]> err.no Git - linux-2.6/blob - drivers/firewire/fw-ohci.c
4789300b8241ae7481bd9471d053644fd7a94623
[linux-2.6] / drivers / firewire / fw-ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33
34 #include <asm/page.h>
35 #include <asm/system.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "fw-ohci.h"
42 #include "fw-transaction.h"
43
44 #define DESCRIPTOR_OUTPUT_MORE          0
45 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
46 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
47 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
48 #define DESCRIPTOR_STATUS               (1 << 11)
49 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
50 #define DESCRIPTOR_PING                 (1 << 7)
51 #define DESCRIPTOR_YY                   (1 << 6)
52 #define DESCRIPTOR_NO_IRQ               (0 << 4)
53 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
54 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
55 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
56 #define DESCRIPTOR_WAIT                 (3 << 0)
57
58 struct descriptor {
59         __le16 req_count;
60         __le16 control;
61         __le32 data_address;
62         __le32 branch_address;
63         __le16 res_count;
64         __le16 transfer_status;
65 } __attribute__((aligned(16)));
66
67 struct db_descriptor {
68         __le16 first_size;
69         __le16 control;
70         __le16 second_req_count;
71         __le16 first_req_count;
72         __le32 branch_address;
73         __le16 second_res_count;
74         __le16 first_res_count;
75         __le32 reserved0;
76         __le32 first_buffer;
77         __le32 second_buffer;
78         __le32 reserved1;
79 } __attribute__((aligned(16)));
80
81 #define CONTROL_SET(regs)       (regs)
82 #define CONTROL_CLEAR(regs)     ((regs) + 4)
83 #define COMMAND_PTR(regs)       ((regs) + 12)
84 #define CONTEXT_MATCH(regs)     ((regs) + 16)
85
86 struct ar_buffer {
87         struct descriptor descriptor;
88         struct ar_buffer *next;
89         __le32 data[0];
90 };
91
92 struct ar_context {
93         struct fw_ohci *ohci;
94         struct ar_buffer *current_buffer;
95         struct ar_buffer *last_buffer;
96         void *pointer;
97         u32 regs;
98         struct tasklet_struct tasklet;
99 };
100
101 struct context;
102
103 typedef int (*descriptor_callback_t)(struct context *ctx,
104                                      struct descriptor *d,
105                                      struct descriptor *last);
106
107 /*
108  * A buffer that contains a block of DMA-able coherent memory used for
109  * storing a portion of a DMA descriptor program.
110  */
111 struct descriptor_buffer {
112         struct list_head list;
113         dma_addr_t buffer_bus;
114         size_t buffer_size;
115         size_t used;
116         struct descriptor buffer[0];
117 };
118
119 struct context {
120         struct fw_ohci *ohci;
121         u32 regs;
122         int total_allocation;
123
124         /*
125          * List of page-sized buffers for storing DMA descriptors.
126          * Head of list contains buffers in use and tail of list contains
127          * free buffers.
128          */
129         struct list_head buffer_list;
130
131         /*
132          * Pointer to a buffer inside buffer_list that contains the tail
133          * end of the current DMA program.
134          */
135         struct descriptor_buffer *buffer_tail;
136
137         /*
138          * The descriptor containing the branch address of the first
139          * descriptor that has not yet been filled by the device.
140          */
141         struct descriptor *last;
142
143         /*
144          * The last descriptor in the DMA program.  It contains the branch
145          * address that must be updated upon appending a new descriptor.
146          */
147         struct descriptor *prev;
148
149         descriptor_callback_t callback;
150
151         struct tasklet_struct tasklet;
152 };
153
154 #define IT_HEADER_SY(v)          ((v) <<  0)
155 #define IT_HEADER_TCODE(v)       ((v) <<  4)
156 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
157 #define IT_HEADER_TAG(v)         ((v) << 14)
158 #define IT_HEADER_SPEED(v)       ((v) << 16)
159 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
160
161 struct iso_context {
162         struct fw_iso_context base;
163         struct context context;
164         int excess_bytes;
165         void *header;
166         size_t header_length;
167 };
168
169 #define CONFIG_ROM_SIZE 1024
170
171 struct fw_ohci {
172         struct fw_card card;
173
174         u32 version;
175         __iomem char *registers;
176         dma_addr_t self_id_bus;
177         __le32 *self_id_cpu;
178         struct tasklet_struct bus_reset_tasklet;
179         int node_id;
180         int generation;
181         int request_generation;
182         u32 bus_seconds;
183         bool old_uninorth;
184
185         /*
186          * Spinlock for accessing fw_ohci data.  Never call out of
187          * this driver with this lock held.
188          */
189         spinlock_t lock;
190         u32 self_id_buffer[512];
191
192         /* Config rom buffers */
193         __be32 *config_rom;
194         dma_addr_t config_rom_bus;
195         __be32 *next_config_rom;
196         dma_addr_t next_config_rom_bus;
197         u32 next_header;
198
199         struct ar_context ar_request_ctx;
200         struct ar_context ar_response_ctx;
201         struct context at_request_ctx;
202         struct context at_response_ctx;
203
204         u32 it_context_mask;
205         struct iso_context *it_context_list;
206         u32 ir_context_mask;
207         struct iso_context *ir_context_list;
208 };
209
210 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
211 {
212         return container_of(card, struct fw_ohci, card);
213 }
214
215 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
216 #define IR_CONTEXT_BUFFER_FILL          0x80000000
217 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
218 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
219 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
220 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
221
222 #define CONTEXT_RUN     0x8000
223 #define CONTEXT_WAKE    0x1000
224 #define CONTEXT_DEAD    0x0800
225 #define CONTEXT_ACTIVE  0x0400
226
227 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
228 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
229 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
230
231 #define FW_OHCI_MAJOR                   240
232 #define OHCI1394_REGISTER_SIZE          0x800
233 #define OHCI_LOOP_COUNT                 500
234 #define OHCI1394_PCI_HCI_Control        0x40
235 #define SELF_ID_BUF_SIZE                0x800
236 #define OHCI_TCODE_PHY_PACKET           0x0e
237 #define OHCI_VERSION_1_1                0x010010
238
239 static char ohci_driver_name[] = KBUILD_MODNAME;
240
241 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
242
243 #define OHCI_PARAM_DEBUG_IRQS           1
244 #define OHCI_PARAM_DEBUG_SELFIDS        2
245 #define OHCI_PARAM_DEBUG_AT_AR          4
246
247 static int param_debug;
248 module_param_named(debug, param_debug, int, 0644);
249 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
250         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
251         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
252         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
253         ", or a combination, or all = -1)");
254
255 static void log_irqs(u32 evt)
256 {
257         if (likely(!(param_debug & OHCI_PARAM_DEBUG_IRQS)))
258                 return;
259
260         printk(KERN_DEBUG KBUILD_MODNAME ": IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s\n",
261                evt,
262                evt & OHCI1394_selfIDComplete    ? " selfID"             : "",
263                evt & OHCI1394_RQPkt             ? " AR_req"             : "",
264                evt & OHCI1394_RSPkt             ? " AR_resp"            : "",
265                evt & OHCI1394_reqTxComplete     ? " AT_req"             : "",
266                evt & OHCI1394_respTxComplete    ? " AT_resp"            : "",
267                evt & OHCI1394_isochRx           ? " IR"                 : "",
268                evt & OHCI1394_isochTx           ? " IT"                 : "",
269                evt & OHCI1394_postedWriteErr    ? " postedWriteErr"     : "",
270                evt & OHCI1394_cycleTooLong      ? " cycleTooLong"       : "",
271                evt & OHCI1394_cycle64Seconds    ? " cycle64Seconds"     : "",
272                evt & OHCI1394_regAccessFail     ? " regAccessFail"      : "",
273                evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
274                        OHCI1394_RSPkt | OHCI1394_reqTxComplete |
275                        OHCI1394_respTxComplete | OHCI1394_isochRx |
276                        OHCI1394_isochTx | OHCI1394_postedWriteErr |
277                        OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
278                        OHCI1394_regAccessFail)
279                                                 ? " ?"                  : "");
280 }
281
282 static const char *speed[] = {
283         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
284 };
285 static const char *power[] = {
286         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
287         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
288 };
289 static const char port[] = { '.', '-', 'p', 'c', };
290
291 static char _p(u32 *s, int shift)
292 {
293         return port[*s >> shift & 3];
294 }
295
296 static void log_selfids(int generation, int self_id_count, u32 *s)
297 {
298         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
299                 return;
300
301         printk(KERN_DEBUG KBUILD_MODNAME ": %d selfIDs, generation %d\n",
302                self_id_count, generation);
303
304         for (; self_id_count--; ++s)
305                 if ((*s & 1 << 23) == 0)
306                         printk(KERN_DEBUG "selfID 0: %08x, phy %d [%c%c%c] "
307                                "%s gc=%d %s %s%s%s\n",
308                                *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
309                                speed[*s >> 14 & 3], *s >> 16 & 63,
310                                power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
311                                *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
312                 else
313                         printk(KERN_DEBUG "selfID n: %08x, phy %d "
314                                "[%c%c%c%c%c%c%c%c]\n",
315                                *s, *s >> 24 & 63,
316                                _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
