]> err.no Git - linux-2.6/blob - drivers/cpufreq/cpufreq_ondemand.c
[CPUFREQ] Fix coding style issues in cpufreq.
[linux-2.6] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21
22 /*
23  * dbs is used in this file as a shortform for demandbased switching
24  * It helps to keep variable names smaller, simpler
25  */
26
27 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
28 #define MIN_FREQUENCY_UP_THRESHOLD              (11)
29 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
30
31 /*
32  * The polling frequency of this governor depends on the capability of
33  * the processor. Default polling frequency is 1000 times the transition
34  * latency of the processor. The governor will work on any processor with
35  * transition latency <= 10mS, using appropriate sampling
36  * rate.
37  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38  * this governor will not work.
39  * All times here are in uS.
40  */
41 static unsigned int def_sampling_rate;
42 #define MIN_SAMPLING_RATE_RATIO                 (2)
43 /* for correct statistics, we need at least 10 ticks between each measure */
44 #define MIN_STAT_SAMPLING_RATE                  \
45                         (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
46 #define MIN_SAMPLING_RATE                       \
47                         (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
48 #define MAX_SAMPLING_RATE                       (500 * def_sampling_rate)
49 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER    (1000)
50 #define TRANSITION_LATENCY_LIMIT                (10 * 1000)
51
52 static void do_dbs_timer(void *data);
53
54 struct cpu_dbs_info_s {
55         cputime64_t prev_cpu_idle;
56         cputime64_t prev_cpu_wall;
57         struct cpufreq_policy *cur_policy;
58         struct work_struct work;
59         unsigned int enable;
60         struct cpufreq_frequency_table *freq_table;
61         unsigned int freq_lo;
62         unsigned int freq_lo_jiffies;
63         unsigned int freq_hi_jiffies;
64 };
65 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
66
67 static unsigned int dbs_enable; /* number of CPUs using this policy */
68
69 /*
70  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
71  * lock and dbs_mutex. cpu_hotplug lock should always be held before
72  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
73  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
74  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
75  * is recursive for the same process. -Venki
76  */
77 static DEFINE_MUTEX(dbs_mutex);
78
79 static struct workqueue_struct  *kondemand_wq;
80
81 static struct dbs_tuners {
82         unsigned int sampling_rate;
83         unsigned int up_threshold;
84         unsigned int ignore_nice;
85         unsigned int powersave_bias;
86 } dbs_tuners_ins = {
87         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
88         .ignore_nice = 0,
89         .powersave_bias = 0,
90 };
91
92 static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
93 {
94         cputime64_t retval;
95
96         retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
97                         kstat_cpu(cpu).cpustat.iowait);
98
99         if (dbs_tuners_ins.ignore_nice)
100                 retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);
101
102         return retval;
103 }
104
105 /*
106  * Find right freq to be set now with powersave_bias on.
107  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
108  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
109  */
110 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
111                                           unsigned int freq_next,
112                                           unsigned int relation)
113 {
114         unsigned int freq_req, freq_reduc, freq_avg;
115         unsigned int freq_hi, freq_lo;
116         unsigned int index = 0;
117         unsigned int jiffies_total, jiffies_hi, jiffies_lo;
118         struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
119
120         if (!dbs_info->freq_table) {
121                 dbs_info->freq_lo = 0;
122                 dbs_info->freq_lo_jiffies = 0;
123                 return freq_next;
124         }
125
126         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
127                         relation, &index);
128         freq_req = dbs_info->freq_table[index].frequency;
129         freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
130         freq_avg = freq_req - freq_reduc;
131
132         /* Find freq bounds for freq_avg in freq_table */
133         index = 0;
134         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
135                         CPUFREQ_RELATION_H, &index);
136         freq_lo = dbs_info->freq_table[index].frequency;
137         index = 0;
138         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
139                         CPUFREQ_RELATION_L, &index);
140         freq_hi = dbs_info->freq_table[index].frequency;
141
142         /* Find out how long we have to be in hi and lo freqs */
143         if (freq_hi == freq_lo) {
144                 dbs_info->freq_lo = 0;
145                 dbs_info->freq_lo_jiffies = 0;
146                 return freq_lo;
147         }
148         jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
149         jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
150         jiffies_hi += ((freq_hi - freq_lo) / 2);
151         jiffies_hi /= (freq_hi - freq_lo);
152         jiffies_lo = jiffies_total - jiffies_hi;
153         dbs_info->freq_lo = freq_lo;
154         dbs_info->freq_lo_jiffies = jiffies_lo;
155         dbs_info->freq_hi_jiffies = jiffies_hi;
156         return freq_hi;
157 }
158
159 static void ondemand_powersave_bias_init(void)
160 {
161         int i;
162         for_each_online_cpu(i) {
163                 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
164                 dbs_info->freq_table = cpufreq_frequency_get_table(i);
