1 /*****************************************************************************/
4 * stallion.c -- stallion multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/serial.h>
35 #include <linux/cd1400.h>
36 #include <linux/sc26198.h>
37 #include <linux/comstats.h>
38 #include <linux/stallion.h>
39 #include <linux/ioport.h>
40 #include <linux/init.h>
41 #include <linux/smp_lock.h>
42 #include <linux/device.h>
43 #include <linux/delay.h>
44 #include <linux/ctype.h>
47 #include <asm/uaccess.h>
49 #include <linux/pci.h>
51 /*****************************************************************************/
54 * Define different board types. Use the standard Stallion "assigned"
55 * board numbers. Boards supported in this driver are abbreviated as
56 * EIO = EasyIO and ECH = EasyConnection 8/32.
62 #define BRD_ECH64PCI 27
63 #define BRD_EASYIOPCI 28
69 unsigned long memaddr;
74 static unsigned int stl_nrbrds;
76 /*****************************************************************************/
79 * Define some important driver characteristics. Device major numbers
80 * allocated as per Linux Device Registry.
82 #ifndef STL_SIOMEMMAJOR
83 #define STL_SIOMEMMAJOR 28
85 #ifndef STL_SERIALMAJOR
86 #define STL_SERIALMAJOR 24
88 #ifndef STL_CALLOUTMAJOR
89 #define STL_CALLOUTMAJOR 25
93 * Set the TX buffer size. Bigger is better, but we don't want
94 * to chew too much memory with buffers!
96 #define STL_TXBUFLOW 512
97 #define STL_TXBUFSIZE 4096
99 /*****************************************************************************/
102 * Define our local driver identity first. Set up stuff to deal with
103 * all the local structures required by a serial tty driver.
105 static char *stl_drvtitle = "Stallion Multiport Serial Driver";
106 static char *stl_drvname = "stallion";
107 static char *stl_drvversion = "5.6.0";
109 static struct tty_driver *stl_serial;
112 * Define a local default termios struct. All ports will be created
113 * with this termios initially. Basically all it defines is a raw port
114 * at 9600, 8 data bits, 1 stop bit.
116 static struct ktermios stl_deftermios = {
117 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
124 * Define global place to put buffer overflow characters.
126 static char stl_unwanted[SC26198_RXFIFOSIZE];
128 /*****************************************************************************/
130 static DEFINE_MUTEX(stl_brdslock);
131 static struct stlbrd *stl_brds[STL_MAXBRDS];
134 * Per board state flags. Used with the state field of the board struct.
135 * Not really much here!
137 #define BRD_FOUND 0x1
138 #define STL_PROBED 0x2
142 * Define the port structure istate flags. These set of flags are
143 * modified at interrupt time - so setting and reseting them needs
144 * to be atomic. Use the bit clear/setting routines for this.
146 #define ASYI_TXBUSY 1
148 #define ASYI_TXFLOWED 3
151 * Define an array of board names as printable strings. Handy for
152 * referencing boards when printing trace and stuff.
154 static char *stl_brdnames[] = {
186 /*****************************************************************************/
189 * Define some string labels for arguments passed from the module
190 * load line. These allow for easy board definitions, and easy
191 * modification of the io, memory and irq resoucres.
193 static unsigned int stl_nargs;
194 static char *board0[4];
195 static char *board1[4];
196 static char *board2[4];
197 static char *board3[4];
199 static char **stl_brdsp[] = {
207 * Define a set of common board names, and types. This is used to
208 * parse any module arguments.
215 { "easyio", BRD_EASYIO },
216 { "eio", BRD_EASYIO },
217 { "20", BRD_EASYIO },
218 { "ec8/32", BRD_ECH },
219 { "ec8/32-at", BRD_ECH },
220 { "ec8/32-isa", BRD_ECH },
222 { "echat", BRD_ECH },
224 { "ec8/32-mc", BRD_ECHMC },
225 { "ec8/32-mca", BRD_ECHMC },
226 { "echmc", BRD_ECHMC },
227 { "echmca", BRD_ECHMC },
229 { "ec8/32-pc", BRD_ECHPCI },
230 { "ec8/32-pci", BRD_ECHPCI },
231 { "26", BRD_ECHPCI },
232 { "ec8/64-pc", BRD_ECH64PCI },
233 { "ec8/64-pci", BRD_ECH64PCI },
234 { "ech-pci", BRD_ECH64PCI },
235 { "echpci", BRD_ECH64PCI },
236 { "echpc", BRD_ECH64PCI },
237 { "27", BRD_ECH64PCI },
238 { "easyio-pc", BRD_EASYIOPCI },
239 { "easyio-pci", BRD_EASYIOPCI },
240 { "eio-pci", BRD_EASYIOPCI },
241 { "eiopci", BRD_EASYIOPCI },
242 { "28", BRD_EASYIOPCI },
246 * Define the module agruments.
