2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
108 #undef TTY_DEBUG_HANGUP
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
124 EXPORT_SYMBOL(tty_std_termios);
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
137 #ifdef CONFIG_UNIX98_PTYS
138 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
139 extern int pty_limit; /* Config limit on Unix98 ptys */
140 static DEFINE_IDR(allocated_ptys);
141 static DEFINE_MUTEX(allocated_ptys_lock);
142 static int ptmx_open(struct inode *, struct file *);
145 static void initialize_tty_struct(struct tty_struct *tty);
147 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
148 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
149 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
150 static unsigned int tty_poll(struct file *, poll_table *);
151 static int tty_open(struct inode *, struct file *);
152 static int tty_release(struct inode *, struct file *);
153 int tty_ioctl(struct inode * inode, struct file * file,
154 unsigned int cmd, unsigned long arg);
156 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
159 #define tty_compat_ioctl NULL
161 static int tty_fasync(int fd, struct file * filp, int on);
162 static void release_tty(struct tty_struct *tty, int idx);
163 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
164 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
167 * alloc_tty_struct - allocate a tty object
169 * Return a new empty tty structure. The data fields have not
170 * been initialized in any way but has been zeroed
175 static struct tty_struct *alloc_tty_struct(void)
177 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
180 static void tty_buffer_free_all(struct tty_struct *);
183 * free_tty_struct - free a disused tty
184 * @tty: tty struct to free
186 * Free the write buffers, tty queue and tty memory itself.
188 * Locking: none. Must be called after tty is definitely unused
191 static inline void free_tty_struct(struct tty_struct *tty)
193 kfree(tty->write_buf);
194 tty_buffer_free_all(tty);
198 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
201 * tty_name - return tty naming
202 * @tty: tty structure
203 * @buf: buffer for output
205 * Convert a tty structure into a name. The name reflects the kernel
206 * naming policy and if udev is in use may not reflect user space
211 char *tty_name(struct tty_struct *tty, char *buf)
213 if (!tty) /* Hmm. NULL pointer. That's fun. */
214 strcpy(buf, "NULL tty");
216 strcpy(buf, tty->name);
220 EXPORT_SYMBOL(tty_name);
222 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
225 #ifdef TTY_PARANOIA_CHECK
228 "null TTY for (%d:%d) in %s\n",
229 imajor(inode), iminor(inode), routine);
232 if (tty->magic != TTY_MAGIC) {
234 "bad magic number for tty struct (%d:%d) in %s\n",
235 imajor(inode), iminor(inode), routine);
242 static int check_tty_count(struct tty_struct *tty, const char *routine)
244 #ifdef CHECK_TTY_COUNT
249 list_for_each(p, &tty->tty_files) {
253 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
254 tty->driver->subtype == PTY_TYPE_SLAVE &&
255 tty->link && tty->link->count)
257 if (tty->count != count) {
258 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
259 "!= #fd's(%d) in %s\n",
260 tty->name, tty->count, count, routine);
268 * Tty buffer allocation management
272 * tty_buffer_free_all - free buffers used by a tty
273 * @tty: tty to free from
275 * Remove all the buffers pending on a tty whether queued with data
276 * or in the free ring. Must be called when the tty is no longer in use
281 static void tty_buffer_free_all(struct tty_struct *tty)
283 struct tty_buffer *thead;
284 while((thead = tty->buf.head) != NULL) {
285 tty->buf.head = thead->next;
288 while((thead = tty->buf.free) != NULL) {
289 tty->buf.free = thead->next;
292 tty->buf.tail = NULL;
293 tty->buf.memory_used = 0;
297 * tty_buffer_init - prepare a tty buffer structure
298 * @tty: tty to initialise
300 * Set up the initial state of the buffer management for a tty device.
301 * Must be called before the other tty buffer functions are used.
306 static void tty_buffer_init(struct tty_struct *tty)
308 spin_lock_init(&tty->buf.lock);
309 tty->buf.head = NULL;
310 tty->buf.tail = NULL;
311 tty->buf.free = NULL;
312 tty->buf.memory_used = 0;
316 * tty_buffer_alloc - allocate a tty buffer
318 * @size: desired size (characters)
320 * Allocate a new tty buffer to hold the desired number of characters.
321 * Return NULL if out of memory or the allocation would exceed the
324 * Locking: Caller must hold tty->buf.lock
327 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
329 struct tty_buffer *p;
331 if (tty->buf.memory_used + size > 65536)
333 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
341 p->char_buf_ptr = (char *)(p->data);
342 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
343 tty->buf.memory_used += size;
348 * tty_buffer_free - free a tty buffer
349 * @tty: tty owning the buffer
350 * @b: the buffer to free
352 * Free a tty buffer, or add it to the free list according to our
355 * Locking: Caller must hold tty->buf.lock
358 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
360 /* Dumb strategy for now - should keep some stats */
361 tty->buf.memory_used -= b->size;
362 WARN_ON(tty->buf.memory_used < 0);
367 b->next = tty->buf.free;
373 * __tty_buffer_flush - flush full tty buffers
376 * flush all the buffers containing receive data. Caller must
377 * hold the buffer lock and must have ensured no parallel flush to
380 * Locking: Caller must hold tty->buf.lock
383 static void __tty_buffer_flush(struct tty_struct *tty)
385 struct tty_buffer *thead;
387 while((thead = tty->buf.head) != NULL) {
388 tty->buf.head = thead->next;
389 tty_buffer_free(tty, thead);
391 tty->buf.tail = NULL;
395 * tty_buffer_flush - flush full tty buffers
398 * flush all the buffers containing receive data. If the buffer is
399 * being processed by flush_to_ldisc then we defer the processing
405 static void tty_buffer_flush(struct tty_struct *tty)
408 spin_lock_irqsave(&tty->buf.lock, flags);
410 /* If the data is being pushed to the tty layer then we can't
411 process it here. Instead set a flag and the flush_to_ldisc
412 path will process the flush request before it exits */
413 if (test_bit(TTY_FLUSHING, &tty->flags)) {
414 set_bit(TTY_FLUSHPENDING, &tty->flags);
415 spin_unlock_irqrestore(&tty->buf.lock, flags);
416 wait_event(tty->read_wait,
417 test_bit(TTY_FLUSHPENDING, &tty->flags) == 0);
420 __tty_buffer_flush(tty);
421 spin_unlock_irqrestore(&tty->buf.lock, flags);
425 * tty_buffer_find - find a free tty buffer
426 * @tty: tty owning the buffer
427 * @size: characters wanted
429 * Locate an existing suitable tty buffer or if we are lacking one then
430 * allocate a new one. We round our buffers off in 256 character chunks
431 * to get better allocation behaviour.
433 * Locking: Caller must hold tty->buf.lock
436 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
438 struct tty_buffer **tbh = &tty->buf.free;
439 while((*tbh) != NULL) {
440 struct tty_buffer *t = *tbh;
441 if(t->size >= size) {
447 tty->buf.memory_used += t->size;
450 tbh = &((*tbh)->next);
452 /* Round the buffer size out */
453 size = (size + 0xFF) & ~ 0xFF;
454 return tty_buffer_alloc(tty, size);
455 /* Should possibly check if this fails for the largest buffer we
456 have queued and recycle that ? */
460 * tty_buffer_request_room - grow tty buffer if needed
461 * @tty: tty structure
462 * @size: size desired
464 * Make at least size bytes of linear space available for the tty
465 * buffer. If we fail return the size we managed to find.
467 * Locking: Takes tty->buf.lock
469 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
471 struct tty_buffer *b, *n;
475 spin_lock_irqsave(&tty->buf.lock, flags);
477 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
478 remove this conditional if its worth it. This would be invisible
480 if ((b = tty->buf.tail) != NULL)
481 left = b->size - b->used;
486 /* This is the slow path - looking for new buffers to use */
487 if ((n = tty_buffer_find(tty, size)) != NULL) {
498 spin_unlock_irqrestore(&tty->buf.lock, flags);
501 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
504 * tty_insert_flip_string - Add characters to the tty buffer
505 * @tty: tty structure
509 * Queue a series of bytes to the tty buffering. All the characters
510 * passed are marked as without error. Returns the number added.
512 * Locking: Called functions may take tty->buf.lock
515 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
520 int space = tty_buffer_request_room(tty, size - copied);
521 struct tty_buffer *tb = tty->buf.tail;
522 /* If there is no space then tb may be NULL */
523 if(unlikely(space == 0))
525 memcpy(tb->char_buf_ptr + tb->used, chars, space);
526 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
530 /* There is a small chance that we need to split the data over
531 several buffers. If this is the case we must loop */
532 } while (unlikely(size > copied));
535 EXPORT_SYMBOL(tty_insert_flip_string);
538 * tty_insert_flip_string_flags - Add characters to the tty buffer
539 * @tty: tty structure
544 * Queue a series of bytes to the tty buffering. For each character
545 * the flags array indicates the status of the character. Returns the
548 * Locking: Called functions may take tty->buf.lock
551 int tty_insert_flip_string_flags(struct tty_struct *tty,
552 const unsigned char *chars, const char *flags, size_t size)
556 int space = tty_buffer_request_room(tty, size - copied);
557 struct tty_buffer *tb = tty->buf.tail;
558 /* If there is no space then tb may be NULL */
559 if(unlikely(space == 0))
561 memcpy(tb->char_buf_ptr + tb->used, chars, space);
562 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
567 /* There is a small chance that we need to split the data over
568 several buffers. If this is the case we must loop */
569 } while (unlikely(size > copied));
572 EXPORT_SYMBOL(tty_insert_flip_string_flags);
575 * tty_schedule_flip - push characters to ldisc
576 * @tty: tty to push from
578 * Takes any pending buffers and transfers their ownership to the
579 * ldisc side of the queue. It then schedules those characters for
580 * processing by the line discipline.
582 * Locking: Takes tty->buf.lock
585 void tty_schedule_flip(struct tty_struct *tty)
588 spin_lock_irqsave(&tty->buf.lock, flags);
589 if (tty->buf.tail != NULL)
590 tty->buf.tail->commit = tty->buf.tail->used;
591 spin_unlock_irqrestore(&tty->buf.lock, flags);
592 schedule_delayed_work(&tty->buf.work, 1);
594 EXPORT_SYMBOL(tty_schedule_flip);
597 * tty_prepare_flip_string - make room for characters
599 * @chars: return pointer for character write area
600 * @size: desired size
602 * Prepare a block of space in the buffer for data. Returns the length
603 * available and buffer pointer to the space which is now allocated and
604 * accounted for as ready for normal characters. This is used for drivers
605 * that need their own block copy routines into the buffer. There is no
606 * guarantee the buffer is a DMA target!
608 * Locking: May call functions taking tty->buf.lock
611 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
613 int space = tty_buffer_request_room(tty, size);
615 struct tty_buffer *tb = tty->buf.tail;
616 *chars = tb->char_buf_ptr + tb->used;
617 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
623 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
626 * tty_prepare_flip_string_flags - make room for characters
628 * @chars: return pointer for character write area
629 * @flags: return pointer for status flag write area
630 * @size: desired size
632 * Prepare a block of space in the buffer for data. Returns the length
633 * available and buffer pointer to the space which is now allocated and
634 * accounted for as ready for characters. This is used for drivers
635 * that need their own block copy routines into the buffer. There is no
636 * guarantee the buffer is a DMA target!