165                 dbs_info->freq_lo = 0;
166         }
167 }
168
169 /************************** sysfs interface ************************/
170 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
171 {
172         return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
173 }
174
175 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
176 {
177         return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
178 }
179
180 #define define_one_ro(_name)            \
181 static struct freq_attr _name =         \
182 __ATTR(_name, 0444, show_##_name, NULL)
183
184 define_one_ro(sampling_rate_max);
185 define_one_ro(sampling_rate_min);
186
187 /* cpufreq_ondemand Governor Tunables */
188 #define show_one(file_name, object)                                     \
189 static ssize_t show_##file_name                                         \
190 (struct cpufreq_policy *unused, char *buf)                              \
191 {                                                                       \
192         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
193 }
194 show_one(sampling_rate, sampling_rate);
195 show_one(up_threshold, up_threshold);
196 show_one(ignore_nice_load, ignore_nice);
197 show_one(powersave_bias, powersave_bias);
198
199 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
200                 const char *buf, size_t count)
201 {
202         unsigned int input;
203         int ret;
204         ret = sscanf(buf, "%u", &input);
205
206         mutex_lock(&dbs_mutex);
207         if (ret != 1 || input > MAX_SAMPLING_RATE
208                      || input < MIN_SAMPLING_RATE) {
209                 mutex_unlock(&dbs_mutex);
210                 return -EINVAL;
211         }
212
213         dbs_tuners_ins.sampling_rate = input;
214         mutex_unlock(&dbs_mutex);
215
216         return count;
217 }
218
219 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
220                 const char *buf, size_t count)
221 {
222         unsigned int input;
223         int ret;
224         ret = sscanf(buf, "%u", &input);
225
226         mutex_lock(&dbs_mutex);
227         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
228                         input < MIN_FREQUENCY_UP_THRESHOLD) {
229                 mutex_unlock(&dbs_mutex);
230                 return -EINVAL;
231         }
232
233         dbs_tuners_ins.up_threshold = input;
234         mutex_unlock(&dbs_mutex);
235
236         return count;
237 }
238
239 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
240                 const char *buf, size_t count)
241 {
242         unsigned int input;
243         int ret;
244
245         unsigned int j;
246
247         ret = sscanf(buf, "%u", &input);
248         if ( ret != 1 )
249                 return -EINVAL;
250
251         if ( input > 1 )
252                 input = 1;
253
254         mutex_lock(&dbs_mutex);
255         if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
256                 mutex_unlock(&dbs_mutex);
257                 return count;
258         }
259         dbs_tuners_ins.ignore_nice = input;
260
261         /* we need to re-evaluate prev_cpu_idle */
262         for_each_online_cpu(j) {
263                 struct cpu_dbs_info_s *dbs_info;
264                 dbs_info = &per_cpu(cpu_dbs_info, j);
265                 dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
266                 dbs_info->prev_cpu_wall = get_jiffies_64();
267         }
268         mutex_unlock(&dbs_mutex);
269
270         return count;
271 }
272
273 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
274                 const char *buf, size_t count)
275 {
276         unsigned int input;
277         int ret;
278         ret = sscanf(buf, "%u", &input);
279
280         if (ret != 1)
281                 return -EINVAL;
282
283         if (input > 1000)
284                 input = 1000;
285
286         mutex_lock(&dbs_mutex);
287         dbs_tuners_ins.powersave_bias = input;
288         ondemand_powersave_bias_init();
289         mutex_unlock(&dbs_mutex);
290
291         return count;
292 }
293
294 #define define_one_rw(_name) \
295 static struct freq_attr _name = \
296 __ATTR(_name, 0644, show_##_name, store_##_name)
297
298 define_one_rw(sampling_rate);
299 define_one_rw(up_threshold);
300 define_one_rw(ignore_nice_load);
301 define_one_rw(powersave_bias);
302
303 static struct attribute * dbs_attributes[] = {
304         &sampling_rate_max.attr,
305         &sampling_rate_min.attr,
306         &sampling_rate.attr,
307         &up_threshold.attr,
308         &ignore_nice_load.attr,
309         &powersave_bias.attr,
310         NULL
311 };
312
313 static struct attribute_group dbs_attr_group = {
314         .attrs = dbs_attributes,
315         .name = "ondemand",
316 };
317
318 /************************** sysfs end ************************/
319
320 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
321 {
322         unsigned int idle_ticks, total_ticks;
323         unsigned int load;
324         cputime64_t cur_jiffies;
325
326         struct cpufreq_policy *policy;
327         unsigned int j;
328
329         if (!this_dbs_info->enable)
330                 return;
331
332         this_dbs_info->freq_lo = 0;
333         policy = this_dbs_info->cur_policy;
334         cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
335         total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
336                         this_dbs_info->prev_cpu_wall);
337         this_dbs_info->prev_cpu_wall = cur_jiffies;
338         if (!total_ticks)
339                 return;
340         /*
341          * Every sampling_rate, we check, if current idle time is less
342          * than 20% (default), then we try to increase frequency
343          * Every sampling_rate, we look for a the lowest
344          * frequency which can sustain the load while keeping idle time over
345          * 30%. If such a frequency exist, we try to decrease to this frequency.