249 module_param_array(board0, charp, &stl_nargs, 0);
250 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
251 module_param_array(board1, charp, &stl_nargs, 0);
252 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
253 module_param_array(board2, charp, &stl_nargs, 0);
254 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
255 module_param_array(board3, charp, &stl_nargs, 0);
256 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
258 /*****************************************************************************/
261 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
262 * to the directly accessible io ports of these boards (not the uarts -
263 * they are in cd1400.h and sc26198.h).
265 #define EIO_8PORTRS 0x04
266 #define EIO_4PORTRS 0x05
267 #define EIO_8PORTDI 0x00
268 #define EIO_8PORTM 0x06
270 #define EIO_IDBITMASK 0x07
272 #define EIO_BRDMASK 0xf0
275 #define ID_BRD16 0x30
277 #define EIO_INTRPEND 0x08
278 #define EIO_INTEDGE 0x00
279 #define EIO_INTLEVEL 0x08
283 #define ECH_IDBITMASK 0xe0
284 #define ECH_BRDENABLE 0x08
285 #define ECH_BRDDISABLE 0x00
286 #define ECH_INTENABLE 0x01
287 #define ECH_INTDISABLE 0x00
288 #define ECH_INTLEVEL 0x02
289 #define ECH_INTEDGE 0x00
290 #define ECH_INTRPEND 0x01
291 #define ECH_BRDRESET 0x01
293 #define ECHMC_INTENABLE 0x01
294 #define ECHMC_BRDRESET 0x02
296 #define ECH_PNLSTATUS 2
297 #define ECH_PNL16PORT 0x20
298 #define ECH_PNLIDMASK 0x07
299 #define ECH_PNLXPID 0x40
300 #define ECH_PNLINTRPEND 0x80
302 #define ECH_ADDR2MASK 0x1e0
305 * Define the vector mapping bits for the programmable interrupt board
306 * hardware. These bits encode the interrupt for the board to use - it
307 * is software selectable (except the EIO-8M).
309 static unsigned char stl_vecmap[] = {
310 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
311 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
315 * Lock ordering is that you may not take stallion_lock holding
319 static spinlock_t brd_lock; /* Guard the board mapping */
320 static spinlock_t stallion_lock; /* Guard the tty driver */
323 * Set up enable and disable macros for the ECH boards. They require
324 * the secondary io address space to be activated and deactivated.
325 * This way all ECH boards can share their secondary io region.
326 * If this is an ECH-PCI board then also need to set the page pointer
327 * to point to the correct page.
329 #define BRDENABLE(brdnr,pagenr) \
330 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
331 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
332 stl_brds[(brdnr)]->ioctrl); \
333 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
334 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
336 #define BRDDISABLE(brdnr) \
337 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
338 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
339 stl_brds[(brdnr)]->ioctrl);
341 #define STL_CD1400MAXBAUD 230400
342 #define STL_SC26198MAXBAUD 460800
344 #define STL_BAUDBASE 115200
345 #define STL_CLOSEDELAY (5 * HZ / 10)
347 /*****************************************************************************/
350 * Define the Stallion PCI vendor and device IDs.
352 #ifndef PCI_VENDOR_ID_STALLION
353 #define PCI_VENDOR_ID_STALLION 0x124d
355 #ifndef PCI_DEVICE_ID_ECHPCI832
356 #define PCI_DEVICE_ID_ECHPCI832 0x0000
358 #ifndef PCI_DEVICE_ID_ECHPCI864
359 #define PCI_DEVICE_ID_ECHPCI864 0x0002
361 #ifndef PCI_DEVICE_ID_EIOPCI
362 #define PCI_DEVICE_ID_EIOPCI 0x0003
366 * Define structure to hold all Stallion PCI boards.