638 * Locking: May call functions taking tty->buf.lock
641 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
643 int space = tty_buffer_request_room(tty, size);
645 struct tty_buffer *tb = tty->buf.tail;
646 *chars = tb->char_buf_ptr + tb->used;
647 *flags = tb->flag_buf_ptr + tb->used;
653 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
658 * tty_set_termios_ldisc - set ldisc field
659 * @tty: tty structure
660 * @num: line discipline number
662 * This is probably overkill for real world processors but
663 * they are not on hot paths so a little discipline won't do
666 * Locking: takes termios_mutex
669 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
671 mutex_lock(&tty->termios_mutex);
672 tty->termios->c_line = num;
673 mutex_unlock(&tty->termios_mutex);
677 * This guards the refcounted line discipline lists. The lock
678 * must be taken with irqs off because there are hangup path
679 * callers who will do ldisc lookups and cannot sleep.
682 static DEFINE_SPINLOCK(tty_ldisc_lock);
683 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
684 static struct tty_ldisc tty_ldiscs[NR_LDISCS]; /* line disc dispatch table */
687 * tty_register_ldisc - install a line discipline
688 * @disc: ldisc number
689 * @new_ldisc: pointer to the ldisc object
691 * Installs a new line discipline into the kernel. The discipline
692 * is set up as unreferenced and then made available to the kernel
693 * from this point onwards.
696 * takes tty_ldisc_lock to guard against ldisc races
699 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
704 if (disc < N_TTY || disc >= NR_LDISCS)
707 spin_lock_irqsave(&tty_ldisc_lock, flags);
708 tty_ldiscs[disc] = *new_ldisc;
709 tty_ldiscs[disc].num = disc;
710 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
711 tty_ldiscs[disc].refcount = 0;
712 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
716 EXPORT_SYMBOL(tty_register_ldisc);
719 * tty_unregister_ldisc - unload a line discipline
720 * @disc: ldisc number
721 * @new_ldisc: pointer to the ldisc object
723 * Remove a line discipline from the kernel providing it is not
727 * takes tty_ldisc_lock to guard against ldisc races
730 int tty_unregister_ldisc(int disc)
735 if (disc < N_TTY || disc >= NR_LDISCS)
738 spin_lock_irqsave(&tty_ldisc_lock, flags);
739 if (tty_ldiscs[disc].refcount)
742 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
743 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
747 EXPORT_SYMBOL(tty_unregister_ldisc);
750 * tty_ldisc_get - take a reference to an ldisc
751 * @disc: ldisc number
753 * Takes a reference to a line discipline. Deals with refcounts and
754 * module locking counts. Returns NULL if the discipline is not available.
755 * Returns a pointer to the discipline and bumps the ref count if it is
759 * takes tty_ldisc_lock to guard against ldisc races
762 struct tty_ldisc *tty_ldisc_get(int disc)
765 struct tty_ldisc *ld;
767 if (disc < N_TTY || disc >= NR_LDISCS)
770 spin_lock_irqsave(&tty_ldisc_lock, flags);
772 ld = &tty_ldiscs[disc];
773 /* Check the entry is defined */
774 if(ld->flags & LDISC_FLAG_DEFINED)
776 /* If the module is being unloaded we can't use it */
777 if (!try_module_get(ld->owner))
784 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
788 EXPORT_SYMBOL_GPL(tty_ldisc_get);
791 * tty_ldisc_put - drop ldisc reference
792 * @disc: ldisc number
794 * Drop a reference to a line discipline. Manage refcounts and
795 * module usage counts
798 * takes tty_ldisc_lock to guard against ldisc races
801 void tty_ldisc_put(int disc)
803 struct tty_ldisc *ld;
806 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
808 spin_lock_irqsave(&tty_ldisc_lock, flags);
809 ld = &tty_ldiscs[disc];
810 BUG_ON(ld->refcount == 0);
812 module_put(ld->owner);
813 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
816 EXPORT_SYMBOL_GPL(tty_ldisc_put);
819 * tty_ldisc_assign - set ldisc on a tty
820 * @tty: tty to assign
821 * @ld: line discipline
823 * Install an instance of a line discipline into a tty structure. The
824 * ldisc must have a reference count above zero to ensure it remains/
825 * The tty instance refcount starts at zero.
828 * Caller must hold references
831 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
834 tty->ldisc.refcount = 0;
838 * tty_ldisc_try - internal helper
841 * Make a single attempt to grab and bump the refcount on
842 * the tty ldisc. Return 0 on failure or 1 on success. This is
843 * used to implement both the waiting and non waiting versions
846 * Locking: takes tty_ldisc_lock
849 static int tty_ldisc_try(struct tty_struct *tty)
852 struct tty_ldisc *ld;
855 spin_lock_irqsave(&tty_ldisc_lock, flags);
857 if(test_bit(TTY_LDISC, &tty->flags))
862 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
867 * tty_ldisc_ref_wait - wait for the tty ldisc
870 * Dereference the line discipline for the terminal and take a
871 * reference to it. If the line discipline is in flux then
872 * wait patiently until it changes.
874 * Note: Must not be called from an IRQ/timer context. The caller
875 * must also be careful not to hold other locks that will deadlock
876 * against a discipline change, such as an existing ldisc reference
877 * (which we check for)
879 * Locking: call functions take tty_ldisc_lock
882 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
884 /* wait_event is a macro */
885 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
886 if(tty->ldisc.refcount == 0)
887 printk(KERN_ERR "tty_ldisc_ref_wait\n");
891 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
894 * tty_ldisc_ref - get the tty ldisc
897 * Dereference the line discipline for the terminal and take a
898 * reference to it. If the line discipline is in flux then
899 * return NULL. Can be called from IRQ and timer functions.
901 * Locking: called functions take tty_ldisc_lock
904 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
906 if(tty_ldisc_try(tty))
911 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
914 * tty_ldisc_deref - free a tty ldisc reference
915 * @ld: reference to free up
917 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
918 * be called in IRQ context.
920 * Locking: takes tty_ldisc_lock
923 void tty_ldisc_deref(struct tty_ldisc *ld)
929 spin_lock_irqsave(&tty_ldisc_lock, flags);
930 if(ld->refcount == 0)
931 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
934 if(ld->refcount == 0)
935 wake_up(&tty_ldisc_wait);
936 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
939 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
942 * tty_ldisc_enable - allow ldisc use
943 * @tty: terminal to activate ldisc on
945 * Set the TTY_LDISC flag when the line discipline can be called
946 * again. Do necessary wakeups for existing sleepers.
948 * Note: nobody should set this bit except via this function. Clearing
949 * directly is allowed.
952 static void tty_ldisc_enable(struct tty_struct *tty)
954 set_bit(TTY_LDISC, &tty->flags);
955 wake_up(&tty_ldisc_wait);
959 * tty_set_ldisc - set line discipline
960 * @tty: the terminal to set
961 * @ldisc: the line discipline
963 * Set the discipline of a tty line. Must be called from a process
966 * Locking: takes tty_ldisc_lock.
967 * called functions take termios_mutex
970 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
973 struct tty_ldisc o_ldisc;
977 struct tty_ldisc *ld;
978 struct tty_struct *o_tty;
980 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
985 ld = tty_ldisc_get(ldisc);
986 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
987 /* Cyrus Durgin <cider@speakeasy.org> */
989 request_module("tty-ldisc-%d", ldisc);
990 ld = tty_ldisc_get(ldisc);
996 * Problem: What do we do if this blocks ?
999 tty_wait_until_sent(tty, 0);
1001 if (tty->ldisc.num == ldisc) {
1002 tty_ldisc_put(ldisc);
1007 * No more input please, we are switching. The new ldisc
1008 * will update this value in the ldisc open function
1011 tty->receive_room = 0;
1013 o_ldisc = tty->ldisc;
1017 * Make sure we don't change while someone holds a
1018 * reference to the line discipline. The TTY_LDISC bit
1019 * prevents anyone taking a reference once it is clear.
1020 * We need the lock to avoid racing reference takers.
1023 spin_lock_irqsave(&tty_ldisc_lock, flags);
1024 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
1025 if(tty->ldisc.refcount) {
1026 /* Free the new ldisc we grabbed. Must drop the lock
1028 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1029 tty_ldisc_put(ldisc);
1031 * There are several reasons we may be busy, including
1032 * random momentary I/O traffic. We must therefore
1033 * retry. We could distinguish between blocking ops
1034 * and retries if we made tty_ldisc_wait() smarter. That
1035 * is up for discussion.
1037 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
1038 return -ERESTARTSYS;
1041 if(o_tty && o_tty->ldisc.refcount) {
1042 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1043 tty_ldisc_put(ldisc);
1044 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
1045 return -ERESTARTSYS;
1050 /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
1052 if (!test_bit(TTY_LDISC, &tty->flags)) {
1053 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1054 tty_ldisc_put(ldisc);
1055 ld = tty_ldisc_ref_wait(tty);
1056 tty_ldisc_deref(ld);
1060 clear_bit(TTY_LDISC, &tty->flags);
1062 clear_bit(TTY_LDISC, &o_tty->flags);
1063 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1066 * From this point on we know nobody has an ldisc
1067 * usage reference, nor can they obtain one until
1068 * we say so later on.
1071 work = cancel_delayed_work(&tty->buf.work);
1073 * Wait for ->hangup_work and ->buf.work handlers to terminate
1076 flush_scheduled_work();
1077 /* Shutdown the current discipline. */
1078 if (tty->ldisc.close)
1079 (tty->ldisc.close)(tty);
1081 /* Now set up the new line discipline. */
1082 tty_ldisc_assign(tty, ld);
1083 tty_set_termios_ldisc(tty, ldisc);
1084 if (tty->ldisc.open)
1085 retval = (tty->ldisc.open)(tty);
1087 tty_ldisc_put(ldisc);
1088 /* There is an outstanding reference here so this is safe */
1089 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1090 tty_set_termios_ldisc(tty, tty->ldisc.num);
1091 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1092 tty_ldisc_put(o_ldisc.num);
1093 /* This driver is always present */
1094 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1095 tty_set_termios_ldisc(tty, N_TTY);
1096 if (tty->ldisc.open) {
1097 int r = tty->ldisc.open(tty);
1100 panic("Couldn't open N_TTY ldisc for "
1102 tty_name(tty, buf), r);
1106 /* At this point we hold a reference to the new ldisc and a
1107 a reference to the old ldisc. If we ended up flipping back
1108 to the existing ldisc we have two references to it */
1110 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1111 tty->driver->set_ldisc(tty);
1113 tty_ldisc_put(o_ldisc.num);
1116 * Allow ldisc referencing to occur as soon as the driver
1117 * ldisc callback completes.
1120 tty_ldisc_enable(tty);
1122 tty_ldisc_enable(o_tty);
1124 /* Restart it in case no characters kick it off. Safe if
1127 schedule_delayed_work(&tty->buf.work, 1);
1132 * get_tty_driver - find device of a tty
1133 * @dev_t: device identifier
1134 * @index: returns the index of the tty
1136 * This routine returns a tty driver structure, given a device number
1137 * and also passes back the index number.