317                                _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
318 }
319
320 static const char *evts[] = {
321         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
322         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
323         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
324         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
325         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
326         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
327         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
328         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
329         [0x10] = "-reserved-",          [0x11] = "ack_complete",
330         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
331         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
332         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
333         [0x18] = "-reserved-",          [0x19] = "-reserved-",
334         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
335         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
336         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
337         [0x20] = "pending/cancelled",
338 };
339 static const char *tcodes[] = {
340         [0x0] = "QW req",               [0x1] = "BW req",
341         [0x2] = "W resp",               [0x3] = "-reserved-",
342         [0x4] = "QR req",               [0x5] = "BR req",
343         [0x6] = "QR resp",              [0x7] = "BR resp",
344         [0x8] = "cycle start",          [0x9] = "Lk req",
345         [0xa] = "async stream packet",  [0xb] = "Lk resp",
346         [0xc] = "-reserved-",           [0xd] = "-reserved-",
347         [0xe] = "link internal",        [0xf] = "-reserved-",
348 };
349 static const char *phys[] = {
350         [0x0] = "phy config packet",    [0x1] = "link-on packet",
351         [0x2] = "self-id packet",       [0x3] = "-reserved-",
352 };
353
354 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
355 {
356         int tcode = header[0] >> 4 & 0xf;
357         char specific[12];
358
359         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
360                 return;
361
362         if (unlikely(evt >= ARRAY_SIZE(evts)))
363                         evt = 0x1f;
364
365         if (header[0] == ~header[1]) {
366                 printk(KERN_DEBUG "A%c %s, %s, %08x\n",
367                        dir, evts[evt], phys[header[0] >> 30 & 0x3],
368                        header[0]);
369                 return;
370         }
371
372         switch (tcode) {
373         case 0x0: case 0x6: case 0x8:
374                 snprintf(specific, sizeof(specific), " = %08x",
375                          be32_to_cpu((__force __be32)header[3]));
376                 break;
377         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
378                 snprintf(specific, sizeof(specific), " %x,%x",
379                          header[3] >> 16, header[3] & 0xffff);
380                 break;
381         default:
382                 specific[0] = '\0';
383         }
384
385         switch (tcode) {
386         case 0xe: case 0xa:
387                 printk(KERN_DEBUG "A%c %s, %s\n",
388                        dir, evts[evt], tcodes[tcode]);
389                 break;
390         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
391                 printk(KERN_DEBUG "A%c spd %x tl %02x, "
392                        "%04x -> %04x, %s, "
393                        "%s, %04x%08x%s\n",
394                        dir, speed, header[0] >> 10 & 0x3f,
395                        header[1] >> 16, header[0] >> 16, evts[evt],
396                        tcodes[tcode], header[1] & 0xffff, header[2], specific);
397                 break;
398         default:
399                 printk(KERN_DEBUG "A%c spd %x tl %02x, "
400                        "%04x -> %04x, %s, "
401                        "%s%s\n",
402                        dir, speed, header[0] >> 10 & 0x3f,
403                        header[1] >> 16, header[0] >> 16, evts[evt],
404                        tcodes[tcode], specific);
405         }
406 }
407
408 #else
409
410 #define log_irqs(evt)
411 #define log_selfids(generation, self_id_count, sid)
412 #define log_ar_at_event(dir, speed, header, evt)
413
414 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
415
416 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
417 {
418         writel(data, ohci->registers + offset);
419 }
420
421 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
422 {
423         return readl(ohci->registers + offset);
424 }
425
426 static inline void flush_writes(const struct fw_ohci *ohci)
427 {
428         /* Do a dummy read to flush writes. */
429         reg_read(ohci, OHCI1394_Version);
430 }
431
432 static int
433 ohci_update_phy_reg(struct fw_card *card, int addr,
434                     int clear_bits, int set_bits)
435 {
436         struct fw_ohci *ohci = fw_ohci(card);
437         u32 val, old;
438
439         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
440         flush_writes(ohci);
441         msleep(2);
442         val = reg_read(ohci, OHCI1394_PhyControl);
443         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
444                 fw_error("failed to set phy reg bits.\n");
445                 return -EBUSY;
446         }
447
448         old = OHCI1394_PhyControl_ReadData(val);
449         old = (old & ~clear_bits) | set_bits;
450         reg_write(ohci, OHCI1394_PhyControl,
451                   OHCI1394_PhyControl_Write(addr, old));
452
453         return 0;
454 }
455
456 static int ar_context_add_page(struct ar_context *ctx)
457 {
458         struct device *dev = ctx->ohci->card.device;
459         struct ar_buffer *ab;
460         dma_addr_t uninitialized_var(ab_bus);
461         size_t offset;
462
463         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
464         if (ab == NULL)
465                 return -ENOMEM;
466
467         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
468         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
469                                                     DESCRIPTOR_STATUS |
470                                                     DESCRIPTOR_BRANCH_ALWAYS);
471         offset = offsetof(struct ar_buffer, data);
472         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
473         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
474         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
475         ab->descriptor.branch_address = 0;
476
477         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
478         ctx->last_buffer->next = ab;
479         ctx->last_buffer = ab;
480
481         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
482         flush_writes(ctx->ohci);
483
484         return 0;
485 }
486
487 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
488 #define cond_le32_to_cpu(v) \
489         (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
490 #else
491 #define cond_le32_to_cpu(v) le32_to_cpu(v)
492 #endif
493
494 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
495 {
496         struct fw_ohci *ohci = ctx->ohci;
497         struct fw_packet p;
498         u32 status, length, tcode;
499         int evt;
500
501         p.header[0] = cond_le32_to_cpu(buffer[0]);
502         p.header[1] = cond_le32_to_cpu(buffer[1]);
503         p.header[2] = cond_le32_to_cpu(buffer[2]);
504
505         tcode = (p.header[0] >> 4) & 0x0f;
506         switch (tcode) {
507         case TCODE_WRITE_QUADLET_REQUEST:
508         case TCODE_READ_QUADLET_RESPONSE:
509                 p.header[3] = (__force __u32) buffer[3];
510                 p.header_length = 16;
511                 p.payload_length = 0;
512                 break;
513
514         case TCODE_READ_BLOCK_REQUEST :
515                 p.header[3] = cond_le32_to_cpu(buffer[3]);
516                 p.header_length = 16;
517                 p.payload_length = 0;
518                 break;
519
520         case TCODE_WRITE_BLOCK_REQUEST:
521         case TCODE_READ_BLOCK_RESPONSE:
522         case TCODE_LOCK_REQUEST:
523         case TCODE_LOCK_RESPONSE:
524                 p.header[3] = cond_le32_to_cpu(buffer[3]);
525                 p.header_length = 16;
526                 p.payload_length = p.header[3] >> 16;
527                 break;
528
529         case TCODE_WRITE_RESPONSE:
530         case TCODE_READ_QUADLET_REQUEST:
531         case OHCI_TCODE_PHY_PACKET:
532                 p.header_length = 12;
533                 p.payload_length = 0;
534                 break;
535         }
536
537         p.payload = (void *) buffer + p.header_length;
538
539         /* FIXME: What to do about evt_* errors? */
540         length = (p.header_length + p.payload_length + 3) / 4;
541         status = cond_le32_to_cpu(buffer[length]);
542         evt    = (status >> 16) & 0x1f;
543
544         p.ack        = evt - 16;
545         p.speed      = (status >> 21) & 0x7;
546         p.timestamp  = status & 0xffff;
547         p.generation = ohci->request_generation;
548
549         log_ar_at_event('R', p.speed, p.header, evt);
550
551         /*
552          * The OHCI bus reset handler synthesizes a phy packet with
553          * the new generation number when a bus reset happens (see
554          * section 8.4.2.3).  This helps us determine when a request
555          * was received and make sure we send the response in the same
556          * generation.  We only need this for requests; for responses
557          * we use the unique tlabel for finding the matching
558          * request.
559          */
560
561         if (evt == OHCI1394_evt_bus_reset)
562                 ohci->request_generation = (p.header[2] >> 16) & 0xff;
563         else if (ctx == &ohci->ar_request_ctx)
564                 fw_core_handle_request(&ohci->card, &p);
565         else
566                 fw_core_handle_response(&ohci->card, &p);
567
568         return buffer + length + 1;
569 }
570
571 static void ar_context_tasklet(unsigned long data)
572 {
573         struct ar_context *ctx = (struct ar_context *)data;
574         struct fw_ohci *ohci = ctx->ohci;
575         struct ar_buffer *ab;
576         struct descriptor *d;
577         void *buffer, *end;
578
579         ab = ctx->current_buffer;
580         d = &ab->descriptor;
581
582         if (d->res_count == 0) {
583                 size_t size, rest, offset;
584                 dma_addr_t start_bus;
585                 void *start;
586
587                 /*
588                  * This descriptor is finished and we may have a
589                  * packet split across this and the next buffer. We
590                  * reuse the page for reassembling the split packet.