369 static struct pci_device_id stl_pcibrds[] = {
370 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864),
371 .driver_data = BRD_ECH64PCI },
372 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI),
373 .driver_data = BRD_EASYIOPCI },
374 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832),
375 .driver_data = BRD_ECHPCI },
376 { PCI_DEVICE(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410),
377 .driver_data = BRD_ECHPCI },
380 MODULE_DEVICE_TABLE(pci, stl_pcibrds);
382 /*****************************************************************************/
385 * Define macros to extract a brd/port number from a minor number.
387 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
388 #define MINOR2PORT(min) ((min) & 0x3f)
391 * Define a baud rate table that converts termios baud rate selector
392 * into the actual baud rate value. All baud rate calculations are
393 * based on the actual baud rate required.
395 static unsigned int stl_baudrates[] = {
396 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
397 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
400 /*****************************************************************************/
403 * Declare all those functions in this driver!
406 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
407 static int stl_brdinit(struct stlbrd *brdp);
408 static int stl_getportstats(struct stlport *portp, comstats_t __user *cp);
409 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp);
410 static int stl_waitcarrier(struct stlport *portp, struct file *filp);
413 * CD1400 uart specific handling functions.
415 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value);
416 static int stl_cd1400getreg(struct stlport *portp, int regnr);
417 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value);
418 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
419 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
420 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp);
421 static int stl_cd1400getsignals(struct stlport *portp);
422 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts);
423 static void stl_cd1400ccrwait(struct stlport *portp);
424 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx);
425 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx);
426 static void stl_cd1400disableintrs(struct stlport *portp);
427 static void stl_cd1400sendbreak(struct stlport *portp, int len);
428 static void stl_cd1400flowctrl(struct stlport *portp, int state);
429 static void stl_cd1400sendflow(struct stlport *portp, int state);
430 static void stl_cd1400flush(struct stlport *portp);
431 static int stl_cd1400datastate(struct stlport *portp);
432 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase);
433 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase);
434 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr);
435 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr);
436 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr);
438 static inline int stl_cd1400breakisr(struct stlport *portp, int ioaddr);
441 * SC26198 uart specific handling functions.
443 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value);
444 static int stl_sc26198getreg(struct stlport *portp, int regnr);
445 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value);
446 static int stl_sc26198getglobreg(struct stlport *portp, int regnr);
447 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
448 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
449 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp);
450 static int stl_sc26198getsignals(struct stlport *portp);
451 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts);
452 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx);
453 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx);
454 static void stl_sc26198disableintrs(struct stlport *portp);
455 static void stl_sc26198sendbreak(struct stlport *portp, int len);
456 static void stl_sc26198flowctrl(struct stlport *portp, int state);
457 static void stl_sc26198sendflow(struct stlport *portp, int state);
458 static void stl_sc26198flush(struct stlport *portp);
459 static int stl_sc26198datastate(struct stlport *portp);
460 static void stl_sc26198wait(struct stlport *portp);
461 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty);
462 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase);
463 static void stl_sc26198txisr(struct stlport *port);
464 static void stl_sc26198rxisr(struct stlport *port, unsigned int iack);
465 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch);
466 static void stl_sc26198rxbadchars(struct stlport *portp);
467 static void stl_sc26198otherisr(struct stlport *port, unsigned int iack);
469 /*****************************************************************************/
472 * Generic UART support structure.
474 typedef struct uart {
475 int (*panelinit)(struct stlbrd *brdp, struct stlpanel *panelp);
476 void (*portinit)(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
477 void (*setport)(struct stlport *portp, struct ktermios *tiosp);
478 int (*getsignals)(struct stlport *portp);
479 void (*setsignals)(struct stlport *portp, int dtr, int rts);
480 void (*enablerxtx)(struct stlport *portp, int rx, int tx);
481 void (*startrxtx)(struct stlport *portp, int rx, int tx);
482 void (*disableintrs)(struct stlport *portp);
483 void (*sendbreak)(struct stlport *portp, int len);
484 void (*flowctrl)(struct stlport *portp, int state);
485 void (*sendflow)(struct stlport *portp, int state);
486 void (*flush)(struct stlport *portp);
487 int (*datastate)(struct stlport *portp);
488 void (*intr)(struct stlpanel *panelp, unsigned int iobase);
492 * Define some macros to make calling these functions nice and clean.
