2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/console.h>
82 #include <linux/timer.h>
83 #include <linux/ctype.h>
86 #include <linux/string.h>
87 #include <linux/slab.h>
88 #include <linux/poll.h>
89 #include <linux/proc_fs.h>
90 #include <linux/init.h>
91 #include <linux/module.h>
92 #include <linux/smp_lock.h>
93 #include <linux/device.h>
94 #include <linux/idr.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
99 #include <asm/uaccess.h>
100 #include <asm/system.h>
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
109 #undef TTY_DEBUG_HANGUP
111 #define TTY_PARANOIA_CHECK 1
112 #define CHECK_TTY_COUNT 1
114 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
115 .c_iflag = ICRNL | IXON,
116 .c_oflag = OPOST | ONLCR,
117 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
118 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119 ECHOCTL | ECHOKE | IEXTEN,
125 EXPORT_SYMBOL(tty_std_termios);
127 /* This list gets poked at by procfs and various bits of boot up code. This
128 could do with some rationalisation such as pulling the tty proc function
131 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
133 /* Mutex to protect creating and releasing a tty. This is shared with
134 vt.c for deeply disgusting hack reasons */
135 DEFINE_MUTEX(tty_mutex);
136 EXPORT_SYMBOL(tty_mutex);
138 #ifdef CONFIG_UNIX98_PTYS
139 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
140 extern int pty_limit; /* Config limit on Unix98 ptys */
141 static DEFINE_IDR(allocated_ptys);
142 static DEFINE_MUTEX(allocated_ptys_lock);
143 static int ptmx_open(struct inode *, struct file *);
146 static void initialize_tty_struct(struct tty_struct *tty);
148 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
149 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
150 ssize_t redirected_tty_write(struct file *, const char __user *,
152 static unsigned int tty_poll(struct file *, poll_table *);
153 static int tty_open(struct inode *, struct file *);
154 static int tty_release(struct inode *, struct file *);
155 int tty_ioctl(struct inode *inode, struct file *file,
156 unsigned int cmd, unsigned long arg);
158 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
161 #define tty_compat_ioctl NULL
163 static int tty_fasync(int fd, struct file *filp, int on);
164 static void release_tty(struct tty_struct *tty, int idx);
165 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
166 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
169 * alloc_tty_struct - allocate a tty object
171 * Return a new empty tty structure. The data fields have not
172 * been initialized in any way but has been zeroed
177 static struct tty_struct *alloc_tty_struct(void)
179 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
182 static void tty_buffer_free_all(struct tty_struct *);
185 * free_tty_struct - free a disused tty
186 * @tty: tty struct to free
188 * Free the write buffers, tty queue and tty memory itself.
190 * Locking: none. Must be called after tty is definitely unused
193 static inline void free_tty_struct(struct tty_struct *tty)
195 kfree(tty->write_buf);
196 tty_buffer_free_all(tty);
200 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
203 * tty_name - return tty naming
204 * @tty: tty structure
205 * @buf: buffer for output
207 * Convert a tty structure into a name. The name reflects the kernel
208 * naming policy and if udev is in use may not reflect user space
213 char *tty_name(struct tty_struct *tty, char *buf)
215 if (!tty) /* Hmm. NULL pointer. That's fun. */
216 strcpy(buf, "NULL tty");
218 strcpy(buf, tty->name);
222 EXPORT_SYMBOL(tty_name);
224 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
227 #ifdef TTY_PARANOIA_CHECK
230 "null TTY for (%d:%d) in %s\n",
231 imajor(inode), iminor(inode), routine);
234 if (tty->magic != TTY_MAGIC) {
236 "bad magic number for tty struct (%d:%d) in %s\n",
237 imajor(inode), iminor(inode), routine);
244 static int check_tty_count(struct tty_struct *tty, const char *routine)
246 #ifdef CHECK_TTY_COUNT
251 list_for_each(p, &tty->tty_files) {
255 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
256 tty->driver->subtype == PTY_TYPE_SLAVE &&
257 tty->link && tty->link->count)
259 if (tty->count != count) {
260 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
261 "!= #fd's(%d) in %s\n",
262 tty->name, tty->count, count, routine);
270 * Tty buffer allocation management
274 * tty_buffer_free_all - free buffers used by a tty
275 * @tty: tty to free from
277 * Remove all the buffers pending on a tty whether queued with data
278 * or in the free ring. Must be called when the tty is no longer in use
283 static void tty_buffer_free_all(struct tty_struct *tty)
285 struct tty_buffer *thead;
286 while ((thead = tty->buf.head) != NULL) {
287 tty->buf.head = thead->next;
290 while ((thead = tty->buf.free) != NULL) {
291 tty->buf.free = thead->next;
294 tty->buf.tail = NULL;
295 tty->buf.memory_used = 0;
299 * tty_buffer_init - prepare a tty buffer structure
300 * @tty: tty to initialise
302 * Set up the initial state of the buffer management for a tty device.
303 * Must be called before the other tty buffer functions are used.
308 static void tty_buffer_init(struct tty_struct *tty)
310 spin_lock_init(&tty->buf.lock);
311 tty->buf.head = NULL;
312 tty->buf.tail = NULL;
313 tty->buf.free = NULL;
314 tty->buf.memory_used = 0;
318 * tty_buffer_alloc - allocate a tty buffer
320 * @size: desired size (characters)
322 * Allocate a new tty buffer to hold the desired number of characters.
323 * Return NULL if out of memory or the allocation would exceed the
326 * Locking: Caller must hold tty->buf.lock
329 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
331 struct tty_buffer *p;
333 if (tty->buf.memory_used + size > 65536)
335 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
343 p->char_buf_ptr = (char *)(p->data);
344 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
345 tty->buf.memory_used += size;
350 * tty_buffer_free - free a tty buffer
351 * @tty: tty owning the buffer
352 * @b: the buffer to free
354 * Free a tty buffer, or add it to the free list according to our
357 * Locking: Caller must hold tty->buf.lock
360 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
362 /* Dumb strategy for now - should keep some stats */
363 tty->buf.memory_used -= b->size;
364 WARN_ON(tty->buf.memory_used < 0);
369 b->next = tty->buf.free;
375 * __tty_buffer_flush - flush full tty buffers
378 * flush all the buffers containing receive data. Caller must
379 * hold the buffer lock and must have ensured no parallel flush to
382 * Locking: Caller must hold tty->buf.lock
385 static void __tty_buffer_flush(struct tty_struct *tty)
387 struct tty_buffer *thead;
389 while ((thead = tty->buf.head) != NULL) {
390 tty->buf.head = thead->next;
391 tty_buffer_free(tty, thead);
393 tty->buf.tail = NULL;
397 * tty_buffer_flush - flush full tty buffers
400 * flush all the buffers containing receive data. If the buffer is
401 * being processed by flush_to_ldisc then we defer the processing
407 static void tty_buffer_flush(struct tty_struct *tty)
410 spin_lock_irqsave(&tty->buf.lock, flags);
412 /* If the data is being pushed to the tty layer then we can't
413 process it here. Instead set a flag and the flush_to_ldisc
414 path will process the flush request before it exits */
415 if (test_bit(TTY_FLUSHING, &tty->flags)) {
416 set_bit(TTY_FLUSHPENDING, &tty->flags);
417 spin_unlock_irqrestore(&tty->buf.lock, flags);
418 wait_event(tty->read_wait,
419 test_bit(TTY_FLUSHPENDING, &tty->flags) == 0);
422 __tty_buffer_flush(tty);
423 spin_unlock_irqrestore(&tty->buf.lock, flags);
427 * tty_buffer_find - find a free tty buffer
428 * @tty: tty owning the buffer
429 * @size: characters wanted
431 * Locate an existing suitable tty buffer or if we are lacking one then
432 * allocate a new one. We round our buffers off in 256 character chunks
433 * to get better allocation behaviour.
435 * Locking: Caller must hold tty->buf.lock
438 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
440 struct tty_buffer **tbh = &tty->buf.free;
441 while ((*tbh) != NULL) {
442 struct tty_buffer *t = *tbh;
443 if (t->size >= size) {
449 tty->buf.memory_used += t->size;
452 tbh = &((*tbh)->next);
454 /* Round the buffer size out */
455 size = (size + 0xFF) & ~0xFF;
456 return tty_buffer_alloc(tty, size);
457 /* Should possibly check if this fails for the largest buffer we
458 have queued and recycle that ? */
462 * tty_buffer_request_room - grow tty buffer if needed
463 * @tty: tty structure
464 * @size: size desired
466 * Make at least size bytes of linear space available for the tty
467 * buffer. If we fail return the size we managed to find.
469 * Locking: Takes tty->buf.lock
471 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
473 struct tty_buffer *b, *n;
477 spin_lock_irqsave(&tty->buf.lock, flags);
479 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
480 remove this conditional if its worth it. This would be invisible
482 if ((b = tty->buf.tail) != NULL)
483 left = b->size - b->used;
488 /* This is the slow path - looking for new buffers to use */
489 if ((n = tty_buffer_find(tty, size)) != NULL) {
500 spin_unlock_irqrestore(&tty->buf.lock, flags);
503 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
506 * tty_insert_flip_string - Add characters to the tty buffer
507 * @tty: tty structure
511 * Queue a series of bytes to the tty buffering. All the characters
512 * passed are marked as without error. Returns the number added.
514 * Locking: Called functions may take tty->buf.lock
517 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
522 int space = tty_buffer_request_room(tty, size - copied);
523 struct tty_buffer *tb = tty->buf.tail;
524 /* If there is no space then tb may be NULL */
525 if (unlikely(space == 0))
527 memcpy(tb->char_buf_ptr + tb->used, chars, space);
528 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
532 /* There is a small chance that we need to split the data over
533 several buffers. If this is the case we must loop */
534 } while (unlikely(size > copied));
537 EXPORT_SYMBOL(tty_insert_flip_string);
540 * tty_insert_flip_string_flags - Add characters to the tty buffer
541 * @tty: tty structure
546 * Queue a series of bytes to the tty buffering. For each character
547 * the flags array indicates the status of the character. Returns the
550 * Locking: Called functions may take tty->buf.lock
553 int tty_insert_flip_string_flags(struct tty_struct *tty,
554 const unsigned char *chars, const char *flags, size_t size)
558 int space = tty_buffer_request_room(tty, size - copied);
559 struct tty_buffer *tb = tty->buf.tail;
560 /* If there is no space then tb may be NULL */
561 if (unlikely(space == 0))
563 memcpy(tb->char_buf_ptr + tb->used, chars, space);
564 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
569 /* There is a small chance that we need to split the data over
570 several buffers. If this is the case we must loop */
571 } while (unlikely(size > copied));
574 EXPORT_SYMBOL(tty_insert_flip_string_flags);
577 * tty_schedule_flip - push characters to ldisc
578 * @tty: tty to push from
580 * Takes any pending buffers and transfers their ownership to the
581 * ldisc side of the queue. It then schedules those characters for
582 * processing by the line discipline.
584 * Locking: Takes tty->buf.lock
587 void tty_schedule_flip(struct tty_struct *tty)
590 spin_lock_irqsave(&tty->buf.lock, flags);
591 if (tty->buf.tail != NULL)
592 tty->buf.tail->commit = tty->buf.tail->used;
593 spin_unlock_irqrestore(&tty->buf.lock, flags);
594 schedule_delayed_work(&tty->buf.work, 1);
596 EXPORT_SYMBOL(tty_schedule_flip);
599 * tty_prepare_flip_string - make room for characters
601 * @chars: return pointer for character write area
602 * @size: desired size
604 * Prepare a block of space in the buffer for data. Returns the length
605 * available and buffer pointer to the space which is now allocated and
606 * accounted for as ready for normal characters. This is used for drivers
607 * that need their own block copy routines into the buffer. There is no
608 * guarantee the buffer is a DMA target!