591                  */
592
593                 offset = offsetof(struct ar_buffer, data);
594                 start = buffer = ab;
595                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
596
597                 ab = ab->next;
598                 d = &ab->descriptor;
599                 size = buffer + PAGE_SIZE - ctx->pointer;
600                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
601                 memmove(buffer, ctx->pointer, size);
602                 memcpy(buffer + size, ab->data, rest);
603                 ctx->current_buffer = ab;
604                 ctx->pointer = (void *) ab->data + rest;
605                 end = buffer + size + rest;
606
607                 while (buffer < end)
608                         buffer = handle_ar_packet(ctx, buffer);
609
610                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
611                                   start, start_bus);
612                 ar_context_add_page(ctx);
613         } else {
614                 buffer = ctx->pointer;
615                 ctx->pointer = end =
616                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
617
618                 while (buffer < end)
619                         buffer = handle_ar_packet(ctx, buffer);
620         }
621 }
622
623 static int
624 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
625 {
626         struct ar_buffer ab;
627
628         ctx->regs        = regs;
629         ctx->ohci        = ohci;
630         ctx->last_buffer = &ab;
631         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
632
633         ar_context_add_page(ctx);
634         ar_context_add_page(ctx);
635         ctx->current_buffer = ab.next;
636         ctx->pointer = ctx->current_buffer->data;
637
638         return 0;
639 }
640
641 static void ar_context_run(struct ar_context *ctx)
642 {
643         struct ar_buffer *ab = ctx->current_buffer;
644         dma_addr_t ab_bus;
645         size_t offset;
646
647         offset = offsetof(struct ar_buffer, data);
648         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
649
650         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
651         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
652         flush_writes(ctx->ohci);
653 }
654
655 static struct descriptor *
656 find_branch_descriptor(struct descriptor *d, int z)
657 {
658         int b, key;
659
660         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
661         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
662
663         /* figure out which descriptor the branch address goes in */
664         if (z == 2 && (b == 3 || key == 2))
665                 return d;
666         else
667                 return d + z - 1;
668 }
669
670 static void context_tasklet(unsigned long data)
671 {
672         struct context *ctx = (struct context *) data;
673         struct descriptor *d, *last;
674         u32 address;
675         int z;
676         struct descriptor_buffer *desc;
677
678         desc = list_entry(ctx->buffer_list.next,
679                         struct descriptor_buffer, list);
680         last = ctx->last;
681         while (last->branch_address != 0) {
682                 struct descriptor_buffer *old_desc = desc;
683                 address = le32_to_cpu(last->branch_address);
684                 z = address & 0xf;
685                 address &= ~0xf;
686
687                 /* If the branch address points to a buffer outside of the
688                  * current buffer, advance to the next buffer. */
689                 if (address < desc->buffer_bus ||
690                                 address >= desc->buffer_bus + desc->used)
691                         desc = list_entry(desc->list.next,
692                                         struct descriptor_buffer, list);
693                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
694                 last = find_branch_descriptor(d, z);
695
696                 if (!ctx->callback(ctx, d, last))
697                         break;
698
699                 if (old_desc != desc) {
700                         /* If we've advanced to the next buffer, move the
701                          * previous buffer to the free list. */
702                         unsigned long flags;
703                         old_desc->used = 0;
704                         spin_lock_irqsave(&ctx->ohci->lock, flags);
705                         list_move_tail(&old_desc->list, &ctx->buffer_list);
706                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
707                 }
708                 ctx->last = last;
709         }
710 }
711
712 /*
713  * Allocate a new buffer and add it to the list of free buffers for this
714  * context.  Must be called with ohci->lock held.
715  */
716 static int
717 context_add_buffer(struct context *ctx)
718 {
719         struct descriptor_buffer *desc;
720         dma_addr_t uninitialized_var(bus_addr);
721         int offset;
722
723         /*
724          * 16MB of descriptors should be far more than enough for any DMA
725          * program.  This will catch run-away userspace or DoS attacks.
726          */
727         if (ctx->total_allocation >= 16*1024*1024)
728                 return -ENOMEM;
729
730         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
731                         &bus_addr, GFP_ATOMIC);
732         if (!desc)
733                 return -ENOMEM;
734
735         offset = (void *)&desc->buffer - (void *)desc;
736         desc->buffer_size = PAGE_SIZE - offset;
737         desc->buffer_bus = bus_addr + offset;
738         desc->used = 0;
739
740         list_add_tail(&desc->list, &ctx->buffer_list);
741         ctx->total_allocation += PAGE_SIZE;
742
743         return 0;
744 }
745
746 static int
747 context_init(struct context *ctx, struct fw_ohci *ohci,
748              u32 regs, descriptor_callback_t callback)
749 {
750         ctx->ohci = ohci;
751         ctx->regs = regs;
752         ctx->total_allocation = 0;
753
754         INIT_LIST_HEAD(&ctx->buffer_list);
755         if (context_add_buffer(ctx) < 0)
756                 return -ENOMEM;
757
758         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
759                         struct descriptor_buffer, list);
760
761         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
762         ctx->callback = callback;
763
764         /*
765          * We put a dummy descriptor in the buffer that has a NULL
766          * branch address and looks like it's been sent.  That way we
767          * have a descriptor to append DMA programs to.
768          */
769         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
770         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
771         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
772         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
773         ctx->last = ctx->buffer_tail->buffer;
774         ctx->prev = ctx->buffer_tail->buffer;
775
776         return 0;
777 }
778
779 static void
780 context_release(struct context *ctx)
781 {
782         struct fw_card *card = &ctx->ohci->card;
783         struct descriptor_buffer *desc, *tmp;
784
785         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
786                 dma_free_coherent(card->device, PAGE_SIZE, desc,
787                         desc->buffer_bus -
788                         ((void *)&desc->buffer - (void *)desc));
789 }
790
791 /* Must be called with ohci->lock held */
792 static struct descriptor *
793 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
794 {
795         struct descriptor *d = NULL;
796         struct descriptor_buffer *desc = ctx->buffer_tail;
797
798         if (z * sizeof(*d) > desc->buffer_size)
799                 return NULL;
800
801         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
802                 /* No room for the descriptor in this buffer, so advance to the
803                  * next one. */
804
805                 if (desc->list.next == &ctx->buffer_list) {
806                         /* If there is no free buffer next in the list,
807                          * allocate one. */
808                         if (context_add_buffer(ctx) < 0)
809                                 return NULL;
810                 }
811                 desc = list_entry(desc->list.next,
812                                 struct descriptor_buffer, list);
813                 ctx->buffer_tail = desc;
814         }
815
816         d = desc->buffer + desc->used / sizeof(*d);
817         memset(d, 0, z * sizeof(*d));
818         *d_bus = desc->buffer_bus + desc->used;
819
820         return d;
821 }
822
823 static void context_run(struct context *ctx, u32 extra)
824 {
825         struct fw_ohci *ohci = ctx->ohci;
826
827         reg_write(ohci, COMMAND_PTR(ctx->regs),
828                   le32_to_cpu(ctx->last->branch_address));
829         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
830         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
831         flush_writes(ohci);
832 }
833
834 static void context_append(struct context *ctx,
835                            struct descriptor *d, int z, int extra)
836 {
837         dma_addr_t d_bus;
838         struct descriptor_buffer *desc = ctx->buffer_tail;
839
840         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
841
842         desc->used += (z + extra) * sizeof(*d);
843         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
844         ctx->prev = find_branch_descriptor(d, z);
845
846         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
847         flush_writes(ctx->ohci);
848 }
849
850 static void context_stop(struct context *ctx)
851 {
852         u32 reg;
853         int i;
854
855         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
856         flush_writes(ctx->ohci);
857
858         for (i = 0; i < 10; i++) {
859                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
860                 if ((reg & CONTEXT_ACTIVE) == 0)
861                         break;
862
863                 fw_notify("context_stop: still active (0x%08x)\n", reg);
864                 mdelay(1);
865         }
866 }
867
868 struct driver_data {
869         struct fw_packet *packet;
870 };
871
872 /*
873  * This function apppends a packet to the DMA queue for transmission.
874  * Must always be called with the ochi->lock held to ensure proper
875  * generation handling and locking around packet queue manipulation.
876  */
877 static int
878 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
879 {
880         struct fw_ohci *ohci = ctx->ohci;
881         dma_addr_t d_bus, uninitialized_var(payload_bus);
882         struct driver_data *driver_data;
883         struct descriptor *d, *last;
884         __le32 *header;
885         int z, tcode;
886         u32 reg;
887
888         d = context_get_descriptors(ctx, 4, &d_bus);
889         if (d == NULL) {
890                 packet->ack = RCODE_SEND_ERROR;
891                 return -1;
892         }
893
894         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
895         d[0].res_count = cpu_to_le16(packet->timestamp);
896
897         /*
898          * The DMA format for asyncronous link packets is different
899          * from the IEEE1394 layout, so shift the fields around
900          * accordingly.  If header_length is 8, it's a PHY packet, to
901          * which we need to prepend an extra quadlet.
902          */
903
904         header = (__le32 *) &d[1];
905         if (packet->header_length > 8) {
906                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
907                                         (packet->speed << 16));
908                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
909                                         (packet->header[0] & 0xffff0000));
910                 header[2] = cpu_to_le32(packet->header[2]);
911
912                 tcode = (packet->header[0] >> 4) & 0x0f;
913                 if (TCODE_IS_BLOCK_PACKET(tcode))
914                         header[3] = cpu_to_le32(packet->header[3]);
915                 else
916                         header[3] = (__force __le32) packet->header[3];
917
918                 d[0].req_count = cpu_to_le16(packet->header_length);
919         } else {
920                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
921                                         (packet->speed << 16));
922                 header[1] = cpu_to_le32(packet->header[0]);
923                 header[2] = cpu_to_le32(packet->header[1]);
924                 d[0].req_count = cpu_to_le16(12);
925         }
926
927         driver_data = (struct driver_data *) &d[3];
928         driver_data->packet = packet;
929         packet->driver_data = driver_data;
930
931         if (packet->payload_length > 0) {
932                 payload_bus =
933                         dma_map_single(ohci->card.device, packet->payload,
934                                        packet->payload_length, DMA_TO_DEVICE);
935                 if (dma_mapping_error(payload_bus)) {
936                         packet->ack = RCODE_SEND_ERROR;
937                         return -1;
938                 }
939
940                 d[2].req_count    = cpu_to_le16(packet->payload_length);
941                 d[2].data_address = cpu_to_le32(payload_bus);
942                 last = &d[2];
943                 z = 3;
944         } else {
945                 last = &d[0];
946                 z = 2;
947         }
948
949         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
950                                      DESCRIPTOR_IRQ_ALWAYS |
951                                      DESCRIPTOR_BRANCH_ALWAYS);
952
953         /*
954          * If the controller and packet generations don't match, we need to
955          * bail out and try again.  If IntEvent.busReset is set, the AT context
956          * is halted, so appending to the context and trying to run it is
957          * futile.  Most controllers do the right thing and just flush the AT
958          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
959          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
960          * up stalling out.  So we just bail out in software and try again
961          * later, and everyone is happy.
962          * FIXME: Document how the locking works.