1139 * Locking: caller must hold tty_mutex
1142 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1144 struct tty_driver *p;
1146 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1147 dev_t base = MKDEV(p->major, p->minor_start);
1148 if (device < base || device >= base + p->num)
1150 *index = device - base;
1157 * tty_check_change - check for POSIX terminal changes
1158 * @tty: tty to check
1160 * If we try to write to, or set the state of, a terminal and we're
1161 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1162 * ignored, go ahead and perform the operation. (POSIX 7.2)
1167 int tty_check_change(struct tty_struct * tty)
1169 if (current->signal->tty != tty)
1172 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
1175 if (task_pgrp(current) == tty->pgrp)
1177 if (is_ignored(SIGTTOU))
1179 if (is_current_pgrp_orphaned())
1181 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
1182 set_thread_flag(TIF_SIGPENDING);
1183 return -ERESTARTSYS;
1186 EXPORT_SYMBOL(tty_check_change);
1188 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1189 size_t count, loff_t *ppos)
1194 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1195 size_t count, loff_t *ppos)
1200 /* No kernel lock held - none needed ;) */
1201 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1203 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1206 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1207 unsigned int cmd, unsigned long arg)
1209 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1212 static long hung_up_tty_compat_ioctl(struct file * file,
1213 unsigned int cmd, unsigned long arg)
1215 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1218 static const struct file_operations tty_fops = {
1219 .llseek = no_llseek,
1224 .compat_ioctl = tty_compat_ioctl,
1226 .release = tty_release,
1227 .fasync = tty_fasync,
1230 #ifdef CONFIG_UNIX98_PTYS
1231 static const struct file_operations ptmx_fops = {
1232 .llseek = no_llseek,
1237 .compat_ioctl = tty_compat_ioctl,
1239 .release = tty_release,
1240 .fasync = tty_fasync,
1244 static const struct file_operations console_fops = {
1245 .llseek = no_llseek,
1247 .write = redirected_tty_write,
1250 .compat_ioctl = tty_compat_ioctl,
1252 .release = tty_release,
1253 .fasync = tty_fasync,
1256 static const struct file_operations hung_up_tty_fops = {
1257 .llseek = no_llseek,
1258 .read = hung_up_tty_read,
1259 .write = hung_up_tty_write,
1260 .poll = hung_up_tty_poll,
1261 .ioctl = hung_up_tty_ioctl,
1262 .compat_ioctl = hung_up_tty_compat_ioctl,
1263 .release = tty_release,
1266 static DEFINE_SPINLOCK(redirect_lock);
1267 static struct file *redirect;
1270 * tty_wakeup - request more data
1273 * Internal and external helper for wakeups of tty. This function
1274 * informs the line discipline if present that the driver is ready
1275 * to receive more output data.
1278 void tty_wakeup(struct tty_struct *tty)
1280 struct tty_ldisc *ld;
1282 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1283 ld = tty_ldisc_ref(tty);
1285 if(ld->write_wakeup)
1286 ld->write_wakeup(tty);
1287 tty_ldisc_deref(ld);
1290 wake_up_interruptible(&tty->write_wait);
1293 EXPORT_SYMBOL_GPL(tty_wakeup);
1296 * tty_ldisc_flush - flush line discipline queue
1299 * Flush the line discipline queue (if any) for this tty. If there
1300 * is no line discipline active this is a no-op.
1303 void tty_ldisc_flush(struct tty_struct *tty)
1305 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1307 if(ld->flush_buffer)
1308 ld->flush_buffer(tty);
1309 tty_ldisc_deref(ld);
1311 tty_buffer_flush(tty);
1314 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1317 * tty_reset_termios - reset terminal state
1318 * @tty: tty to reset
1320 * Restore a terminal to the driver default state
1323 static void tty_reset_termios(struct tty_struct *tty)
1325 mutex_lock(&tty->termios_mutex);
1326 *tty->termios = tty->driver->init_termios;
1327 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1328 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1329 mutex_unlock(&tty->termios_mutex);
1333 * do_tty_hangup - actual handler for hangup events
1336 * This can be called by the "eventd" kernel thread. That is process
1337 * synchronous but doesn't hold any locks, so we need to make sure we
1338 * have the appropriate locks for what we're doing.
1340 * The hangup event clears any pending redirections onto the hung up
1341 * device. It ensures future writes will error and it does the needed
1342 * line discipline hangup and signal delivery. The tty object itself
1347 * redirect lock for undoing redirection
1348 * file list lock for manipulating list of ttys
1349 * tty_ldisc_lock from called functions
1350 * termios_mutex resetting termios data
1351 * tasklist_lock to walk task list for hangup event
1352 * ->siglock to protect ->signal/->sighand
1354 static void do_tty_hangup(struct work_struct *work)
1356 struct tty_struct *tty =
1357 container_of(work, struct tty_struct, hangup_work);
1358 struct file * cons_filp = NULL;
1359 struct file *filp, *f = NULL;
1360 struct task_struct *p;
1361 struct tty_ldisc *ld;
1362 int closecount = 0, n;
1367 /* inuse_filps is protected by the single kernel lock */
1370 spin_lock(&redirect_lock);
1371 if (redirect && redirect->private_data == tty) {
1375 spin_unlock(&redirect_lock);
1377 check_tty_count(tty, "do_tty_hangup");
1379 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1380 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1381 if (filp->f_op->write == redirected_tty_write)
1383 if (filp->f_op->write != tty_write)
1386 tty_fasync(-1, filp, 0); /* can't block */
1387 filp->f_op = &hung_up_tty_fops;
1391 /* FIXME! What are the locking issues here? This may me overdoing things..
1392 * this question is especially important now that we've removed the irqlock. */
1394 ld = tty_ldisc_ref(tty);
1395 if(ld != NULL) /* We may have no line discipline at this point */
1397 if (ld->flush_buffer)
1398 ld->flush_buffer(tty);
1399 if (tty->driver->flush_buffer)
1400 tty->driver->flush_buffer(tty);
1401 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1403 ld->write_wakeup(tty);
1408 /* FIXME: Once we trust the LDISC code better we can wait here for
1409 ldisc completion and fix the driver call race */
1411 wake_up_interruptible(&tty->write_wait);
1412 wake_up_interruptible(&tty->read_wait);
1415 * Shutdown the current line discipline, and reset it to
1418 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1419 tty_reset_termios(tty);
1421 /* Defer ldisc switch */
1422 /* tty_deferred_ldisc_switch(N_TTY);
1424 This should get done automatically when the port closes and
1425 tty_release is called */
1427 read_lock(&tasklist_lock);
1429 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
1430 spin_lock_irq(&p->sighand->siglock);
1431 if (p->signal->tty == tty)
1432 p->signal->tty = NULL;
1433 if (!p->signal->leader) {
1434 spin_unlock_irq(&p->sighand->siglock);
1437 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1438 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1439 put_pid(p->signal->tty_old_pgrp); /* A noop */
1441 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
1442 spin_unlock_irq(&p->sighand->siglock);
1443 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
1445 read_unlock(&tasklist_lock);
1448 put_pid(tty->session);
1450 tty->session = NULL;
1452 tty->ctrl_status = 0;
1454 * If one of the devices matches a console pointer, we
1455 * cannot just call hangup() because that will cause
1456 * tty->count and state->count to go out of sync.
1457 * So we just call close() the right number of times.
1460 if (tty->driver->close)
1461 for (n = 0; n < closecount; n++)
1462 tty->driver->close(tty, cons_filp);
1463 } else if (tty->driver->hangup)
1464 (tty->driver->hangup)(tty);
1466 /* We don't want to have driver/ldisc interactions beyond
1467 the ones we did here. The driver layer expects no
1468 calls after ->hangup() from the ldisc side. However we
1469 can't yet guarantee all that */
1471 set_bit(TTY_HUPPED, &tty->flags);
1473 tty_ldisc_enable(tty);
1474 tty_ldisc_deref(ld);
1482 * tty_hangup - trigger a hangup event
1483 * @tty: tty to hangup
1485 * A carrier loss (virtual or otherwise) has occurred on this like
1486 * schedule a hangup sequence to run after this event.
1489 void tty_hangup(struct tty_struct * tty)
1491 #ifdef TTY_DEBUG_HANGUP
1494 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1496 schedule_work(&tty->hangup_work);
1499 EXPORT_SYMBOL(tty_hangup);
1502 * tty_vhangup - process vhangup
1503 * @tty: tty to hangup
1505 * The user has asked via system call for the terminal to be hung up.
1506 * We do this synchronously so that when the syscall returns the process
1507 * is complete. That guarantee is necessary for security reasons.
1510 void tty_vhangup(struct tty_struct * tty)
1512 #ifdef TTY_DEBUG_HANGUP
1515 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1517 do_tty_hangup(&tty->hangup_work);
1519 EXPORT_SYMBOL(tty_vhangup);
1522 * tty_hung_up_p - was tty hung up
1523 * @filp: file pointer of tty
1525 * Return true if the tty has been subject to a vhangup or a carrier
1529 int tty_hung_up_p(struct file * filp)
1531 return (filp->f_op == &hung_up_tty_fops);
1534 EXPORT_SYMBOL(tty_hung_up_p);
1537 * is_tty - checker whether file is a TTY
1539 int is_tty(struct file *filp)
1541 return filp->f_op->read == tty_read
1542 || filp->f_op->read == hung_up_tty_read;
1545 static void session_clear_tty(struct pid *session)
1547 struct task_struct *p;
1548 do_each_pid_task(session, PIDTYPE_SID, p) {
1550 } while_each_pid_task(session, PIDTYPE_SID, p);
1554 * disassociate_ctty - disconnect controlling tty
1555 * @on_exit: true if exiting so need to "hang up" the session
1557 * This function is typically called only by the session leader, when
1558 * it wants to disassociate itself from its controlling tty.
1560 * It performs the following functions:
1561 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1562 * (2) Clears the tty from being controlling the session
1563 * (3) Clears the controlling tty for all processes in the
1566 * The argument on_exit is set to 1 if called when a process is
1567 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1570 * BKL is taken for hysterical raisins
1571 * tty_mutex is taken to protect tty
1572 * ->siglock is taken to protect ->signal/->sighand
1573 * tasklist_lock is taken to walk process list for sessions
1574 * ->siglock is taken to protect ->signal/->sighand
1577 void disassociate_ctty(int on_exit)
1579 struct tty_struct *tty;
1580 struct pid *tty_pgrp = NULL;
1584 mutex_lock(&tty_mutex);
1585 tty = get_current_tty();
1587 tty_pgrp = get_pid(tty->pgrp);
1588 mutex_unlock(&tty_mutex);
1589 /* XXX: here we race, there is nothing protecting tty */
1590 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1592 } else if (on_exit) {
1593 struct pid *old_pgrp;
1594 spin_lock_irq(¤t->sighand->siglock);
1595 old_pgrp = current->signal->tty_old_pgrp;
1596 current->signal->tty_old_pgrp = NULL;
1597 spin_unlock_irq(¤t->sighand->siglock);
1599 kill_pgrp(old_pgrp, SIGHUP, on_exit);
1600 kill_pgrp(old_pgrp, SIGCONT, on_exit);
1603 mutex_unlock(&tty_mutex);
1608 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
1610 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
1614 spin_lock_irq(¤t->sighand->siglock);
1615 put_pid(current->signal->tty_old_pgrp);
1616 current->signal->tty_old_pgrp = NULL;
1617 spin_unlock_irq(¤t->sighand->siglock);
1619 mutex_lock(&tty_mutex);
1620 /* It is possible that do_tty_hangup has free'd this tty */
1621 tty = get_current_tty();
1623 put_pid(tty->session);
1625 tty->session = NULL;
1628 #ifdef TTY_DEBUG_HANGUP
1629 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1633 mutex_unlock(&tty_mutex);
1635 /* Now clear signal->tty under the lock */
1636 read_lock(&tasklist_lock);
1637 session_clear_tty(task_session(current));
1638 read_unlock(&tasklist_lock);
1644 * no_tty - Ensure the current process does not have a controlling tty
1648 struct task_struct *tsk = current;
1649 if (tsk->signal->leader)
1650 disassociate_ctty(0);
1651 proc_clear_tty(tsk);
1656 * stop_tty - propagate flow control
1659 * Perform flow control to the driver. For PTY/TTY pairs we
1660 * must also propagate the TIOCKPKT status. May be called
1661 * on an already stopped device and will not re-call the driver
1664 * This functionality is used by both the line disciplines for
1665 * halting incoming flow and by the driver. It may therefore be
1666 * called from any context, may be under the tty atomic_write_lock
1670 * Broken. Relies on BKL which is unsafe here.
