static char _p(u32 *s, int shift)
301 {
302         return port[*s >> shift & 3];
303 }
304
305 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
306 {
307         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
308                 return;
309
310         printk(KERN_DEBUG KBUILD_MODNAME ": %d selfIDs, generation %d, "
311                "local node ID %04x\n", self_id_count, generation, node_id);
312
313         for (; self_id_count--; ++s)
314                 if ((*s & 1 << 23) == 0)
315                         printk(KERN_DEBUG "selfID 0: %08x, phy %d [%c%c%c] "
316                                "%s gc=%d %s %s%s%s\n",
317                                *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
318                                speed[*s >> 14 & 3], *s >> 16 & 63,
319                                power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
320                                *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
321                 else
322                         printk(KERN_DEBUG "selfID n: %08x, phy %d "
323                                "[%c%c%c%c%c%c%c%c]\n",
324                                *s, *s >> 24 & 63,
325                                _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
326                                _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
327 }
328
329 static const char *evts[] = {
330         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
331         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
332         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
333         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
334         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
335         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
336         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
337         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
338         [0x10] = "-reserved-",          [0x11] = "ack_complete",
339         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
340         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
341         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
342         [0x18] = "-reserved-",          [0x19] = "-reserved-",
343         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
344         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
345         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
346         [0x20] = "pending/cancelled",
347 };
348 static const char *tcodes[] = {
349         [0x0] = "QW req",               [0x1] = "BW req",
350         [0x2] = "W resp",               [0x3] = "-reserved-",
351         [0x4] = "QR req",               [0x5] = "BR req",
352         [0x6] = "QR resp",              [0x7] = "BR resp",
353         [0x8] = "cycle start",          [0x9] = "Lk req",
354         [0xa] = "async stream packet",  [0xb] = "Lk resp",
355         [0xc] = "-reserved-",           [0xd] = "-reserved-",
356         [0xe] = "link internal",        [0xf] = "-reserved-",
357 };
358 static const char *phys[] = {
359         [0x0] = "phy config packet",    [0x1] = "link-on packet",
360         [0x2] = "self-id packet",       [0x3] = "-reserved-",
361 };
362
363 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
364 {
365         int tcode = header[0] >> 4 & 0xf;
366         char specific[12];
367
368         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
369                 return;
370
371         if (unlikely(evt >= ARRAY_SIZE(evts)))
372                         evt = 0x1f;
373
374         if (evt == OHCI1394_evt_bus_reset) {
375                 printk(KERN_DEBUG "A%c evt_bus_reset, generation %d\n",
376                        dir, (header[2] >> 16) & 0xff);
377                 return;
378         }
379
380         if (header[0] == ~header[1]) {
381                 printk(KERN_DEBUG "A%c %s, %s, %08x\n",
382                        dir, evts[evt], phys[header[0] >> 30 & 0x3],
383                        header[0]);
384                 return;
385         }
386
387         switch (tcode) {
388         case 0x0: case 0x6: case 0x8:
389                 snprintf(specific, sizeof(specific), " = %08x",
390                          be32_to_cpu((__force __be32)header[3]));
391                 break;
392         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
393                 snprintf(specific, sizeof(specific), " %x,%x",
394                          header[3] >> 16, header[3] & 0xffff);
395                 break;
396         default:
397                 specific[0] = '\0';
398         }
399
400         switch (tcode) {
401         case 0xe: case 0xa:
402                 printk(KERN_DEBUG "A%c %s, %s\n",
403                        dir, evts[evt], tcodes[tcode]);
404                 break;
405         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
406                 printk(KERN_DEBUG "A%c spd %x tl %02x, "
407                        "%04x -> %04x, %s, "
408                        "%s, %04x%08x%s\n",
409                        dir, speed, header[0] >> 10 & 0x3f,
410                        header[1] >> 16, header[0] >> 16, evts[evt],
411                        tcodes[tcode], header[1] & 0xffff, header[2], specific);
412                 break;
413         default:
414                 printk(KERN_DEBUG "A%c spd %x tl %02x, "
415                        "%04x -> %04x, %s, "
416                        "%s%s\n",
417                        dir, speed, header[0] >> 10 & 0x3f,
418                        header[1] >> 16, header[0] >> 16, evts[evt],
419                        tcodes[tcode], specific);
420         }
421 }
422
423 #else
424
425 #define log_irqs(evt)
426 #define log_selfids(node_id, generation, self_id_count, sid)
427 #define log_ar_at_event(dir, speed, header, evt)
428
429 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
430
431 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
432 {
433         writel(data, ohci->registers + offset);
434 }
435
436 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
437 {
438         return readl(ohci->registers + offset);
439 }
440
441 static inline void flush_writes(const struct fw_ohci *ohci)
442 {
443         /* Do a dummy read to flush writes. */
444         reg_read(ohci, OHCI1394_Version);
445 }
446
447 static int
448 ohci_update_phy_reg(struct fw_card *card, int addr,
449                     int clear_bits, int set_bits)
450 {
451         struct fw_ohci *ohci = fw_ohci(card);
452         u32 val, old;
453
454         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
455         flush_writes(ohci);
456         msleep(2);
457         val = reg_read(ohci, OHCI1394_PhyControl);
458         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
459                 fw_error("failed to set phy reg bits.\n");
460                 return -EBUSY;
461         }
462
463         old = OHCI1394_PhyControl_ReadData(val);
464         old = (old & ~clear_bits) | set_bits;
465         reg_write(ohci, OHCI1394_PhyControl,
466                   OHCI1394_PhyControl_Write(addr, old));
467
468         return 0;
469 }
470
471 static int ar_context_add_page(struct ar_context *ctx)
472 {
473         struct device *dev = ctx->ohci->card.device;
474         struct ar_buffer *ab;
475         dma_addr_t uninitialized_var(ab_bus);
476         size_t offset;
477
478         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
479         if (ab == NULL)
480                 return -ENOMEM;
481
482         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
483         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
484                                                     DESCRIPTOR_STATUS |
485                                                     DESCRIPTOR_BRANCH_ALWAYS);
486         offset = offsetof(struct ar_buffer, data);
487         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
488         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
489         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
490         ab->descriptor.branch_address = 0;
491
492         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
493         ctx->last_buffer->next = ab;
494         ctx->last_buffer = ab;
495
496         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
497         flush_writes(ctx->ohci);
498
499         return 0;
500 }
501
502 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
503 #define cond_le32_to_cpu(v) \
504         (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
505 #else
506 #define cond_le32_to_cpu(v) le32_to_cpu(v)
507 #endif
508
509 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
510 {
511         struct fw_ohci *ohci = ctx->ohci;
512         struct fw_packet p;
513         u32 status, length, tcode;
514         int evt;
515
516         p.header[0] = cond_le32_to_cpu(buffer[0]);
517         p.header[1] = cond_le32_to_cpu(buffer[1]);
518         p.header[2] = cond_le32_to_cpu(buffer[2]);
519
520         tcode = (p.header[0] >> 4) & 0x0f;
521         switch (tcode) {
522         case TCODE_WRITE_QUADLET_REQUEST:
523         case TCODE_READ_QUADLET_RESPONSE:
524                 p.header[3] = (__force __u32) buffer[3];
525                 p.header_length = 16;
526                 p.payload_length = 0;
527                 break;
528
529         case TCODE_READ_BLOCK_REQUEST :
530                 p.header[3] = cond_le32_to_cpu(buffer[3]);
531                 p.header_length = 16;
532                 p.payload_length = 0;
533                 break;
534
535         case TCODE_WRITE_BLOCK_REQUEST:
536         case TCODE_READ_BLOCK_RESPONSE:
537         case TCODE_LOCK_REQUEST:
538         case TCODE_LOCK_RESPONSE:
539                 p.header[3] = cond_le32_to_cpu(buffer[3]);
540                 p.header_length = 16;
541                 p.payload_length = p.header[3] >> 16;
542                 break;
543
544         case TCODE_WRITE_RESPONSE:
545         case TCODE_READ_QUADLET_REQUEST:
546         case OHCI_TCODE_PHY_PACKET:
547                 p.header_length = 12;
548                 p.payload_length = 0;
549                 break;
550         }
551
552         p.payload = (void *) buffer + p.header_length;
553
554         /* FIXME: What to do about evt_* errors? */
555         length = (p.header_length + p.payload_length + 3) / 4;
556         status = cond_le32_to_cpu(buffer[length]);
557         evt    = (status >> 16) & 0x1f;
558
559         p.ack        = evt - 16;
560         p.speed      = (status >> 21) & 0x7;
561         p.timestamp  = status & 0xffff;
562         p.generation = ohci->request_generation;
563
564         log_ar_at_event('R', p.speed, p.header, evt);
565
566         /*
567          * The OHCI bus reset handler synthesizes a phy packet with
568          * the new generation number when a bus reset happens (see
569          * section 8.4.2.3).  This helps us determine when a request
570          * was received and make sure we send the response in the same
571          * generation.  We only need this for requests; for responses
572          * we use the unique tlabel for finding the matching
573          * request.