963          */
964         if (ohci->generation != packet->generation ||
965             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
966                 if (packet->payload_length > 0)
967                         dma_unmap_single(ohci->card.device, payload_bus,
968                                          packet->payload_length, DMA_TO_DEVICE);
969                 packet->ack = RCODE_GENERATION;
970                 return -1;
971         }
972
973         context_append(ctx, d, z, 4 - z);
974
975         /* If the context isn't already running, start it up. */
976         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
977         if ((reg & CONTEXT_RUN) == 0)
978                 context_run(ctx, 0);
979
980         return 0;
981 }
982
983 static int handle_at_packet(struct context *context,
984                             struct descriptor *d,
985                             struct descriptor *last)
986 {
987         struct driver_data *driver_data;
988         struct fw_packet *packet;
989         struct fw_ohci *ohci = context->ohci;
990         dma_addr_t payload_bus;
991         int evt;
992
993         if (last->transfer_status == 0)
994                 /* This descriptor isn't done yet, stop iteration. */
995                 return 0;
996
997         driver_data = (struct driver_data *) &d[3];
998         packet = driver_data->packet;
999         if (packet == NULL)
1000                 /* This packet was cancelled, just continue. */
1001                 return 1;
1002
1003         payload_bus = le32_to_cpu(last->data_address);
1004         if (payload_bus != 0)
1005                 dma_unmap_single(ohci->card.device, payload_bus,
1006                                  packet->payload_length, DMA_TO_DEVICE);
1007
1008         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1009         packet->timestamp = le16_to_cpu(last->res_count);
1010
1011         log_ar_at_event('T', packet->speed, packet->header, evt);
1012
1013         switch (evt) {
1014         case OHCI1394_evt_timeout:
1015                 /* Async response transmit timed out. */
1016                 packet->ack = RCODE_CANCELLED;
1017                 break;
1018
1019         case OHCI1394_evt_flushed:
1020                 /*
1021                  * The packet was flushed should give same error as
1022                  * when we try to use a stale generation count.
1023                  */
1024                 packet->ack = RCODE_GENERATION;
1025                 break;
1026
1027         case OHCI1394_evt_missing_ack:
1028                 /*
1029                  * Using a valid (current) generation count, but the
1030                  * node is not on the bus or not sending acks.
1031                  */
1032                 packet->ack = RCODE_NO_ACK;
1033                 break;
1034
1035         case ACK_COMPLETE + 0x10:
1036         case ACK_PENDING + 0x10:
1037         case ACK_BUSY_X + 0x10:
1038         case ACK_BUSY_A + 0x10:
1039         case ACK_BUSY_B + 0x10:
1040         case ACK_DATA_ERROR + 0x10:
1041         case ACK_TYPE_ERROR + 0x10:
1042                 packet->ack = evt - 0x10;
1043                 break;
1044
1045         default:
1046                 packet->ack = RCODE_SEND_ERROR;
1047                 break;
1048         }
1049
1050         packet->callback(packet, &ohci->card, packet->ack);
1051
1052         return 1;
1053 }
1054
1055 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1056 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1057 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1058 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1059 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1060
1061 static void
1062 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1063 {
1064         struct fw_packet response;
1065         int tcode, length, i;
1066
1067         tcode = HEADER_GET_TCODE(packet->header[0]);
1068         if (TCODE_IS_BLOCK_PACKET(tcode))
1069                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1070         else
1071                 length = 4;
1072
1073         i = csr - CSR_CONFIG_ROM;
1074         if (i + length > CONFIG_ROM_SIZE) {
1075                 fw_fill_response(&response, packet->header,
1076                                  RCODE_ADDRESS_ERROR, NULL, 0);
1077         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1078                 fw_fill_response(&response, packet->header,
1079                                  RCODE_TYPE_ERROR, NULL, 0);
1080         } else {
1081                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1082                                  (void *) ohci->config_rom + i, length);
1083         }
1084
1085         fw_core_handle_response(&ohci->card, &response);
1086 }
1087
1088 static void
1089 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1090 {
1091         struct fw_packet response;
1092         int tcode, length, ext_tcode, sel;
1093         __be32 *payload, lock_old;
1094         u32 lock_arg, lock_data;
1095
1096         tcode = HEADER_GET_TCODE(packet->header[0]);
1097         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1098         payload = packet->payload;
1099         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1100
1101         if (tcode == TCODE_LOCK_REQUEST &&
1102             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1103                 lock_arg = be32_to_cpu(payload[0]);
1104                 lock_data = be32_to_cpu(payload[1]);
1105         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1106                 lock_arg = 0;
1107                 lock_data = 0;
1108         } else {
1109                 fw_fill_response(&response, packet->header,
1110                                  RCODE_TYPE_ERROR, NULL, 0);
1111                 goto out;
1112         }
1113
1114         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1115         reg_write(ohci, OHCI1394_CSRData, lock_data);
1116         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1117         reg_write(ohci, OHCI1394_CSRControl, sel);
1118
1119         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1120                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1121         else
1122                 fw_notify("swap not done yet\n");
1123
1124         fw_fill_response(&response, packet->header,
1125                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1126  out:
1127         fw_core_handle_response(&ohci->card, &response);
1128 }
1129
1130 static void
1131 handle_local_request(struct context *ctx, struct fw_packet *packet)
1132 {
1133         u64 offset;
1134         u32 csr;
1135
1136         if (ctx == &ctx->ohci->at_request_ctx) {
1137                 packet->ack = ACK_PENDING;
1138                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1139         }
1140
1141         offset =
1142                 ((unsigned long long)
1143                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1144                 packet->header[2];
1145         csr = offset - CSR_REGISTER_BASE;
1146
1147         /* Handle config rom reads. */
1148         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1149                 handle_local_rom(ctx->ohci, packet, csr);
1150         else switch (csr) {
1151         case CSR_BUS_MANAGER_ID:
1152         case CSR_BANDWIDTH_AVAILABLE:
1153         case CSR_CHANNELS_AVAILABLE_HI:
1154         case CSR_CHANNELS_AVAILABLE_LO:
1155                 handle_local_lock(ctx->ohci, packet, csr);
1156                 break;
1157         default:
1158                 if (ctx == &ctx->ohci->at_request_ctx)
1159                         fw_core_handle_request(&ctx->ohci->card, packet);
1160                 else
1161                         fw_core_handle_response(&ctx->ohci->card, packet);
1162                 break;
1163         }
1164
1165         if (ctx == &ctx->ohci->at_response_ctx) {
1166                 packet->ack = ACK_COMPLETE;
1167                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1168         }
1169 }
1170
1171 static void
1172 at_context_transmit(struct context *ctx, struct fw_packet *packet)
1173 {
1174         unsigned long flags;
1175         int retval;
1176
1177         spin_lock_irqsave(&ctx->ohci->lock, flags);
1178
1179         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1180             ctx->ohci->generation == packet->generation) {
1181                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1182                 handle_local_request(ctx, packet);
1183                 return;
1184         }
1185
1186         retval = at_context_queue_packet(ctx, packet);
1187         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1188
1189         if (retval < 0)
1190                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1191
1192 }
1193
1194 static void bus_reset_tasklet(unsigned long data)
1195 {
1196         struct fw_ohci *ohci = (struct fw_ohci *)data;
1197         int self_id_count, i, j, reg;
1198         int generation, new_generation;
1199         unsigned long flags;
1200         void *free_rom = NULL;
1201         dma_addr_t free_rom_bus = 0;
1202
1203         reg = reg_read(ohci, OHCI1394_NodeID);
1204         if (!(reg & OHCI1394_NodeID_idValid)) {
1205                 fw_notify("node ID not valid, new bus reset in progress\n");
1206                 return;
1207         }
1208         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1209                 fw_notify("malconfigured bus\n");
1210                 return;
1211         }
1212         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1213                                OHCI1394_NodeID_nodeNumber);
1214
1215         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1216         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1217                 fw_notify("inconsistent self IDs\n");
1218                 return;
1219         }
1220         /*
1221          * The count in the SelfIDCount register is the number of
1222          * bytes in the self ID receive buffer.  Since we also receive
1223          * the inverted quadlets and a header quadlet, we shift one
1224          * bit extra to get the actual number of self IDs.
1225          */
1226         self_id_count = (reg >> 3) & 0x3ff;
1227         if (self_id_count == 0) {
1228                 fw_notify("inconsistent self IDs\n");
1229                 return;
1230         }
1231         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1232         rmb();
1233
1234         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1235                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1236                         fw_notify("inconsistent self IDs\n");
1237                         return;
1238                 }
1239                 ohci->self_id_buffer[j] =
1240                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1241         }
1242         rmb();
1243
1244         /*
1245          * Check the consistency of the self IDs we just read.  The
1246          * problem we face is that a new bus reset can start while we
1247          * read out the self IDs from the DMA buffer. If this happens,
1248          * the DMA buffer will be overwritten with new self IDs and we
1249          * will read out inconsistent data.  The OHCI specification
1250          * (section 11.2) recommends a technique similar to
1251          * linux/seqlock.h, where we remember the generation of the
1252          * self IDs in the buffer before reading them out and compare
1253          * it to the current generation after reading them out.  If
1254          * the two generations match we know we have a consistent set
1255          * of self IDs.
1256          */
1257
1258         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1259         if (new_generation != generation) {
1260                 fw_notify("recursive bus reset detected, "
1261                           "discarding self ids\n");
1262                 return;
1263         }
1264
1265         /* FIXME: Document how the locking works. */
1266         spin_lock_irqsave(&ohci->lock, flags);
1267
1268         ohci->generation = generation;
1269         context_stop(&ohci->at_request_ctx);
1270         context_stop(&ohci->at_response_ctx);
1271         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1272
1273         /*
1274          * This next bit is unrelated to the AT context stuff but we
1275          * have to do it under the spinlock also.  If a new config rom
1276          * was set up before this reset, the old one is now no longer
1277          * in use and we can free it. Update the config rom pointers
1278          * to point to the current config rom and clear the
1279          * next_config_rom pointer so a new udpate can take place.