610 * Locking: May call functions taking tty->buf.lock
613 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars,
616 int space = tty_buffer_request_room(tty, size);
618 struct tty_buffer *tb = tty->buf.tail;
619 *chars = tb->char_buf_ptr + tb->used;
620 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
626 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
629 * tty_prepare_flip_string_flags - make room for characters
631 * @chars: return pointer for character write area
632 * @flags: return pointer for status flag write area
633 * @size: desired size
635 * Prepare a block of space in the buffer for data. Returns the length
636 * available and buffer pointer to the space which is now allocated and
637 * accounted for as ready for characters. This is used for drivers
638 * that need their own block copy routines into the buffer. There is no
639 * guarantee the buffer is a DMA target!
641 * Locking: May call functions taking tty->buf.lock
644 int tty_prepare_flip_string_flags(struct tty_struct *tty,
645 unsigned char **chars, char **flags, size_t size)
647 int space = tty_buffer_request_room(tty, size);
649 struct tty_buffer *tb = tty->buf.tail;
650 *chars = tb->char_buf_ptr + tb->used;
651 *flags = tb->flag_buf_ptr + tb->used;
657 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
662 * tty_set_termios_ldisc - set ldisc field
663 * @tty: tty structure
664 * @num: line discipline number
666 * This is probably overkill for real world processors but
667 * they are not on hot paths so a little discipline won't do
670 * Locking: takes termios_mutex
673 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
675 mutex_lock(&tty->termios_mutex);
676 tty->termios->c_line = num;
677 mutex_unlock(&tty->termios_mutex);
681 * This guards the refcounted line discipline lists. The lock
682 * must be taken with irqs off because there are hangup path
683 * callers who will do ldisc lookups and cannot sleep.
686 static DEFINE_SPINLOCK(tty_ldisc_lock);
687 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
688 /* Line disc dispatch table */
689 static struct tty_ldisc tty_ldiscs[NR_LDISCS];
692 * tty_register_ldisc - install a line discipline
693 * @disc: ldisc number
694 * @new_ldisc: pointer to the ldisc object
696 * Installs a new line discipline into the kernel. The discipline
697 * is set up as unreferenced and then made available to the kernel
698 * from this point onwards.
701 * takes tty_ldisc_lock to guard against ldisc races
704 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
709 if (disc < N_TTY || disc >= NR_LDISCS)
712 spin_lock_irqsave(&tty_ldisc_lock, flags);
713 tty_ldiscs[disc] = *new_ldisc;
714 tty_ldiscs[disc].num = disc;
715 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
716 tty_ldiscs[disc].refcount = 0;
717 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
721 EXPORT_SYMBOL(tty_register_ldisc);
724 * tty_unregister_ldisc - unload a line discipline
725 * @disc: ldisc number
726 * @new_ldisc: pointer to the ldisc object
728 * Remove a line discipline from the kernel providing it is not
732 * takes tty_ldisc_lock to guard against ldisc races
735 int tty_unregister_ldisc(int disc)
740 if (disc < N_TTY || disc >= NR_LDISCS)
743 spin_lock_irqsave(&tty_ldisc_lock, flags);
744 if (tty_ldiscs[disc].refcount)
747 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
748 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
752 EXPORT_SYMBOL(tty_unregister_ldisc);
755 * tty_ldisc_get - take a reference to an ldisc
756 * @disc: ldisc number
758 * Takes a reference to a line discipline. Deals with refcounts and
759 * module locking counts. Returns NULL if the discipline is not available.
760 * Returns a pointer to the discipline and bumps the ref count if it is
764 * takes tty_ldisc_lock to guard against ldisc races
767 struct tty_ldisc *tty_ldisc_get(int disc)
770 struct tty_ldisc *ld;
772 if (disc < N_TTY || disc >= NR_LDISCS)
775 spin_lock_irqsave(&tty_ldisc_lock, flags);
777 ld = &tty_ldiscs[disc];
778 /* Check the entry is defined */
779 if (ld->flags & LDISC_FLAG_DEFINED) {
780 /* If the module is being unloaded we can't use it */
781 if (!try_module_get(ld->owner))
787 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
791 EXPORT_SYMBOL_GPL(tty_ldisc_get);
794 * tty_ldisc_put - drop ldisc reference
795 * @disc: ldisc number
797 * Drop a reference to a line discipline. Manage refcounts and
798 * module usage counts
801 * takes tty_ldisc_lock to guard against ldisc races
804 void tty_ldisc_put(int disc)
806 struct tty_ldisc *ld;
809 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
811 spin_lock_irqsave(&tty_ldisc_lock, flags);
812 ld = &tty_ldiscs[disc];
813 BUG_ON(ld->refcount == 0);
815 module_put(ld->owner);
816 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
819 EXPORT_SYMBOL_GPL(tty_ldisc_put);
822 * tty_ldisc_assign - set ldisc on a tty
823 * @tty: tty to assign
824 * @ld: line discipline
826 * Install an instance of a line discipline into a tty structure. The
827 * ldisc must have a reference count above zero to ensure it remains/
828 * The tty instance refcount starts at zero.
831 * Caller must hold references
834 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
837 tty->ldisc.refcount = 0;
841 * tty_ldisc_try - internal helper
844 * Make a single attempt to grab and bump the refcount on
845 * the tty ldisc. Return 0 on failure or 1 on success. This is
846 * used to implement both the waiting and non waiting versions
849 * Locking: takes tty_ldisc_lock
852 static int tty_ldisc_try(struct tty_struct *tty)
855 struct tty_ldisc *ld;
858 spin_lock_irqsave(&tty_ldisc_lock, flags);
860 if (test_bit(TTY_LDISC, &tty->flags)) {
864 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
869 * tty_ldisc_ref_wait - wait for the tty ldisc
872 * Dereference the line discipline for the terminal and take a
873 * reference to it. If the line discipline is in flux then
874 * wait patiently until it changes.
876 * Note: Must not be called from an IRQ/timer context. The caller
877 * must also be careful not to hold other locks that will deadlock
878 * against a discipline change, such as an existing ldisc reference
879 * (which we check for)
881 * Locking: call functions take tty_ldisc_lock
884 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
886 /* wait_event is a macro */
887 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
888 if (tty->ldisc.refcount == 0)
889 printk(KERN_ERR "tty_ldisc_ref_wait\n");
893 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
896 * tty_ldisc_ref - get the tty ldisc
899 * Dereference the line discipline for the terminal and take a
900 * reference to it. If the line discipline is in flux then
901 * return NULL. Can be called from IRQ and timer functions.
903 * Locking: called functions take tty_ldisc_lock
906 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
908 if (tty_ldisc_try(tty))
913 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
916 * tty_ldisc_deref - free a tty ldisc reference
917 * @ld: reference to free up
919 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
920 * be called in IRQ context.
922 * Locking: takes tty_ldisc_lock
925 void tty_ldisc_deref(struct tty_ldisc *ld)
931 spin_lock_irqsave(&tty_ldisc_lock, flags);
932 if (ld->refcount == 0)
933 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
936 if (ld->refcount == 0)
937 wake_up(&tty_ldisc_wait);
938 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
941 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
944 * tty_ldisc_enable - allow ldisc use
945 * @tty: terminal to activate ldisc on
947 * Set the TTY_LDISC flag when the line discipline can be called
948 * again. Do necessary wakeups for existing sleepers.
950 * Note: nobody should set this bit except via this function. Clearing
951 * directly is allowed.
954 static void tty_ldisc_enable(struct tty_struct *tty)
956 set_bit(TTY_LDISC, &tty->flags);
957 wake_up(&tty_ldisc_wait);
961 * tty_set_ldisc - set line discipline
962 * @tty: the terminal to set
963 * @ldisc: the line discipline
965 * Set the discipline of a tty line. Must be called from a process
968 * Locking: takes tty_ldisc_lock.
969 * called functions take termios_mutex
972 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
975 struct tty_ldisc o_ldisc;
979 struct tty_ldisc *ld;
980 struct tty_struct *o_tty;
982 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
987 ld = tty_ldisc_get(ldisc);
988 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
989 /* Cyrus Durgin <cider@speakeasy.org> */
991 request_module("tty-ldisc-%d", ldisc);
992 ld = tty_ldisc_get(ldisc);
998 * Problem: What do we do if this blocks ?
1001 tty_wait_until_sent(tty, 0);
1003 if (tty->ldisc.num == ldisc) {
1004 tty_ldisc_put(ldisc);
1009 * No more input please, we are switching. The new ldisc
1010 * will update this value in the ldisc open function
1013 tty->receive_room = 0;
1015 o_ldisc = tty->ldisc;
1019 * Make sure we don't change while someone holds a
1020 * reference to the line discipline. The TTY_LDISC bit
1021 * prevents anyone taking a reference once it is clear.
1022 * We need the lock to avoid racing reference takers.
1025 spin_lock_irqsave(&tty_ldisc_lock, flags);
1026 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
1027 if (tty->ldisc.refcount) {
1028 /* Free the new ldisc we grabbed. Must drop the lock
1030 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1031 tty_ldisc_put(ldisc);
1033 * There are several reasons we may be busy, including
1034 * random momentary I/O traffic. We must therefore
1035 * retry. We could distinguish between blocking ops
1036 * and retries if we made tty_ldisc_wait() smarter.
1037 * That is up for discussion.
1039 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
1040 return -ERESTARTSYS;
1043 if (o_tty && o_tty->ldisc.refcount) {
1044 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1045 tty_ldisc_put(ldisc);
1046 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
1047 return -ERESTARTSYS;
1052 * If the TTY_LDISC bit is set, then we are racing against
1053 * another ldisc change
1055 if (!test_bit(TTY_LDISC, &tty->flags)) {
1056 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1057 tty_ldisc_put(ldisc);
1058 ld = tty_ldisc_ref_wait(tty);
1059 tty_ldisc_deref(ld);
1063 clear_bit(TTY_LDISC, &tty->flags);
1065 clear_bit(TTY_LDISC, &o_tty->flags);
1066 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1069 * From this point on we know nobody has an ldisc
1070 * usage reference, nor can they obtain one until
1071 * we say so later on.
1074 work = cancel_delayed_work(&tty->buf.work);
1076 * Wait for ->hangup_work and ->buf.work handlers to terminate
1078 flush_scheduled_work();
1079 /* Shutdown the current discipline. */
1080 if (tty->ldisc.close)
1081 (tty->ldisc.close)(tty);
1083 /* Now set up the new line discipline. */
1084 tty_ldisc_assign(tty, ld);
1085 tty_set_termios_ldisc(tty, ldisc);
1086 if (tty->ldisc.open)
1087 retval = (tty->ldisc.open)(tty);
1089 tty_ldisc_put(ldisc);
1090 /* There is an outstanding reference here so this is safe */
1091 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1092 tty_set_termios_ldisc(tty, tty->ldisc.num);
1093 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1094 tty_ldisc_put(o_ldisc.num);
1095 /* This driver is always present */
1096 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1097 tty_set_termios_ldisc(tty, N_TTY);
1098 if (tty->ldisc.open) {
1099 int r = tty->ldisc.open(tty);
1102 panic("Couldn't open N_TTY ldisc for "
1104 tty_name(tty, buf), r);
1108 /* At this point we hold a reference to the new ldisc and a
1109 a reference to the old ldisc. If we ended up flipping back
1110 to the existing ldisc we have two references to it */
1112 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1113 tty->driver->set_ldisc(tty);
1115 tty_ldisc_put(o_ldisc.num);
1118 * Allow ldisc referencing to occur as soon as the driver
1119 * ldisc callback completes.