494 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
495 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
496 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
497 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
498 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
499 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
500 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
501 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
502 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
503 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
504 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
505 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
506 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
508 /*****************************************************************************/
511 * CD1400 UART specific data initialization.
513 static uart_t stl_cd1400uart = {
517 stl_cd1400getsignals,
518 stl_cd1400setsignals,
519 stl_cd1400enablerxtx,
521 stl_cd1400disableintrs,
531 * Define the offsets within the register bank of a cd1400 based panel.
532 * These io address offsets are common to the EasyIO board as well.
540 #define EREG_BANKSIZE 8
542 #define CD1400_CLK 25000000
543 #define CD1400_CLK8M 20000000
546 * Define the cd1400 baud rate clocks. These are used when calculating
547 * what clock and divisor to use for the required baud rate. Also
548 * define the maximum baud rate allowed, and the default base baud.
550 static int stl_cd1400clkdivs[] = {
551 CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
554 /*****************************************************************************/
557 * SC26198 UART specific data initization.
559 static uart_t stl_sc26198uart = {
560 stl_sc26198panelinit,
563 stl_sc26198getsignals,
564 stl_sc26198setsignals,
565 stl_sc26198enablerxtx,
566 stl_sc26198startrxtx,
567 stl_sc26198disableintrs,
568 stl_sc26198sendbreak,
572 stl_sc26198datastate,
577 * Define the offsets within the register bank of a sc26198 based panel.
585 #define XP_BANKSIZE 4
588 * Define the sc26198 baud rate table. Offsets within the table
589 * represent the actual baud rate selector of sc26198 registers.
591 static unsigned int sc26198_baudtable[] = {
592 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
593 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
594 230400, 460800, 921600
597 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
599 /*****************************************************************************/
602 * Define the driver info for a user level control device. Used mainly
603 * to get at port stats - only not using the port device itself.
605 static const struct file_operations stl_fsiomem = {
606 .owner = THIS_MODULE,
607 .ioctl = stl_memioctl,
610 static struct class *stallion_class;
612 static void stl_cd_change(struct stlport *portp)
614 unsigned int oldsigs = portp->sigs;
619 portp->sigs = stl_getsignals(portp);
621 if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
622 wake_up_interruptible(&portp->open_wait);
624 if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0))
625 if (portp->flags & ASYNC_CHECK_CD)
626 tty_hangup(portp->tty);
630 * Check for any arguments passed in on the module load command line.
633 /*****************************************************************************/
636 * Parse the supplied argument string, into the board conf struct.
639 static int __init stl_parsebrd(struct stlconf *confp, char **argp)
644 pr_debug("stl_parsebrd(confp=%p,argp=%p)\n", confp, argp);
646 if ((argp[0] == NULL) || (*argp[0] == 0))
649 for (sp = argp[0], i = 0; (*sp != 0) && (i < 25); sp++, i++)
652 for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++)
653 if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
656 if (i == ARRAY_SIZE(stl_brdstr)) {
657 printk("STALLION: unknown board name, %s?\n", argp[0]);
661 confp->brdtype = stl_brdstr[i].type;
664 if ((argp[i] != NULL) && (*argp[i] != 0))
665 confp->ioaddr1 = simple_strtoul(argp[i], NULL, 0);
667 if (confp->brdtype == BRD_ECH) {
668 if ((argp[i] != NULL) && (*argp[i] != 0))
669 confp->ioaddr2 = simple_strtoul(argp[i], NULL, 0);
672 if ((argp[i] != NULL) && (*argp[i] != 0))
673 confp->irq = simple_strtoul(argp[i], NULL, 0);
677 /*****************************************************************************/
680 * Allocate a new board structure. Fill out the basic info in it.