1280          */
1281
1282         if (ohci->next_config_rom != NULL) {
1283                 if (ohci->next_config_rom != ohci->config_rom) {
1284                         free_rom      = ohci->config_rom;
1285                         free_rom_bus  = ohci->config_rom_bus;
1286                 }
1287                 ohci->config_rom      = ohci->next_config_rom;
1288                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1289                 ohci->next_config_rom = NULL;
1290
1291                 /*
1292                  * Restore config_rom image and manually update
1293                  * config_rom registers.  Writing the header quadlet
1294                  * will indicate that the config rom is ready, so we
1295                  * do that last.
1296                  */
1297                 reg_write(ohci, OHCI1394_BusOptions,
1298                           be32_to_cpu(ohci->config_rom[2]));
1299                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1300                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1301         }
1302
1303 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1304         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1305         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1306 #endif
1307
1308         spin_unlock_irqrestore(&ohci->lock, flags);
1309
1310         if (free_rom)
1311                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1312                                   free_rom, free_rom_bus);
1313
1314         log_selfids(generation, self_id_count, ohci->self_id_buffer);
1315
1316         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1317                                  self_id_count, ohci->self_id_buffer);
1318 }
1319
1320 static irqreturn_t irq_handler(int irq, void *data)
1321 {
1322         struct fw_ohci *ohci = data;
1323         u32 event, iso_event, cycle_time;
1324         int i;
1325
1326         event = reg_read(ohci, OHCI1394_IntEventClear);
1327
1328         if (!event || !~event)
1329                 return IRQ_NONE;
1330
1331         reg_write(ohci, OHCI1394_IntEventClear, event);
1332         log_irqs(event);
1333
1334         if (event & OHCI1394_selfIDComplete)
1335                 tasklet_schedule(&ohci->bus_reset_tasklet);
1336
1337         if (event & OHCI1394_RQPkt)
1338                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1339
1340         if (event & OHCI1394_RSPkt)
1341                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1342
1343         if (event & OHCI1394_reqTxComplete)
1344                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1345
1346         if (event & OHCI1394_respTxComplete)
1347                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1348
1349         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1350         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1351
1352         while (iso_event) {
1353                 i = ffs(iso_event) - 1;
1354                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1355                 iso_event &= ~(1 << i);
1356         }
1357
1358         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1359         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1360
1361         while (iso_event) {
1362                 i = ffs(iso_event) - 1;
1363                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1364                 iso_event &= ~(1 << i);
1365         }
1366
1367         if (unlikely(event & OHCI1394_regAccessFail))
1368                 fw_error("Register access failure - "
1369                          "please notify linux1394-devel@lists.sf.net\n");
1370
1371         if (unlikely(event & OHCI1394_postedWriteErr))
1372                 fw_error("PCI posted write error\n");
1373
1374         if (unlikely(event & OHCI1394_cycleTooLong)) {
1375                 if (printk_ratelimit())
1376                         fw_notify("isochronous cycle too long\n");
1377                 reg_write(ohci, OHCI1394_LinkControlSet,
1378                           OHCI1394_LinkControl_cycleMaster);
1379         }
1380
1381         if (event & OHCI1394_cycle64Seconds) {
1382                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1383                 if ((cycle_time & 0x80000000) == 0)
1384                         ohci->bus_seconds++;
1385         }
1386
1387         return IRQ_HANDLED;
1388 }
1389
1390 static int software_reset(struct fw_ohci *ohci)
1391 {
1392         int i;
1393
1394         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1395
1396         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1397                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1398                      OHCI1394_HCControl_softReset) == 0)
1399                         return 0;
1400                 msleep(1);
1401         }
1402
1403         return -EBUSY;
1404 }
1405
1406 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1407 {
1408         struct fw_ohci *ohci = fw_ohci(card);
1409         struct pci_dev *dev = to_pci_dev(card->device);
1410         u32 lps;
1411         int i;
1412
1413         if (software_reset(ohci)) {
1414                 fw_error("Failed to reset ohci card.\n");
1415                 return -EBUSY;
1416         }
1417
1418         /*
1419          * Now enable LPS, which we need in order to start accessing
1420          * most of the registers.  In fact, on some cards (ALI M5251),
1421          * accessing registers in the SClk domain without LPS enabled
1422          * will lock up the machine.  Wait 50msec to make sure we have
1423          * full link enabled.  However, with some cards (well, at least
1424          * a JMicron PCIe card), we have to try again sometimes.
1425          */
1426         reg_write(ohci, OHCI1394_HCControlSet,
1427                   OHCI1394_HCControl_LPS |
1428                   OHCI1394_HCControl_postedWriteEnable);
1429         flush_writes(ohci);
1430
1431         for (lps = 0, i = 0; !lps && i < 3; i++) {
1432                 msleep(50);
1433                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1434                       OHCI1394_HCControl_LPS;
1435         }
1436
1437         if (!lps) {
1438                 fw_error("Failed to set Link Power Status\n");
1439                 return -EIO;
1440         }
1441
1442         reg_write(ohci, OHCI1394_HCControlClear,
1443                   OHCI1394_HCControl_noByteSwapData);
1444
1445         reg_write(ohci, OHCI1394_LinkControlSet,
1446                   OHCI1394_LinkControl_rcvSelfID |
1447                   OHCI1394_LinkControl_cycleTimerEnable |
1448                   OHCI1394_LinkControl_cycleMaster);
1449
1450         reg_write(ohci, OHCI1394_ATRetries,
1451                   OHCI1394_MAX_AT_REQ_RETRIES |
1452                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1453                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1454
1455         ar_context_run(&ohci->ar_request_ctx);
1456         ar_context_run(&ohci->ar_response_ctx);
1457
1458         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1459         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1460         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1461         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1462         reg_write(ohci, OHCI1394_IntMaskSet,
1463                   OHCI1394_selfIDComplete |
1464                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1465                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1466                   OHCI1394_isochRx | OHCI1394_isochTx |
1467                   OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1468                   OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1469                   OHCI1394_masterIntEnable);
1470
1471         /* Activate link_on bit and contender bit in our self ID packets.*/
1472         if (ohci_update_phy_reg(card, 4, 0,
1473                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1474                 return -EIO;
1475
1476         /*
1477          * When the link is not yet enabled, the atomic config rom
1478          * update mechanism described below in ohci_set_config_rom()
1479          * is not active.  We have to update ConfigRomHeader and
1480          * BusOptions manually, and the write to ConfigROMmap takes
1481          * effect immediately.  We tie this to the enabling of the
1482          * link, so we have a valid config rom before enabling - the
1483          * OHCI requires that ConfigROMhdr and BusOptions have valid
1484          * values before enabling.
1485          *
1486          * However, when the ConfigROMmap is written, some controllers
1487          * always read back quadlets 0 and 2 from the config rom to
1488          * the ConfigRomHeader and BusOptions registers on bus reset.
1489          * They shouldn't do that in this initial case where the link
1490          * isn't enabled.  This means we have to use the same
1491          * workaround here, setting the bus header to 0 and then write
1492          * the right values in the bus reset tasklet.
1493          */
1494
1495         if (config_rom) {
1496                 ohci->next_config_rom =
1497                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1498                                            &ohci->next_config_rom_bus,
1499                                            GFP_KERNEL);
1500                 if (ohci->next_config_rom == NULL)
1501                         return -ENOMEM;
1502
1503                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1504                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1505         } else {
1506                 /*
1507                  * In the suspend case, config_rom is NULL, which
1508                  * means that we just reuse the old config rom.
1509                  */
1510                 ohci->next_config_rom = ohci->config_rom;
1511                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1512         }
1513
1514         ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1515         ohci->next_config_rom[0] = 0;
1516         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1517         reg_write(ohci, OHCI1394_BusOptions,
1518                   be32_to_cpu(ohci->next_config_rom[2]));
1519         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1520
1521         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1522
1523         if (request_irq(dev->irq, irq_handler,
1524                         IRQF_SHARED, ohci_driver_name, ohci)) {
1525                 fw_error("Failed to allocate shared interrupt %d.\n",
1526                          dev->irq);
1527                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1528                                   ohci->config_rom, ohci->config_rom_bus);
1529                 return -EIO;
1530         }
1531
1532         reg_write(ohci, OHCI1394_HCControlSet,
1533                   OHCI1394_HCControl_linkEnable |
1534                   OHCI1394_HCControl_BIBimageValid);
1535         flush_writes(ohci);
1536
1537         /*
1538          * We are ready to go, initiate bus reset to finish the
1539          * initialization.
1540          */
1541
1542         fw_core_initiate_bus_reset(&ohci->card, 1);
1543
1544         return 0;
1545 }
1546
1547 static int
1548 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1549 {
1550         struct fw_ohci *ohci;
1551         unsigned long flags;
1552         int retval = -EBUSY;
1553         __be32 *next_config_rom;
1554         dma_addr_t uninitialized_var(next_config_rom_bus);
1555
1556         ohci = fw_ohci(card);
1557
1558         /*
1559          * When the OHCI controller is enabled, the config rom update
1560          * mechanism is a bit tricky, but easy enough to use.  See
1561          * section 5.5.6 in the OHCI specification.
1562          *
1563          * The OHCI controller caches the new config rom address in a
1564          * shadow register (ConfigROMmapNext) and needs a bus reset
1565          * for the changes to take place.  When the bus reset is
1566          * detected, the controller loads the new values for the
1567          * ConfigRomHeader and BusOptions registers from the specified
1568          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1569          * shadow register. All automatically and atomically.
1570          *
1571          * Now, there's a twist to this story.  The automatic load of
1572          * ConfigRomHeader and BusOptions doesn't honor the
1573          * noByteSwapData bit, so with a be32 config rom, the
1574          * controller will load be32 values in to these registers
1575          * during the atomic update, even on litte endian
1576          * architectures.  The workaround we use is to put a 0 in the
1577          * header quadlet; 0 is endian agnostic and means that the
1578          * config rom isn't ready yet.  In the bus reset tasklet we
1579          * then set up the real values for the two registers.