1122 tty_ldisc_enable(tty);
1124 tty_ldisc_enable(o_tty);
1126 /* Restart it in case no characters kick it off. Safe if
1129 schedule_delayed_work(&tty->buf.work, 1);
1134 * get_tty_driver - find device of a tty
1135 * @dev_t: device identifier
1136 * @index: returns the index of the tty
1138 * This routine returns a tty driver structure, given a device number
1139 * and also passes back the index number.
1141 * Locking: caller must hold tty_mutex
1144 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1146 struct tty_driver *p;
1148 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1149 dev_t base = MKDEV(p->major, p->minor_start);
1150 if (device < base || device >= base + p->num)
1152 *index = device - base;
1159 * tty_check_change - check for POSIX terminal changes
1160 * @tty: tty to check
1162 * If we try to write to, or set the state of, a terminal and we're
1163 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1164 * ignored, go ahead and perform the operation. (POSIX 7.2)
1169 int tty_check_change(struct tty_struct *tty)
1171 if (current->signal->tty != tty)
1174 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
1177 if (task_pgrp(current) == tty->pgrp)
1179 if (is_ignored(SIGTTOU))
1181 if (is_current_pgrp_orphaned())
1183 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
1184 set_thread_flag(TIF_SIGPENDING);
1185 return -ERESTARTSYS;
1188 EXPORT_SYMBOL(tty_check_change);
1190 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
1191 size_t count, loff_t *ppos)
1196 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
1197 size_t count, loff_t *ppos)
1202 /* No kernel lock held - none needed ;) */
1203 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
1205 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1208 static int hung_up_tty_ioctl(struct inode *inode, struct file *file,
1209 unsigned int cmd, unsigned long arg)
1211 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1214 static long hung_up_tty_compat_ioctl(struct file *file,
1215 unsigned int cmd, unsigned long arg)
1217 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1220 static const struct file_operations tty_fops = {
1221 .llseek = no_llseek,
1226 .compat_ioctl = tty_compat_ioctl,
1228 .release = tty_release,
1229 .fasync = tty_fasync,
1232 #ifdef CONFIG_UNIX98_PTYS
1233 static const struct file_operations ptmx_fops = {
1234 .llseek = no_llseek,
1239 .compat_ioctl = tty_compat_ioctl,
1241 .release = tty_release,
1242 .fasync = tty_fasync,
1246 static const struct file_operations console_fops = {
1247 .llseek = no_llseek,
1249 .write = redirected_tty_write,
1252 .compat_ioctl = tty_compat_ioctl,
1254 .release = tty_release,
1255 .fasync = tty_fasync,
1258 static const struct file_operations hung_up_tty_fops = {
1259 .llseek = no_llseek,
1260 .read = hung_up_tty_read,
1261 .write = hung_up_tty_write,
1262 .poll = hung_up_tty_poll,
1263 .ioctl = hung_up_tty_ioctl,
1264 .compat_ioctl = hung_up_tty_compat_ioctl,
1265 .release = tty_release,
1268 static DEFINE_SPINLOCK(redirect_lock);
1269 static struct file *redirect;
1272 * tty_wakeup - request more data
1275 * Internal and external helper for wakeups of tty. This function
1276 * informs the line discipline if present that the driver is ready
1277 * to receive more output data.
1280 void tty_wakeup(struct tty_struct *tty)
1282 struct tty_ldisc *ld;
1284 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1285 ld = tty_ldisc_ref(tty);
1287 if (ld->write_wakeup)
1288 ld->write_wakeup(tty);
1289 tty_ldisc_deref(ld);
1292 wake_up_interruptible(&tty->write_wait);
1295 EXPORT_SYMBOL_GPL(tty_wakeup);
1298 * tty_ldisc_flush - flush line discipline queue
1301 * Flush the line discipline queue (if any) for this tty. If there
1302 * is no line discipline active this is a no-op.
1305 void tty_ldisc_flush(struct tty_struct *tty)
1307 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1309 if (ld->flush_buffer)
1310 ld->flush_buffer(tty);
1311 tty_ldisc_deref(ld);
1313 tty_buffer_flush(tty);
1316 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1319 * tty_reset_termios - reset terminal state
1320 * @tty: tty to reset
1322 * Restore a terminal to the driver default state
1325 static void tty_reset_termios(struct tty_struct *tty)
1327 mutex_lock(&tty->termios_mutex);
1328 *tty->termios = tty->driver->init_termios;
1329 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1330 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1331 mutex_unlock(&tty->termios_mutex);
1335 * do_tty_hangup - actual handler for hangup events
1338 * This can be called by the "eventd" kernel thread. That is process
1339 * synchronous but doesn't hold any locks, so we need to make sure we
1340 * have the appropriate locks for what we're doing.
1342 * The hangup event clears any pending redirections onto the hung up
1343 * device. It ensures future writes will error and it does the needed
1344 * line discipline hangup and signal delivery. The tty object itself
1349 * redirect lock for undoing redirection
1350 * file list lock for manipulating list of ttys
1351 * tty_ldisc_lock from called functions
1352 * termios_mutex resetting termios data
1353 * tasklist_lock to walk task list for hangup event
1354 * ->siglock to protect ->signal/->sighand
1356 static void do_tty_hangup(struct work_struct *work)
1358 struct tty_struct *tty =
1359 container_of(work, struct tty_struct, hangup_work);
1360 struct file *cons_filp = NULL;
1361 struct file *filp, *f = NULL;
1362 struct task_struct *p;
1363 struct tty_ldisc *ld;
1364 int closecount = 0, n;
1369 /* inuse_filps is protected by the single kernel lock */
1372 spin_lock(&redirect_lock);
1373 if (redirect && redirect->private_data == tty) {
1377 spin_unlock(&redirect_lock);
1379 check_tty_count(tty, "do_tty_hangup");
1381 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1382 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1383 if (filp->f_op->write == redirected_tty_write)
1385 if (filp->f_op->write != tty_write)
1388 tty_fasync(-1, filp, 0); /* can't block */
1389 filp->f_op = &hung_up_tty_fops;
1393 * FIXME! What are the locking issues here? This may me overdoing
1394 * things... This question is especially important now that we've
1395 * removed the irqlock.
1397 ld = tty_ldisc_ref(tty);
1399 /* We may have no line discipline at this point */
1400 if (ld->flush_buffer)
1401 ld->flush_buffer(tty);
1402 if (tty->driver->flush_buffer)
1403 tty->driver->flush_buffer(tty);
1404 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1406 ld->write_wakeup(tty);
1411 * FIXME: Once we trust the LDISC code better we can wait here for
1412 * ldisc completion and fix the driver call race
1414 wake_up_interruptible(&tty->write_wait);
1415 wake_up_interruptible(&tty->read_wait);
1417 * Shutdown the current line discipline, and reset it to
1420 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1421 tty_reset_termios(tty);
1422 /* Defer ldisc switch */
1423 /* tty_deferred_ldisc_switch(N_TTY);
1425 This should get done automatically when the port closes and
1426 tty_release is called */
1428 read_lock(&tasklist_lock);
1430 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
1431 spin_lock_irq(&p->sighand->siglock);
1432 if (p->signal->tty == tty)
1433 p->signal->tty = NULL;
1434 if (!p->signal->leader) {
1435 spin_unlock_irq(&p->sighand->siglock);
1438 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1439 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1440 put_pid(p->signal->tty_old_pgrp); /* A noop */
1442 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
1443 spin_unlock_irq(&p->sighand->siglock);
1444 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
1446 read_unlock(&tasklist_lock);
1449 put_pid(tty->session);
1451 tty->session = NULL;
1453 tty->ctrl_status = 0;
1455 * If one of the devices matches a console pointer, we
1456 * cannot just call hangup() because that will cause
1457 * tty->count and state->count to go out of sync.
1458 * So we just call close() the right number of times.
1461 if (tty->driver->close)
1462 for (n = 0; n < closecount; n++)
1463 tty->driver->close(tty, cons_filp);
1464 } else if (tty->driver->hangup)
1465 (tty->driver->hangup)(tty);
1467 * We don't want to have driver/ldisc interactions beyond
1468 * the ones we did here. The driver layer expects no
1469 * calls after ->hangup() from the ldisc side. However we
1470 * can't yet guarantee all that.
1472 set_bit(TTY_HUPPED, &tty->flags);
1474 tty_ldisc_enable(tty);
1475 tty_ldisc_deref(ld);
1483 * tty_hangup - trigger a hangup event
1484 * @tty: tty to hangup
1486 * A carrier loss (virtual or otherwise) has occurred on this like
1487 * schedule a hangup sequence to run after this event.
1490 void tty_hangup(struct tty_struct *tty)
1492 #ifdef TTY_DEBUG_HANGUP
1494 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1496 schedule_work(&tty->hangup_work);
1499 EXPORT_SYMBOL(tty_hangup);
1502 * tty_vhangup - process vhangup
1503 * @tty: tty to hangup
1505 * The user has asked via system call for the terminal to be hung up.
1506 * We do this synchronously so that when the syscall returns the process
1507 * is complete. That guarantee is necessary for security reasons.
1510 void tty_vhangup(struct tty_struct *tty)
1512 #ifdef TTY_DEBUG_HANGUP
1515 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1517 do_tty_hangup(&tty->hangup_work);
1520 EXPORT_SYMBOL(tty_vhangup);
1523 * tty_hung_up_p - was tty hung up
1524 * @filp: file pointer of tty
1526 * Return true if the tty has been subject to a vhangup or a carrier
1530 int tty_hung_up_p(struct file *filp)
1532 return (filp->f_op == &hung_up_tty_fops);
1535 EXPORT_SYMBOL(tty_hung_up_p);
1538 * is_tty - checker whether file is a TTY
1539 * @filp: file handle that may be a tty
1541 * Check if the file handle is a tty handle.
1544 int is_tty(struct file *filp)
1546 return filp->f_op->read == tty_read
1547 || filp->f_op->read == hung_up_tty_read;
1550 static void session_clear_tty(struct pid *session)
1552 struct task_struct *p;
1553 do_each_pid_task(session, PIDTYPE_SID, p) {
1555 } while_each_pid_task(session, PIDTYPE_SID, p);
1559 * disassociate_ctty - disconnect controlling tty
1560 * @on_exit: true if exiting so need to "hang up" the session
1562 * This function is typically called only by the session leader, when
1563 * it wants to disassociate itself from its controlling tty.