683 static struct stlbrd *stl_allocbrd(void)
687 brdp = kzalloc(sizeof(struct stlbrd), GFP_KERNEL);
689 printk("STALLION: failed to allocate memory (size=%Zd)\n",
690 sizeof(struct stlbrd));
694 brdp->magic = STL_BOARDMAGIC;
698 /*****************************************************************************/
700 static int stl_open(struct tty_struct *tty, struct file *filp)
702 struct stlport *portp;
704 unsigned int minordev, brdnr, panelnr;
707 pr_debug("stl_open(tty=%p,filp=%p): device=%s\n", tty, filp, tty->name);
709 minordev = tty->index;
710 brdnr = MINOR2BRD(minordev);
711 if (brdnr >= stl_nrbrds)
713 brdp = stl_brds[brdnr];
716 minordev = MINOR2PORT(minordev);
717 for (portnr = -1, panelnr = 0; panelnr < STL_MAXPANELS; panelnr++) {
718 if (brdp->panels[panelnr] == NULL)
720 if (minordev < brdp->panels[panelnr]->nrports) {
724 minordev -= brdp->panels[panelnr]->nrports;
729 portp = brdp->panels[panelnr]->ports[portnr];
734 * On the first open of the device setup the port hardware, and
735 * initialize the per port data structure.
738 tty->driver_data = portp;
741 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
742 if (!portp->tx.buf) {
743 portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
746 portp->tx.head = portp->tx.buf;
747 portp->tx.tail = portp->tx.buf;
749 stl_setport(portp, tty->termios);
750 portp->sigs = stl_getsignals(portp);
751 stl_setsignals(portp, 1, 1);
752 stl_enablerxtx(portp, 1, 1);
753 stl_startrxtx(portp, 1, 0);
754 clear_bit(TTY_IO_ERROR, &tty->flags);
755 portp->flags |= ASYNC_INITIALIZED;
759 * Check if this port is in the middle of closing. If so then wait
760 * until it is closed then return error status, based on flag settings.
761 * The sleep here does not need interrupt protection since the wakeup
762 * for it is done with the same context.
764 if (portp->flags & ASYNC_CLOSING) {
765 interruptible_sleep_on(&portp->close_wait);
766 if (portp->flags & ASYNC_HUP_NOTIFY)
772 * Based on type of open being done check if it can overlap with any
773 * previous opens still in effect. If we are a normal serial device
774 * then also we might have to wait for carrier.
776 if (!(filp->f_flags & O_NONBLOCK))
777 if ((rc = stl_waitcarrier(portp, filp)) != 0)
780 portp->flags |= ASYNC_NORMAL_ACTIVE;
785 /*****************************************************************************/
788 * Possibly need to wait for carrier (DCD signal) to come high. Say
789 * maybe because if we are clocal then we don't need to wait...
792 static int stl_waitcarrier(struct stlport *portp, struct file *filp)
797 pr_debug("stl_waitcarrier(portp=%p,filp=%p)\n", portp, filp);
802 spin_lock_irqsave(&stallion_lock, flags);
804 if (portp->tty->termios->c_cflag & CLOCAL)
807 portp->openwaitcnt++;
808 if (! tty_hung_up_p(filp))
812 /* Takes brd_lock internally */
813 stl_setsignals(portp, 1, 1);
814 if (tty_hung_up_p(filp) ||
815 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
816 if (portp->flags & ASYNC_HUP_NOTIFY)
822 if (((portp->flags & ASYNC_CLOSING) == 0) &&
823 (doclocal || (portp->sigs & TIOCM_CD)))
825 if (signal_pending(current)) {
830 interruptible_sleep_on(&portp->open_wait);
833 if (! tty_hung_up_p(filp))
835 portp->openwaitcnt--;
836 spin_unlock_irqrestore(&stallion_lock, flags);
841 /*****************************************************************************/
843 static void stl_flushbuffer(struct tty_struct *tty)
845 struct stlport *portp;
847 pr_debug("stl_flushbuffer(tty=%p)\n", tty);
851 portp = tty->driver_data;
859 /*****************************************************************************/
861 static void stl_waituntilsent(struct tty_struct *tty, int timeout)
863 struct stlport *portp;
866 pr_debug("stl_waituntilsent(tty=%p,timeout=%d)\n", tty, timeout);
870 portp = tty->driver_data;
876 tend = jiffies + timeout;
878 while (stl_datastate(portp)) {
879 if (signal_pending(current))
881 msleep_interruptible(20);
882 if (time_after_eq(jiffies, tend))
887 /*****************************************************************************/
889 static void stl_close(struct tty_struct *tty, struct file *filp)
891 struct stlport *portp;
894 pr_debug("stl_close(tty=%p,filp=%p)\n", tty, filp);
896 portp = tty->driver_data;
900 spin_lock_irqsave(&stallion_lock, flags);
901 if (tty_hung_up_p(filp)) {
902 spin_unlock_irqrestore(&stallion_lock, flags);
905 if ((tty->count == 1) && (portp->refcount != 1))
907 if (portp->refcount-- > 1) {
908 spin_unlock_irqrestore(&stallion_lock, flags);
913 portp->flags |= ASYNC_CLOSING;
916 * May want to wait for any data to drain before closing. The BUSY
917 * flag keeps track of whether we are still sending or not - it is
918 * very accurate for the cd1400, not quite so for the sc26198.