574          */
575
576         if (evt == OHCI1394_evt_bus_reset)
577                 ohci->request_generation = (p.header[2] >> 16) & 0xff;
578         else if (ctx == &ohci->ar_request_ctx)
579                 fw_core_handle_request(&ohci->card, &p);
580         else
581                 fw_core_handle_response(&ohci->card, &p);
582
583         return buffer + length + 1;
584 }
585
586 static void ar_context_tasklet(unsigned long data)
587 {
588         struct ar_context *ctx = (struct ar_context *)data;
589         struct fw_ohci *ohci = ctx->ohci;
590         struct ar_buffer *ab;
591         struct descriptor *d;
592         void *buffer, *end;
593
594         ab = ctx->current_buffer;
595         d = &ab->descriptor;
596
597         if (d->res_count == 0) {
598                 size_t size, rest, offset;
599                 dma_addr_t start_bus;
600                 void *start;
601
602                 /*
603                  * This descriptor is finished and we may have a
604                  * packet split across this and the next buffer. We
605                  * reuse the page for reassembling the split packet.
606                  */
607
608                 offset = offsetof(struct ar_buffer, data);
609                 start = buffer = ab;
610                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
611
612                 ab = ab->next;
613                 d = &ab->descriptor;
614                 size = buffer + PAGE_SIZE - ctx->pointer;
615                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
616                 memmove(buffer, ctx->pointer, size);
617                 memcpy(buffer + size, ab->data, rest);
618                 ctx->current_buffer = ab;
619                 ctx->pointer = (void *) ab->data + rest;
620                 end = buffer + size + rest;
621
622                 while (buffer < end)
623                         buffer = handle_ar_packet(ctx, buffer);
624
625                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
626                                   start, start_bus);
627                 ar_context_add_page(ctx);
628         } else {
629                 buffer = ctx->pointer;
630                 ctx->pointer = end =
631                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
632
633                 while (buffer < end)
634                         buffer = handle_ar_packet(ctx, buffer);
635         }
636 }
637
638 static int
639 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
640 {
641         struct ar_buffer ab;
642
643         ctx->regs        = regs;
644         ctx->ohci        = ohci;
645         ctx->last_buffer = &ab;
646         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
647
648         ar_context_add_page(ctx);
649         ar_context_add_page(ctx);
650         ctx->current_buffer = ab.next;
651         ctx->pointer = ctx->current_buffer->data;
652
653         return 0;
654 }
655
656 static void ar_context_run(struct ar_context *ctx)
657 {
658         struct ar_buffer *ab = ctx->current_buffer;
659         dma_addr_t ab_bus;
660         size_t offset;
661
662         offset = offsetof(struct ar_buffer, data);
663         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
664
665         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
666         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
667         flush_writes(ctx->ohci);
668 }
669
670 static struct descriptor *
671 find_branch_descriptor(struct descriptor *d, int z)
672 {
673         int b, key;
674
675         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
676         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
677
678         /* figure out which descriptor the branch address goes in */
679         if (z == 2 && (b == 3 || key == 2))
680                 return d;
681         else
682                 return d + z - 1;
683 }
684
685 static void context_tasklet(unsigned long data)
686 {
687         struct context *ctx = (struct context *) data;
688         struct descriptor *d, *last;
689         u32 address;
690         int z;
691         struct descriptor_buffer *desc;
692
693         desc = list_entry(ctx->buffer_list.next,
694                         struct descriptor_buffer, list);
695         last = ctx->last;
696         while (last->branch_address != 0) {
697                 struct descriptor_buffer *old_desc = desc;
698                 address = le32_to_cpu(last->branch_address);
699                 z = address & 0xf;
700                 address &= ~0xf;
701
702                 /* If the branch address points to a buffer outside of the
703                  * current buffer, advance to the next buffer. */
704                 if (address < desc->buffer_bus ||
705                                 address >= desc->buffer_bus + desc->used)
706                         desc = list_entry(desc->list.next,
707                                         struct descriptor_buffer, list);
708                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
709                 last = find_branch_descriptor(d, z);
710
711                 if (!ctx->callback(ctx, d, last))
712                         break;
713
714                 if (old_desc != desc) {
715                         /* If we've advanced to the next buffer, move the
716                          * previous buffer to the free list. */
717                         unsigned long flags;
718                         old_desc->used = 0;
719                         spin_lock_irqsave(&ctx->ohci->lock, flags);
720                         list_move_tail(&old_desc->list, &ctx->buffer_list);
721                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
722                 }
723                 ctx->last = last;
724         }
725 }
726
727 /*
728  * Allocate a new buffer and add it to the list of free buffers for this
729  * context.  Must be called with ohci->lock held.
730  */
731 static int
732 context_add_buffer(struct context *ctx)
733 {
734         struct descriptor_buffer *desc;
735         dma_addr_t uninitialized_var(bus_addr);
736         int offset;
737
738         /*
739          * 16MB of descriptors should be far more than enough for any DMA
740          * program.  This will catch run-away userspace or DoS attacks.
741          */
742         if (ctx->total_allocation >= 16*1024*1024)
743                 return -ENOMEM;
744
745         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
746                         &bus_addr, GFP_ATOMIC);
747         if (!desc)
748                 return -ENOMEM;
749
750         offset = (void *)&desc->buffer - (void *)desc;
751         desc->buffer_size = PAGE_SIZE - offset;
752         desc->buffer_bus = bus_addr + offset;
753         desc->used = 0;
754
755         list_add_tail(&desc->list, &ctx->buffer_list);
756         ctx->total_allocation += PAGE_SIZE;
757
758         return 0;
759 }
760
761 static int
762 context_init(struct context *ctx, struct fw_ohci *ohci,
763              u32 regs, descriptor_callback_t callback)
764 {
765         ctx->ohci = ohci;
766         ctx->regs = regs;
767         ctx->total_allocation = 0;
768
769         INIT_LIST_HEAD(&ctx->buffer_list);
770         if (context_add_buffer(ctx) < 0)
771                 return -ENOMEM;
772
773         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
774                         struct descriptor_buffer, list);
775
776         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
777         ctx->callback = callback;
778
779         /*
780          * We put a dummy descriptor in the buffer that has a NULL
781          * branch address and looks like it's been sent.  That way we
782          * have a descriptor to append DMA programs to.
783          */
784         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
785         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
786         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
787         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
788         ctx->last = ctx->buffer_tail->buffer;
789         ctx->prev = ctx->buffer_tail->buffer;
790
791         return 0;
792 }
793
794 static void
795 context_release(struct context *ctx)
796 {
797         struct fw_card *card = &ctx->ohci->card;
798         struct descriptor_buffer *desc, *tmp;
799
800         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
801                 dma_free_coherent(card->device, PAGE_SIZE, desc,
802                         desc->buffer_bus -
803                         ((void *)&desc->buffer - (void *)desc));
804 }
805
806 /* Must be called with ohci->lock held */
807 static struct descriptor *
808 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
809 {
810         struct descriptor *d = NULL;
811         struct descriptor_buffer *desc = ctx->buffer_tail;
812
813         if (z * sizeof(*d) > desc->buffer_size)
814                 return NULL;
815
816         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
817                 /* No room for the descriptor in this buffer, so advance to the
818                  * next one. */
819
820                 if (desc->list.next == &ctx->buffer_list) {
821                         /* If there is no free buffer next in the list,
822                          * allocate one. */
823                         if (context_add_buffer(ctx) < 0)
824                                 return NULL;
825                 }
826                 desc = list_entry(desc->list.next,
827                                 struct descriptor_buffer, list);
828                 ctx->buffer_tail = desc;
829         }
830
831         d = desc->buffer + desc->used / sizeof(*d);
832         memset(d, 0, z * sizeof(*d));
833         *d_bus = desc->buffer_bus + desc->used;
834
835         return d;
836 }
837
838 static void context_run(struct context *ctx, u32 extra)
839 {
840         struct fw_ohci *ohci = ctx->ohci;
841
842         reg_write(ohci, COMMAND_PTR(ctx->regs),
843                   le32_to_cpu(ctx->last->branch_address));
844         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
845         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
846         flush_writes(ohci);
847 }
848
849 static void context_append(struct context *ctx,
850                            struct descriptor *d, int z, int extra)
851 {
852         dma_addr_t d_bus;
853         struct descriptor_buffer *desc = ctx->buffer_tail;
854
855         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
856
857         desc->used += (z + extra) * sizeof(*d);
858         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
859         ctx->prev = find_branch_descriptor(d, z);
860
861         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
862         flush_writes(ctx->ohci);
863 }
864
865 static void context_stop(struct context *ctx)
866 {
867         u32 reg;
868         int i;
869
870         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
871         flush_writes(ctx->ohci);
872
873         for (i = 0; i < 10; i++) {
874                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
875                 if ((reg & CONTEXT_ACTIVE) == 0)
876                         break;
877
878                 fw_notify("context_stop: still active (0x%08x)\n", reg);
879                 mdelay(1);
880         }
881 }
882
883 struct driver_data {
884         struct fw_packet *packet;
885 };
886
887 /*
888  * This function apppends a packet to the DMA queue for transmission.