1565 * It performs the following functions:
1566 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1567 * (2) Clears the tty from being controlling the session
1568 * (3) Clears the controlling tty for all processes in the
1571 * The argument on_exit is set to 1 if called when a process is
1572 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1575 * BKL is taken for hysterical raisins
1576 * tty_mutex is taken to protect tty
1577 * ->siglock is taken to protect ->signal/->sighand
1578 * tasklist_lock is taken to walk process list for sessions
1579 * ->siglock is taken to protect ->signal/->sighand
1582 void disassociate_ctty(int on_exit)
1584 struct tty_struct *tty;
1585 struct pid *tty_pgrp = NULL;
1589 mutex_lock(&tty_mutex);
1590 tty = get_current_tty();
1592 tty_pgrp = get_pid(tty->pgrp);
1593 mutex_unlock(&tty_mutex);
1594 /* XXX: here we race, there is nothing protecting tty */
1595 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1597 } else if (on_exit) {
1598 struct pid *old_pgrp;
1599 spin_lock_irq(¤t->sighand->siglock);
1600 old_pgrp = current->signal->tty_old_pgrp;
1601 current->signal->tty_old_pgrp = NULL;
1602 spin_unlock_irq(¤t->sighand->siglock);
1604 kill_pgrp(old_pgrp, SIGHUP, on_exit);
1605 kill_pgrp(old_pgrp, SIGCONT, on_exit);
1608 mutex_unlock(&tty_mutex);
1613 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
1615 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
1619 spin_lock_irq(¤t->sighand->siglock);
1620 put_pid(current->signal->tty_old_pgrp);
1621 current->signal->tty_old_pgrp = NULL;
1622 spin_unlock_irq(¤t->sighand->siglock);
1624 mutex_lock(&tty_mutex);
1625 /* It is possible that do_tty_hangup has free'd this tty */
1626 tty = get_current_tty();
1628 put_pid(tty->session);
1630 tty->session = NULL;
1633 #ifdef TTY_DEBUG_HANGUP
1634 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1638 mutex_unlock(&tty_mutex);
1640 /* Now clear signal->tty under the lock */
1641 read_lock(&tasklist_lock);
1642 session_clear_tty(task_session(current));
1643 read_unlock(&tasklist_lock);
1649 * no_tty - Ensure the current process does not have a controlling tty
1653 struct task_struct *tsk = current;
1654 if (tsk->signal->leader)
1655 disassociate_ctty(0);
1656 proc_clear_tty(tsk);
1661 * stop_tty - propagate flow control
1664 * Perform flow control to the driver. For PTY/TTY pairs we
1665 * must also propagate the TIOCKPKT status. May be called
1666 * on an already stopped device and will not re-call the driver
1669 * This functionality is used by both the line disciplines for
1670 * halting incoming flow and by the driver. It may therefore be
1671 * called from any context, may be under the tty atomic_write_lock
1675 * Broken. Relies on BKL which is unsafe here.
1678 void stop_tty(struct tty_struct *tty)
1683 if (tty->link && tty->link->packet) {
1684 tty->ctrl_status &= ~TIOCPKT_START;
1685 tty->ctrl_status |= TIOCPKT_STOP;
1686 wake_up_interruptible(&tty->link->read_wait);
1688 if (tty->driver->stop)
1689 (tty->driver->stop)(tty);
1692 EXPORT_SYMBOL(stop_tty);
1695 * start_tty - propagate flow control
1696 * @tty: tty to start
1698 * Start a tty that has been stopped if at all possible. Perform
1699 * any necessary wakeups and propagate the TIOCPKT status. If this
1700 * is the tty was previous stopped and is being started then the
1701 * driver start method is invoked and the line discipline woken.
1704 * Broken. Relies on BKL which is unsafe here.
1707 void start_tty(struct tty_struct *tty)
1709 if (!tty->stopped || tty->flow_stopped)
1712 if (tty->link && tty->link->packet) {
1713 tty->ctrl_status &= ~TIOCPKT_STOP;
1714 tty->ctrl_status |= TIOCPKT_START;
1715 wake_up_interruptible(&tty->link->read_wait);
1717 if (tty->driver->start)
1718 (tty->driver->start)(tty);
1719 /* If we have a running line discipline it may need kicking */
1723 EXPORT_SYMBOL(start_tty);
1726 * tty_read - read method for tty device files
1727 * @file: pointer to tty file
1729 * @count: size of user buffer
1732 * Perform the read system call function on this terminal device. Checks
1733 * for hung up devices before calling the line discipline method.
1736 * Locks the line discipline internally while needed
1737 * For historical reasons the line discipline read method is
1738 * invoked under the BKL. This will go away in time so do not rely on it
1739 * in new code. Multiple read calls may be outstanding in parallel.
1742 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1746 struct tty_struct *tty;
1747 struct inode *inode;
1748 struct tty_ldisc *ld;
1750 tty = (struct tty_struct *)file->private_data;
1751 inode = file->f_path.dentry->d_inode;
1752 if (tty_paranoia_check(tty, inode, "tty_read"))
1754 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1757 /* We want to wait for the line discipline to sort out in this
1759 ld = tty_ldisc_ref_wait(tty);
1762 i = (ld->read)(tty, file, buf, count);
1765 tty_ldisc_deref(ld);
1768 inode->i_atime = current_fs_time(inode->i_sb);
1772 void tty_write_unlock(struct tty_struct *tty)
1774 mutex_unlock(&tty->atomic_write_lock);
1775 wake_up_interruptible(&tty->write_wait);
1778 int tty_write_lock(struct tty_struct *tty, int ndelay)
1780 if (!mutex_trylock(&tty->atomic_write_lock)) {
1783 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1784 return -ERESTARTSYS;
1790 * Split writes up in sane blocksizes to avoid
1791 * denial-of-service type attacks
1793 static inline ssize_t do_tty_write(
1794 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1795 struct tty_struct *tty,
1797 const char __user *buf,
1800 ssize_t ret, written = 0;
1803 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1808 * We chunk up writes into a temporary buffer. This
1809 * simplifies low-level drivers immensely, since they
1810 * don't have locking issues and user mode accesses.
1812 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1815 * The default chunk-size is 2kB, because the NTTY
1816 * layer has problems with bigger chunks. It will
1817 * claim to be able to handle more characters than
1820 * FIXME: This can probably go away now except that 64K chunks
1821 * are too likely to fail unless switched to vmalloc...
1824 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1829 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1830 if (tty->write_cnt < chunk) {
1836 buf = kmalloc(chunk, GFP_KERNEL);
1841 kfree(tty->write_buf);
1842 tty->write_cnt = chunk;
1843 tty->write_buf = buf;
1846 /* Do the write .. */
1848 size_t size = count;
1852 if (copy_from_user(tty->write_buf, buf, size))
1855 ret = write(tty, file, tty->write_buf, size);
1865 if (signal_pending(current))
1870 struct inode *inode = file->f_path.dentry->d_inode;
1871 inode->i_mtime = current_fs_time(inode->i_sb);
1875 tty_write_unlock(tty);
1881 * tty_write - write method for tty device file
1882 * @file: tty file pointer
1883 * @buf: user data to write
1884 * @count: bytes to write
1887 * Write data to a tty device via the line discipline.
1890 * Locks the line discipline as required
1891 * Writes to the tty driver are serialized by the atomic_write_lock
1892 * and are then processed in chunks to the device. The line discipline
1893 * write method will not be involked in parallel for each device
1894 * The line discipline write method is called under the big
1895 * kernel lock for historical reasons. New code should not rely on this.
1898 static ssize_t tty_write(struct file *file, const char __user *buf,
1899 size_t count, loff_t *ppos)
1901 struct tty_struct *tty;
1902 struct inode *inode = file->f_path.dentry->d_inode;
1904 struct tty_ldisc *ld;
1906 tty = (struct tty_struct *)file->private_data;
1907 if (tty_paranoia_check(tty, inode, "tty_write"))
1909 if (!tty || !tty->driver->write ||
1910 (test_bit(TTY_IO_ERROR, &tty->flags)))
1913 ld = tty_ldisc_ref_wait(tty);
1917 ret = do_tty_write(ld->write, tty, file, buf, count);
1918 tty_ldisc_deref(ld);
1922 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1923 size_t count, loff_t *ppos)
1925 struct file *p = NULL;
1927 spin_lock(&redirect_lock);
1932 spin_unlock(&redirect_lock);
1936 res = vfs_write(p, buf, count, &p->f_pos);
1940 return tty_write(file, buf, count, ppos);
1943 static char ptychar[] = "pqrstuvwxyzabcde";
1946 * pty_line_name - generate name for a pty
1947 * @driver: the tty driver in use
1948 * @index: the minor number
1949 * @p: output buffer of at least 6 bytes
1951 * Generate a name from a driver reference and write it to the output
1956 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1958 int i = index + driver->name_base;
1959 /* ->name is initialized to "ttyp", but "tty" is expected */
1960 sprintf(p, "%s%c%x",
1961 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1962 ptychar[i >> 4 & 0xf], i & 0xf);
1966 * pty_line_name - generate name for a tty
1967 * @driver: the tty driver in use
1968 * @index: the minor number
1969 * @p: output buffer of at least 7 bytes
1971 * Generate a name from a driver reference and write it to the output
1976 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1978 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1982 * init_dev - initialise a tty device
1983 * @driver: tty driver we are opening a device on
1984 * @idx: device index
1985 * @tty: returned tty structure
1987 * Prepare a tty device. This may not be a "new" clean device but
1988 * could also be an active device. The pty drivers require special
1989 * handling because of this.
1992 * The function is called under the tty_mutex, which
1993 * protects us from the tty struct or driver itself going away.
1995 * On exit the tty device has the line discipline attached and
1996 * a reference count of 1. If a pair was created for pty/tty use
1997 * and the other was a pty master then it too has a reference count of 1.
1999 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
2000 * failed open. The new code protects the open with a mutex, so it's
2001 * really quite straightforward. The mutex locking can probably be
2002 * relaxed for the (most common) case of reopening a tty.
2005 static int init_dev(struct tty_driver *driver, int idx,
2006 struct tty_struct **ret_tty)
2008 struct tty_struct *tty, *o_tty;
2009 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
2010 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
2013 /* check whether we're reopening an existing tty */
2014 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2015 tty = devpts_get_tty(idx);
2017 * If we don't have a tty here on a slave open, it's because
2018 * the master already started the close process and there's
2019 * no relation between devpts file and tty anymore.
2021 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
2026 * It's safe from now on because init_dev() is called with
2027 * tty_mutex held and release_dev() won't change tty->count
2028 * or tty->flags without having to grab tty_mutex
2030 if (tty && driver->subtype == PTY_TYPE_MASTER)
2033 tty = driver->ttys[idx];
2035 if (tty) goto fast_track;
2038 * First time open is complex, especially for PTY devices.
2039 * This code guarantees that either everything succeeds and the
2040 * TTY is ready for operation, or else the table slots are vacated
2041 * and the allocated memory released. (Except that the termios
2042 * and locked termios may be retained.)
2045 if (!try_module_get(driver->owner)) {
2054 tty = alloc_tty_struct();
2057 initialize_tty_struct(tty);
2058 tty->driver = driver;
2060 tty_line_name(driver, idx, tty->name);
2062 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2063 tp_loc = &tty->termios;
2064 ltp_loc = &tty->termios_locked;
2066 tp_loc = &driver->termios[idx];
2067 ltp_loc = &driver->termios_locked[idx];
2071 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2074 *tp = driver->init_termios;
2078 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
2083 if (driver->type == TTY_DRIVER_TYPE_PTY) {
2084 o_tty = alloc_tty_struct();
2087 initialize_tty_struct(o_tty);
2088 o_tty->driver = driver->other;
2090 tty_line_name(driver->other, idx, o_tty->name);
2092 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2093 o_tp_loc = &o_tty->termios;
2094 o_ltp_loc = &o_tty->termios_locked;
2096 o_tp_loc = &driver->other->termios[idx];
2097 o_ltp_loc = &driver->other->termios_locked[idx];
2101 o_tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2104 *o_tp = driver->other->init_termios;
2108 o_ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
2114 * Everything allocated ... set up the o_tty structure.