919 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
923 spin_unlock_irqrestore(&stallion_lock, flags);
925 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
926 tty_wait_until_sent(tty, portp->closing_wait);
927 stl_waituntilsent(tty, (HZ / 2));
930 spin_lock_irqsave(&stallion_lock, flags);
931 portp->flags &= ~ASYNC_INITIALIZED;
932 spin_unlock_irqrestore(&stallion_lock, flags);
934 stl_disableintrs(portp);
935 if (tty->termios->c_cflag & HUPCL)
936 stl_setsignals(portp, 0, 0);
937 stl_enablerxtx(portp, 0, 0);
938 stl_flushbuffer(tty);
940 if (portp->tx.buf != NULL) {
941 kfree(portp->tx.buf);
942 portp->tx.buf = NULL;
943 portp->tx.head = NULL;
944 portp->tx.tail = NULL;
946 set_bit(TTY_IO_ERROR, &tty->flags);
947 tty_ldisc_flush(tty);
952 if (portp->openwaitcnt) {
953 if (portp->close_delay)
954 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
955 wake_up_interruptible(&portp->open_wait);
958 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
959 wake_up_interruptible(&portp->close_wait);
962 /*****************************************************************************/
965 * Write routine. Take data and stuff it in to the TX ring queue.
966 * If transmit interrupts are not running then start them.
969 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
971 struct stlport *portp;
972 unsigned int len, stlen;
973 unsigned char *chbuf;
976 pr_debug("stl_write(tty=%p,buf=%p,count=%d)\n", tty, buf, count);
978 portp = tty->driver_data;
981 if (portp->tx.buf == NULL)
985 * If copying direct from user space we must cater for page faults,
986 * causing us to "sleep" here for a while. To handle this copy in all
987 * the data we need now, into a local buffer. Then when we got it all
988 * copy it into the TX buffer.
990 chbuf = (unsigned char *) buf;
992 head = portp->tx.head;
993 tail = portp->tx.tail;
995 len = STL_TXBUFSIZE - (head - tail) - 1;
996 stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
998 len = tail - head - 1;
1002 len = min(len, (unsigned int)count);
1005 stlen = min(len, stlen);
1006 memcpy(head, chbuf, stlen);
1011 if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
1012 head = portp->tx.buf;
1013 stlen = tail - head;
1016 portp->tx.head = head;
1018 clear_bit(ASYI_TXLOW, &portp->istate);
1019 stl_startrxtx(portp, -1, 1);
1024 /*****************************************************************************/
1026 static void stl_putchar(struct tty_struct *tty, unsigned char ch)
1028 struct stlport *portp;
1032 pr_debug("stl_putchar(tty=%p,ch=%x)\n", tty, ch);
1036 portp = tty->driver_data;
1039 if (portp->tx.buf == NULL)
1042 head = portp->tx.head;
1043 tail = portp->tx.tail;
1045 len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
1050 if (head >= (portp->tx.buf + STL_TXBUFSIZE))
1051 head = portp->tx.buf;
1053 portp->tx.head = head;
1056 /*****************************************************************************/
1059 * If there are any characters in the buffer then make sure that TX
1060 * interrupts are on and get'em out. Normally used after the putchar
1061 * routine has been called.