1673 void stop_tty(struct tty_struct *tty)
1678 if (tty->link && tty->link->packet) {
1679 tty->ctrl_status &= ~TIOCPKT_START;
1680 tty->ctrl_status |= TIOCPKT_STOP;
1681 wake_up_interruptible(&tty->link->read_wait);
1683 if (tty->driver->stop)
1684 (tty->driver->stop)(tty);
1687 EXPORT_SYMBOL(stop_tty);
1690 * start_tty - propagate flow control
1691 * @tty: tty to start
1693 * Start a tty that has been stopped if at all possible. Perform
1694 * any necessary wakeups and propagate the TIOCPKT status. If this
1695 * is the tty was previous stopped and is being started then the
1696 * driver start method is invoked and the line discipline woken.
1699 * Broken. Relies on BKL which is unsafe here.
1702 void start_tty(struct tty_struct *tty)
1704 if (!tty->stopped || tty->flow_stopped)
1707 if (tty->link && tty->link->packet) {
1708 tty->ctrl_status &= ~TIOCPKT_STOP;
1709 tty->ctrl_status |= TIOCPKT_START;
1710 wake_up_interruptible(&tty->link->read_wait);
1712 if (tty->driver->start)
1713 (tty->driver->start)(tty);
1715 /* If we have a running line discipline it may need kicking */
1719 EXPORT_SYMBOL(start_tty);
1722 * tty_read - read method for tty device files
1723 * @file: pointer to tty file
1725 * @count: size of user buffer
1728 * Perform the read system call function on this terminal device. Checks
1729 * for hung up devices before calling the line discipline method.
1732 * Locks the line discipline internally while needed
1733 * For historical reasons the line discipline read method is
1734 * invoked under the BKL. This will go away in time so do not rely on it
1735 * in new code. Multiple read calls may be outstanding in parallel.
1738 static ssize_t tty_read(struct file * file, char __user * buf, size_t count,
1742 struct tty_struct * tty;
1743 struct inode *inode;
1744 struct tty_ldisc *ld;
1746 tty = (struct tty_struct *)file->private_data;
1747 inode = file->f_path.dentry->d_inode;
1748 if (tty_paranoia_check(tty, inode, "tty_read"))
1750 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1753 /* We want to wait for the line discipline to sort out in this
1755 ld = tty_ldisc_ref_wait(tty);
1758 i = (ld->read)(tty,file,buf,count);
1761 tty_ldisc_deref(ld);
1764 inode->i_atime = current_fs_time(inode->i_sb);
1768 void tty_write_unlock(struct tty_struct *tty)
1770 mutex_unlock(&tty->atomic_write_lock);
1771 wake_up_interruptible(&tty->write_wait);
1774 int tty_write_lock(struct tty_struct *tty, int ndelay)
1776 if (!mutex_trylock(&tty->atomic_write_lock)) {
1779 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1780 return -ERESTARTSYS;
1786 * Split writes up in sane blocksizes to avoid
1787 * denial-of-service type attacks
1789 static inline ssize_t do_tty_write(
1790 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1791 struct tty_struct *tty,
1793 const char __user *buf,
1796 ssize_t ret, written = 0;
1799 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1804 * We chunk up writes into a temporary buffer. This
1805 * simplifies low-level drivers immensely, since they
1806 * don't have locking issues and user mode accesses.
1808 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1811 * The default chunk-size is 2kB, because the NTTY
1812 * layer has problems with bigger chunks. It will
1813 * claim to be able to handle more characters than
1816 * FIXME: This can probably go away now except that 64K chunks
1817 * are too likely to fail unless switched to vmalloc...
1820 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1825 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1826 if (tty->write_cnt < chunk) {
1832 buf = kmalloc(chunk, GFP_KERNEL);
1837 kfree(tty->write_buf);
1838 tty->write_cnt = chunk;
1839 tty->write_buf = buf;
1842 /* Do the write .. */
1844 size_t size = count;
1848 if (copy_from_user(tty->write_buf, buf, size))
1851 ret = write(tty, file, tty->write_buf, size);
1861 if (signal_pending(current))
1866 struct inode *inode = file->f_path.dentry->d_inode;
1867 inode->i_mtime = current_fs_time(inode->i_sb);
1871 tty_write_unlock(tty);
1877 * tty_write - write method for tty device file
1878 * @file: tty file pointer
1879 * @buf: user data to write
1880 * @count: bytes to write
1883 * Write data to a tty device via the line discipline.
1886 * Locks the line discipline as required
1887 * Writes to the tty driver are serialized by the atomic_write_lock
1888 * and are then processed in chunks to the device. The line discipline
1889 * write method will not be involked in parallel for each device
1890 * The line discipline write method is called under the big
1891 * kernel lock for historical reasons. New code should not rely on this.
1894 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1897 struct tty_struct * tty;
1898 struct inode *inode = file->f_path.dentry->d_inode;
1900 struct tty_ldisc *ld;
1902 tty = (struct tty_struct *)file->private_data;
1903 if (tty_paranoia_check(tty, inode, "tty_write"))
1905 if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1908 ld = tty_ldisc_ref_wait(tty);
1912 ret = do_tty_write(ld->write, tty, file, buf, count);
1913 tty_ldisc_deref(ld);
1917 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1920 struct file *p = NULL;
1922 spin_lock(&redirect_lock);
1927 spin_unlock(&redirect_lock);
1931 res = vfs_write(p, buf, count, &p->f_pos);
1936 return tty_write(file, buf, count, ppos);
1939 static char ptychar[] = "pqrstuvwxyzabcde";
1942 * pty_line_name - generate name for a pty
1943 * @driver: the tty driver in use
1944 * @index: the minor number
1945 * @p: output buffer of at least 6 bytes
1947 * Generate a name from a driver reference and write it to the output
1952 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1954 int i = index + driver->name_base;
1955 /* ->name is initialized to "ttyp", but "tty" is expected */
1956 sprintf(p, "%s%c%x",
1957 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1958 ptychar[i >> 4 & 0xf], i & 0xf);
1962 * pty_line_name - generate name for a tty
1963 * @driver: the tty driver in use
1964 * @index: the minor number
1965 * @p: output buffer of at least 7 bytes
1967 * Generate a name from a driver reference and write it to the output
1972 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1974 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1978 * init_dev - initialise a tty device
1979 * @driver: tty driver we are opening a device on
1980 * @idx: device index
1981 * @tty: returned tty structure
1983 * Prepare a tty device. This may not be a "new" clean device but
1984 * could also be an active device. The pty drivers require special
1985 * handling because of this.
1988 * The function is called under the tty_mutex, which
1989 * protects us from the tty struct or driver itself going away.
1991 * On exit the tty device has the line discipline attached and
1992 * a reference count of 1. If a pair was created for pty/tty use
1993 * and the other was a pty master then it too has a reference count of 1.
1995 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1996 * failed open. The new code protects the open with a mutex, so it's
1997 * really quite straightforward. The mutex locking can probably be
1998 * relaxed for the (most common) case of reopening a tty.
2001 static int init_dev(struct tty_driver *driver, int idx,
2002 struct tty_struct **ret_tty)
2004 struct tty_struct *tty, *o_tty;
2005 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
2006 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
2009 /* check whether we're reopening an existing tty */
2010 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2011 tty = devpts_get_tty(idx);
2013 * If we don't have a tty here on a slave open, it's because
2014 * the master already started the close process and there's
2015 * no relation between devpts file and tty anymore.
2017 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
2022 * It's safe from now on because init_dev() is called with
2023 * tty_mutex held and release_dev() won't change tty->count
2024 * or tty->flags without having to grab tty_mutex
2026 if (tty && driver->subtype == PTY_TYPE_MASTER)
2029 tty = driver->ttys[idx];
2031 if (tty) goto fast_track;
2034 * First time open is complex, especially for PTY devices.
2035 * This code guarantees that either everything succeeds and the
2036 * TTY is ready for operation, or else the table slots are vacated
2037 * and the allocated memory released. (Except that the termios
2038 * and locked termios may be retained.)
2041 if (!try_module_get(driver->owner)) {
2050 tty = alloc_tty_struct();
2053 initialize_tty_struct(tty);
2054 tty->driver = driver;
2056 tty_line_name(driver, idx, tty->name);
2058 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2059 tp_loc = &tty->termios;
2060 ltp_loc = &tty->termios_locked;
2062 tp_loc = &driver->termios[idx];
2063 ltp_loc = &driver->termios_locked[idx];
2067 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2070 *tp = driver->init_termios;
2074 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
2079 if (driver->type == TTY_DRIVER_TYPE_PTY) {
2080 o_tty = alloc_tty_struct();
2083 initialize_tty_struct(o_tty);
2084 o_tty->driver = driver->other;
2086 tty_line_name(driver->other, idx, o_tty->name);
2088 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2089 o_tp_loc = &o_tty->termios;
2090 o_ltp_loc = &o_tty->termios_locked;
2092 o_tp_loc = &driver->other->termios[idx];
2093 o_ltp_loc = &driver->other->termios_locked[idx];
2097 o_tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2100 *o_tp = driver->other->init_termios;
2104 o_ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
2110 * Everything allocated ... set up the o_tty structure.
2112 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
2113 driver->other->ttys[idx] = o_tty;
2119 o_tty->termios = *o_tp_loc;
2120 o_tty->termios_locked = *o_ltp_loc;
2121 driver->other->refcount++;
2122 if (driver->subtype == PTY_TYPE_MASTER)
2125 /* Establish the links in both directions */
2131 * All structures have been allocated, so now we install them.
2132 * Failures after this point use release_tty to clean up, so
2133 * there's no need to null out the local pointers.
2135 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2136 driver->ttys[idx] = tty;
2143 tty->termios = *tp_loc;
2144 tty->termios_locked = *ltp_loc;
2145 /* Compatibility until drivers always set this */
2146 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2147 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2152 * Structures all installed ... call the ldisc open routines.