2116 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM))
2117 driver->other->ttys[idx] = o_tty;
2122 o_tty->termios = *o_tp_loc;
2123 o_tty->termios_locked = *o_ltp_loc;
2124 driver->other->refcount++;
2125 if (driver->subtype == PTY_TYPE_MASTER)
2128 /* Establish the links in both directions */
2134 * All structures have been allocated, so now we install them.
2135 * Failures after this point use release_tty to clean up, so
2136 * there's no need to null out the local pointers.
2138 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM))
2139 driver->ttys[idx] = tty;
2145 tty->termios = *tp_loc;
2146 tty->termios_locked = *ltp_loc;
2147 /* Compatibility until drivers always set this */
2148 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2149 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2154 * Structures all installed ... call the ldisc open routines.
2155 * If we fail here just call release_tty to clean up. No need
2156 * to decrement the use counts, as release_tty doesn't care.
2159 if (tty->ldisc.open) {
2160 retval = (tty->ldisc.open)(tty);
2162 goto release_mem_out;
2164 if (o_tty && o_tty->ldisc.open) {
2165 retval = (o_tty->ldisc.open)(o_tty);
2167 if (tty->ldisc.close)
2168 (tty->ldisc.close)(tty);
2169 goto release_mem_out;
2171 tty_ldisc_enable(o_tty);
2173 tty_ldisc_enable(tty);
2177 * This fast open can be used if the tty is already open.
2178 * No memory is allocated, and the only failures are from
2179 * attempting to open a closing tty or attempting multiple
2180 * opens on a pty master.
2183 if (test_bit(TTY_CLOSING, &tty->flags)) {
2187 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2188 driver->subtype == PTY_TYPE_MASTER) {
2190 * special case for PTY masters: only one open permitted,
2191 * and the slave side open count is incremented as well.
2200 tty->driver = driver; /* N.B. why do this every time?? */
2203 if (!test_bit(TTY_LDISC, &tty->flags))
2204 printk(KERN_ERR "init_dev but no ldisc\n");
2208 /* All paths come through here to release the mutex */
2212 /* Release locally allocated memory ... nothing placed in slots */
2216 free_tty_struct(o_tty);
2219 free_tty_struct(tty);
2222 module_put(driver->owner);
2226 /* call the tty release_tty routine to clean out this slot */
2228 if (printk_ratelimit())
2229 printk(KERN_INFO "init_dev: ldisc open failed, "
2230 "clearing slot %d\n", idx);
2231 release_tty(tty, idx);
2236 * release_one_tty - release tty structure memory
2238 * Releases memory associated with a tty structure, and clears out the
2239 * driver table slots. This function is called when a device is no longer
2240 * in use. It also gets called when setup of a device fails.
2243 * tty_mutex - sometimes only
2244 * takes the file list lock internally when working on the list
2245 * of ttys that the driver keeps.
2246 * FIXME: should we require tty_mutex is held here ??
2248 static void release_one_tty(struct tty_struct *tty, int idx)
2250 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2251 struct ktermios *tp;
2254 tty->driver->ttys[idx] = NULL;
2256 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2259 tty->driver->termios[idx] = NULL;
2262 tp = tty->termios_locked;
2264 tty->driver->termios_locked[idx] = NULL;
2270 tty->driver->refcount--;
2273 list_del_init(&tty->tty_files);
2276 free_tty_struct(tty);
2280 * release_tty - release tty structure memory
2282 * Release both @tty and a possible linked partner (think pty pair),
2283 * and decrement the refcount of the backing module.
2286 * tty_mutex - sometimes only
2287 * takes the file list lock internally when working on the list
2288 * of ttys that the driver keeps.
2289 * FIXME: should we require tty_mutex is held here ??
2291 static void release_tty(struct tty_struct *tty, int idx)
2293 struct tty_driver *driver = tty->driver;
2296 release_one_tty(tty->link, idx);
2297 release_one_tty(tty, idx);
2298 module_put(driver->owner);
2302 * Even releasing the tty structures is a tricky business.. We have
2303 * to be very careful that the structures are all released at the
2304 * same time, as interrupts might otherwise get the wrong pointers.
2306 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2307 * lead to double frees or releasing memory still in use.
2309 static void release_dev(struct file *filp)
2311 struct tty_struct *tty, *o_tty;
2312 int pty_master, tty_closing, o_tty_closing, do_sleep;
2316 unsigned long flags;
2318 tty = (struct tty_struct *)filp->private_data;
2319 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode,
2323 check_tty_count(tty, "release_dev");
2325 tty_fasync(-1, filp, 0);
2328 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2329 tty->driver->subtype == PTY_TYPE_MASTER);
2330 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2333 #ifdef TTY_PARANOIA_CHECK
2334 if (idx < 0 || idx >= tty->driver->num) {
2335 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2336 "free (%s)\n", tty->name);
2339 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2340 if (tty != tty->driver->ttys[idx]) {
2341 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2342 "for (%s)\n", idx, tty->name);
2345 if (tty->termios != tty->driver->termios[idx]) {
2346 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2351 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2352 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2353 "termios_locked for (%s)\n",
2360 #ifdef TTY_DEBUG_HANGUP
2361 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2362 tty_name(tty, buf), tty->count);
2365 #ifdef TTY_PARANOIA_CHECK
2366 if (tty->driver->other &&
2367 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2368 if (o_tty != tty->driver->other->ttys[idx]) {
2369 printk(KERN_DEBUG "release_dev: other->table[%d] "
2370 "not o_tty for (%s)\n",
2374 if (o_tty->termios != tty->driver->other->termios[idx]) {
2375 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2376 "not o_termios for (%s)\n",
2380 if (o_tty->termios_locked !=
2381 tty->driver->other->termios_locked[idx]) {
2382 printk(KERN_DEBUG "release_dev: other->termios_locked["
2383 "%d] not o_termios_locked for (%s)\n",
2387 if (o_tty->link != tty) {
2388 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2393 if (tty->driver->close)
2394 tty->driver->close(tty, filp);
2397 * Sanity check: if tty->count is going to zero, there shouldn't be
2398 * any waiters on tty->read_wait or tty->write_wait. We test the
2399 * wait queues and kick everyone out _before_ actually starting to
2400 * close. This ensures that we won't block while releasing the tty
2403 * The test for the o_tty closing is necessary, since the master and
2404 * slave sides may close in any order. If the slave side closes out
2405 * first, its count will be one, since the master side holds an open.
2406 * Thus this test wouldn't be triggered at the time the slave closes,
2409 * Note that it's possible for the tty to be opened again while we're
2410 * flushing out waiters. By recalculating the closing flags before
2411 * each iteration we avoid any problems.
2414 /* Guard against races with tty->count changes elsewhere and
2415 opens on /dev/tty */
2417 mutex_lock(&tty_mutex);
2418 tty_closing = tty->count <= 1;
2419 o_tty_closing = o_tty &&
2420 (o_tty->count <= (pty_master ? 1 : 0));
2424 if (waitqueue_active(&tty->read_wait)) {
2425 wake_up(&tty->read_wait);
2428 if (waitqueue_active(&tty->write_wait)) {
2429 wake_up(&tty->write_wait);
2433 if (o_tty_closing) {
2434 if (waitqueue_active(&o_tty->read_wait)) {
2435 wake_up(&o_tty->read_wait);
2438 if (waitqueue_active(&o_tty->write_wait)) {
2439 wake_up(&o_tty->write_wait);
2446 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2447 "active!\n", tty_name(tty, buf));
2448 mutex_unlock(&tty_mutex);
2453 * The closing flags are now consistent with the open counts on
2454 * both sides, and we've completed the last operation that could
2455 * block, so it's safe to proceed with closing.
2458 if (--o_tty->count < 0) {
2459 printk(KERN_WARNING "release_dev: bad pty slave count "
2461 o_tty->count, tty_name(o_tty, buf));
2465 if (--tty->count < 0) {
2466 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2467 tty->count, tty_name(tty, buf));
2472 * We've decremented tty->count, so we need to remove this file
2473 * descriptor off the tty->tty_files list; this serves two
2475 * - check_tty_count sees the correct number of file descriptors
2476 * associated with this tty.
2477 * - do_tty_hangup no longer sees this file descriptor as
2478 * something that needs to be handled for hangups.
2481 filp->private_data = NULL;
2484 * Perform some housekeeping before deciding whether to return.
2486 * Set the TTY_CLOSING flag if this was the last open. In the
2487 * case of a pty we may have to wait around for the other side
2488 * to close, and TTY_CLOSING makes sure we can't be reopened.
2491 set_bit(TTY_CLOSING, &tty->flags);
2493 set_bit(TTY_CLOSING, &o_tty->flags);
2496 * If _either_ side is closing, make sure there aren't any
2497 * processes that still think tty or o_tty is their controlling
2500 if (tty_closing || o_tty_closing) {
2501 read_lock(&tasklist_lock);
2502 session_clear_tty(tty->session);
2504 session_clear_tty(o_tty->session);
2505 read_unlock(&tasklist_lock);
2508 mutex_unlock(&tty_mutex);
2510 /* check whether both sides are closing ... */
2511 if (!tty_closing || (o_tty && !o_tty_closing))
2514 #ifdef TTY_DEBUG_HANGUP
2515 printk(KERN_DEBUG "freeing tty structure...");
2518 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2519 * kill any delayed work. As this is the final close it does not
2520 * race with the set_ldisc code path.
2522 clear_bit(TTY_LDISC, &tty->flags);
2523 cancel_delayed_work(&tty->buf.work);
2526 * Wait for ->hangup_work and ->buf.work handlers to terminate
2529 flush_scheduled_work();
2532 * Wait for any short term users (we know they are just driver
2533 * side waiters as the file is closing so user count on the file
2536 spin_lock_irqsave(&tty_ldisc_lock, flags);
2537 while (tty->ldisc.refcount) {
2538 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2539 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2540 spin_lock_irqsave(&tty_ldisc_lock, flags);
2542 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2544 * Shutdown the current line discipline, and reset it to N_TTY.
2545 * N.B. why reset ldisc when we're releasing the memory??
2547 * FIXME: this MUST get fixed for the new reflocking
2549 if (tty->ldisc.close)
2550 (tty->ldisc.close)(tty);
2551 tty_ldisc_put(tty->ldisc.num);
2554 * Switch the line discipline back
2556 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2557 tty_set_termios_ldisc(tty, N_TTY);
2559 /* FIXME: could o_tty be in setldisc here ? */
2560 clear_bit(TTY_LDISC, &o_tty->flags);
2561 if (o_tty->ldisc.close)
2562 (o_tty->ldisc.close)(o_tty);
2563 tty_ldisc_put(o_tty->ldisc.num);
2564 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2565 tty_set_termios_ldisc(o_tty, N_TTY);
2568 * The release_tty function takes care of the details of clearing
2569 * the slots and preserving the termios structure.
2571 release_tty(tty, idx);
2573 #ifdef CONFIG_UNIX98_PTYS
2574 /* Make this pty number available for reallocation */
2576 mutex_lock(&allocated_ptys_lock);
2577 idr_remove(&allocated_ptys, idx);
2578 mutex_unlock(&allocated_ptys_lock);
2585 * tty_open - open a tty device
2586 * @inode: inode of device file
2587 * @filp: file pointer to tty
2589 * tty_open and tty_release keep up the tty count that contains the
2590 * number of opens done on a tty. We cannot use the inode-count, as
2591 * different inodes might point to the same tty.