1064 static void stl_flushchars(struct tty_struct *tty)
1066 struct stlport *portp;
1068 pr_debug("stl_flushchars(tty=%p)\n", tty);
1072 portp = tty->driver_data;
1075 if (portp->tx.buf == NULL)
1078 stl_startrxtx(portp, -1, 1);
1081 /*****************************************************************************/
1083 static int stl_writeroom(struct tty_struct *tty)
1085 struct stlport *portp;
1088 pr_debug("stl_writeroom(tty=%p)\n", tty);
1092 portp = tty->driver_data;
1095 if (portp->tx.buf == NULL)
1098 head = portp->tx.head;
1099 tail = portp->tx.tail;
1100 return (head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1);
1103 /*****************************************************************************/
1106 * Return number of chars in the TX buffer. Normally we would just
1107 * calculate the number of chars in the buffer and return that, but if
1108 * the buffer is empty and TX interrupts are still on then we return
1109 * that the buffer still has 1 char in it. This way whoever called us
1110 * will not think that ALL chars have drained - since the UART still
1111 * must have some chars in it (we are busy after all).
1114 static int stl_charsinbuffer(struct tty_struct *tty)
1116 struct stlport *portp;
1120 pr_debug("stl_charsinbuffer(tty=%p)\n", tty);
1124 portp = tty->driver_data;
1127 if (portp->tx.buf == NULL)
1130 head = portp->tx.head;
1131 tail = portp->tx.tail;
1132 size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
1133 if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
1138 /*****************************************************************************/
1141 * Generate the serial struct info.
1144 static int stl_getserial(struct stlport *portp, struct serial_struct __user *sp)
1146 struct serial_struct sio;
1147 struct stlbrd *brdp;
1149 pr_debug("stl_getserial(portp=%p,sp=%p)\n", portp, sp);
1151 memset(&sio, 0, sizeof(struct serial_struct));
1152 sio.line = portp->portnr;
1153 sio.port = portp->ioaddr;
1154 sio.flags = portp->flags;
1155 sio.baud_base = portp->baud_base;
1156 sio.close_delay = portp->close_delay;
1157 sio.closing_wait = portp->closing_wait;
1158 sio.custom_divisor = portp->custom_divisor;
1160 if (portp->uartp == &stl_cd1400uart) {
1161 sio.type = PORT_CIRRUS;
1162 sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
1164 sio.type = PORT_UNKNOWN;
1165 sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
1168 brdp = stl_brds[portp->brdnr];
1170 sio.irq = brdp->irq;
1172 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
1175 /*****************************************************************************/
1178 * Set port according to the serial struct info.
1179 * At this point we do not do any auto-configure stuff, so we will
1180 * just quietly ignore any requests to change irq, etc.
1183 static int stl_setserial(struct stlport *portp, struct serial_struct __user *sp)
1185 struct serial_struct sio;
1187 pr_debug("stl_setserial(portp=%p,sp=%p)\n", portp, sp);
1189 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1191 if (!capable(CAP_SYS_ADMIN)) {
1192 if ((sio.baud_base != portp->baud_base) ||
1193 (sio.close_delay != portp->close_delay) ||
1194 ((sio.flags & ~ASYNC_USR_MASK) !=
1195 (portp->flags & ~ASYNC_USR_MASK)))
1199 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1200 (sio.flags & ASYNC_USR_MASK);
1201 portp->baud_base = sio.baud_base;
1202 portp->close_delay = sio.close_delay;
1203 portp->closing_wait = sio.closing_wait;
1204 portp->custom_divisor = sio.custom_divisor;
1205 stl_setport(portp, portp->tty->termios);
1209 /*****************************************************************************/
1211 static int stl_tiocmget(struct tty_struct *tty, struct file *file)
1213 struct stlport *portp;
1217 portp = tty->driver_data;
1220 if (tty->flags & (1 << TTY_IO_ERROR))
1223 return stl_getsignals(portp);
1226 static int stl_tiocmset(struct tty_struct *tty, struct file *file,