889  * Must always be called with the ochi->lock held to ensure proper
890  * generation handling and locking around packet queue manipulation.
891  */
892 static int
893 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
894 {
895         struct fw_ohci *ohci = ctx->ohci;
896         dma_addr_t d_bus, uninitialized_var(payload_bus);
897         struct driver_data *driver_data;
898         struct descriptor *d, *last;
899         __le32 *header;
900         int z, tcode;
901         u32 reg;
902
903         d = context_get_descriptors(ctx, 4, &d_bus);
904         if (d == NULL) {
905                 packet->ack = RCODE_SEND_ERROR;
906                 return -1;
907         }
908
909         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
910         d[0].res_count = cpu_to_le16(packet->timestamp);
911
912         /*
913          * The DMA format for asyncronous link packets is different
914          * from the IEEE1394 layout, so shift the fields around
915          * accordingly.  If header_length is 8, it's a PHY packet, to
916          * which we need to prepend an extra quadlet.
917          */
918
919         header = (__le32 *) &d[1];
920         if (packet->header_length > 8) {
921                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
922                                         (packet->speed << 16));
923                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
924                                         (packet->header[0] & 0xffff0000));
925                 header[2] = cpu_to_le32(packet->header[2]);
926
927                 tcode = (packet->header[0] >> 4) & 0x0f;
928                 if (TCODE_IS_BLOCK_PACKET(tcode))
929                         header[3] = cpu_to_le32(packet->header[3]);
930                 else
931                         header[3] = (__force __le32) packet->header[3];
932
933                 d[0].req_count = cpu_to_le16(packet->header_length);
934         } else {
935                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
936                                         (packet->speed << 16));
937                 header[1] = cpu_to_le32(packet->header[0]);
938                 header[2] = cpu_to_le32(packet->header[1]);
939                 d[0].req_count = cpu_to_le16(12);
940         }
941
942         driver_data = (struct driver_data *) &d[3];
943         driver_data->packet = packet;
944         packet->driver_data = driver_data;
945
946         if (packet->payload_length > 0) {
947                 payload_bus =
948                         dma_map_single(ohci->card.device, packet->payload,
949                                        packet->payload_length, DMA_TO_DEVICE);
950                 if (dma_mapping_error(payload_bus)) {
951                         packet->ack = RCODE_SEND_ERROR;
952                         return -1;
953                 }
954
955                 d[2].req_count    = cpu_to_le16(packet->payload_length);
956                 d[2].data_address = cpu_to_le32(payload_bus);
957                 last = &d[2];
958                 z = 3;
959         } else {
960                 last = &d[0];
961                 z = 2;
962         }
963
964         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
965                                      DESCRIPTOR_IRQ_ALWAYS |
966                                      DESCRIPTOR_BRANCH_ALWAYS);
967
968         /*
969          * If the controller and packet generations don't match, we need to
970          * bail out and try again.  If IntEvent.busReset is set, the AT context
971          * is halted, so appending to the context and trying to run it is
972          * futile.  Most controllers do the right thing and just flush the AT
973          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
974          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
975          * up stalling out.  So we just bail out in software and try again
976          * later, and everyone is happy.
977          * FIXME: Document how the locking works.
978          */
979         if (ohci->generation != packet->generation ||
980             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
981                 if (packet->payload_length > 0)
982                         dma_unmap_single(ohci->card.device, payload_bus,
983                                          packet->payload_length, DMA_TO_DEVICE);
984                 packet->ack = RCODE_GENERATION;
985                 return -1;
986         }
987
988         context_append(ctx, d, z, 4 - z);
989
990         /* If the context isn't already running, start it up. */
991         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
992         if ((reg & CONTEXT_RUN) == 0)
993                 context_run(ctx, 0);
994
995         return 0;
996 }
997
998 static int handle_at_packet(struct context *context,
999                             struct descriptor *d,
1000                             struct descriptor *last)
1001 {
1002         struct driver_data *driver_data;
1003         struct fw_packet *packet;
1004         struct fw_ohci *ohci = context->ohci;
1005         dma_addr_t payload_bus;
1006         int evt;
1007
1008         if (last->transfer_status == 0)
1009                 /* This descriptor isn't done yet, stop iteration. */
1010                 return 0;
1011
1012         driver_data = (struct driver_data *) &d[3];
1013         packet = driver_data->packet;
1014         if (packet == NULL)
1015                 /* This packet was cancelled, just continue. */
1016                 return 1;
1017
1018         payload_bus = le32_to_cpu(last->data_address);
1019         if (payload_bus != 0)
1020                 dma_unmap_single(ohci->card.device, payload_bus,
1021                                  packet->payload_length, DMA_TO_DEVICE);
1022
1023         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1024         packet->timestamp = le16_to_cpu(last->res_count);
1025
1026         log_ar_at_event('T', packet->speed, packet->header, evt);
1027
1028         switch (evt) {
1029         case OHCI1394_evt_timeout:
1030                 /* Async response transmit timed out. */
1031                 packet->ack = RCODE_CANCELLED;
1032                 break;
1033
1034         case OHCI1394_evt_flushed:
1035                 /*
1036                  * The packet was flushed should give same error as
1037                  * when we try to use a stale generation count.
1038                  */
1039                 packet->ack = RCODE_GENERATION;
1040                 break;
1041
1042         case OHCI1394_evt_missing_ack:
1043                 /*
1044                  * Using a valid (current) generation count, but the
1045                  * node is not on the bus or not sending acks.
1046                  */
1047                 packet->ack = RCODE_NO_ACK;
1048                 break;
1049
1050         case ACK_COMPLETE + 0x10:
1051         case ACK_PENDING + 0x10:
1052         case ACK_BUSY_X + 0x10:
1053         case ACK_BUSY_A + 0x10:
1054         case ACK_BUSY_B + 0x10:
1055         case ACK_DATA_ERROR + 0x10:
1056         case ACK_TYPE_ERROR + 0x10:
1057                 packet->ack = evt - 0x10;
1058                 break;
1059
1060         default:
1061                 packet->ack = RCODE_SEND_ERROR;
1062                 break;
1063         }
1064
1065         packet->callback(packet, &ohci->card, packet->ack);
1066
1067         return 1;
1068 }
1069
1070 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1071 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1072 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1073 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1074 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1075
1076 static void
1077 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1078 {
1079         struct fw_packet response;
1080         int tcode, length, i;
1081
1082         tcode = HEADER_GET_TCODE(packet->header[0]);
1083         if (TCODE_IS_BLOCK_PACKET(tcode))
1084                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1085         else
1086                 length = 4;
1087
1088         i = csr - CSR_CONFIG_ROM;
1089         if (i + length > CONFIG_ROM_SIZE) {
1090                 fw_fill_response(&response, packet->header,
1091                                  RCODE_ADDRESS_ERROR, NULL, 0);
1092         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1093                 fw_fill_response(&response, packet->header,
1094                                  RCODE_TYPE_ERROR, NULL, 0);
1095         } else {
1096                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1097                                  (void *) ohci->config_rom + i, length);
1098         }
1099
1100         fw_core_handle_response(&ohci->card, &response);
1101 }
1102
1103 static void
1104 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1105 {
1106         struct fw_packet response;
1107         int tcode, length, ext_tcode, sel;
1108         __be32 *payload, lock_old;
1109         u32 lock_arg, lock_data;
1110
1111         tcode = HEADER_GET_TCODE(packet->header[0]);
1112         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1113         payload = packet->payload;
1114         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1115
1116         if (tcode == TCODE_LOCK_REQUEST &&
1117             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1118                 lock_arg = be32_to_cpu(payload[0]);
1119                 lock_data = be32_to_cpu(payload[1]);
1120         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1121                 lock_arg = 0;
1122                 lock_data = 0;
1123         } else {
1124                 fw_fill_response(&response, packet->header,
1125                                  RCODE_TYPE_ERROR, NULL, 0);
1126                 goto out;
1127         }
1128
1129         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1130         reg_write(ohci, OHCI1394_CSRData, lock_data);
1131         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1132         reg_write(ohci, OHCI1394_CSRControl, sel);
1133
1134         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1135                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1136         else
1137                 fw_notify("swap not done yet\n");
1138
1139         fw_fill_response(&response, packet->header,
1140                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1141  out:
1142         fw_core_handle_response(&ohci->card, &response);
1143 }
1144
1145 static void
1146 handle_local_request(struct context *ctx, struct fw_packet *packet)
1147 {
1148         u64 offset;
1149         u32 csr;
1150
1151         if (ctx == &ctx->ohci->at_request_ctx) {
1152                 packet->ack = ACK_PENDING;
1153                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1154         }
1155
1156         offset =
1157                 ((unsigned long long)
1158                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1159                 packet->header[2];
1160         csr = offset - CSR_REGISTER_BASE;
1161
1162         /* Handle config rom reads. */
1163         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1164                 handle_local_rom(ctx->ohci, packet, csr);
1165         else switch (csr) {
1166         case CSR_BUS_MANAGER_ID:
1167         case CSR_BANDWIDTH_AVAILABLE:
1168         case CSR_CHANNELS_AVAILABLE_HI:
1169         case CSR_CHANNELS_AVAILABLE_LO:
1170                 handle_local_lock(ctx->ohci, packet, csr);
1171                 break;
1172         default:
1173                 if (ctx == &ctx->ohci->at_request_ctx)
1174                         fw_core_handle_request(&ctx->ohci->card, packet);
1175                 else
1176                         fw_core_handle_response(&ctx->ohci->card, packet);
1177                 break;
1178         }
1179
1180         if (ctx == &ctx->ohci->at_response_ctx) {
1181                 packet->ack = ACK_COMPLETE;
1182                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1183         }
1184 }
1185
1186 static void
1187 at_context_transmit(struct context *ctx, struct fw_packet *packet)
1188 {
1189         unsigned long flags;
1190         int retval;
1191
1192         spin_lock_irqsave(&ctx->ohci->lock, flags);
1193
1194         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1195             ctx->ohci->generation == packet->generation) {
1196                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1197                 handle_local_request(ctx, packet);
1198                 return;
1199         }
1200
1201         retval = at_context_queue_packet(ctx, packet);
1202         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1203
1204         if (retval < 0)
1205                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1206
1207 }
1208
1209 static void bus_reset_tasklet(unsigned long data)
1210 {
1211         struct fw_ohci *ohci = (struct fw_ohci *)data;
1212         int self_id_count, i, j, reg;
1213         int generation, new_generation;
1214         unsigned long flags;
1215         void *free_rom = NULL;
1216         dma_addr_t free_rom_bus = 0;
1217
1218         reg = reg_read(ohci, OHCI1394_NodeID);
1219         if (!(reg & OHCI1394_NodeID_idValid)) {
1220                 fw_notify("node ID not valid, new bus reset in progress\n");
1221                 return;
1222         }
1223         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1224                 fw_notify("malconfigured bus\n");
1225                 return;
1226         }
1227         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1228                                OHCI1394_NodeID_nodeNumber);
1229
1230         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1231         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1232                 fw_notify("inconsistent self IDs\n");
1233                 return;
1234         }
1235         /*
1236          * The count in the SelfIDCount register is the number of
1237          * bytes in the self ID receive buffer.  Since we also receive
1238          * the inverted quadlets and a header quadlet, we shift one
1239          * bit extra to get the actual number of self IDs.
1240          */
1241         self_id_count = (reg >> 3) & 0x3ff;
1242         if (self_id_count == 0) {
1243                 fw_notify("inconsistent self IDs\n");
1244                 return;
1245         }
1246         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1247         rmb();
1248
1249         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1250                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1251                         fw_notify("inconsistent self IDs\n");
1252                         return;
1253                 }
1254                 ohci->self_id_buffer[j] =
1255                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1256         }
1257         rmb();
1258
1259         /*
1260          * Check the consistency of the self IDs we just read.  The
1261          * problem we face is that a new bus reset can start while we
1262          * read out the self IDs from the DMA buffer. If this happens,
1263          * the DMA buffer will be overwritten with new self IDs and we
1264          * will read out inconsistent data.  The OHCI specification
1265          * (section 11.2) recommends a technique similar to
1266          * linux/seqlock.h, where we remember the generation of the
1267          * self IDs in the buffer before reading them out and compare
1268          * it to the current generation after reading them out.  If
1269          * the two generations match we know we have a consistent set
1270          * of self IDs.
1271          */
1272
1273         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1274         if (new_generation != generation) {
1275                 fw_notify("recursive bus reset detected, "
1276                           "discarding self ids\n");
1277                 return;
1278         }
1279
1280         /* FIXME: Document how the locking works. */
1281         spin_lock_irqsave(&ohci->lock, flags);
1282
1283         ohci->generation = generation;
1284         context_stop(&ohci->at_request_ctx);
1285         context_stop(&ohci->at_response_ctx);
1286         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1287
1288         /*
1289          * This next bit is unrelated to the AT context stuff but we
1290          * have to do it under the spinlock also.  If a new config rom
1291          * was set up before this reset, the old one is now no longer
1292          * in use and we can free it. Update the config rom pointers
1293          * to point to the current config rom and clear the
1294          * next_config_rom pointer so a new udpate can take place.
1295          */
1296
1297         if (ohci->next_config_rom != NULL) {
1298                 if (ohci->next_config_rom != ohci->config_rom) {
1299                         free_rom      = ohci->config_rom;
1300                         free_rom_bus  = ohci->config_rom_bus;
1301                 }
1302                 ohci->config_rom      = ohci->next_config_rom;
1303                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1304                 ohci->next_config_rom = NULL;
1305
1306                 /*
1307                  * Restore config_rom image and manually update
1308                  * config_rom registers.  Writing the header quadlet
1309                  * will indicate that the config rom is ready, so we
1310                  * do that last.
1311                  */
1312                 reg_write(ohci, OHCI1394_BusOptions,
1313                           be32_to_cpu(ohci->config_rom[2]));
1314                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1315                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1316         }
1317
1318 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1319         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1320         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1321 #endif
1322
1323         spin_unlock_irqrestore(&ohci->lock, flags);
1324
1325         if (free_rom)
1326                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1327                                   free_rom, free_rom_bus);
1328
1329         log_selfids(ohci->node_id, generation,
1330                     self_id_count, ohci->self_id_buffer);
1331
1332         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1333                                  self_id_count, ohci->self_id_buffer);
1334 }
1335
1336 static irqreturn_t irq_handler(int irq, void *data)
1337 {
1338         struct fw_ohci *ohci = data;
1339         u32 event, iso_event, cycle_time;
1340         int i;
1341
1342         event = reg_read(ohci, OHCI1394_IntEventClear);
1343
1344         if (!event || !~event)
1345                 return IRQ_NONE;
1346
1347         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1348         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1349         log_irqs(event);
1350
1351         if (event & OHCI1394_selfIDComplete)
1352                 tasklet_schedule(&ohci->bus_reset_tasklet);
1353
1354         if (event & OHCI1394_RQPkt)
1355                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1356
1357         if (event & OHCI1394_RSPkt)
1358                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1359
1360         if (event & OHCI1394_reqTxComplete)
1361                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1362
1363         if (event & OHCI1394_respTxComplete)
1364                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1365
1366         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1367         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1368
1369         while (iso_event) {
1370                 i = ffs(iso_event) - 1;
1371                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1372                 iso_event &= ~(1 << i);
1373         }
1374
1375         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1376         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1377
1378         while (iso_event) {
1379                 i = ffs(iso_event) - 1;
1380                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1381                 iso_event &= ~(1 << i);
1382         }
1383
1384         if (unlikely(event & OHCI1394_regAccessFail))
1385                 fw_error("Register access failure - "
1386                          "please notify linux1394-devel@lists.sf.net\n");
1387
1388         if (unlikely(event & OHCI1394_postedWriteErr))
1389                 fw_error("PCI posted write error\n");
1390
1391         if (unlikely(event & OHCI1394_cycleTooLong)) {
1392                 if (printk_ratelimit())
1393                         fw_notify("isochronous cycle too long\n");
1394                 reg_write(ohci, OHCI1394_LinkControlSet,
1395                           OHCI1394_LinkControl_cycleMaster);
1396         }
1397
1398         if (event & OHCI1394_cycle64Seconds) {
1399                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1400                 if ((cycle_time & 0x80000000) == 0)
1401                         ohci->bus_seconds++;
1402         }
1403
1404         return IRQ_HANDLED;
1405 }
1406
1407 static int software_reset(struct fw_ohci *ohci)
1408 {
1409         int i;
1410
1411         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1412
1413         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1414                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1415                      OHCI1394_HCControl_softReset) == 0)
1416                         return 0;
1417                 msleep(1);
1418         }
1419
1420         return -EBUSY;
1421 }
1422
1423 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1424 {
1425         struct fw_ohci *ohci = fw_ohci(card);
1426         struct pci_dev *dev = to_pci_dev(card->device);
1427         u32 lps;
1428         int i;
1429
1430         if (software_reset(ohci)) {
1431                 fw_error("Failed to reset ohci card.\n");
1432                 return -EBUSY;
1433         }
1434
1435         /*
1436          * Now enable LPS, which we need in order to start accessing
1437          * most of the registers.  In fact, on some cards (ALI M5251),
1438          * accessing registers in the SClk domain without LPS enabled
1439          * will lock up the machine.  Wait 50msec to make sure we have
1440          * full link enabled.  However, with some cards (well, at least
1441          * a JMicron PCIe card), we have to try again sometimes.