346          *
347          * Any frequency increase takes it to the maximum frequency.
348          * Frequency reduction happens at minimum steps of
349          * 5% (default) of current frequency
350          */
351
352         /* Get Idle Time */
353         idle_ticks = UINT_MAX;
354         for_each_cpu_mask(j, policy->cpus) {
355                 cputime64_t total_idle_ticks;
356                 unsigned int tmp_idle_ticks;
357                 struct cpu_dbs_info_s *j_dbs_info;
358
359                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
360                 total_idle_ticks = get_cpu_idle_time(j);
361                 tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
362                                 j_dbs_info->prev_cpu_idle);
363                 j_dbs_info->prev_cpu_idle = total_idle_ticks;
364
365                 if (tmp_idle_ticks < idle_ticks)
366                         idle_ticks = tmp_idle_ticks;
367         }
368         load = (100 * (total_ticks - idle_ticks)) / total_ticks;
369
370         /* Check for frequency increase */
371         if (load > dbs_tuners_ins.up_threshold) {
372                 /* if we are already at full speed then break out early */
373                 if (!dbs_tuners_ins.powersave_bias) {
374                         if (policy->cur == policy->max)
375                                 return;
376
377                         __cpufreq_driver_target(policy, policy->max,
378                                 CPUFREQ_RELATION_H);
379                 } else {
380                         int freq = powersave_bias_target(policy, policy->max,
381                                         CPUFREQ_RELATION_H);
382                         __cpufreq_driver_target(policy, freq,
383                                 CPUFREQ_RELATION_L);
384                 }
385                 return;
386         }
387
388         /* Check for frequency decrease */
389         /* if we cannot reduce the frequency anymore, break out early */
390         if (policy->cur == policy->min)
391                 return;
392
393         /*
394          * The optimal frequency is the frequency that is the lowest that
395          * can support the current CPU usage without triggering the up
396          * policy. To be safe, we focus 10 points under the threshold.
397          */
398         if (load < (dbs_tuners_ins.up_threshold - 10)) {
399                 unsigned int freq_next, freq_cur;
400
401                 freq_cur = cpufreq_driver_getavg(policy);
402                 if (!freq_cur)
403                         freq_cur = policy->cur;
404
405                 freq_next = (freq_cur * load) /
406                         (dbs_tuners_ins.up_threshold - 10);
407
408                 if (!dbs_tuners_ins.powersave_bias) {
409                         __cpufreq_driver_target(policy, freq_next,
410                                         CPUFREQ_RELATION_L);
411                 } else {
412                         int freq = powersave_bias_target(policy, freq_next,
413                                         CPUFREQ_RELATION_L);
414                         __cpufreq_driver_target(policy, freq,
415                                 CPUFREQ_RELATION_L);
416                 }
417         }
418 }
419
420 /* Sampling types */
421 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
422
423 static void do_dbs_timer(void *data)
424 {
425         unsigned int cpu = smp_processor_id();
426         struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
427         /* We want all CPUs to do sampling nearly on same jiffy */
428         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
429         delay -= jiffies % delay;
430
431         if (!dbs_info->enable)
432                 return;
433         /* Common NORMAL_SAMPLE setup */
434         INIT_WORK(&dbs_info->work, do_dbs_timer, (void *)DBS_NORMAL_SAMPLE);
435         if (!dbs_tuners_ins.powersave_bias ||
436             (unsigned long) data == DBS_NORMAL_SAMPLE) {
437                 lock_cpu_hotplug();
438                 dbs_check_cpu(dbs_info);
439                 unlock_cpu_hotplug();
440                 if (dbs_info->freq_lo) {
441                         /* Setup timer for SUB_SAMPLE */
442                         INIT_WORK(&dbs_info->work, do_dbs_timer,
443                                         (void *)DBS_SUB_SAMPLE);
444                         delay = dbs_info->freq_hi_jiffies;
445                 }
446         } else {
447                 __cpufreq_driver_target(dbs_info->cur_policy,
448                                         dbs_info->freq_lo,
449                                         CPUFREQ_RELATION_H);
450         }
451         queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
452 }
453
454 static inline void dbs_timer_init(unsigned int cpu)
455 {
456         struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
457         /* We want all CPUs to do sampling nearly on same jiffy */
458         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
459         delay -= jiffies % delay;
460
461         ondemand_powersave_bias_init();
462         INIT_WORK(&dbs_info->work, do_dbs_timer, NULL);
463         queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
464 }
465
466 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
467 {
468         dbs_info->enable = 0;
469         cancel_delayed_work(&dbs_info->work);
470         flush_workqueue(kondemand_wq);
471 }
472
473 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