1580          *
1581          * We use ohci->lock to avoid racing with the code that sets
1582          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1583          */
1584
1585         next_config_rom =
1586                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1587                                    &next_config_rom_bus, GFP_KERNEL);
1588         if (next_config_rom == NULL)
1589                 return -ENOMEM;
1590
1591         spin_lock_irqsave(&ohci->lock, flags);
1592
1593         if (ohci->next_config_rom == NULL) {
1594                 ohci->next_config_rom = next_config_rom;
1595                 ohci->next_config_rom_bus = next_config_rom_bus;
1596
1597                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1598                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1599                                   length * 4);
1600
1601                 ohci->next_header = config_rom[0];
1602                 ohci->next_config_rom[0] = 0;
1603
1604                 reg_write(ohci, OHCI1394_ConfigROMmap,
1605                           ohci->next_config_rom_bus);
1606                 retval = 0;
1607         }
1608
1609         spin_unlock_irqrestore(&ohci->lock, flags);
1610
1611         /*
1612          * Now initiate a bus reset to have the changes take
1613          * effect. We clean up the old config rom memory and DMA
1614          * mappings in the bus reset tasklet, since the OHCI
1615          * controller could need to access it before the bus reset
1616          * takes effect.
1617          */
1618         if (retval == 0)
1619                 fw_core_initiate_bus_reset(&ohci->card, 1);
1620         else
1621                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1622                                   next_config_rom, next_config_rom_bus);
1623
1624         return retval;
1625 }
1626
1627 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1628 {
1629         struct fw_ohci *ohci = fw_ohci(card);
1630
1631         at_context_transmit(&ohci->at_request_ctx, packet);
1632 }
1633
1634 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1635 {
1636         struct fw_ohci *ohci = fw_ohci(card);
1637
1638         at_context_transmit(&ohci->at_response_ctx, packet);
1639 }
1640
1641 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1642 {
1643         struct fw_ohci *ohci = fw_ohci(card);
1644         struct context *ctx = &ohci->at_request_ctx;
1645         struct driver_data *driver_data = packet->driver_data;
1646         int retval = -ENOENT;
1647
1648         tasklet_disable(&ctx->tasklet);
1649
1650         if (packet->ack != 0)
1651                 goto out;
1652
1653         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1654         driver_data->packet = NULL;
1655         packet->ack = RCODE_CANCELLED;
1656         packet->callback(packet, &ohci->card, packet->ack);
1657         retval = 0;
1658
1659  out:
1660         tasklet_enable(&ctx->tasklet);
1661
1662         return retval;
1663 }
1664
1665 static int
1666 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1667 {
1668 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1669         return 0;
1670 #else
1671         struct fw_ohci *ohci = fw_ohci(card);
1672         unsigned long flags;
1673         int n, retval = 0;
1674
1675         /*
1676          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1677          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1678          */
1679
1680         spin_lock_irqsave(&ohci->lock, flags);
1681
1682         if (ohci->generation != generation) {
1683                 retval = -ESTALE;
1684                 goto out;
1685         }
1686
1687         /*
1688          * Note, if the node ID contains a non-local bus ID, physical DMA is
1689          * enabled for _all_ nodes on remote buses.
1690          */
1691
1692         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1693         if (n < 32)
1694                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1695         else
1696                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1697
1698         flush_writes(ohci);
1699  out:
1700         spin_unlock_irqrestore(&ohci->lock, flags);
1701         return retval;
1702 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1703 }
1704
1705 static u64
1706 ohci_get_bus_time(struct fw_card *card)
1707 {
1708         struct fw_ohci *ohci = fw_ohci(card);
1709         u32 cycle_time;
1710         u64 bus_time;
1711
1712         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1713         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1714
1715         return bus_time;
1716 }
1717
1718 static int handle_ir_dualbuffer_packet(struct context *context,
1719                                        struct descriptor *d,
1720                                        struct descriptor *last)
1721 {
1722         struct iso_context *ctx =
1723                 container_of(context, struct iso_context, context);
1724         struct db_descriptor *db = (struct db_descriptor *) d;
1725         __le32 *ir_header;
1726         size_t header_length;
1727         void *p, *end;
1728         int i;
1729
1730         if (db->first_res_count != 0 && db->second_res_count != 0) {
1731                 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1732                         /* This descriptor isn't done yet, stop iteration. */
1733                         return 0;
1734                 }
1735                 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1736         }
1737
1738         header_length = le16_to_cpu(db->first_req_count) -
1739                 le16_to_cpu(db->first_res_count);
1740
1741         i = ctx->header_length;
1742         p = db + 1;
1743         end = p + header_length;
1744         while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1745                 /*
1746                  * The iso header is byteswapped to little endian by
1747                  * the controller, but the remaining header quadlets
1748                  * are big endian.  We want to present all the headers
1749                  * as big endian, so we have to swap the first
1750                  * quadlet.
1751                  */
1752                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1753                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1754                 i += ctx->base.header_size;
1755                 ctx->excess_bytes +=
1756                         (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1757                 p += ctx->base.header_size + 4;
1758         }
1759         ctx->header_length = i;
1760
1761         ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1762                 le16_to_cpu(db->second_res_count);
1763
1764         if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1765                 ir_header = (__le32 *) (db + 1);
1766                 ctx->base.callback(&ctx->base,
1767                                    le32_to_cpu(ir_header[0]) & 0xffff,
1768                                    ctx->header_length, ctx->header,
1769                                    ctx->base.callback_data);
1770                 ctx->header_length = 0;
1771         }
1772
1773         return 1;
1774 }
1775
1776 static int handle_ir_packet_per_buffer(struct context *context,
1777                                        struct descriptor *d,
1778                                        struct descriptor *last)
1779 {
1780         struct iso_context *ctx =
1781                 container_of(context, struct iso_context, context);
1782         struct descriptor *pd;
1783         __le32 *ir_header;
1784         void *p;
1785         int i;
1786
1787         for (pd = d; pd <= last; pd++) {
1788                 if (pd->transfer_status)
1789                         break;
1790         }
1791         if (pd > last)
1792                 /* Descriptor(s) not done yet, stop iteration */
1793                 return 0;
1794
1795         i   = ctx->header_length;
1796         p   = last + 1;
1797
1798         if (ctx->base.header_size > 0 &&
1799                         i + ctx->base.header_size <= PAGE_SIZE) {
1800                 /*
1801                  * The iso header is byteswapped to little endian by
1802                  * the controller, but the remaining header quadlets
1803                  * are big endian.  We want to present all the headers
1804                  * as big endian, so we have to swap the first quadlet.
1805                  */
1806                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1807                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1808                 ctx->header_length += ctx->base.header_size;
1809         }
1810
1811         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1812                 ir_header = (__le32 *) p;
1813                 ctx->base.callback(&ctx->base,
1814                                    le32_to_cpu(ir_header[0]) & 0xffff,
1815                                    ctx->header_length, ctx->header,
1816                                    ctx->base.callback_data);
1817                 ctx->header_length = 0;
1818         }
1819
1820         return 1;
1821 }
1822
1823 static int handle_it_packet(struct context *context,
1824                             struct descriptor *d,
1825                             struct descriptor *last)
1826 {
1827         struct iso_context *ctx =
1828                 container_of(context, struct iso_context, context);
1829
1830         if (last->transfer_status == 0)
1831                 /* This descriptor isn't done yet, stop iteration. */
1832                 return 0;
1833
1834         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1835                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1836                                    0, NULL, ctx->base.callback_data);
1837
1838         return 1;
1839 }
1840
1841 static struct fw_iso_context *
1842 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1843 {
1844         struct fw_ohci *ohci = fw_ohci(card);
1845         struct iso_context *ctx, *list;
1846         descriptor_callback_t callback;
1847         u32 *mask, regs;
1848         unsigned long flags;
1849         int index, retval = -ENOMEM;
1850
1851         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1852                 mask = &ohci->it_context_mask;
1853                 list = ohci->it_context_list;
1854                 callback = handle_it_packet;
1855         } else {
1856                 mask = &ohci->ir_context_mask;
1857                 list = ohci->ir_context_list;
1858                 if (ohci->version >= OHCI_VERSION_1_1)
1859                         callback = handle_ir_dualbuffer_packet;
1860                 else
1861                         callback = handle_ir_packet_per_buffer;
1862         }
1863
1864         spin_lock_irqsave(&ohci->lock, flags);
1865         index = ffs(*mask) - 1;
1866         if (index >= 0)
1867                 *mask &= ~(1 << index);
1868         spin_unlock_irqrestore(&ohci->lock, flags);
1869
1870         if (index < 0)
1871                 return ERR_PTR(-EBUSY);
1872
1873         if (type == FW_ISO_CONTEXT_TRANSMIT)
1874                 regs = OHCI1394_IsoXmitContextBase(index);
1875         else
1876                 regs = OHCI1394_IsoRcvContextBase(index);
1877
1878         ctx = &list[index];
1879         memset(ctx, 0, sizeof(*ctx));
1880         ctx->header_length = 0;
1881         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1882         if (ctx->header == NULL)
1883                 goto out;
1884
1885         retval = context_init(&ctx->context, ohci, regs, callback);
1886         if (retval < 0)
1887                 goto out_with_header;
1888
1889         return &ctx->base;
1890
1891  out_with_header:
1892         free_page((unsigned long)ctx->header);
1893  out:
1894         spin_lock_irqsave(&ohci->lock, flags);
1895         *mask |= 1 << index;
1896         spin_unlock_irqrestore(&ohci->lock, flags);
1897
1898         return ERR_PTR(retval);
1899 }
1900
1901 static int ohci_start_iso(struct fw_iso_context *base,
1902                           s32 cycle, u32 sync, u32 tags)
1903 {
1904         struct iso_context *ctx = container_of(base, struct iso_context, base);
1905         struct fw_ohci *ohci = ctx->context.ohci;
1906         u32 control, match;
1907         int index;
1908
1909         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1910                 index = ctx - ohci->it_context_list;
1911                 match = 0;
1912                 if (cycle >= 0)
1913                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1914                                 (cycle & 0x7fff) << 16;
1915
1916                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1917                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1918                 context_run(&ctx->context, match);
1919         } else {
1920                 index = ctx - ohci->ir_context_list;
1921                 control = IR_CONTEXT_ISOCH_HEADER;
1922                 if (ohci->version >= OHCI_VERSION_1_1)
1923                         control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1924                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1925                 if (cycle >= 0) {
1926                         match |= (cycle & 0x07fff) << 12;
1927                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1928                 }
1929
1930                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1931                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1932                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1933                 context_run(&ctx->context, control);
1934         }
1935
1936         return 0;
1937 }
1938
1939 static int ohci_stop_iso(struct fw_iso_context *base)
1940 {
1941         struct fw_ohci *ohci = fw_ohci(base->card);
1942         struct iso_context *ctx = container_of(base, struct iso_context, base);
1943         int index;
1944
1945         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1946                 index = ctx - ohci->it_context_list;
1947                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1948         } else {
1949                 index = ctx - ohci->ir_context_list;
1950                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1951         }
1952         flush_writes(ohci);
1953         context_stop(&ctx->context);
1954
1955         return 0;
1956 }
1957
1958 static void ohci_free_iso_context(struct fw_iso_context *base)
1959 {
1960         struct fw_ohci *ohci = fw_ohci(base->card);
1961         struct iso_context *ctx = container_of(base, struct iso_context, base);
1962         unsigned long flags;
1963         int index;
1964
1965         ohci_stop_iso(base);
1966         context_release(&ctx->context);
1967         free_page((unsigned long)ctx->header);
1968
1969         spin_lock_irqsave(&ohci->lock, flags);
1970
1971         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1972                 index = ctx - ohci->it_context_list;
1973                 ohci->it_context_mask |= 1 << index;
1974         } else {
1975                 index = ctx - ohci->ir_context_list;
1976                 ohci->ir_context_mask |= 1 << index;
1977         }
1978
1979         spin_unlock_irqrestore(&ohci->lock, flags);
1980 }
1981
1982 static int
1983 ohci_queue_iso_transmit(struct fw_iso_context *base,
1984                         struct fw_iso_packet *packet,
1985                         struct fw_iso_buffer *buffer,
1986                         unsigned long payload)
1987 {
1988         struct iso_context *ctx = container_of(base, struct iso_context, base);
1989         struct descriptor *d, *last, *pd;
1990         struct fw_iso_packet *p;
1991         __le32 *header;
1992         dma_addr_t d_bus, page_bus;
1993         u32 z, header_z, payload_z, irq;
1994         u32 payload_index, payload_end_index, next_page_index;
1995         int page, end_page, i, length, offset;
1996
1997         /*
1998          * FIXME: Cycle lost behavior should be configurable: lose
1999          * packet, retransmit or terminate..
2000          */
2001
2002         p = packet;
2003         payload_index = payload;
2004
2005         if (p->skip)
2006                 z = 1;
2007         else
2008                 z = 2;
2009         if (p->header_length > 0)
2010                 z++;
2011
2012         /* Determine the first page the payload isn't contained in. */
2013         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2014         if (p->payload_length > 0)
2015                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2016         else
2017                 payload_z = 0;
2018
2019         z += payload_z;
2020
2021         /* Get header size in number of descriptors. */
2022         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2023
2024         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2025         if (d == NULL)
2026                 return -ENOMEM;
2027
2028         if (!p->skip) {
2029                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2030                 d[0].req_count = cpu_to_le16(8);
2031
2032                 header = (__le32 *) &d[1];
2033                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2034                                         IT_HEADER_TAG(p->tag) |
2035                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2036                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2037                                         IT_HEADER_SPEED(ctx->base.speed));
2038                 header[1] =
2039                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2040                                                           p->payload_length));
2041         }
2042
2043         if (p->header_length > 0) {
2044                 d[2].req_count    = cpu_to_le16(p->header_length);
2045                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2046                 memcpy(&d[z], p->header, p->header_length);
2047         }
2048
2049         pd = d + z - payload_z;
2050         payload_end_index = payload_index + p->payload_length;
2051         for (i = 0; i < payload_z; i++) {
2052                 page               = payload_index >> PAGE_SHIFT;
2053                 offset             = payload_index & ~PAGE_MASK;
2054                 next_page_index    = (page + 1) << PAGE_SHIFT;
2055                 length             =
2056                         min(next_page_index, payload_end_index) - payload_index;
2057                 pd[i].req_count    = cpu_to_le16(length);
2058
2059                 page_bus = page_private(buffer->pages[page]);
2060                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2061
2062                 payload_index += length;
2063         }
2064
2065         if (p->interrupt)
2066                 irq = DESCRIPTOR_IRQ_ALWAYS;
2067         else
2068                 irq = DESCRIPTOR_NO_IRQ;
2069
2070         last = z == 2 ? d : d + z - 1;
2071         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2072                                      DESCRIPTOR_STATUS |
2073                                      DESCRIPTOR_BRANCH_ALWAYS |
2074                                      irq);
2075
2076         context_append(&ctx->context, d, z, header_z);
2077
2078         return 0;
2079 }
2080
2081 static int
2082 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2083                                   struct fw_iso_packet *packet,
2084                                   struct fw_iso_buffer *buffer,
2085                                   unsigned long payload)
2086 {
2087         struct iso_context *ctx = container_of(base, struct iso_context, base);
2088         struct db_descriptor *db = NULL;
2089         struct descriptor *d;
2090         struct fw_iso_packet *p;
2091         dma_addr_t d_bus, page_bus;
2092         u32 z, header_z, length, rest;
2093         int page, offset, packet_count, header_size;
2094
2095         /*
2096          * FIXME: Cycle lost behavior should be configurable: lose
2097          * packet, retransmit or terminate..
2098          */
2099
2100         p = packet;
2101         z = 2;
2102
2103         /*
2104          * The OHCI controller puts the status word in the header
2105          * buffer too, so we need 4 extra bytes per packet.
2106          */
2107         packet_count = p->header_length / ctx->base.header_size;
2108         header_size = packet_count * (ctx->base.header_size + 4);
2109
2110         /* Get header size in number of descriptors. */
2111         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2112         page     = payload >> PAGE_SHIFT;
2113         offset   = payload & ~PAGE_MASK;
2114         rest     = p->payload_length;
2115
2116         /* FIXME: make packet-per-buffer/dual-buffer a context option */
2117         while (rest > 0) {
2118                 d = context_get_descriptors(&ctx->context,
2119                                             z + header_z, &d_bus);
2120                 if (d == NULL)
2121                         return -ENOMEM;
2122
2123                 db = (struct db_descriptor *) d;
2124                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2125                                           DESCRIPTOR_BRANCH_ALWAYS);
2126                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
2127                 if (p->skip && rest == p->payload_length) {
2128                         db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2129                         db->first_req_count = db->first_size;
2130                 } else {
2131                         db->first_req_count = cpu_to_le16(header_size);
2132                 }
2133                 db->first_res_count = db->first_req_count;
2134                 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2135
2136                 if (p->skip && rest == p->payload_length)
2137                         length = 4;
2138                 else if (offset + rest < PAGE_SIZE)
2139                         length = rest;
2140                 else
2141                         length = PAGE_SIZE - offset;
2142
2143                 db->second_req_count = cpu_to_le16(length);
2144                 db->second_res_count = db->second_req_count;
2145                 page_bus = page_private(buffer->pages[page]);
2146                 db->second_buffer = cpu_to_le32(page_bus + offset);
2147
2148                 if (p->interrupt && length == rest)
2149                         db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2150
2151                 context_append(&ctx->context, d, z, header_z);
2152                 offset = (offset + length) & ~PAGE_MASK;
2153                 rest -= length;
2154                 if (offset == 0)
2155                         page++;
2156         }
2157
2158         return 0;
2159 }
2160
2161 static int
2162 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2163                                          struct fw_iso_packet *packet,
2164                                          struct fw_iso_buffer *buffer,
2165                                          unsigned long payload)
2166 {
2167         struct iso_context *ctx = container_of(base, struct iso_context, base);
2168         struct descriptor *d = NULL, *pd = NULL;
2169         struct fw_iso_packet *p = packet;
2170         dma_addr_t d_bus, page_bus;
2171         u32 z, header_z, rest;
2172         int i, j, length;
2173         int page, offset, packet_count, header_size, payload_per_buffer;
2174
2175         /*
2176          * The OHCI controller puts the status word in the
2177          * buffer too, so we need 4 extra bytes per packet.