1442          */
1443         reg_write(ohci, OHCI1394_HCControlSet,
1444                   OHCI1394_HCControl_LPS |
1445                   OHCI1394_HCControl_postedWriteEnable);
1446         flush_writes(ohci);
1447
1448         for (lps = 0, i = 0; !lps && i < 3; i++) {
1449                 msleep(50);
1450                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1451                       OHCI1394_HCControl_LPS;
1452         }
1453
1454         if (!lps) {
1455                 fw_error("Failed to set Link Power Status\n");
1456                 return -EIO;
1457         }
1458
1459         reg_write(ohci, OHCI1394_HCControlClear,
1460                   OHCI1394_HCControl_noByteSwapData);
1461
1462         reg_write(ohci, OHCI1394_LinkControlSet,
1463                   OHCI1394_LinkControl_rcvSelfID |
1464                   OHCI1394_LinkControl_cycleTimerEnable |
1465                   OHCI1394_LinkControl_cycleMaster);
1466
1467         reg_write(ohci, OHCI1394_ATRetries,
1468                   OHCI1394_MAX_AT_REQ_RETRIES |
1469                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1470                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1471
1472         ar_context_run(&ohci->ar_request_ctx);
1473         ar_context_run(&ohci->ar_response_ctx);
1474
1475         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1476         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1477         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1478         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1479         reg_write(ohci, OHCI1394_IntMaskSet,
1480                   OHCI1394_selfIDComplete |
1481                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1482                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1483                   OHCI1394_isochRx | OHCI1394_isochTx |
1484                   OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1485                   OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1486                   OHCI1394_masterIntEnable);
1487         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1488                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1489
1490         /* Activate link_on bit and contender bit in our self ID packets.*/
1491         if (ohci_update_phy_reg(card, 4, 0,
1492                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1493                 return -EIO;
1494
1495         /*
1496          * When the link is not yet enabled, the atomic config rom
1497          * update mechanism described below in ohci_set_config_rom()
1498          * is not active.  We have to update ConfigRomHeader and
1499          * BusOptions manually, and the write to ConfigROMmap takes
1500          * effect immediately.  We tie this to the enabling of the
1501          * link, so we have a valid config rom before enabling - the
1502          * OHCI requires that ConfigROMhdr and BusOptions have valid
1503          * values before enabling.
1504          *
1505          * However, when the ConfigROMmap is written, some controllers
1506          * always read back quadlets 0 and 2 from the config rom to
1507          * the ConfigRomHeader and BusOptions registers on bus reset.
1508          * They shouldn't do that in this initial case where the link
1509          * isn't enabled.  This means we have to use the same
1510          * workaround here, setting the bus header to 0 and then write
1511          * the right values in the bus reset tasklet.
1512          */
1513
1514         if (config_rom) {
1515                 ohci->next_config_rom =
1516                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1517                                            &ohci->next_config_rom_bus,
1518                                            GFP_KERNEL);
1519                 if (ohci->next_config_rom == NULL)
1520                         return -ENOMEM;
1521
1522                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1523                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1524         } else {
1525                 /*
1526                  * In the suspend case, config_rom is NULL, which
1527                  * means that we just reuse the old config rom.
1528                  */
1529                 ohci->next_config_rom = ohci->config_rom;
1530                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1531         }
1532
1533         ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1534         ohci->next_config_rom[0] = 0;
1535         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1536         reg_write(ohci, OHCI1394_BusOptions,
1537                   be32_to_cpu(ohci->next_config_rom[2]));
1538         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1539
1540         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1541
1542         if (request_irq(dev->irq, irq_handler,
1543                         IRQF_SHARED, ohci_driver_name, ohci)) {
1544                 fw_error("Failed to allocate shared interrupt %d.\n",
1545                          dev->irq);
1546                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1547                                   ohci->config_rom, ohci->config_rom_bus);
1548                 return -EIO;
1549         }
1550
1551         reg_write(ohci, OHCI1394_HCControlSet,
1552                   OHCI1394_HCControl_linkEnable |
1553                   OHCI1394_HCControl_BIBimageValid);
1554         flush_writes(ohci);
1555
1556         /*
1557          * We are ready to go, initiate bus reset to finish the
1558          * initialization.
1559          */
1560
1561         fw_core_initiate_bus_reset(&ohci->card, 1);
1562
1563         return 0;
1564 }
1565
1566 static int
1567 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1568 {
1569         struct fw_ohci *ohci;
1570         unsigned long flags;
1571         int retval = -EBUSY;
1572         __be32 *next_config_rom;
1573         dma_addr_t uninitialized_var(next_config_rom_bus);
1574
1575         ohci = fw_ohci(card);
1576
1577         /*
1578          * When the OHCI controller is enabled, the config rom update
1579          * mechanism is a bit tricky, but easy enough to use.  See
1580          * section 5.5.6 in the OHCI specification.
1581          *
1582          * The OHCI controller caches the new config rom address in a
1583          * shadow register (ConfigROMmapNext) and needs a bus reset
1584          * for the changes to take place.  When the bus reset is
1585          * detected, the controller loads the new values for the
1586          * ConfigRomHeader and BusOptions registers from the specified
1587          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1588          * shadow register. All automatically and atomically.
1589          *
1590          * Now, there's a twist to this story.  The automatic load of
1591          * ConfigRomHeader and BusOptions doesn't honor the
1592          * noByteSwapData bit, so with a be32 config rom, the
1593          * controller will load be32 values in to these registers
1594          * during the atomic update, even on litte endian
1595          * architectures.  The workaround we use is to put a 0 in the
1596          * header quadlet; 0 is endian agnostic and means that the
1597          * config rom isn't ready yet.  In the bus reset tasklet we
1598          * then set up the real values for the two registers.
1599          *
1600          * We use ohci->lock to avoid racing with the code that sets
1601          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1602          */
1603
1604         next_config_rom =
1605                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1606                                    &next_config_rom_bus, GFP_KERNEL);
1607         if (next_config_rom == NULL)
1608                 return -ENOMEM;
1609
1610         spin_lock_irqsave(&ohci->lock, flags);
1611
1612         if (ohci->next_config_rom == NULL) {
1613                 ohci->next_config_rom = next_config_rom;
1614                 ohci->next_config_rom_bus = next_config_rom_bus;
1615
1616                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1617                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1618                                   length * 4);
1619
1620                 ohci->next_header = config_rom[0];
1621                 ohci->next_config_rom[0] = 0;
1622
1623                 reg_write(ohci, OHCI1394_ConfigROMmap,
1624                           ohci->next_config_rom_bus);
1625                 retval = 0;
1626         }
1627
1628         spin_unlock_irqrestore(&ohci->lock, flags);
1629
1630         /*
1631          * Now initiate a bus reset to have the changes take
1632          * effect. We clean up the old config rom memory and DMA
1633          * mappings in the bus reset tasklet, since the OHCI
1634          * controller could need to access it before the bus reset
1635          * takes effect.
1636          */
1637         if (retval == 0)
1638                 fw_core_initiate_bus_reset(&ohci->card, 1);
1639         else
1640                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1641                                   next_config_rom, next_config_rom_bus);
1642
1643         return retval;
1644 }
1645
1646 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1647 {
1648         struct fw_ohci *ohci = fw_ohci(card);
1649
1650         at_context_transmit(&ohci->at_request_ctx, packet);
1651 }
1652
1653 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1654 {
1655         struct fw_ohci *ohci = fw_ohci(card);
1656
1657         at_context_transmit(&ohci->at_response_ctx, packet);
1658 }
1659
1660 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1661 {
1662         struct fw_ohci *ohci = fw_ohci(card);
1663         struct context *ctx = &ohci->at_request_ctx;
1664         struct driver_data *driver_data = packet->driver_data;
1665         int retval = -ENOENT;
1666
1667         tasklet_disable(&ctx->tasklet);
1668
1669         if (packet->ack != 0)
1670                 goto out;
1671
1672         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1673         driver_data->packet = NULL;
1674         packet->ack = RCODE_CANCELLED;
1675         packet->callback(packet, &ohci->card, packet->ack);
1676         retval = 0;
1677
1678  out:
1679         tasklet_enable(&ctx->tasklet);
1680
1681         return retval;
1682 }
1683
1684 static int
1685 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1686 {
1687 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1688         return 0;
1689 #else
1690         struct fw_ohci *ohci = fw_ohci(card);
1691         unsigned long flags;
1692         int n, retval = 0;
1693
1694         /*
1695          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1696          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1697          */
1698
1699         spin_lock_irqsave(&ohci->lock, flags);
1700
1701         if (ohci->generation != generation) {
1702                 retval = -ESTALE;
1703                 goto out;
1704         }
1705
1706         /*
1707          * Note, if the node ID contains a non-local bus ID, physical DMA is
1708          * enabled for _all_ nodes on remote buses.