2153 * If we fail here just call release_tty to clean up. No need
2154 * to decrement the use counts, as release_tty doesn't care.
2157 if (tty->ldisc.open) {
2158 retval = (tty->ldisc.open)(tty);
2160 goto release_mem_out;
2162 if (o_tty && o_tty->ldisc.open) {
2163 retval = (o_tty->ldisc.open)(o_tty);
2165 if (tty->ldisc.close)
2166 (tty->ldisc.close)(tty);
2167 goto release_mem_out;
2169 tty_ldisc_enable(o_tty);
2171 tty_ldisc_enable(tty);
2175 * This fast open can be used if the tty is already open.
2176 * No memory is allocated, and the only failures are from
2177 * attempting to open a closing tty or attempting multiple
2178 * opens on a pty master.
2181 if (test_bit(TTY_CLOSING, &tty->flags)) {
2185 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2186 driver->subtype == PTY_TYPE_MASTER) {
2188 * special case for PTY masters: only one open permitted,
2189 * and the slave side open count is incremented as well.
2198 tty->driver = driver; /* N.B. why do this every time?? */
2201 if(!test_bit(TTY_LDISC, &tty->flags))
2202 printk(KERN_ERR "init_dev but no ldisc\n");
2206 /* All paths come through here to release the mutex */
2210 /* Release locally allocated memory ... nothing placed in slots */
2214 free_tty_struct(o_tty);
2217 free_tty_struct(tty);
2220 module_put(driver->owner);
2224 /* call the tty release_tty routine to clean out this slot */
2226 if (printk_ratelimit())
2227 printk(KERN_INFO "init_dev: ldisc open failed, "
2228 "clearing slot %d\n", idx);
2229 release_tty(tty, idx);
2234 * release_one_tty - release tty structure memory
2236 * Releases memory associated with a tty structure, and clears out the
2237 * driver table slots. This function is called when a device is no longer
2238 * in use. It also gets called when setup of a device fails.
2241 * tty_mutex - sometimes only
2242 * takes the file list lock internally when working on the list
2243 * of ttys that the driver keeps.
2244 * FIXME: should we require tty_mutex is held here ??
2246 static void release_one_tty(struct tty_struct *tty, int idx)
2248 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2249 struct ktermios *tp;
2252 tty->driver->ttys[idx] = NULL;
2254 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2257 tty->driver->termios[idx] = NULL;
2260 tp = tty->termios_locked;
2262 tty->driver->termios_locked[idx] = NULL;
2268 tty->driver->refcount--;
2271 list_del_init(&tty->tty_files);
2274 free_tty_struct(tty);
2278 * release_tty - release tty structure memory
2280 * Release both @tty and a possible linked partner (think pty pair),
2281 * and decrement the refcount of the backing module.
2284 * tty_mutex - sometimes only
2285 * takes the file list lock internally when working on the list
2286 * of ttys that the driver keeps.
2287 * FIXME: should we require tty_mutex is held here ??
2289 static void release_tty(struct tty_struct *tty, int idx)
2291 struct tty_driver *driver = tty->driver;
2294 release_one_tty(tty->link, idx);
2295 release_one_tty(tty, idx);
2296 module_put(driver->owner);
2300 * Even releasing the tty structures is a tricky business.. We have
2301 * to be very careful that the structures are all released at the
2302 * same time, as interrupts might otherwise get the wrong pointers.
2304 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2305 * lead to double frees or releasing memory still in use.
2307 static void release_dev(struct file * filp)
2309 struct tty_struct *tty, *o_tty;
2310 int pty_master, tty_closing, o_tty_closing, do_sleep;
2314 unsigned long flags;
2316 tty = (struct tty_struct *)filp->private_data;
2317 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "release_dev"))
2320 check_tty_count(tty, "release_dev");
2322 tty_fasync(-1, filp, 0);
2325 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2326 tty->driver->subtype == PTY_TYPE_MASTER);
2327 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2330 #ifdef TTY_PARANOIA_CHECK
2331 if (idx < 0 || idx >= tty->driver->num) {
2332 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2333 "free (%s)\n", tty->name);
2336 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2337 if (tty != tty->driver->ttys[idx]) {
2338 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2339 "for (%s)\n", idx, tty->name);
2342 if (tty->termios != tty->driver->termios[idx]) {
2343 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2348 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2349 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2350 "termios_locked for (%s)\n",
2357 #ifdef TTY_DEBUG_HANGUP
2358 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2359 tty_name(tty, buf), tty->count);
2362 #ifdef TTY_PARANOIA_CHECK
2363 if (tty->driver->other &&
2364 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2365 if (o_tty != tty->driver->other->ttys[idx]) {
2366 printk(KERN_DEBUG "release_dev: other->table[%d] "
2367 "not o_tty for (%s)\n",
2371 if (o_tty->termios != tty->driver->other->termios[idx]) {
2372 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2373 "not o_termios for (%s)\n",
2377 if (o_tty->termios_locked !=
2378 tty->driver->other->termios_locked[idx]) {
2379 printk(KERN_DEBUG "release_dev: other->termios_locked["
2380 "%d] not o_termios_locked for (%s)\n",
2384 if (o_tty->link != tty) {
2385 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2390 if (tty->driver->close)
2391 tty->driver->close(tty, filp);
2394 * Sanity check: if tty->count is going to zero, there shouldn't be
2395 * any waiters on tty->read_wait or tty->write_wait. We test the
2396 * wait queues and kick everyone out _before_ actually starting to
2397 * close. This ensures that we won't block while releasing the tty
2400 * The test for the o_tty closing is necessary, since the master and
2401 * slave sides may close in any order. If the slave side closes out
2402 * first, its count will be one, since the master side holds an open.
2403 * Thus this test wouldn't be triggered at the time the slave closes,
2406 * Note that it's possible for the tty to be opened again while we're
2407 * flushing out waiters. By recalculating the closing flags before
2408 * each iteration we avoid any problems.
2411 /* Guard against races with tty->count changes elsewhere and
2412 opens on /dev/tty */
2414 mutex_lock(&tty_mutex);
2415 tty_closing = tty->count <= 1;
2416 o_tty_closing = o_tty &&
2417 (o_tty->count <= (pty_master ? 1 : 0));
2421 if (waitqueue_active(&tty->read_wait)) {
2422 wake_up(&tty->read_wait);
2425 if (waitqueue_active(&tty->write_wait)) {
2426 wake_up(&tty->write_wait);
2430 if (o_tty_closing) {
2431 if (waitqueue_active(&o_tty->read_wait)) {
2432 wake_up(&o_tty->read_wait);
2435 if (waitqueue_active(&o_tty->write_wait)) {
2436 wake_up(&o_tty->write_wait);
2443 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2444 "active!\n", tty_name(tty, buf));
2445 mutex_unlock(&tty_mutex);
2450 * The closing flags are now consistent with the open counts on
2451 * both sides, and we've completed the last operation that could
2452 * block, so it's safe to proceed with closing.
2455 if (--o_tty->count < 0) {
2456 printk(KERN_WARNING "release_dev: bad pty slave count "
2458 o_tty->count, tty_name(o_tty, buf));
2462 if (--tty->count < 0) {
2463 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2464 tty->count, tty_name(tty, buf));
2469 * We've decremented tty->count, so we need to remove this file
2470 * descriptor off the tty->tty_files list; this serves two
2472 * - check_tty_count sees the correct number of file descriptors
2473 * associated with this tty.
2474 * - do_tty_hangup no longer sees this file descriptor as
2475 * something that needs to be handled for hangups.
2478 filp->private_data = NULL;
2481 * Perform some housekeeping before deciding whether to return.
2483 * Set the TTY_CLOSING flag if this was the last open. In the
2484 * case of a pty we may have to wait around for the other side
2485 * to close, and TTY_CLOSING makes sure we can't be reopened.
2488 set_bit(TTY_CLOSING, &tty->flags);
2490 set_bit(TTY_CLOSING, &o_tty->flags);
2493 * If _either_ side is closing, make sure there aren't any
2494 * processes that still think tty or o_tty is their controlling
2497 if (tty_closing || o_tty_closing) {
2498 read_lock(&tasklist_lock);
2499 session_clear_tty(tty->session);
2501 session_clear_tty(o_tty->session);
2502 read_unlock(&tasklist_lock);
2505 mutex_unlock(&tty_mutex);
2507 /* check whether both sides are closing ... */
2508 if (!tty_closing || (o_tty && !o_tty_closing))
2511 #ifdef TTY_DEBUG_HANGUP
2512 printk(KERN_DEBUG "freeing tty structure...");
2515 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2516 * kill any delayed work. As this is the final close it does not
2517 * race with the set_ldisc code path.
2519 clear_bit(TTY_LDISC, &tty->flags);
2520 cancel_delayed_work(&tty->buf.work);
2523 * Wait for ->hangup_work and ->buf.work handlers to terminate
2526 flush_scheduled_work();
2529 * Wait for any short term users (we know they are just driver
2530 * side waiters as the file is closing so user count on the file
2533 spin_lock_irqsave(&tty_ldisc_lock, flags);
2534 while(tty->ldisc.refcount)
2536 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2537 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2538 spin_lock_irqsave(&tty_ldisc_lock, flags);
2540 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2542 * Shutdown the current line discipline, and reset it to N_TTY.
2543 * N.B. why reset ldisc when we're releasing the memory??
2545 * FIXME: this MUST get fixed for the new reflocking
2547 if (tty->ldisc.close)
2548 (tty->ldisc.close)(tty);
2549 tty_ldisc_put(tty->ldisc.num);
2552 * Switch the line discipline back
2554 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2555 tty_set_termios_ldisc(tty,N_TTY);
2557 /* FIXME: could o_tty be in setldisc here ? */
2558 clear_bit(TTY_LDISC, &o_tty->flags);
2559 if (o_tty->ldisc.close)
2560 (o_tty->ldisc.close)(o_tty);
2561 tty_ldisc_put(o_tty->ldisc.num);
2562 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2563 tty_set_termios_ldisc(o_tty,N_TTY);
2566 * The release_tty function takes care of the details of clearing
2567 * the slots and preserving the termios structure.
2569 release_tty(tty, idx);
2571 #ifdef CONFIG_UNIX98_PTYS
2572 /* Make this pty number available for reallocation */
2574 mutex_lock(&allocated_ptys_lock);
2575 idr_remove(&allocated_ptys, idx);
2576 mutex_unlock(&allocated_ptys_lock);
2583 * tty_open - open a tty device
2584 * @inode: inode of device file
2585 * @filp: file pointer to tty
2587 * tty_open and tty_release keep up the tty count that contains the
2588 * number of opens done on a tty. We cannot use the inode-count, as
2589 * different inodes might point to the same tty.
2591 * Open-counting is needed for pty masters, as well as for keeping
2592 * track of serial lines: DTR is dropped when the last close happens.
2593 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2595 * The termios state of a pty is reset on first open so that
2596 * settings don't persist across reuse.
2598 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2599 * tty->count should protect the rest.