2178          */
2179         packet_count = p->header_length / ctx->base.header_size;
2180         header_size  = ctx->base.header_size + 4;
2181
2182         /* Get header size in number of descriptors. */
2183         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2184         page     = payload >> PAGE_SHIFT;
2185         offset   = payload & ~PAGE_MASK;
2186         payload_per_buffer = p->payload_length / packet_count;
2187
2188         for (i = 0; i < packet_count; i++) {
2189                 /* d points to the header descriptor */
2190                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2191                 d = context_get_descriptors(&ctx->context,
2192                                 z + header_z, &d_bus);
2193                 if (d == NULL)
2194                         return -ENOMEM;
2195
2196                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2197                                               DESCRIPTOR_INPUT_MORE);
2198                 if (p->skip && i == 0)
2199                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2200                 d->req_count    = cpu_to_le16(header_size);
2201                 d->res_count    = d->req_count;
2202                 d->transfer_status = 0;
2203                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2204
2205                 rest = payload_per_buffer;
2206                 for (j = 1; j < z; j++) {
2207                         pd = d + j;
2208                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2209                                                   DESCRIPTOR_INPUT_MORE);
2210
2211                         if (offset + rest < PAGE_SIZE)
2212                                 length = rest;
2213                         else
2214                                 length = PAGE_SIZE - offset;
2215                         pd->req_count = cpu_to_le16(length);
2216                         pd->res_count = pd->req_count;
2217                         pd->transfer_status = 0;
2218
2219                         page_bus = page_private(buffer->pages[page]);
2220                         pd->data_address = cpu_to_le32(page_bus + offset);
2221
2222                         offset = (offset + length) & ~PAGE_MASK;
2223                         rest -= length;
2224                         if (offset == 0)
2225                                 page++;
2226                 }
2227                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2228                                           DESCRIPTOR_INPUT_LAST |
2229                                           DESCRIPTOR_BRANCH_ALWAYS);
2230                 if (p->interrupt && i == packet_count - 1)
2231                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2232
2233                 context_append(&ctx->context, d, z, header_z);
2234         }
2235
2236         return 0;
2237 }
2238
2239 static int
2240 ohci_queue_iso(struct fw_iso_context *base,
2241                struct fw_iso_packet *packet,
2242                struct fw_iso_buffer *buffer,
2243                unsigned long payload)
2244 {
2245         struct iso_context *ctx = container_of(base, struct iso_context, base);
2246         unsigned long flags;
2247         int retval;
2248
2249         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2250         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2251                 retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2252         else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
2253                 retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2254                                                          buffer, payload);
2255         else
2256                 retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2257                                                                 buffer,
2258                                                                 payload);
2259         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2260
2261         return retval;
2262 }
2263
2264 static const struct fw_card_driver ohci_driver = {
2265         .name                   = ohci_driver_name,
2266         .enable                 = ohci_enable,
2267         .update_phy_reg         = ohci_update_phy_reg,
2268         .set_config_rom         = ohci_set_config_rom,
2269         .send_request           = ohci_send_request,
2270         .send_response          = ohci_send_response,
2271         .cancel_packet          = ohci_cancel_packet,
2272         .enable_phys_dma        = ohci_enable_phys_dma,
2273         .get_bus_time           = ohci_get_bus_time,
2274
2275         .allocate_iso_context   = ohci_allocate_iso_context,
2276         .free_iso_context       = ohci_free_iso_context,
2277         .queue_iso              = ohci_queue_iso,
2278         .start_iso              = ohci_start_iso,
2279         .stop_iso               = ohci_stop_iso,
2280 };
2281
2282 #ifdef CONFIG_PPC_PMAC
2283 static void ohci_pmac_on(struct pci_dev *dev)
2284 {
2285         if (machine_is(powermac)) {
2286                 struct device_node *ofn = pci_device_to_OF_node(dev);
2287
2288                 if (ofn) {
2289                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2290                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2291                 }
2292         }
2293 }
2294
2295 static void ohci_pmac_off(struct pci_dev *dev)
2296 {
2297         if (machine_is(powermac)) {
2298                 struct device_node *ofn = pci_device_to_OF_node(dev);
2299
2300                 if (ofn) {
2301                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2302                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2303                 }
2304         }
2305 }
2306 #else
2307 #define ohci_pmac_on(dev)
2308 #define ohci_pmac_off(dev)
2309 #endif /* CONFIG_PPC_PMAC */
2310
2311 static int __devinit
2312 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
2313 {
2314         struct fw_ohci *ohci;
2315         u32 bus_options, max_receive, link_speed;
2316         u64 guid;
2317         int err;
2318         size_t size;
2319
2320         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2321         if (ohci == NULL) {
2322                 fw_error("Could not malloc fw_ohci data.\n");
2323                 return -ENOMEM;
2324         }
2325
2326         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2327
2328         ohci_pmac_on(dev);
2329
2330         err = pci_enable_device(dev);
2331         if (err) {
2332                 fw_error("Failed to enable OHCI hardware.\n");
2333                 goto fail_free;
2334         }
2335
2336         pci_set_master(dev);
2337         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2338         pci_set_drvdata(dev, ohci);
2339
2340 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2341         ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2342                              dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2343 #endif
2344         spin_lock_init(&ohci->lock);
2345
2346         tasklet_init(&ohci->bus_reset_tasklet,
2347                      bus_reset_tasklet, (unsigned long)ohci);
2348
2349         err = pci_request_region(dev, 0, ohci_driver_name);
2350         if (err) {
2351                 fw_error("MMIO resource unavailable\n");
2352                 goto fail_disable;
2353         }
2354
2355         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2356         if (ohci->registers == NULL) {
2357                 fw_error("Failed to remap registers\n");
2358                 err = -ENXIO;
2359                 goto fail_iomem;
2360         }
2361
2362         ar_context_init(&ohci->ar_request_ctx, ohci,
2363                         OHCI1394_AsReqRcvContextControlSet);
2364
2365         ar_context_init(&ohci->ar_response_ctx, ohci,
2366                         OHCI1394_AsRspRcvContextControlSet);
2367
2368         context_init(&ohci->at_request_ctx, ohci,
2369                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2370
2371         context_init(&ohci->at_response_ctx, ohci,
2372                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2373
2374         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2375         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2376         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2377         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2378         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2379
2380         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2381         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2382         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2383         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2384         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2385
2386         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2387                 fw_error("Out of memory for it/ir contexts.\n");
2388                 err = -ENOMEM;
2389                 goto fail_registers;
2390         }
2391
2392         /* self-id dma buffer allocation */
2393         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2394                                                SELF_ID_BUF_SIZE,
2395                                                &ohci->self_id_bus,
2396                                                GFP_KERNEL);
2397         if (ohci->self_id_cpu == NULL) {
2398                 fw_error("Out of memory for self ID buffer.\n");
2399                 err = -ENOMEM;
2400                 goto fail_registers;
2401         }
2402
2403         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2404         max_receive = (bus_options >> 12) & 0xf;
2405         link_speed = bus_options & 0x7;
2406         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2407                 reg_read(ohci, OHCI1394_GUIDLo);
2408
2409         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2410         if (err < 0)
2411                 goto fail_self_id;
2412
2413         ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2414         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2415                   dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2416         return 0;
2417
2418  fail_self_id:
2419         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2420                           ohci->self_id_cpu, ohci->self_id_bus);
2421  fail_registers:
2422         kfree(ohci->it_context_list);
2423         kfree(ohci->ir_context_list);
2424         pci_iounmap(dev, ohci->registers);
2425  fail_iomem:
2426         pci_release_region(dev, 0);
2427  fail_disable:
2428         pci_disable_device(dev);
2429  fail_free:
2430         kfree(&ohci->card);
2431         ohci_pmac_off(dev);
2432
2433         return err;
2434 }
2435
2436 static void pci_remove(struct pci_dev *dev)
2437 {
2438         struct fw_ohci *ohci;
2439
2440         ohci = pci_get_drvdata(dev);
2441         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2442         flush_writes(ohci);
2443         fw_core_remove_card(&ohci->card);
2444
2445         /*
2446          * FIXME: Fail all pending packets here, now that the upper
2447          * layers can't queue any more.
2448          */
2449
2450         software_reset(ohci);
2451         free_irq(dev->irq, ohci);
2452         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2453                           ohci->self_id_cpu, ohci->self_id_bus);
2454         kfree(ohci->it_context_list);
2455         kfree(ohci->ir_context_list);
2456         pci_iounmap(dev, ohci->registers);
2457         pci_release_region(dev, 0);
2458         pci_disable_device(dev);
2459         kfree(&ohci->card);
2460         ohci_pmac_off(dev);
2461
2462         fw_notify("Removed fw-ohci device.\n");
2463 }
2464
2465 #ifdef CONFIG_PM
2466 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2467 {
2468         struct fw_ohci *ohci = pci_get_drvdata(dev);
2469         int err;
2470
2471         software_reset(ohci);
2472         free_irq(dev->irq, ohci);
2473         err = pci_save_state(dev);
2474         if (err) {
2475                 fw_error("pci_save_state failed\n");
2476                 return err;
2477         }
2478         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2479         if (err)
2480                 fw_error("pci_set_power_state failed with %d\n", err);
2481         ohci_pmac_off(dev);
2482
2483         return 0;
2484 }
2485
2486 static int pci_resume(struct pci_dev *dev)
2487 {
2488         struct fw_ohci *ohci = pci_get_drvdata(dev);
2489         int err;
2490
2491         ohci_pmac_on(dev);
2492         pci_set_power_state(dev, PCI_D0);
2493         pci_restore_state(dev);
2494         err = pci_enable_device(dev);
2495         if (err) {
2496                 fw_error("pci_enable_device failed\n");
2497                 return err;
2498         }
2499
2500         return ohci_enable(&ohci->card, NULL, 0);
2501 }
2502 #endif
2503
2504 static struct pci_device_id pci_table[] = {
2505         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2506         { }
2507 };
2508
2509 MODULE_DEVICE_TABLE(pci, pci_table);
2510
2511 static struct pci_driver fw_ohci_pci_driver = {
2512         .name           = ohci_driver_name,
2513         .id_table       = pci_table,
2514         .probe          = pci_probe,
2515         .remove         = pci_remove,
2516 #ifdef CONFIG_PM
2517         .resume         = pci_resume,
2518         .suspend        = pci_suspend,
2519 #endif
2520 };
2521
2522 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2523 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2524 MODULE_LICENSE("GPL");
2525
2526 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2527 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2528 MODULE_ALIAS("ohci1394");
2529 #endif
2530
2531 static int __init fw_ohci_init(void)
2532 {
2533         return pci_register_driver(&fw_ohci_pci_driver);
2534 }
2535
2536 static void __exit fw_ohci_cleanup(void)
2537 {
2538         pci_unregister_driver(&fw_ohci_pci_driver);
2539 }
2540
2541 module_init(fw_ohci_init);
2542 module_exit(fw_ohci_cleanup);