1709          */
1710
1711         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1712         if (n < 32)
1713                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1714         else
1715                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1716
1717         flush_writes(ohci);
1718  out:
1719         spin_unlock_irqrestore(&ohci->lock, flags);
1720         return retval;
1721 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1722 }
1723
1724 static u64
1725 ohci_get_bus_time(struct fw_card *card)
1726 {
1727         struct fw_ohci *ohci = fw_ohci(card);
1728         u32 cycle_time;
1729         u64 bus_time;
1730
1731         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1732         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1733
1734         return bus_time;
1735 }
1736
1737 static int handle_ir_dualbuffer_packet(struct context *context,
1738                                        struct descriptor *d,
1739                                        struct descriptor *last)
1740 {
1741         struct iso_context *ctx =
1742                 container_of(context, struct iso_context, context);
1743         struct db_descriptor *db = (struct db_descriptor *) d;
1744         __le32 *ir_header;
1745         size_t header_length;
1746         void *p, *end;
1747         int i;
1748
1749         if (db->first_res_count != 0 && db->second_res_count != 0) {
1750                 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1751                         /* This descriptor isn't done yet, stop iteration. */
1752                         return 0;
1753                 }
1754                 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1755         }
1756
1757         header_length = le16_to_cpu(db->first_req_count) -
1758                 le16_to_cpu(db->first_res_count);
1759
1760         i = ctx->header_length;
1761         p = db + 1;
1762         end = p + header_length;
1763         while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1764                 /*
1765                  * The iso header is byteswapped to little endian by
1766                  * the controller, but the remaining header quadlets
1767                  * are big endian.  We want to present all the headers
1768                  * as big endian, so we have to swap the first
1769                  * quadlet.
1770                  */
1771                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1772                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1773                 i += ctx->base.header_size;
1774                 ctx->excess_bytes +=
1775                         (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1776                 p += ctx->base.header_size + 4;
1777         }
1778         ctx->header_length = i;
1779
1780         ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1781                 le16_to_cpu(db->second_res_count);
1782
1783         if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1784                 ir_header = (__le32 *) (db + 1);
1785                 ctx->base.callback(&ctx->base,
1786                                    le32_to_cpu(ir_header[0]) & 0xffff,
1787                                    ctx->header_length, ctx->header,
1788                                    ctx->base.callback_data);
1789                 ctx->header_length = 0;
1790         }
1791
1792         return 1;
1793 }
1794
1795 static int handle_ir_packet_per_buffer(struct context *context,
1796                                        struct descriptor *d,
1797                                        struct descriptor *last)
1798 {
1799         struct iso_context *ctx =
1800                 container_of(context, struct iso_context, context);
1801         struct descriptor *pd;
1802         __le32 *ir_header;
1803         void *p;
1804         int i;
1805
1806         for (pd = d; pd <= last; pd++) {
1807                 if (pd->transfer_status)
1808                         break;
1809         }
1810         if (pd > last)
1811                 /* Descriptor(s) not done yet, stop iteration */
1812                 return 0;
1813
1814         i   = ctx->header_length;
1815         p   = last + 1;
1816
1817         if (ctx->base.header_size > 0 &&
1818                         i + ctx->base.header_size <= PAGE_SIZE) {
1819                 /*
1820                  * The iso header is byteswapped to little endian by
1821                  * the controller, but the remaining header quadlets
1822                  * are big endian.  We want to present all the headers
1823                  * as big endian, so we have to swap the first quadlet.
1824                  */
1825                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1826                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1827                 ctx->header_length += ctx->base.header_size;
1828         }
1829
1830         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1831                 ir_header = (__le32 *) p;
1832                 ctx->base.callback(&ctx->base,
1833                                    le32_to_cpu(ir_header[0]) & 0xffff,
1834                                    ctx->header_length, ctx->header,
1835                                    ctx->base.callback_data);
1836                 ctx->header_length = 0;
1837         }
1838
1839         return 1;
1840 }
1841
1842 static int handle_it_packet(struct context *context,
1843                             struct descriptor *d,
1844                             struct descriptor *last)
1845 {
1846         struct iso_context *ctx =
1847                 container_of(context, struct iso_context, context);
1848
1849         if (last->transfer_status == 0)
1850                 /* This descriptor isn't done yet, stop iteration. */
1851                 return 0;
1852
1853         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1854                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1855                                    0, NULL, ctx->base.callback_data);
1856
1857         return 1;
1858 }
1859
1860 static struct fw_iso_context *
1861 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1862 {
1863         struct fw_ohci *ohci = fw_ohci(card);
1864         struct iso_context *ctx, *list;
1865         descriptor_callback_t callback;
1866         u32 *mask, regs;
1867         unsigned long flags;
1868         int index, retval = -ENOMEM;
1869
1870         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1871                 mask = &ohci->it_context_mask;
1872                 list = ohci->it_context_list;
1873                 callback = handle_it_packet;
1874         } else {
1875                 mask = &ohci->ir_context_mask;
1876                 list = ohci->ir_context_list;
1877                 if (ohci->version >= OHCI_VERSION_1_1)
1878                         callback = handle_ir_dualbuffer_packet;
1879                 else
1880                         callback = handle_ir_packet_per_buffer;
1881         }
1882
1883         spin_lock_irqsave(&ohci->lock, flags);
1884         index = ffs(*mask) - 1;
1885         if (index >= 0)
1886                 *mask &= ~(1 << index);
1887         spin_unlock_irqrestore(&ohci->lock, flags);
1888
1889         if (index < 0)
1890                 return ERR_PTR(-EBUSY);
1891
1892         if (type == FW_ISO_CONTEXT_TRANSMIT)
1893                 regs = OHCI1394_IsoXmitContextBase(index);
1894         else
1895                 regs = OHCI1394_IsoRcvContextBase(index);
1896
1897         ctx = &list[index];
1898         memset(ctx, 0, sizeof(*ctx));
1899         ctx->header_length = 0;
1900         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1901         if (ctx->header == NULL)
1902                 goto out;
1903
1904         retval = context_init(&ctx->context, ohci, regs, callback);
1905         if (retval < 0)
1906                 goto out_with_header;
1907
1908         return &ctx->base;
1909
1910  out_with_header:
1911         free_page((unsigned long)ctx->header);
1912  out:
1913         spin_lock_irqsave(&ohci->lock, flags);
1914         *mask |= 1 << index;
1915         spin_unlock_irqrestore(&ohci->lock, flags);
1916
1917         return ERR_PTR(retval);
1918 }
1919
1920 static int ohci_start_iso(struct fw_iso_context *base,
1921                           s32 cycle, u32 sync, u32 tags)
1922 {
1923         struct iso_context *ctx = container_of(base, struct iso_context, base);
1924         struct fw_ohci *ohci = ctx->context.ohci;
1925         u32 control, match;
1926         int index;
1927
1928         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1929                 index = ctx - ohci->it_context_list;
1930                 match = 0;
1931                 if (cycle >= 0)
1932                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1933                                 (cycle & 0x7fff) << 16;
1934
1935                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1936                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1937                 context_run(&ctx->context, match);
1938         } else {
1939                 index = ctx - ohci->ir_context_list;
1940                 control = IR_CONTEXT_ISOCH_HEADER;
1941                 if (ohci->version >= OHCI_VERSION_1_1)
1942                         control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1943                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1944                 if (cycle >= 0) {
1945                         match |= (cycle & 0x07fff) << 12;
1946                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1947                 }
1948
1949                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1950                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1951                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1952                 context_run(&ctx->context, control);
1953         }
1954
1955         return 0;
1956 }
1957
1958 static int ohci_stop_iso(struct fw_iso_context *base)
1959 {
1960         struct fw_ohci *ohci = fw_ohci(base->card);
1961         struct iso_context *ctx = container_of(base, struct iso_context, base);
1962         int index;
1963
1964         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1965                 index = ctx - ohci->it_context_list;
1966                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1967         } else {
1968                 index = ctx - ohci->ir_context_list;
1969                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1970         }
1971         flush_writes(ohci);
1972         context_stop(&ctx->context);
1973
1974         return 0;
1975 }
1976
1977 static void ohci_free_iso_context(struct fw_iso_context *base)
1978 {
1979         struct fw_ohci *ohci = fw_ohci(base->card);
1980         struct iso_context *ctx = container_of(base, struct iso_context, base);
1981         unsigned long flags;
1982         int index;
1983
1984         ohci_stop_iso(base);
1985         context_release(&ctx->context);
1986         free_page((unsigned long)ctx->header);
1987
1988         spin_lock_irqsave(&ohci->lock, flags);
1989
1990         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1991                 index = ctx - ohci->it_context_list;
1992                 ohci->it_context_mask |= 1 << index;
1993         } else {
1994                 index = ctx - ohci->ir_context_list;
1995                 ohci->ir_context_mask |= 1 << index;
1996         }
1997
1998         spin_unlock_irqrestore(&ohci->lock, flags);
1999 }
2000
2001 static int
2002 ohci_queue_iso_transmit(struct fw_iso_context *base,
2003                         struct fw_iso_packet *packet,
2004                         struct fw_iso_buffer *buffer,
2005                         unsigned long payload)
2006 {
2007         struct iso_context *ctx = container_of(base, struct iso_context, base);
2008         struct descriptor *d, *last, *pd;
2009         struct fw_iso_packet *p;
2010         __le32 *header;
2011         dma_addr_t d_bus, page_bus;
2012         u32 z, header_z, payload_z, irq;
2013         u32 payload_index, payload_end_index, next_page_index;
2014         int page, end_page, i, length, offset;
2015
2016         /*
2017          * FIXME: Cycle lost behavior should be configurable: lose
2018          * packet, retransmit or terminate..