2600 * ->siglock protects ->signal/->sighand
2603 static int tty_open(struct inode * inode, struct file * filp)
2605 struct tty_struct *tty;
2607 struct tty_driver *driver;
2609 dev_t device = inode->i_rdev;
2610 unsigned short saved_flags = filp->f_flags;
2612 nonseekable_open(inode, filp);
2615 noctty = filp->f_flags & O_NOCTTY;
2619 mutex_lock(&tty_mutex);
2621 if (device == MKDEV(TTYAUX_MAJOR,0)) {
2622 tty = get_current_tty();
2624 mutex_unlock(&tty_mutex);
2627 driver = tty->driver;
2629 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2634 if (device == MKDEV(TTY_MAJOR,0)) {
2635 extern struct tty_driver *console_driver;
2636 driver = console_driver;
2642 if (device == MKDEV(TTYAUX_MAJOR,1)) {
2643 driver = console_device(&index);
2645 /* Don't let /dev/console block */
2646 filp->f_flags |= O_NONBLOCK;
2650 mutex_unlock(&tty_mutex);
2654 driver = get_tty_driver(device, &index);
2656 mutex_unlock(&tty_mutex);
2660 retval = init_dev(driver, index, &tty);
2661 mutex_unlock(&tty_mutex);
2665 filp->private_data = tty;
2666 file_move(filp, &tty->tty_files);
2667 check_tty_count(tty, "tty_open");
2668 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2669 tty->driver->subtype == PTY_TYPE_MASTER)
2671 #ifdef TTY_DEBUG_HANGUP
2672 printk(KERN_DEBUG "opening %s...", tty->name);
2675 if (tty->driver->open)
2676 retval = tty->driver->open(tty, filp);
2680 filp->f_flags = saved_flags;
2682 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2686 #ifdef TTY_DEBUG_HANGUP
2687 printk(KERN_DEBUG "error %d in opening %s...", retval,
2691 if (retval != -ERESTARTSYS)
2693 if (signal_pending(current))
2697 * Need to reset f_op in case a hangup happened.
2699 if (filp->f_op == &hung_up_tty_fops)
2700 filp->f_op = &tty_fops;
2704 mutex_lock(&tty_mutex);
2705 spin_lock_irq(¤t->sighand->siglock);
2707 current->signal->leader &&
2708 !current->signal->tty &&
2709 tty->session == NULL)
2710 __proc_set_tty(current, tty);
2711 spin_unlock_irq(¤t->sighand->siglock);
2712 mutex_unlock(&tty_mutex);
2713 tty_audit_opening();
2717 #ifdef CONFIG_UNIX98_PTYS
2719 * ptmx_open - open a unix 98 pty master
2720 * @inode: inode of device file
2721 * @filp: file pointer to tty
2723 * Allocate a unix98 pty master device from the ptmx driver.
2725 * Locking: tty_mutex protects theinit_dev work. tty->count should
2727 * allocated_ptys_lock handles the list of free pty numbers
2730 static int ptmx_open(struct inode * inode, struct file * filp)
2732 struct tty_struct *tty;
2737 nonseekable_open(inode, filp);
2739 /* find a device that is not in use. */
2740 mutex_lock(&allocated_ptys_lock);
2741 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2742 mutex_unlock(&allocated_ptys_lock);
2745 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2747 mutex_unlock(&allocated_ptys_lock);
2748 if (idr_ret == -EAGAIN)
2752 if (index >= pty_limit) {
2753 idr_remove(&allocated_ptys, index);
2754 mutex_unlock(&allocated_ptys_lock);
2757 mutex_unlock(&allocated_ptys_lock);
2759 mutex_lock(&tty_mutex);
2760 retval = init_dev(ptm_driver, index, &tty);
2761 mutex_unlock(&tty_mutex);
2766 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2767 filp->private_data = tty;
2768 file_move(filp, &tty->tty_files);
2771 if (devpts_pty_new(tty->link))
2774 check_tty_count(tty, "tty_open");
2775 retval = ptm_driver->open(tty, filp);
2777 tty_audit_opening();
2784 mutex_lock(&allocated_ptys_lock);
2785 idr_remove(&allocated_ptys, index);
2786 mutex_unlock(&allocated_ptys_lock);
2792 * tty_release - vfs callback for close
2793 * @inode: inode of tty
2794 * @filp: file pointer for handle to tty
2796 * Called the last time each file handle is closed that references
2797 * this tty. There may however be several such references.
2800 * Takes bkl. See release_dev
2803 static int tty_release(struct inode * inode, struct file * filp)
2812 * tty_poll - check tty status
2813 * @filp: file being polled
2814 * @wait: poll wait structures to update
2816 * Call the line discipline polling method to obtain the poll
2817 * status of the device.
2819 * Locking: locks called line discipline but ldisc poll method
2820 * may be re-entered freely by other callers.
2823 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2825 struct tty_struct * tty;
2826 struct tty_ldisc *ld;
2829 tty = (struct tty_struct *)filp->private_data;
2830 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2833 ld = tty_ldisc_ref_wait(tty);
2835 ret = (ld->poll)(tty, filp, wait);
2836 tty_ldisc_deref(ld);
2840 static int tty_fasync(int fd, struct file * filp, int on)
2842 struct tty_struct * tty;
2845 tty = (struct tty_struct *)filp->private_data;
2846 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2849 retval = fasync_helper(fd, filp, on, &tty->fasync);
2856 if (!waitqueue_active(&tty->read_wait))
2857 tty->minimum_to_wake = 1;
2860 type = PIDTYPE_PGID;
2862 pid = task_pid(current);
2865 retval = __f_setown(filp, pid, type, 0);
2869 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2870 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2876 * tiocsti - fake input character
2877 * @tty: tty to fake input into
2878 * @p: pointer to character
2880 * Fake input to a tty device. Does the necessary locking and
2883 * FIXME: does not honour flow control ??
2886 * Called functions take tty_ldisc_lock
2887 * current->signal->tty check is safe without locks
2889 * FIXME: may race normal receive processing
2892 static int tiocsti(struct tty_struct *tty, char __user *p)
2895 struct tty_ldisc *ld;
2897 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2899 if (get_user(ch, p))
2901 ld = tty_ldisc_ref_wait(tty);
2902 ld->receive_buf(tty, &ch, &mbz, 1);
2903 tty_ldisc_deref(ld);
2908 * tiocgwinsz - implement window query ioctl
2910 * @arg: user buffer for result
2912 * Copies the kernel idea of the window size into the user buffer.
2914 * Locking: tty->termios_mutex is taken to ensure the winsize data
2918 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2922 mutex_lock(&tty->termios_mutex);
2923 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2924 mutex_unlock(&tty->termios_mutex);
2926 return err ? -EFAULT: 0;
2930 * tiocswinsz - implement window size set ioctl
2932 * @arg: user buffer for result
2934 * Copies the user idea of the window size to the kernel. Traditionally
2935 * this is just advisory information but for the Linux console it
2936 * actually has driver level meaning and triggers a VC resize.
2939 * Called function use the console_sem is used to ensure we do
2940 * not try and resize the console twice at once.
2941 * The tty->termios_mutex is used to ensure we don't double
2942 * resize and get confused. Lock order - tty->termios_mutex before
2946 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2947 struct winsize __user * arg)
2949 struct winsize tmp_ws;
2951 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2954 mutex_lock(&tty->termios_mutex);
2955 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2959 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2960 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2962 mutex_unlock(&tty->termios_mutex);
2968 kill_pgrp(tty->pgrp, SIGWINCH, 1);
2969 if ((real_tty->pgrp != tty->pgrp) && real_tty->pgrp)
2970 kill_pgrp(real_tty->pgrp, SIGWINCH, 1);
2971 tty->winsize = tmp_ws;
2972 real_tty->winsize = tmp_ws;
2974 mutex_unlock(&tty->termios_mutex);
2979 * tioccons - allow admin to move logical console
2980 * @file: the file to become console
2982 * Allow the adminstrator to move the redirected console device
2984 * Locking: uses redirect_lock to guard the redirect information
2987 static int tioccons(struct file *file)
2989 if (!capable(CAP_SYS_ADMIN))
2991 if (file->f_op->write == redirected_tty_write) {
2993 spin_lock(&redirect_lock);
2996 spin_unlock(&redirect_lock);
3001 spin_lock(&redirect_lock);
3003 spin_unlock(&redirect_lock);
3008 spin_unlock(&redirect_lock);
3013 * fionbio - non blocking ioctl
3014 * @file: file to set blocking value
3015 * @p: user parameter
3017 * Historical tty interfaces had a blocking control ioctl before
3018 * the generic functionality existed. This piece of history is preserved
3019 * in the expected tty API of posix OS's.
3021 * Locking: none, the open fle handle ensures it won't go away.
3024 static int fionbio(struct file *file, int __user *p)
3028 if (get_user(nonblock, p))
3032 file->f_flags |= O_NONBLOCK;
3034 file->f_flags &= ~O_NONBLOCK;
3039 * tiocsctty - set controlling tty
3040 * @tty: tty structure
3041 * @arg: user argument
3043 * This ioctl is used to manage job control. It permits a session
3044 * leader to set this tty as the controlling tty for the session.
3047 * Takes tty_mutex() to protect tty instance
3048 * Takes tasklist_lock internally to walk sessions
3049 * Takes ->siglock() when updating signal->tty
3052 static int tiocsctty(struct tty_struct *tty, int arg)
3055 if (current->signal->leader && (task_session(current) == tty->session))
3058 mutex_lock(&tty_mutex);
3060 * The process must be a session leader and
3061 * not have a controlling tty already.
3063 if (!current->signal->leader || current->signal->tty) {
3070 * This tty is already the controlling
3071 * tty for another session group!
3073 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
3077 read_lock(&tasklist_lock);
3078 session_clear_tty(tty->session);
3079 read_unlock(&tasklist_lock);
3085 proc_set_tty(current, tty);
3087 mutex_unlock(&tty_mutex);
3092 * tiocgpgrp - get process group
3093 * @tty: tty passed by user
3094 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3097 * Obtain the process group of the tty. If there is no process group
3100 * Locking: none. Reference to current->signal->tty is safe.
3103 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3106 * (tty == real_tty) is a cheap way of
3107 * testing if the tty is NOT a master pty.
3109 if (tty == real_tty && current->signal->tty != real_tty)
3111 return put_user(pid_vnr(real_tty->pgrp), p);
3115 * tiocspgrp - attempt to set process group
3116 * @tty: tty passed by user
3117 * @real_tty: tty side device matching tty passed by user
3120 * Set the process group of the tty to the session passed. Only
3121 * permitted where the tty session is our session.
3126 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3130 int retval = tty_check_change(real_tty);
3136 if (!current->signal->tty ||
3137 (current->signal->tty != real_tty) ||
3138 (real_tty->session != task_session(current)))
3140 if (get_user(pgrp_nr, p))
3145 pgrp = find_vpid(pgrp_nr);
3150 if (session_of_pgrp(pgrp) != task_session(current))
3153 put_pid(real_tty->pgrp);
3154 real_tty->pgrp = get_pid(pgrp);
3161 * tiocgsid - get session id
3162 * @tty: tty passed by user
3163 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3164 * @p: pointer to returned session id
3166 * Obtain the session id of the tty. If there is no session
3169 * Locking: none. Reference to current->signal->tty is safe.
3172 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3175 * (tty == real_tty) is a cheap way of
3176 * testing if the tty is NOT a master pty.