2593 * Open-counting is needed for pty masters, as well as for keeping
2594 * track of serial lines: DTR is dropped when the last close happens.
2595 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2597 * The termios state of a pty is reset on first open so that
2598 * settings don't persist across reuse.
2600 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2601 * tty->count should protect the rest.
2602 * ->siglock protects ->signal/->sighand
2605 static int tty_open(struct inode *inode, struct file *filp)
2607 struct tty_struct *tty;
2609 struct tty_driver *driver;
2611 dev_t device = inode->i_rdev;
2612 unsigned short saved_flags = filp->f_flags;
2614 nonseekable_open(inode, filp);
2617 noctty = filp->f_flags & O_NOCTTY;
2621 mutex_lock(&tty_mutex);
2623 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
2624 tty = get_current_tty();
2626 mutex_unlock(&tty_mutex);
2629 driver = tty->driver;
2631 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2636 if (device == MKDEV(TTY_MAJOR, 0)) {
2637 extern struct tty_driver *console_driver;
2638 driver = console_driver;
2644 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
2645 driver = console_device(&index);
2647 /* Don't let /dev/console block */
2648 filp->f_flags |= O_NONBLOCK;
2652 mutex_unlock(&tty_mutex);
2656 driver = get_tty_driver(device, &index);
2658 mutex_unlock(&tty_mutex);
2662 retval = init_dev(driver, index, &tty);
2663 mutex_unlock(&tty_mutex);
2667 filp->private_data = tty;
2668 file_move(filp, &tty->tty_files);
2669 check_tty_count(tty, "tty_open");
2670 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2671 tty->driver->subtype == PTY_TYPE_MASTER)
2673 #ifdef TTY_DEBUG_HANGUP
2674 printk(KERN_DEBUG "opening %s...", tty->name);
2677 if (tty->driver->open)
2678 retval = tty->driver->open(tty, filp);
2682 filp->f_flags = saved_flags;
2684 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2685 !capable(CAP_SYS_ADMIN))
2689 #ifdef TTY_DEBUG_HANGUP
2690 printk(KERN_DEBUG "error %d in opening %s...", retval,
2694 if (retval != -ERESTARTSYS)
2696 if (signal_pending(current))
2700 * Need to reset f_op in case a hangup happened.
2702 if (filp->f_op == &hung_up_tty_fops)
2703 filp->f_op = &tty_fops;
2707 mutex_lock(&tty_mutex);
2708 spin_lock_irq(¤t->sighand->siglock);
2710 current->signal->leader &&
2711 !current->signal->tty &&
2712 tty->session == NULL)
2713 __proc_set_tty(current, tty);
2714 spin_unlock_irq(¤t->sighand->siglock);
2715 mutex_unlock(&tty_mutex);
2716 tty_audit_opening();
2720 #ifdef CONFIG_UNIX98_PTYS
2722 * ptmx_open - open a unix 98 pty master
2723 * @inode: inode of device file
2724 * @filp: file pointer to tty
2726 * Allocate a unix98 pty master device from the ptmx driver.
2728 * Locking: tty_mutex protects theinit_dev work. tty->count should
2730 * allocated_ptys_lock handles the list of free pty numbers
2733 static int ptmx_open(struct inode *inode, struct file *filp)
2735 struct tty_struct *tty;
2740 nonseekable_open(inode, filp);
2742 /* find a device that is not in use. */
2743 mutex_lock(&allocated_ptys_lock);
2744 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2745 mutex_unlock(&allocated_ptys_lock);
2748 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2750 mutex_unlock(&allocated_ptys_lock);
2751 if (idr_ret == -EAGAIN)
2755 if (index >= pty_limit) {
2756 idr_remove(&allocated_ptys, index);
2757 mutex_unlock(&allocated_ptys_lock);
2760 mutex_unlock(&allocated_ptys_lock);
2762 mutex_lock(&tty_mutex);
2763 retval = init_dev(ptm_driver, index, &tty);
2764 mutex_unlock(&tty_mutex);
2769 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2770 filp->private_data = tty;
2771 file_move(filp, &tty->tty_files);
2774 if (devpts_pty_new(tty->link))
2777 check_tty_count(tty, "tty_open");
2778 retval = ptm_driver->open(tty, filp);
2780 tty_audit_opening();
2787 mutex_lock(&allocated_ptys_lock);
2788 idr_remove(&allocated_ptys, index);
2789 mutex_unlock(&allocated_ptys_lock);
2795 * tty_release - vfs callback for close
2796 * @inode: inode of tty
2797 * @filp: file pointer for handle to tty
2799 * Called the last time each file handle is closed that references
2800 * this tty. There may however be several such references.
2803 * Takes bkl. See release_dev
2806 static int tty_release(struct inode *inode, struct file *filp)
2815 * tty_poll - check tty status
2816 * @filp: file being polled
2817 * @wait: poll wait structures to update
2819 * Call the line discipline polling method to obtain the poll
2820 * status of the device.
2822 * Locking: locks called line discipline but ldisc poll method
2823 * may be re-entered freely by other callers.
2826 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2828 struct tty_struct *tty;
2829 struct tty_ldisc *ld;
2832 tty = (struct tty_struct *)filp->private_data;
2833 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2836 ld = tty_ldisc_ref_wait(tty);
2838 ret = (ld->poll)(tty, filp, wait);
2839 tty_ldisc_deref(ld);
2843 static int tty_fasync(int fd, struct file *filp, int on)
2845 struct tty_struct *tty;
2848 tty = (struct tty_struct *)filp->private_data;
2849 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2852 retval = fasync_helper(fd, filp, on, &tty->fasync);
2859 if (!waitqueue_active(&tty->read_wait))
2860 tty->minimum_to_wake = 1;
2863 type = PIDTYPE_PGID;
2865 pid = task_pid(current);
2868 retval = __f_setown(filp, pid, type, 0);
2872 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2873 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2879 * tiocsti - fake input character
2880 * @tty: tty to fake input into
2881 * @p: pointer to character
2883 * Fake input to a tty device. Does the necessary locking and
2886 * FIXME: does not honour flow control ??
2889 * Called functions take tty_ldisc_lock
2890 * current->signal->tty check is safe without locks
2892 * FIXME: may race normal receive processing
2895 static int tiocsti(struct tty_struct *tty, char __user *p)
2898 struct tty_ldisc *ld;
2900 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2902 if (get_user(ch, p))
2904 ld = tty_ldisc_ref_wait(tty);
2905 ld->receive_buf(tty, &ch, &mbz, 1);
2906 tty_ldisc_deref(ld);
2911 * tiocgwinsz - implement window query ioctl
2913 * @arg: user buffer for result
2915 * Copies the kernel idea of the window size into the user buffer.
2917 * Locking: tty->termios_mutex is taken to ensure the winsize data
2921 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2925 mutex_lock(&tty->termios_mutex);
2926 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2927 mutex_unlock(&tty->termios_mutex);
2929 return err ? -EFAULT: 0;
2933 * tiocswinsz - implement window size set ioctl
2935 * @arg: user buffer for result
2937 * Copies the user idea of the window size to the kernel. Traditionally
2938 * this is just advisory information but for the Linux console it
2939 * actually has driver level meaning and triggers a VC resize.
2942 * Called function use the console_sem is used to ensure we do
2943 * not try and resize the console twice at once.
2944 * The tty->termios_mutex is used to ensure we don't double
2945 * resize and get confused. Lock order - tty->termios_mutex before
2949 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2950 struct winsize __user *arg)
2952 struct winsize tmp_ws;
2954 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2957 mutex_lock(&tty->termios_mutex);
2958 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2962 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2963 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2965 mutex_unlock(&tty->termios_mutex);
2971 kill_pgrp(tty->pgrp, SIGWINCH, 1);
2972 if ((real_tty->pgrp != tty->pgrp) && real_tty->pgrp)
2973 kill_pgrp(real_tty->pgrp, SIGWINCH, 1);
2974 tty->winsize = tmp_ws;
2975 real_tty->winsize = tmp_ws;
2977 mutex_unlock(&tty->termios_mutex);
2982 * tioccons - allow admin to move logical console
2983 * @file: the file to become console
2985 * Allow the adminstrator to move the redirected console device
2987 * Locking: uses redirect_lock to guard the redirect information
2990 static int tioccons(struct file *file)
2992 if (!capable(CAP_SYS_ADMIN))
2994 if (file->f_op->write == redirected_tty_write) {
2996 spin_lock(&redirect_lock);
2999 spin_unlock(&redirect_lock);
3004 spin_lock(&redirect_lock);
3006 spin_unlock(&redirect_lock);
3011 spin_unlock(&redirect_lock);
3016 * fionbio - non blocking ioctl
3017 * @file: file to set blocking value
3018 * @p: user parameter
3020 * Historical tty interfaces had a blocking control ioctl before
3021 * the generic functionality existed. This piece of history is preserved
3022 * in the expected tty API of posix OS's.
3024 * Locking: none, the open fle handle ensures it won't go away.
3027 static int fionbio(struct file *file, int __user *p)
3031 if (get_user(nonblock, p))
3035 file->f_flags |= O_NONBLOCK;
3037 file->f_flags &= ~O_NONBLOCK;
3042 * tiocsctty - set controlling tty
3043 * @tty: tty structure
3044 * @arg: user argument
3046 * This ioctl is used to manage job control. It permits a session
3047 * leader to set this tty as the controlling tty for the session.
3050 * Takes tty_mutex() to protect tty instance
3051 * Takes tasklist_lock internally to walk sessions
3052 * Takes ->siglock() when updating signal->tty
3055 static int tiocsctty(struct tty_struct *tty, int arg)
3058 if (current->signal->leader && (task_session(current) == tty->session))
3061 mutex_lock(&tty_mutex);
3063 * The process must be a session leader and
3064 * not have a controlling tty already.
3066 if (!current->signal->leader || current->signal->tty) {
3073 * This tty is already the controlling
3074 * tty for another session group!
3076 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
3080 read_lock(&tasklist_lock);
3081 session_clear_tty(tty->session);
3082 read_unlock(&tasklist_lock);
3088 proc_set_tty(current, tty);
3090 mutex_unlock(&tty_mutex);
3095 * tiocgpgrp - get process group
3096 * @tty: tty passed by user
3097 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3100 * Obtain the process group of the tty. If there is no process group
3103 * Locking: none. Reference to current->signal->tty is safe.
3106 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3109 * (tty == real_tty) is a cheap way of
3110 * testing if the tty is NOT a master pty.
3112 if (tty == real_tty && current->signal->tty != real_tty)
3114 return put_user(pid_vnr(real_tty->pgrp), p);
3118 * tiocspgrp - attempt to set process group
3119 * @tty: tty passed by user
3120 * @real_tty: tty side device matching tty passed by user
3123 * Set the process group of the tty to the session passed. Only
3124 * permitted where the tty session is our session.
3129 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3133 int retval = tty_check_change(real_tty);
3139 if (!current->signal->tty ||
3140 (current->signal->tty != real_tty) ||
3141 (real_tty->session != task_session(current)))
3143 if (get_user(pgrp_nr, p))
3148 pgrp = find_vpid(pgrp_nr);
3153 if (session_of_pgrp(pgrp) != task_session(current))
3156 put_pid(real_tty->pgrp);
3157 real_tty->pgrp = get_pid(pgrp);
3164 * tiocgsid - get session id
3165 * @tty: tty passed by user
3166 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3167 * @p: pointer to returned session id
3169 * Obtain the session id of the tty. If there is no session
3172 * Locking: none. Reference to current->signal->tty is safe.