2019          */
2020
2021         p = packet;
2022         payload_index = payload;
2023
2024         if (p->skip)
2025                 z = 1;
2026         else
2027                 z = 2;
2028         if (p->header_length > 0)
2029                 z++;
2030
2031         /* Determine the first page the payload isn't contained in. */
2032         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2033         if (p->payload_length > 0)
2034                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2035         else
2036                 payload_z = 0;
2037
2038         z += payload_z;
2039
2040         /* Get header size in number of descriptors. */
2041         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2042
2043         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2044         if (d == NULL)
2045                 return -ENOMEM;
2046
2047         if (!p->skip) {
2048                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2049                 d[0].req_count = cpu_to_le16(8);
2050
2051                 header = (__le32 *) &d[1];
2052                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2053                                         IT_HEADER_TAG(p->tag) |
2054                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2055                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2056                                         IT_HEADER_SPEED(ctx->base.speed));
2057                 header[1] =
2058                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2059                                                           p->payload_length));
2060         }
2061
2062         if (p->header_length > 0) {
2063                 d[2].req_count    = cpu_to_le16(p->header_length);
2064                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2065                 memcpy(&d[z], p->header, p->header_length);
2066         }
2067
2068         pd = d + z - payload_z;
2069         payload_end_index = payload_index + p->payload_length;
2070         for (i = 0; i < payload_z; i++) {
2071                 page               = payload_index >> PAGE_SHIFT;
2072                 offset             = payload_index & ~PAGE_MASK;
2073                 next_page_index    = (page + 1) << PAGE_SHIFT;
2074                 length             =
2075                         min(next_page_index, payload_end_index) - payload_index;
2076                 pd[i].req_count    = cpu_to_le16(length);
2077
2078                 page_bus = page_private(buffer->pages[page]);
2079                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2080
2081                 payload_index += length;
2082         }
2083
2084         if (p->interrupt)
2085                 irq = DESCRIPTOR_IRQ_ALWAYS;
2086         else
2087                 irq = DESCRIPTOR_NO_IRQ;
2088
2089         last = z == 2 ? d : d + z - 1;
2090         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2091                                      DESCRIPTOR_STATUS |
2092                                      DESCRIPTOR_BRANCH_ALWAYS |
2093                                      irq);
2094
2095         context_append(&ctx->context, d, z, header_z);
2096
2097         return 0;
2098 }
2099
2100 static int
2101 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2102                                   struct fw_iso_packet *packet,
2103                                   struct fw_iso_buffer *buffer,
2104                                   unsigned long payload)
2105 {
2106         struct iso_context *ctx = container_of(base, struct iso_context, base);
2107         struct db_descriptor *db = NULL;
2108         struct descriptor *d;
2109         struct fw_iso_packet *p;
2110         dma_addr_t d_bus, page_bus;
2111         u32 z, header_z, length, rest;
2112         int page, offset, packet_count, header_size;
2113
2114         /*
2115          * FIXME: Cycle lost behavior should be configurable: lose
2116          * packet, retransmit or terminate..
2117          */
2118
2119         p = packet;
2120         z = 2;
2121
2122         /*
2123          * The OHCI controller puts the status word in the header
2124          * buffer too, so we need 4 extra bytes per packet.
2125          */
2126         packet_count = p->header_length / ctx->base.header_size;
2127         header_size = packet_count * (ctx->base.header_size + 4);
2128
2129         /* Get header size in number of descriptors. */
2130         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2131         page     = payload >> PAGE_SHIFT;
2132         offset   = payload & ~PAGE_MASK;
2133         rest     = p->payload_length;
2134
2135         /* FIXME: make packet-per-buffer/dual-buffer a context option */
2136         while (rest > 0) {
2137                 d = context_get_descriptors(&ctx->context,
2138                                             z + header_z, &d_bus);
2139                 if (d == NULL)
2140                         return -ENOMEM;
2141
2142                 db = (struct db_descriptor *) d;
2143                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2144                                           DESCRIPTOR_BRANCH_ALWAYS);
2145                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
2146                 if (p->skip && rest == p->payload_length) {
2147                         db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2148                         db->first_req_count = db->first_size;
2149                 } else {
2150                         db->first_req_count = cpu_to_le16(header_size);
2151                 }
2152                 db->first_res_count = db->first_req_count;
2153                 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2154
2155                 if (p->skip && rest == p->payload_length)
2156                         length = 4;
2157                 else if (offset + rest < PAGE_SIZE)
2158                         length = rest;
2159                 else
2160                         length = PAGE_SIZE - offset;
2161
2162                 db->second_req_count = cpu_to_le16(length);
2163                 db->second_res_count = db->second_req_count;
2164                 page_bus = page_private(buffer->pages[page]);
2165                 db->second_buffer = cpu_to_le32(page_bus + offset);
2166
2167                 if (p->interrupt && length == rest)
2168                         db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2169
2170                 context_append(&ctx->context, d, z, header_z);
2171                 offset = (offset + length) & ~PAGE_MASK;
2172                 rest -= length;
2173                 if (offset == 0)
2174                         page++;
2175         }
2176
2177         return 0;
2178 }
2179
2180 static int
2181 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2182                                          struct fw_iso_packet *packet,
2183                                          struct fw_iso_buffer *buffer,
2184                                          unsigned long payload)
2185 {
2186         struct iso_context *ctx = container_of(base, struct iso_context, base);
2187         struct descriptor *d = NULL, *pd = NULL;
2188         struct fw_iso_packet *p = packet;
2189         dma_addr_t d_bus, page_bus;
2190         u32 z, header_z, rest;
2191         int i, j, length;
2192         int page, offset, packet_count, header_size, payload_per_buffer;
2193
2194         /*
2195          * The OHCI controller puts the status word in the
2196          * buffer too, so we need 4 extra bytes per packet.