3178 if (tty == real_tty && current->signal->tty != real_tty)
3180 if (!real_tty->session)
3182 return put_user(pid_vnr(real_tty->session), p);
3186 * tiocsetd - set line discipline
3188 * @p: pointer to user data
3190 * Set the line discipline according to user request.
3192 * Locking: see tty_set_ldisc, this function is just a helper
3195 static int tiocsetd(struct tty_struct *tty, int __user *p)
3199 if (get_user(ldisc, p))
3201 return tty_set_ldisc(tty, ldisc);
3205 * send_break - performed time break
3206 * @tty: device to break on
3207 * @duration: timeout in mS
3209 * Perform a timed break on hardware that lacks its own driver level
3210 * timed break functionality.
3213 * atomic_write_lock serializes
3217 static int send_break(struct tty_struct *tty, unsigned int duration)
3219 if (tty_write_lock(tty, 0) < 0)
3221 tty->driver->break_ctl(tty, -1);
3222 if (!signal_pending(current))
3223 msleep_interruptible(duration);
3224 tty->driver->break_ctl(tty, 0);
3225 tty_write_unlock(tty);
3226 if (signal_pending(current))
3232 * tiocmget - get modem status
3234 * @file: user file pointer
3235 * @p: pointer to result
3237 * Obtain the modem status bits from the tty driver if the feature
3238 * is supported. Return -EINVAL if it is not available.
3240 * Locking: none (up to the driver)
3243 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3245 int retval = -EINVAL;
3247 if (tty->driver->tiocmget) {
3248 retval = tty->driver->tiocmget(tty, file);
3251 retval = put_user(retval, p);
3257 * tiocmset - set modem status
3259 * @file: user file pointer
3260 * @cmd: command - clear bits, set bits or set all
3261 * @p: pointer to desired bits
3263 * Set the modem status bits from the tty driver if the feature
3264 * is supported. Return -EINVAL if it is not available.
3266 * Locking: none (up to the driver)
3269 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3272 int retval = -EINVAL;
3274 if (tty->driver->tiocmset) {
3275 unsigned int set, clear, val;
3277 retval = get_user(val, p);
3295 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3296 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3298 retval = tty->driver->tiocmset(tty, file, set, clear);
3304 * Split this up, as gcc can choke on it otherwise..
3306 int tty_ioctl(struct inode * inode, struct file * file,
3307 unsigned int cmd, unsigned long arg)
3309 struct tty_struct *tty, *real_tty;
3310 void __user *p = (void __user *)arg;
3312 struct tty_ldisc *ld;
3314 tty = (struct tty_struct *)file->private_data;
3315 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3318 /* CHECKME: is this safe as one end closes ? */
3321 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3322 tty->driver->subtype == PTY_TYPE_MASTER)
3323 real_tty = tty->link;
3326 * Break handling by driver
3328 if (!tty->driver->break_ctl) {
3332 if (tty->driver->ioctl)
3333 return tty->driver->ioctl(tty, file, cmd, arg);
3336 /* These two ioctl's always return success; even if */
3337 /* the driver doesn't support them. */
3340 if (!tty->driver->ioctl)
3342 retval = tty->driver->ioctl(tty, file, cmd, arg);
3343 if (retval == -ENOIOCTLCMD)
3350 * Factor out some common prep work
3358 retval = tty_check_change(tty);
3361 if (cmd != TIOCCBRK) {
3362 tty_wait_until_sent(tty, 0);
3363 if (signal_pending(current))
3371 return tiocsti(tty, p);
3373 return tiocgwinsz(tty, p);
3375 return tiocswinsz(tty, real_tty, p);
3377 return real_tty!=tty ? -EINVAL : tioccons(file);
3379 return fionbio(file, p);
3381 set_bit(TTY_EXCLUSIVE, &tty->flags);
3384 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3387 if (current->signal->tty != tty)
3392 return tiocsctty(tty, arg);
3394 return tiocgpgrp(tty, real_tty, p);
3396 return tiocspgrp(tty, real_tty, p);
3398 return tiocgsid(tty, real_tty, p);
3400 /* FIXME: check this is ok */
3401 return put_user(tty->ldisc.num, (int __user *)p);
3403 return tiocsetd(tty, p);
3406 return tioclinux(tty, arg);
3411 case TIOCSBRK: /* Turn break on, unconditionally */
3412 tty->driver->break_ctl(tty, -1);
3415 case TIOCCBRK: /* Turn break off, unconditionally */
3416 tty->driver->break_ctl(tty, 0);
3418 case TCSBRK: /* SVID version: non-zero arg --> no break */
3419 /* non-zero arg means wait for all output data
3420 * to be sent (performed above) but don't send break.
3421 * This is used by the tcdrain() termios function.
3424 return send_break(tty, 250);
3426 case TCSBRKP: /* support for POSIX tcsendbreak() */
3427 return send_break(tty, arg ? arg*100 : 250);
3430 return tty_tiocmget(tty, file, p);
3435 return tty_tiocmset(tty, file, cmd, p);
3440 /* flush tty buffer and allow ldisc to process ioctl */
3441 tty_buffer_flush(tty);
3446 if (tty->driver->ioctl) {
3447 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3448 if (retval != -ENOIOCTLCMD)
3451 ld = tty_ldisc_ref_wait(tty);
3454 retval = ld->ioctl(tty, file, cmd, arg);
3455 if (retval == -ENOIOCTLCMD)
3458 tty_ldisc_deref(ld);
3462 #ifdef CONFIG_COMPAT
3463 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
3466 struct inode *inode = file->f_dentry->d_inode;
3467 struct tty_struct *tty = file->private_data;
3468 struct tty_ldisc *ld;
3469 int retval = -ENOIOCTLCMD;
3471 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3474 if (tty->driver->compat_ioctl) {
3475 retval = (tty->driver->compat_ioctl)(tty, file, cmd, arg);
3476 if (retval != -ENOIOCTLCMD)
3480 ld = tty_ldisc_ref_wait(tty);
3481 if (ld->compat_ioctl)
3482 retval = ld->compat_ioctl(tty, file, cmd, arg);
3483 tty_ldisc_deref(ld);
3490 * This implements the "Secure Attention Key" --- the idea is to
3491 * prevent trojan horses by killing all processes associated with this
3492 * tty when the user hits the "Secure Attention Key". Required for
3493 * super-paranoid applications --- see the Orange Book for more details.
3495 * This code could be nicer; ideally it should send a HUP, wait a few
3496 * seconds, then send a INT, and then a KILL signal. But you then
3497 * have to coordinate with the init process, since all processes associated
3498 * with the current tty must be dead before the new getty is allowed
3501 * Now, if it would be correct ;-/ The current code has a nasty hole -
3502 * it doesn't catch files in flight. We may send the descriptor to ourselves
3503 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3505 * Nasty bug: do_SAK is being called in interrupt context. This can
3506 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3508 void __do_SAK(struct tty_struct *tty)
3513 struct task_struct *g, *p;
3514 struct pid *session;
3517 struct fdtable *fdt;
3521 session = tty->session;
3523 tty_ldisc_flush(tty);
3525 if (tty->driver->flush_buffer)
3526 tty->driver->flush_buffer(tty);
3528 read_lock(&tasklist_lock);
3529 /* Kill the entire session */
3530 do_each_pid_task(session, PIDTYPE_SID, p) {
3531 printk(KERN_NOTICE "SAK: killed process %d"
3532 " (%s): task_session_nr(p)==tty->session\n",
3533 task_pid_nr(p), p->comm);
3534 send_sig(SIGKILL, p, 1);
3535 } while_each_pid_task(session, PIDTYPE_SID, p);
3536 /* Now kill any processes that happen to have the
3539 do_each_thread(g, p) {
3540 if (p->signal->tty == tty) {
3541 printk(KERN_NOTICE "SAK: killed process %d"
3542 " (%s): task_session_nr(p)==tty->session\n",
3543 task_pid_nr(p), p->comm);
3544 send_sig(SIGKILL, p, 1);
3550 * We don't take a ref to the file, so we must
3551 * hold ->file_lock instead.
3553 spin_lock(&p->files->file_lock);
3554 fdt = files_fdtable(p->files);
3555 for (i=0; i < fdt->max_fds; i++) {
3556 filp = fcheck_files(p->files, i);
3559 if (filp->f_op->read == tty_read &&
3560 filp->private_data == tty) {
3561 printk(KERN_NOTICE "SAK: killed process %d"
3562 " (%s): fd#%d opened to the tty\n",
3563 task_pid_nr(p), p->comm, i);
3564 force_sig(SIGKILL, p);
3568 spin_unlock(&p->files->file_lock);
3571 } while_each_thread(g, p);
3572 read_unlock(&tasklist_lock);
3576 static void do_SAK_work(struct work_struct *work)
3578 struct tty_struct *tty =
3579 container_of(work, struct tty_struct, SAK_work);
3584 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3585 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3586 * the values which we write to it will be identical to the values which it
3587 * already has. --akpm
3589 void do_SAK(struct tty_struct *tty)
3593 schedule_work(&tty->SAK_work);
3596 EXPORT_SYMBOL(do_SAK);
3600 * @work: tty structure passed from work queue.
3602 * This routine is called out of the software interrupt to flush data
3603 * from the buffer chain to the line discipline.
3605 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3606 * while invoking the line discipline receive_buf method. The
3607 * receive_buf method is single threaded for each tty instance.
3610 static void flush_to_ldisc(struct work_struct *work)
3612 struct tty_struct *tty =
3613 container_of(work, struct tty_struct, buf.work.work);
3614 unsigned long flags;
3615 struct tty_ldisc *disc;
3616 struct tty_buffer *tbuf, *head;
3618 unsigned char *flag_buf;
3620 disc = tty_ldisc_ref(tty);
3621 if (disc == NULL) /* !TTY_LDISC */
3624 spin_lock_irqsave(&tty->buf.lock, flags);
3625 set_bit(TTY_FLUSHING, &tty->flags); /* So we know a flush is running */
3626 head = tty->buf.head;
3628 tty->buf.head = NULL;
3630 int count = head->commit - head->read;
3632 if (head->next == NULL)
3636 tty_buffer_free(tty, tbuf);
3639 /* Ldisc or user is trying to flush the buffers
3640 we are feeding to the ldisc, stop feeding the
3641 line discipline as we want to empty the queue */
3642 if (test_bit(TTY_FLUSHPENDING, &tty->flags))
3644 if (!tty->receive_room) {
3645 schedule_delayed_work(&tty->buf.work, 1);
3648 if (count > tty->receive_room)
3649 count = tty->receive_room;
3650 char_buf = head->char_buf_ptr + head->read;
3651 flag_buf = head->flag_buf_ptr + head->read;
3652 head->read += count;
3653 spin_unlock_irqrestore(&tty->buf.lock, flags);
3654 disc->receive_buf(tty, char_buf, flag_buf, count);
3655 spin_lock_irqsave(&tty->buf.lock, flags);
3657 /* Restore the queue head */
3658 tty->buf.head = head;
3660 /* We may have a deferred request to flush the input buffer,
3661 if so pull the chain under the lock and empty the queue */
3662 if (test_bit(TTY_FLUSHPENDING, &tty->flags)) {
3663 __tty_buffer_flush(tty);
3664 clear_bit(TTY_FLUSHPENDING, &tty->flags);
3665 wake_up(&tty->read_wait);
3667 clear_bit(TTY_FLUSHING, &tty->flags);
3668 spin_unlock_irqrestore(&tty->buf.lock, flags);
3670 tty_ldisc_deref(disc);
3674 * tty_flip_buffer_push - terminal
3677 * Queue a push of the terminal flip buffers to the line discipline. This
3678 * function must not be called from IRQ context if tty->low_latency is set.