474                                    unsigned int event)
475 {
476         unsigned int cpu = policy->cpu;
477         struct cpu_dbs_info_s *this_dbs_info;
478         unsigned int j;
479         int rc;
480
481         this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
482
483         switch (event) {
484         case CPUFREQ_GOV_START:
485                 if ((!cpu_online(cpu)) || (!policy->cur))
486                         return -EINVAL;
487
488                 if (policy->cpuinfo.transition_latency >
489                                 (TRANSITION_LATENCY_LIMIT * 1000)) {
490                         printk(KERN_WARNING "ondemand governor failed to load "
491                                "due to too long transition latency\n");
492                         return -EINVAL;
493                 }
494                 if (this_dbs_info->enable) /* Already enabled */
495                         break;
496
497                 mutex_lock(&dbs_mutex);
498                 dbs_enable++;
499                 if (dbs_enable == 1) {
500                         kondemand_wq = create_workqueue("kondemand");
501                         if (!kondemand_wq) {
502                                 printk(KERN_ERR
503                                          "Creation of kondemand failed\n");
504                                 dbs_enable--;
505                                 mutex_unlock(&dbs_mutex);
506                                 return -ENOSPC;
507                         }
508                 }
509
510                 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
511                 if (rc) {
512                         if (dbs_enable == 1)
513                                 destroy_workqueue(kondemand_wq);
514                         dbs_enable--;
515                         mutex_unlock(&dbs_mutex);
516                         return rc;
517                 }
518
519                 for_each_cpu_mask(j, policy->cpus) {
520                         struct cpu_dbs_info_s *j_dbs_info;
521                         j_dbs_info = &per_cpu(cpu_dbs_info, j);
522                         j_dbs_info->cur_policy = policy;
523
524                         j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
525                         j_dbs_info->prev_cpu_wall = get_jiffies_64();
526                 }
527                 this_dbs_info->enable = 1;
528                 /*
529                  * Start the timerschedule work, when this governor
530                  * is used for first time
531                  */
532                 if (dbs_enable == 1) {
533                         unsigned int latency;
534                         /* policy latency is in nS. Convert it to uS first */
535                         latency = policy->cpuinfo.transition_latency / 1000;
536                         if (latency == 0)
537                                 latency = 1;
538
539                         def_sampling_rate = latency *
540                                         DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
541
542                         if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
543                                 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
544
545                         dbs_tuners_ins.sampling_rate = def_sampling_rate;
546                 }
547                 dbs_timer_init(policy->cpu);
548
549                 mutex_unlock(&dbs_mutex);
550                 break;
551
552         case CPUFREQ_GOV_STOP:
553                 mutex_lock(&dbs_mutex);
554                 dbs_timer_exit(this_dbs_info);
555                 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
556                 dbs_enable--;
557                 if (dbs_enable == 0)
558                         destroy_workqueue(kondemand_wq);
559
560                 mutex_unlock(&dbs_mutex);
561
562                 break;
563
564         case CPUFREQ_GOV_LIMITS:
565                 mutex_lock(&dbs_mutex);
566                 if (policy->max < this_dbs_info->cur_policy->cur)
567                         __cpufreq_driver_target(this_dbs_info->cur_policy,
568                                                 policy->max,
569                                                 CPUFREQ_RELATION_H);
570                 else if (policy->min > this_dbs_info->cur_policy->cur)
571                         __cpufreq_driver_target(this_dbs_info->cur_policy,
572                                                 policy->min,
573                                                 CPUFREQ_RELATION_L);
574                 mutex_unlock(&dbs_mutex);
575                 break;
576         }
577         return 0;
578 }
579
580 static struct cpufreq_governor cpufreq_gov_dbs = {
581         .name = "ondemand",
582         .governor = cpufreq_governor_dbs,
583         .owner = THIS_MODULE,
584 };
585
586 static int __init cpufreq_gov_dbs_init(void)
587 {
588         return cpufreq_register_governor(&cpufreq_gov_dbs);
589 }
590
591 static void __exit cpufreq_gov_dbs_exit(void)
592 {
593         cpufreq_unregister_governor(&cpufreq_gov_dbs);
594 }
595
596
597 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
598 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
599 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
600                    "Low Latency Frequency Transition capable processors");
601 MODULE_LICENSE("GPL");
602
603 module_init(cpufreq_gov_dbs_init);
604 module_exit(cpufreq_gov_dbs_exit);