3175 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3178 * (tty == real_tty) is a cheap way of
3179 * testing if the tty is NOT a master pty.
3181 if (tty == real_tty && current->signal->tty != real_tty)
3183 if (!real_tty->session)
3185 return put_user(pid_vnr(real_tty->session), p);
3189 * tiocsetd - set line discipline
3191 * @p: pointer to user data
3193 * Set the line discipline according to user request.
3195 * Locking: see tty_set_ldisc, this function is just a helper
3198 static int tiocsetd(struct tty_struct *tty, int __user *p)
3202 if (get_user(ldisc, p))
3204 return tty_set_ldisc(tty, ldisc);
3208 * send_break - performed time break
3209 * @tty: device to break on
3210 * @duration: timeout in mS
3212 * Perform a timed break on hardware that lacks its own driver level
3213 * timed break functionality.
3216 * atomic_write_lock serializes
3220 static int send_break(struct tty_struct *tty, unsigned int duration)
3222 if (tty_write_lock(tty, 0) < 0)
3224 tty->driver->break_ctl(tty, -1);
3225 if (!signal_pending(current))
3226 msleep_interruptible(duration);
3227 tty->driver->break_ctl(tty, 0);
3228 tty_write_unlock(tty);
3229 if (signal_pending(current))
3235 * tiocmget - get modem status
3237 * @file: user file pointer
3238 * @p: pointer to result
3240 * Obtain the modem status bits from the tty driver if the feature
3241 * is supported. Return -EINVAL if it is not available.
3243 * Locking: none (up to the driver)
3246 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3248 int retval = -EINVAL;
3250 if (tty->driver->tiocmget) {
3251 retval = tty->driver->tiocmget(tty, file);
3254 retval = put_user(retval, p);
3260 * tiocmset - set modem status
3262 * @file: user file pointer
3263 * @cmd: command - clear bits, set bits or set all
3264 * @p: pointer to desired bits
3266 * Set the modem status bits from the tty driver if the feature
3267 * is supported. Return -EINVAL if it is not available.
3269 * Locking: none (up to the driver)
3272 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3275 int retval = -EINVAL;
3277 if (tty->driver->tiocmset) {
3278 unsigned int set, clear, val;
3280 retval = get_user(val, p);
3298 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3299 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3301 retval = tty->driver->tiocmset(tty, file, set, clear);
3307 * Split this up, as gcc can choke on it otherwise..
3309 int tty_ioctl(struct inode *inode, struct file *file,
3310 unsigned int cmd, unsigned long arg)
3312 struct tty_struct *tty, *real_tty;
3313 void __user *p = (void __user *)arg;
3315 struct tty_ldisc *ld;
3317 tty = (struct tty_struct *)file->private_data;
3318 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3321 /* CHECKME: is this safe as one end closes ? */
3324 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3325 tty->driver->subtype == PTY_TYPE_MASTER)
3326 real_tty = tty->link;
3329 * Break handling by driver
3331 if (!tty->driver->break_ctl) {
3335 if (tty->driver->ioctl)
3336 return tty->driver->ioctl(tty, file, cmd, arg);
3339 /* These two ioctl's always return success; even if */
3340 /* the driver doesn't support them. */
3343 if (!tty->driver->ioctl)
3345 retval = tty->driver->ioctl(tty, file, cmd, arg);
3346 if (retval == -ENOIOCTLCMD)
3353 * Factor out some common prep work
3361 retval = tty_check_change(tty);
3364 if (cmd != TIOCCBRK) {
3365 tty_wait_until_sent(tty, 0);
3366 if (signal_pending(current))
3374 return tiocsti(tty, p);
3376 return tiocgwinsz(tty, p);
3378 return tiocswinsz(tty, real_tty, p);
3380 return real_tty != tty ? -EINVAL : tioccons(file);
3382 return fionbio(file, p);
3384 set_bit(TTY_EXCLUSIVE, &tty->flags);
3387 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3390 if (current->signal->tty != tty)
3395 return tiocsctty(tty, arg);
3397 return tiocgpgrp(tty, real_tty, p);
3399 return tiocspgrp(tty, real_tty, p);
3401 return tiocgsid(tty, real_tty, p);
3403 /* FIXME: check this is ok */
3404 return put_user(tty->ldisc.num, (int __user *)p);
3406 return tiocsetd(tty, p);
3409 return tioclinux(tty, arg);
3414 case TIOCSBRK: /* Turn break on, unconditionally */
3415 tty->driver->break_ctl(tty, -1);
3418 case TIOCCBRK: /* Turn break off, unconditionally */
3419 tty->driver->break_ctl(tty, 0);
3421 case TCSBRK: /* SVID version: non-zero arg --> no break */
3422 /* non-zero arg means wait for all output data
3423 * to be sent (performed above) but don't send break.
3424 * This is used by the tcdrain() termios function.
3427 return send_break(tty, 250);
3429 case TCSBRKP: /* support for POSIX tcsendbreak() */
3430 return send_break(tty, arg ? arg*100 : 250);
3433 return tty_tiocmget(tty, file, p);
3437 return tty_tiocmset(tty, file, cmd, p);
3442 /* flush tty buffer and allow ldisc to process ioctl */
3443 tty_buffer_flush(tty);
3448 if (tty->driver->ioctl) {
3449 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3450 if (retval != -ENOIOCTLCMD)
3453 ld = tty_ldisc_ref_wait(tty);
3456 retval = ld->ioctl(tty, file, cmd, arg);
3457 if (retval == -ENOIOCTLCMD)
3460 tty_ldisc_deref(ld);
3464 #ifdef CONFIG_COMPAT
3465 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3468 struct inode *inode = file->f_dentry->d_inode;
3469 struct tty_struct *tty = file->private_data;
3470 struct tty_ldisc *ld;
3471 int retval = -ENOIOCTLCMD;
3473 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3476 if (tty->driver->compat_ioctl) {
3477 retval = (tty->driver->compat_ioctl)(tty, file, cmd, arg);
3478 if (retval != -ENOIOCTLCMD)
3482 ld = tty_ldisc_ref_wait(tty);
3483 if (ld->compat_ioctl)
3484 retval = ld->compat_ioctl(tty, file, cmd, arg);
3485 tty_ldisc_deref(ld);
3492 * This implements the "Secure Attention Key" --- the idea is to
3493 * prevent trojan horses by killing all processes associated with this
3494 * tty when the user hits the "Secure Attention Key". Required for
3495 * super-paranoid applications --- see the Orange Book for more details.
3497 * This code could be nicer; ideally it should send a HUP, wait a few
3498 * seconds, then send a INT, and then a KILL signal. But you then
3499 * have to coordinate with the init process, since all processes associated
3500 * with the current tty must be dead before the new getty is allowed
3503 * Now, if it would be correct ;-/ The current code has a nasty hole -
3504 * it doesn't catch files in flight. We may send the descriptor to ourselves
3505 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3507 * Nasty bug: do_SAK is being called in interrupt context. This can
3508 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3510 void __do_SAK(struct tty_struct *tty)
3515 struct task_struct *g, *p;
3516 struct pid *session;
3519 struct fdtable *fdt;
3523 session = tty->session;
3525 tty_ldisc_flush(tty);
3527 if (tty->driver->flush_buffer)
3528 tty->driver->flush_buffer(tty);
3530 read_lock(&tasklist_lock);
3531 /* Kill the entire session */
3532 do_each_pid_task(session, PIDTYPE_SID, p) {
3533 printk(KERN_NOTICE "SAK: killed process %d"
3534 " (%s): task_session_nr(p)==tty->session\n",
3535 task_pid_nr(p), p->comm);
3536 send_sig(SIGKILL, p, 1);
3537 } while_each_pid_task(session, PIDTYPE_SID, p);
3538 /* Now kill any processes that happen to have the
3541 do_each_thread(g, p) {
3542 if (p->signal->tty == tty) {
3543 printk(KERN_NOTICE "SAK: killed process %d"
3544 " (%s): task_session_nr(p)==tty->session\n",
3545 task_pid_nr(p), p->comm);
3546 send_sig(SIGKILL, p, 1);
3552 * We don't take a ref to the file, so we must
3553 * hold ->file_lock instead.
3555 spin_lock(&p->files->file_lock);
3556 fdt = files_fdtable(p->files);
3557 for (i = 0; i < fdt->max_fds; i++) {
3558 filp = fcheck_files(p->files, i);
3561 if (filp->f_op->read == tty_read &&
3562 filp->private_data == tty) {
3563 printk(KERN_NOTICE "SAK: killed process %d"
3564 " (%s): fd#%d opened to the tty\n",
3565 task_pid_nr(p), p->comm, i);
3566 force_sig(SIGKILL, p);
3570 spin_unlock(&p->files->file_lock);
3573 } while_each_thread(g, p);
3574 read_unlock(&tasklist_lock);
3578 static void do_SAK_work(struct work_struct *work)
3580 struct tty_struct *tty =
3581 container_of(work, struct tty_struct, SAK_work);
3586 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3587 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3588 * the values which we write to it will be identical to the values which it
3589 * already has. --akpm
3591 void do_SAK(struct tty_struct *tty)
3595 schedule_work(&tty->SAK_work);
3598 EXPORT_SYMBOL(do_SAK);
3602 * @work: tty structure passed from work queue.
3604 * This routine is called out of the software interrupt to flush data
3605 * from the buffer chain to the line discipline.
3607 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3608 * while invoking the line discipline receive_buf method. The
3609 * receive_buf method is single threaded for each tty instance.
3612 static void flush_to_ldisc(struct work_struct *work)
3614 struct tty_struct *tty =
3615 container_of(work, struct tty_struct, buf.work.work);
3616 unsigned long flags;
3617 struct tty_ldisc *disc;
3618 struct tty_buffer *tbuf, *head;
3620 unsigned char *flag_buf;
3622 disc = tty_ldisc_ref(tty);
3623 if (disc == NULL) /* !TTY_LDISC */
3626 spin_lock_irqsave(&tty->buf.lock, flags);
3627 /* So we know a flush is running */
3628 set_bit(TTY_FLUSHING, &tty->flags);
3629 head = tty->buf.head;
3631 tty->buf.head = NULL;
3633 int count = head->commit - head->read;
3635 if (head->next == NULL)
3639 tty_buffer_free(tty, tbuf);
3642 /* Ldisc or user is trying to flush the buffers
3643 we are feeding to the ldisc, stop feeding the
3644 line discipline as we want to empty the queue */
3645 if (test_bit(TTY_FLUSHPENDING, &tty->flags))
3647 if (!tty->receive_room) {
3648 schedule_delayed_work(&tty->buf.work, 1);
3651 if (count > tty->receive_room)
3652 count = tty->receive_room;
3653 char_buf = head->char_buf_ptr + head->read;
3654 flag_buf = head->flag_buf_ptr + head->read;
3655 head->read += count;
3656 spin_unlock_irqrestore(&tty->buf.lock, flags);
3657 disc->receive_buf(tty, char_buf, flag_buf, count);
3658 spin_lock_irqsave(&tty->buf.lock, flags);
3660 /* Restore the queue head */
3661 tty->buf.head = head;
3663 /* We may have a deferred request to flush the input buffer,
3664 if so pull the chain under the lock and empty the queue */
3665 if (test_bit(TTY_FLUSHPENDING, &tty->flags)) {
3666 __tty_buffer_flush(tty);
3667 clear_bit(TTY_FLUSHPENDING, &tty->flags);
3668 wake_up(&tty->read_wait);
3670 clear_bit(TTY_FLUSHING, &tty->flags);
3671 spin_unlock_irqrestore(&tty->buf.lock, flags);
3673 tty_ldisc_deref(disc);
3677 * tty_flip_buffer_push - terminal
3680 * Queue a push of the terminal flip buffers to the line discipline. This
3681 * function must not be called from IRQ context if tty->low_latency is set.