3680 * In the event of the queue being busy for flipping the work will be
3681 * held off and retried later.
3683 * Locking: tty buffer lock. Driver locks in low latency mode.
3686 void tty_flip_buffer_push(struct tty_struct *tty)
3688 unsigned long flags;
3689 spin_lock_irqsave(&tty->buf.lock, flags);
3690 if (tty->buf.tail != NULL)
3691 tty->buf.tail->commit = tty->buf.tail->used;
3692 spin_unlock_irqrestore(&tty->buf.lock, flags);
3694 if (tty->low_latency)
3695 flush_to_ldisc(&tty->buf.work.work);
3697 schedule_delayed_work(&tty->buf.work, 1);
3700 EXPORT_SYMBOL(tty_flip_buffer_push);
3704 * initialize_tty_struct
3705 * @tty: tty to initialize
3707 * This subroutine initializes a tty structure that has been newly
3710 * Locking: none - tty in question must not be exposed at this point
3713 static void initialize_tty_struct(struct tty_struct *tty)
3715 memset(tty, 0, sizeof(struct tty_struct));
3716 tty->magic = TTY_MAGIC;
3717 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3718 tty->session = NULL;
3720 tty->overrun_time = jiffies;
3721 tty->buf.head = tty->buf.tail = NULL;
3722 tty_buffer_init(tty);
3723 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3724 mutex_init(&tty->termios_mutex);
3725 init_waitqueue_head(&tty->write_wait);
3726 init_waitqueue_head(&tty->read_wait);
3727 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3728 mutex_init(&tty->atomic_read_lock);
3729 mutex_init(&tty->atomic_write_lock);
3730 spin_lock_init(&tty->read_lock);
3731 INIT_LIST_HEAD(&tty->tty_files);
3732 INIT_WORK(&tty->SAK_work, do_SAK_work);
3736 * The default put_char routine if the driver did not define one.
3739 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3741 tty->driver->write(tty, &ch, 1);
3744 static struct class *tty_class;
3747 * tty_register_device - register a tty device
3748 * @driver: the tty driver that describes the tty device
3749 * @index: the index in the tty driver for this tty device
3750 * @device: a struct device that is associated with this tty device.
3751 * This field is optional, if there is no known struct device
3752 * for this tty device it can be set to NULL safely.
3754 * Returns a pointer to the struct device for this tty device
3755 * (or ERR_PTR(-EFOO) on error).
3757 * This call is required to be made to register an individual tty device
3758 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3759 * that bit is not set, this function should not be called by a tty
3765 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3766 struct device *device)
3769 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3771 if (index >= driver->num) {
3772 printk(KERN_ERR "Attempt to register invalid tty line number "
3774 return ERR_PTR(-EINVAL);
3777 if (driver->type == TTY_DRIVER_TYPE_PTY)
3778 pty_line_name(driver, index, name);
3780 tty_line_name(driver, index, name);
3782 return device_create(tty_class, device, dev, name);
3786 * tty_unregister_device - unregister a tty device
3787 * @driver: the tty driver that describes the tty device
3788 * @index: the index in the tty driver for this tty device
3790 * If a tty device is registered with a call to tty_register_device() then
3791 * this function must be called when the tty device is gone.
3796 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3798 device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3801 EXPORT_SYMBOL(tty_register_device);
3802 EXPORT_SYMBOL(tty_unregister_device);
3804 struct tty_driver *alloc_tty_driver(int lines)
3806 struct tty_driver *driver;
3808 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3810 driver->magic = TTY_DRIVER_MAGIC;
3811 driver->num = lines;
3812 /* later we'll move allocation of tables here */
3817 void put_tty_driver(struct tty_driver *driver)
3822 void tty_set_operations(struct tty_driver *driver,
3823 const struct tty_operations *op)
3825 driver->open = op->open;
3826 driver->close = op->close;
3827 driver->write = op->write;
3828 driver->put_char = op->put_char;
3829 driver->flush_chars = op->flush_chars;
3830 driver->write_room = op->write_room;
3831 driver->chars_in_buffer = op->chars_in_buffer;
3832 driver->ioctl = op->ioctl;
3833 driver->compat_ioctl = op->compat_ioctl;
3834 driver->set_termios = op->set_termios;
3835 driver->throttle = op->throttle;
3836 driver->unthrottle = op->unthrottle;
3837 driver->stop = op->stop;
3838 driver->start = op->start;
3839 driver->hangup = op->hangup;
3840 driver->break_ctl = op->break_ctl;
3841 driver->flush_buffer = op->flush_buffer;
3842 driver->set_ldisc = op->set_ldisc;
3843 driver->wait_until_sent = op->wait_until_sent;
3844 driver->send_xchar = op->send_xchar;
3845 driver->read_proc = op->read_proc;
3846 driver->write_proc = op->write_proc;
3847 driver->tiocmget = op->tiocmget;
3848 driver->tiocmset = op->tiocmset;
3852 EXPORT_SYMBOL(alloc_tty_driver);
3853 EXPORT_SYMBOL(put_tty_driver);
3854 EXPORT_SYMBOL(tty_set_operations);
3857 * Called by a tty driver to register itself.
3859 int tty_register_driver(struct tty_driver *driver)
3866 if (driver->flags & TTY_DRIVER_INSTALLED)
3869 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3870 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3875 if (!driver->major) {
3876 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3879 driver->major = MAJOR(dev);
3880 driver->minor_start = MINOR(dev);
3883 dev = MKDEV(driver->major, driver->minor_start);
3884 error = register_chrdev_region(dev, driver->num, driver->name);
3892 driver->ttys = (struct tty_struct **)p;
3893 driver->termios = (struct ktermios **)(p + driver->num);
3894 driver->termios_locked = (struct ktermios **)(p + driver->num * 2);
3896 driver->ttys = NULL;
3897 driver->termios = NULL;
3898 driver->termios_locked = NULL;
3901 cdev_init(&driver->cdev, &tty_fops);
3902 driver->cdev.owner = driver->owner;
3903 error = cdev_add(&driver->cdev, dev, driver->num);
3905 unregister_chrdev_region(dev, driver->num);
3906 driver->ttys = NULL;
3907 driver->termios = driver->termios_locked = NULL;
3912 if (!driver->put_char)
3913 driver->put_char = tty_default_put_char;
3915 mutex_lock(&tty_mutex);
3916 list_add(&driver->tty_drivers, &tty_drivers);
3917 mutex_unlock(&tty_mutex);
3919 if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3920 for(i = 0; i < driver->num; i++)
3921 tty_register_device(driver, i, NULL);
3923 proc_tty_register_driver(driver);
3927 EXPORT_SYMBOL(tty_register_driver);
3930 * Called by a tty driver to unregister itself.
3932 int tty_unregister_driver(struct tty_driver *driver)
3935 struct ktermios *tp;
3938 if (driver->refcount)
3941 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3943 mutex_lock(&tty_mutex);
3944 list_del(&driver->tty_drivers);
3945 mutex_unlock(&tty_mutex);
3948 * Free the termios and termios_locked structures because
3949 * we don't want to get memory leaks when modular tty
3950 * drivers are removed from the kernel.
3952 for (i = 0; i < driver->num; i++) {
3953 tp = driver->termios[i];
3955 driver->termios[i] = NULL;
3958 tp = driver->termios_locked[i];
3960 driver->termios_locked[i] = NULL;
3963 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3964 tty_unregister_device(driver, i);
3967 proc_tty_unregister_driver(driver);
3968 driver->ttys = NULL;
3969 driver->termios = driver->termios_locked = NULL;
3971 cdev_del(&driver->cdev);
3974 EXPORT_SYMBOL(tty_unregister_driver);
3976 dev_t tty_devnum(struct tty_struct *tty)
3978 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3980 EXPORT_SYMBOL(tty_devnum);
3982 void proc_clear_tty(struct task_struct *p)
3984 spin_lock_irq(&p->sighand->siglock);
3985 p->signal->tty = NULL;
3986 spin_unlock_irq(&p->sighand->siglock);
3988 EXPORT_SYMBOL(proc_clear_tty);
3990 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3993 /* We should not have a session or pgrp to here but.... */
3994 put_pid(tty->session);
3996 tty->session = get_pid(task_session(tsk));
3997 tty->pgrp = get_pid(task_pgrp(tsk));
3999 put_pid(tsk->signal->tty_old_pgrp);
4000 tsk->signal->tty = tty;
4001 tsk->signal->tty_old_pgrp = NULL;
4004 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
4006 spin_lock_irq(&tsk->sighand->siglock);
4007 __proc_set_tty(tsk, tty);
4008 spin_unlock_irq(&tsk->sighand->siglock);
4011 struct tty_struct *get_current_tty(void)
4013 struct tty_struct *tty;
4014 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
4015 tty = current->signal->tty;
4017 * session->tty can be changed/cleared from under us, make sure we
4018 * issue the load. The obtained pointer, when not NULL, is valid as
4019 * long as we hold tty_mutex.
4024 EXPORT_SYMBOL_GPL(get_current_tty);
4027 * Initialize the console device. This is called *early*, so
4028 * we can't necessarily depend on lots of kernel help here.
4029 * Just do some early initializations, and do the complex setup
4032 void __init console_init(void)
4036 /* Setup the default TTY line discipline. */
4037 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
4040 * set up the console device so that later boot sequences can
4041 * inform about problems etc..
4043 call = __con_initcall_start;
4044 while (call < __con_initcall_end) {
4050 static int __init tty_class_init(void)
4052 tty_class = class_create(THIS_MODULE, "tty");
4053 if (IS_ERR(tty_class))
4054 return PTR_ERR(tty_class);
4058 postcore_initcall(tty_class_init);
4060 /* 3/2004 jmc: why do these devices exist? */
4062 static struct cdev tty_cdev, console_cdev;
4063 #ifdef CONFIG_UNIX98_PTYS
4064 static struct cdev ptmx_cdev;
4067 static struct cdev vc0_cdev;
4071 * Ok, now we can initialize the rest of the tty devices and can count
4072 * on memory allocations, interrupts etc..
4074 static int __init tty_init(void)
4076 cdev_init(&tty_cdev, &tty_fops);
4077 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
4078 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
4079 panic("Couldn't register /dev/tty driver\n");
4080 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
4082 cdev_init(&console_cdev, &console_fops);
4083 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
4084 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
4085 panic("Couldn't register /dev/console driver\n");
4086 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
4088 #ifdef CONFIG_UNIX98_PTYS
4089 cdev_init(&ptmx_cdev, &ptmx_fops);
4090 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
4091 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
4092 panic("Couldn't register /dev/ptmx driver\n");
4093 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
4097 cdev_init(&vc0_cdev, &console_fops);
4098 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
4099 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
4100 panic("Couldn't register /dev/tty0 driver\n");
4101 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
4107 module_init(tty_init);