2197          */
2198         packet_count = p->header_length / ctx->base.header_size;
2199         header_size  = ctx->base.header_size + 4;
2200
2201         /* Get header size in number of descriptors. */
2202         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2203         page     = payload >> PAGE_SHIFT;
2204         offset   = payload & ~PAGE_MASK;
2205         payload_per_buffer = p->payload_length / packet_count;
2206
2207         for (i = 0; i < packet_count; i++) {
2208                 /* d points to the header descriptor */
2209                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2210                 d = context_get_descriptors(&ctx->context,
2211                                 z + header_z, &d_bus);
2212                 if (d == NULL)
2213                         return -ENOMEM;
2214
2215                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2216                                               DESCRIPTOR_INPUT_MORE);
2217                 if (p->skip && i == 0)
2218                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2219                 d->req_count    = cpu_to_le16(header_size);
2220                 d->res_count    = d->req_count;
2221                 d->transfer_status = 0;
2222                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2223
2224                 rest = payload_per_buffer;
2225                 for (j = 1; j < z; j++) {
2226                         pd = d + j;
2227                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2228                                                   DESCRIPTOR_INPUT_MORE);
2229
2230                         if (offset + rest < PAGE_SIZE)
2231                                 length = rest;
2232                         else
2233                                 length = PAGE_SIZE - offset;
2234                         pd->req_count = cpu_to_le16(length);
2235                         pd->res_count = pd->req_count;
2236                         pd->transfer_status = 0;
2237
2238                         page_bus = page_private(buffer->pages[page]);
2239                         pd->data_address = cpu_to_le32(page_bus + offset);
2240
2241                         offset = (offset + length) & ~PAGE_MASK;
2242                         rest -= length;
2243                         if (offset == 0)
2244                                 page++;
2245                 }
2246                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2247                                           DESCRIPTOR_INPUT_LAST |
2248                                           DESCRIPTOR_BRANCH_ALWAYS);
2249                 if (p->interrupt && i == packet_count - 1)
2250                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2251
2252                 context_append(&ctx->context, d, z, header_z);
2253         }
2254
2255         return 0;
2256 }
2257
2258 static int
2259 ohci_queue_iso(struct fw_iso_context *base,
2260                struct fw_iso_packet *packet,
2261                struct fw_iso_buffer *buffer,
2262                unsigned long payload)
2263 {
2264         struct iso_context *ctx = container_of(base, struct iso_context, base);
2265         unsigned long flags;
2266         int retval;
2267
2268         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2269         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2270                 retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2271         else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
2272                 retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2273                                                          buffer, payload);
2274         else
2275                 retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2276                                                                 buffer,
2277                                                                 payload);
2278         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2279
2280         return retval;
2281 }
2282
2283 static const struct fw_card_driver ohci_driver = {
2284         .name                   = ohci_driver_name,
2285         .enable                 = ohci_enable,
2286         .update_phy_reg         = ohci_update_phy_reg,
2287         .set_config_rom         = ohci_set_config_rom,
2288         .send_request           = ohci_send_request,
2289         .send_response          = ohci_send_response,
2290         .cancel_packet          = ohci_cancel_packet,
2291         .enable_phys_dma        = ohci_enable_phys_dma,
2292         .get_bus_time           = ohci_get_bus_time,
2293
2294         .allocate_iso_context   = ohci_allocate_iso_context,
2295         .free_iso_context       = ohci_free_iso_context,
2296         .queue_iso              = ohci_queue_iso,
2297         .start_iso              = ohci_start_iso,
2298         .stop_iso               = ohci_stop_iso,
2299 };
2300
2301 #ifdef CONFIG_PPC_PMAC
2302 static void ohci_pmac_on(struct pci_dev *dev)
2303 {
2304         if (machine_is(powermac)) {
2305                 struct device_node *ofn = pci_device_to_OF_node(dev);
2306
2307                 if (ofn) {
2308                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2309                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2310                 }
2311         }
2312 }
2313
2314 static void ohci_pmac_off(struct pci_dev *dev)
2315 {
2316         if (machine_is(powermac)) {
2317                 struct device_node *ofn = pci_device_to_OF_node(dev);
2318
2319                 if (ofn) {
2320                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2321                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2322                 }
2323         }
2324 }
2325 #else
2326 #define ohci_pmac_on(dev)
2327 #define ohci_pmac_off(dev)
2328 #endif /* CONFIG_PPC_PMAC */
2329
2330 static int __devinit
2331 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
2332 {
2333         struct fw_ohci *ohci;
2334         u32 bus_options, max_receive, link_speed;
2335         u64 guid;
2336         int err;
2337         size_t size;
2338
2339         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2340         if (ohci == NULL) {
2341                 fw_error("Could not malloc fw_ohci data.\n");
2342                 return -ENOMEM;
2343         }
2344
2345         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2346
2347         ohci_pmac_on(dev);
2348
2349         err = pci_enable_device(dev);
2350         if (err) {
2351                 fw_error("Failed to enable OHCI hardware.\n");
2352                 goto fail_free;
2353         }
2354
2355         pci_set_master(dev);
2356         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2357         pci_set_drvdata(dev, ohci);
2358
2359 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2360         ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2361                              dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2362 #endif
2363         spin_lock_init(&ohci->lock);
2364
2365         tasklet_init(&ohci->bus_reset_tasklet,
2366                      bus_reset_tasklet, (unsigned long)ohci);
2367
2368         err = pci_request_region(dev, 0, ohci_driver_name);
2369         if (err) {
2370                 fw_error("MMIO resource unavailable\n");
2371                 goto fail_disable;
2372         }
2373
2374         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2375         if (ohci->registers == NULL) {
2376                 fw_error("Failed to remap registers\n");
2377                 err = -ENXIO;
2378                 goto fail_iomem;
2379         }
2380
2381         ar_context_init(&ohci->ar_request_ctx, ohci,
2382                         OHCI1394_AsReqRcvContextControlSet);
2383
2384         ar_context_init(&ohci->ar_response_ctx, ohci,
2385                         OHCI1394_AsRspRcvContextControlSet);
2386
2387         context_init(&ohci->at_request_ctx, ohci,
2388                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2389
2390         context_init(&ohci->at_response_ctx, ohci,
2391                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2392
2393         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2394         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2395         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2396         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2397         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2398
2399         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2400         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2401         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2402         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2403         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2404
2405         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2406                 fw_error("Out of memory for it/ir contexts.\n");
2407                 err = -ENOMEM;
2408                 goto fail_registers;
2409         }
2410
2411         /* self-id dma buffer allocation */
2412         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2413                                                SELF_ID_BUF_SIZE,
2414                                                &ohci->self_id_bus,
2415                                                GFP_KERNEL);
2416         if (ohci->self_id_cpu == NULL) {
2417                 fw_error("Out of memory for self ID buffer.\n");
2418                 err = -ENOMEM;
2419                 goto fail_registers;
2420         }
2421
2422         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2423         max_receive = (bus_options >> 12) & 0xf;
2424         link_speed = bus_options & 0x7;
2425         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2426                 reg_read(ohci, OHCI1394_GUIDLo);
2427
2428         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2429         if (err < 0)
2430                 goto fail_self_id;
2431
2432         ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2433         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2434                   dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2435         return 0;
2436
2437  fail_self_id:
2438         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2439                           ohci->self_id_cpu, ohci->self_id_bus);
2440  fail_registers:
2441         kfree(ohci->it_context_list);
2442         kfree(ohci->ir_context_list);
2443         pci_iounmap(dev, ohci->registers);
2444  fail_iomem:
2445         pci_release_region(dev, 0);
2446  fail_disable:
2447         pci_disable_device(dev);
2448  fail_free:
2449         kfree(&ohci->card);
2450         ohci_pmac_off(dev);
2451
2452         return err;
2453 }
2454
2455 static void pci_remove(struct pci_dev *dev)
2456 {
2457         struct fw_ohci *ohci;
2458
2459         ohci = pci_get_drvdata(dev);
2460         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2461         flush_writes(ohci);
2462         fw_core_remove_card(&ohci->card);
2463
2464         /*
2465          * FIXME: Fail all pending packets here, now that the upper
2466          * layers can't queue any more.
2467          */
2468
2469         software_reset(ohci);
2470         free_irq(dev->irq, ohci);
2471         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2472                           ohci->self_id_cpu, ohci->self_id_bus);
2473         kfree(ohci->it_context_list);
2474         kfree(ohci->ir_context_list);
2475         pci_iounmap(dev, ohci->registers);
2476         pci_release_region(dev, 0);
2477         pci_disable_device(dev);
2478         kfree(&ohci->card);
2479         ohci_pmac_off(dev);
2480
2481         fw_notify("Removed fw-ohci device.\n");
2482 }
2483
2484 #ifdef CONFIG_PM
2485 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2486 {
2487         struct fw_ohci *ohci = pci_get_drvdata(dev);
2488         int err;
2489
2490         software_reset(ohci);
2491         free_irq(dev->irq, ohci);
2492         err = pci_save_state(dev);
2493         if (err) {
2494                 fw_error("pci_save_state failed\n");
2495                 return err;
2496         }
2497         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2498         if (err)
2499                 fw_error("pci_set_power_state failed with %d\n", err);
2500         ohci_pmac_off(dev);
2501
2502         return 0;
2503 }
2504
2505 static int pci_resume(struct pci_dev *dev)
2506 {
2507         struct fw_ohci *ohci = pci_get_drvdata(dev);
2508         int err;
2509
2510         ohci_pmac_on(dev);
2511         pci_set_power_state(dev, PCI_D0);
2512         pci_restore_state(dev);
2513         err = pci_enable_device(dev);
2514         if (err) {
2515                 fw_error("pci_enable_device failed\n");
2516                 return err;
2517         }
2518
2519         return ohci_enable(&ohci->card, NULL, 0);
2520 }
2521 #endif
2522
2523 static struct pci_device_id pci_table[] = {
2524         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2525         { }
2526 };
2527
2528 MODULE_DEVICE_TABLE(pci, pci_table);
2529
2530 static struct pci_driver fw_ohci_pci_driver = {
2531         .name           = ohci_driver_name,
2532         .id_table       = pci_table,
2533         .probe          = pci_probe,
2534         .remove         = pci_remove,
2535 #ifdef CONFIG_PM
2536         .resume         = pci_resume,
2537         .suspend        = pci_suspend,
2538 #endif
2539 };
2540
2541 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2542 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2543 MODULE_LICENSE("GPL");
2544
2545 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2546 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2547 MODULE_ALIAS("ohci1394");
2548 #endif
2549
2550 static int __init fw_ohci_init(void)
2551 {
2552         return pci_register_driver(&fw_ohci_pci_driver);
2553 }
2554
2555 static void __exit fw_ohci_cleanup(void)
2556 {
2557         pci_unregister_driver(&fw_ohci_pci_driver);
2558 }
2559
2560 module_init(fw_ohci_init);
2561 module_exit(fw_ohci_cleanup);