3683 * In the event of the queue being busy for flipping the work will be
3684 * held off and retried later.
3686 * Locking: tty buffer lock. Driver locks in low latency mode.
3689 void tty_flip_buffer_push(struct tty_struct *tty)
3691 unsigned long flags;
3692 spin_lock_irqsave(&tty->buf.lock, flags);
3693 if (tty->buf.tail != NULL)
3694 tty->buf.tail->commit = tty->buf.tail->used;
3695 spin_unlock_irqrestore(&tty->buf.lock, flags);
3697 if (tty->low_latency)
3698 flush_to_ldisc(&tty->buf.work.work);
3700 schedule_delayed_work(&tty->buf.work, 1);
3703 EXPORT_SYMBOL(tty_flip_buffer_push);
3707 * initialize_tty_struct
3708 * @tty: tty to initialize
3710 * This subroutine initializes a tty structure that has been newly
3713 * Locking: none - tty in question must not be exposed at this point
3716 static void initialize_tty_struct(struct tty_struct *tty)
3718 memset(tty, 0, sizeof(struct tty_struct));
3719 tty->magic = TTY_MAGIC;
3720 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3721 tty->session = NULL;
3723 tty->overrun_time = jiffies;
3724 tty->buf.head = tty->buf.tail = NULL;
3725 tty_buffer_init(tty);
3726 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3727 mutex_init(&tty->termios_mutex);
3728 init_waitqueue_head(&tty->write_wait);
3729 init_waitqueue_head(&tty->read_wait);
3730 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3731 mutex_init(&tty->atomic_read_lock);
3732 mutex_init(&tty->atomic_write_lock);
3733 spin_lock_init(&tty->read_lock);
3734 INIT_LIST_HEAD(&tty->tty_files);
3735 INIT_WORK(&tty->SAK_work, do_SAK_work);
3739 * The default put_char routine if the driver did not define one.
3742 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3744 tty->driver->write(tty, &ch, 1);
3747 static struct class *tty_class;
3750 * tty_register_device - register a tty device
3751 * @driver: the tty driver that describes the tty device
3752 * @index: the index in the tty driver for this tty device
3753 * @device: a struct device that is associated with this tty device.
3754 * This field is optional, if there is no known struct device
3755 * for this tty device it can be set to NULL safely.
3757 * Returns a pointer to the struct device for this tty device
3758 * (or ERR_PTR(-EFOO) on error).
3760 * This call is required to be made to register an individual tty device
3761 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3762 * that bit is not set, this function should not be called by a tty
3768 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3769 struct device *device)
3772 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3774 if (index >= driver->num) {
3775 printk(KERN_ERR "Attempt to register invalid tty line number "
3777 return ERR_PTR(-EINVAL);
3780 if (driver->type == TTY_DRIVER_TYPE_PTY)
3781 pty_line_name(driver, index, name);
3783 tty_line_name(driver, index, name);
3785 return device_create(tty_class, device, dev, name);
3789 * tty_unregister_device - unregister a tty device
3790 * @driver: the tty driver that describes the tty device
3791 * @index: the index in the tty driver for this tty device
3793 * If a tty device is registered with a call to tty_register_device() then
3794 * this function must be called when the tty device is gone.
3799 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3801 device_destroy(tty_class,
3802 MKDEV(driver->major, driver->minor_start) + index);
3805 EXPORT_SYMBOL(tty_register_device);
3806 EXPORT_SYMBOL(tty_unregister_device);
3808 struct tty_driver *alloc_tty_driver(int lines)
3810 struct tty_driver *driver;
3812 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3814 driver->magic = TTY_DRIVER_MAGIC;
3815 driver->num = lines;
3816 /* later we'll move allocation of tables here */
3821 void put_tty_driver(struct tty_driver *driver)
3826 void tty_set_operations(struct tty_driver *driver,
3827 const struct tty_operations *op)
3829 driver->open = op->open;
3830 driver->close = op->close;
3831 driver->write = op->write;
3832 driver->put_char = op->put_char;
3833 driver->flush_chars = op->flush_chars;
3834 driver->write_room = op->write_room;
3835 driver->chars_in_buffer = op->chars_in_buffer;
3836 driver->ioctl = op->ioctl;
3837 driver->compat_ioctl = op->compat_ioctl;
3838 driver->set_termios = op->set_termios;
3839 driver->throttle = op->throttle;
3840 driver->unthrottle = op->unthrottle;
3841 driver->stop = op->stop;
3842 driver->start = op->start;
3843 driver->hangup = op->hangup;
3844 driver->break_ctl = op->break_ctl;
3845 driver->flush_buffer = op->flush_buffer;
3846 driver->set_ldisc = op->set_ldisc;
3847 driver->wait_until_sent = op->wait_until_sent;
3848 driver->send_xchar = op->send_xchar;
3849 driver->read_proc = op->read_proc;
3850 driver->write_proc = op->write_proc;
3851 driver->tiocmget = op->tiocmget;
3852 driver->tiocmset = op->tiocmset;
3856 EXPORT_SYMBOL(alloc_tty_driver);
3857 EXPORT_SYMBOL(put_tty_driver);
3858 EXPORT_SYMBOL(tty_set_operations);
3861 * Called by a tty driver to register itself.
3863 int tty_register_driver(struct tty_driver *driver)
3870 if (driver->flags & TTY_DRIVER_INSTALLED)
3873 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3874 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3879 if (!driver->major) {
3880 error = alloc_chrdev_region(&dev, driver->minor_start,
3881 driver->num, driver->name);
3883 driver->major = MAJOR(dev);
3884 driver->minor_start = MINOR(dev);
3887 dev = MKDEV(driver->major, driver->minor_start);
3888 error = register_chrdev_region(dev, driver->num, driver->name);
3896 driver->ttys = (struct tty_struct **)p;
3897 driver->termios = (struct ktermios **)(p + driver->num);
3898 driver->termios_locked = (struct ktermios **)
3899 (p + driver->num * 2);
3901 driver->ttys = NULL;
3902 driver->termios = NULL;
3903 driver->termios_locked = NULL;
3906 cdev_init(&driver->cdev, &tty_fops);
3907 driver->cdev.owner = driver->owner;
3908 error = cdev_add(&driver->cdev, dev, driver->num);
3910 unregister_chrdev_region(dev, driver->num);
3911 driver->ttys = NULL;
3912 driver->termios = driver->termios_locked = NULL;
3917 if (!driver->put_char)
3918 driver->put_char = tty_default_put_char;
3920 mutex_lock(&tty_mutex);
3921 list_add(&driver->tty_drivers, &tty_drivers);
3922 mutex_unlock(&tty_mutex);
3924 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3925 for (i = 0; i < driver->num; i++)
3926 tty_register_device(driver, i, NULL);
3928 proc_tty_register_driver(driver);
3932 EXPORT_SYMBOL(tty_register_driver);
3935 * Called by a tty driver to unregister itself.
3937 int tty_unregister_driver(struct tty_driver *driver)
3940 struct ktermios *tp;
3943 if (driver->refcount)
3946 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3948 mutex_lock(&tty_mutex);
3949 list_del(&driver->tty_drivers);
3950 mutex_unlock(&tty_mutex);
3953 * Free the termios and termios_locked structures because
3954 * we don't want to get memory leaks when modular tty
3955 * drivers are removed from the kernel.
3957 for (i = 0; i < driver->num; i++) {
3958 tp = driver->termios[i];
3960 driver->termios[i] = NULL;
3963 tp = driver->termios_locked[i];
3965 driver->termios_locked[i] = NULL;
3968 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3969 tty_unregister_device(driver, i);
3972 proc_tty_unregister_driver(driver);
3973 driver->ttys = NULL;
3974 driver->termios = driver->termios_locked = NULL;
3976 cdev_del(&driver->cdev);
3979 EXPORT_SYMBOL(tty_unregister_driver);
3981 dev_t tty_devnum(struct tty_struct *tty)
3983 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3985 EXPORT_SYMBOL(tty_devnum);
3987 void proc_clear_tty(struct task_struct *p)
3989 spin_lock_irq(&p->sighand->siglock);
3990 p->signal->tty = NULL;
3991 spin_unlock_irq(&p->sighand->siglock);
3993 EXPORT_SYMBOL(proc_clear_tty);
3995 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3998 /* We should not have a session or pgrp to here but.... */
3999 put_pid(tty->session);
4001 tty->session = get_pid(task_session(tsk));
4002 tty->pgrp = get_pid(task_pgrp(tsk));
4004 put_pid(tsk->signal->tty_old_pgrp);
4005 tsk->signal->tty = tty;
4006 tsk->signal->tty_old_pgrp = NULL;
4009 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
4011 spin_lock_irq(&tsk->sighand->siglock);
4012 __proc_set_tty(tsk, tty);
4013 spin_unlock_irq(&tsk->sighand->siglock);
4016 struct tty_struct *get_current_tty(void)
4018 struct tty_struct *tty;
4019 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
4020 tty = current->signal->tty;
4022 * session->tty can be changed/cleared from under us, make sure we
4023 * issue the load. The obtained pointer, when not NULL, is valid as
4024 * long as we hold tty_mutex.
4029 EXPORT_SYMBOL_GPL(get_current_tty);
4032 * Initialize the console device. This is called *early*, so
4033 * we can't necessarily depend on lots of kernel help here.
4034 * Just do some early initializations, and do the complex setup
4037 void __init console_init(void)
4041 /* Setup the default TTY line discipline. */
4042 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
4045 * set up the console device so that later boot sequences can
4046 * inform about problems etc..
4048 call = __con_initcall_start;
4049 while (call < __con_initcall_end) {
4055 static int __init tty_class_init(void)
4057 tty_class = class_create(THIS_MODULE, "tty");
4058 if (IS_ERR(tty_class))
4059 return PTR_ERR(tty_class);
4063 postcore_initcall(tty_class_init);
4065 /* 3/2004 jmc: why do these devices exist? */
4067 static struct cdev tty_cdev, console_cdev;
4068 #ifdef CONFIG_UNIX98_PTYS
4069 static struct cdev ptmx_cdev;
4072 static struct cdev vc0_cdev;
4076 * Ok, now we can initialize the rest of the tty devices and can count
4077 * on memory allocations, interrupts etc..
4079 static int __init tty_init(void)
4081 cdev_init(&tty_cdev, &tty_fops);
4082 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
4083 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
4084 panic("Couldn't register /dev/tty driver\n");
4085 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
4087 cdev_init(&console_cdev, &console_fops);
4088 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
4089 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
4090 panic("Couldn't register /dev/console driver\n");
4091 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
4093 #ifdef CONFIG_UNIX98_PTYS
4094 cdev_init(&ptmx_cdev, &ptmx_fops);
4095 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
4096 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
4097 panic("Couldn't register /dev/ptmx driver\n");
4098 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
4102 cdev_init(&vc0_cdev, &console_fops);
4103 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
4104 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
4105 panic("Couldn't register /dev/tty0 driver\n");
4106 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
4112 module_init(tty_init);