1227 unsigned int set, unsigned int clear)
1229 struct stlport *portp;
1230 int rts = -1, dtr = -1;
1234 portp = tty->driver_data;
1237 if (tty->flags & (1 << TTY_IO_ERROR))
1240 if (set & TIOCM_RTS)
1242 if (set & TIOCM_DTR)
1244 if (clear & TIOCM_RTS)
1246 if (clear & TIOCM_DTR)
1249 stl_setsignals(portp, dtr, rts);
1253 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1255 struct stlport *portp;
1258 void __user *argp = (void __user *)arg;
1260 pr_debug("stl_ioctl(tty=%p,file=%p,cmd=%x,arg=%lx)\n", tty, file, cmd,
1265 portp = tty->driver_data;
1269 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1270 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS))
1271 if (tty->flags & (1 << TTY_IO_ERROR))
1280 rc = stl_getserial(portp, argp);
1283 rc = stl_setserial(portp, argp);
1285 case COM_GETPORTSTATS:
1286 rc = stl_getportstats(portp, argp);
1288 case COM_CLRPORTSTATS:
1289 rc = stl_clrportstats(portp, argp);
1295 case TIOCSERGSTRUCT:
1296 case TIOCSERGETMULTI:
1297 case TIOCSERSETMULTI:
1306 /*****************************************************************************/
1309 * Start the transmitter again. Just turn TX interrupts back on.
1312 static void stl_start(struct tty_struct *tty)
1314 struct stlport *portp;
1316 pr_debug("stl_start(tty=%p)\n", tty);
1320 portp = tty->driver_data;
1323 stl_startrxtx(portp, -1, 1);
1326 /*****************************************************************************/
1328 static void stl_settermios(struct tty_struct *tty, struct ktermios *old)
1330 struct stlport *portp;
1331 struct ktermios *tiosp;
1333 pr_debug("stl_settermios(tty=%p,old=%p)\n", tty, old);
1337 portp = tty->driver_data;
1341 tiosp = tty->termios;
1342 if ((tiosp->c_cflag == old->c_cflag) &&
1343 (tiosp->c_iflag == old->c_iflag))
1346 stl_setport(portp, tiosp);
1347 stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
1349 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
1350 tty->hw_stopped = 0;
1353 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1354 wake_up_interruptible(&portp->open_wait);
1357 /*****************************************************************************/
1360 * Attempt to flow control who ever is sending us data. Based on termios
1361 * settings use software or/and hardware flow control.
1364 static void stl_throttle(struct tty_struct *tty)
1366 struct stlport *portp;
1368 pr_debug("stl_throttle(tty=%p)\n", tty);
1372 portp = tty->driver_data;
1375 stl_flowctrl(portp, 0);
1378 /*****************************************************************************/
1381 * Unflow control the device sending us data...
1384 static void stl_unthrottle(struct tty_struct *tty)
1386 struct stlport *portp;
1388 pr_debug("stl_unthrottle(tty=%p)\n", tty);
1392 portp = tty->driver_data;
1395 stl_flowctrl(portp, 1);
1398 /*****************************************************************************/
1401 * Stop the transmitter. Basically to do this we will just turn TX
1405 static void stl_stop(struct tty_struct *tty)
1407 struct stlport *portp;
1409 pr_debug("stl_stop(tty=%p)\n", tty);
1413 portp = tty->driver_data;
1416 stl_startrxtx(portp, -1, 0);
1419 /*****************************************************************************/
1422 * Hangup this port. This is pretty much like closing the port, only
1423 * a little more brutal. No waiting for data to drain. Shutdown the
1424 * port and maybe drop signals.
1427 static void stl_hangup(struct tty_struct *tty)
1429 struct stlport *portp;
1431 pr_debug("stl_hangup(tty=%p)\n", tty);
1435 portp = tty->driver_data;
1439 portp->flags &= ~ASYNC_INITIALIZED;
1440 stl_disableintrs(portp);
1441 if (tty->termios->c_cflag & HUPCL)
1442 stl_setsignals(portp, 0, 0);
1443 stl_enablerxtx(portp, 0, 0);
1444 stl_flushbuffer(tty);
1446 set_bit(TTY_IO_ERROR, &tty->flags);
1447 if (portp->tx.buf != NULL) {
1448 kfree(portp->tx.buf);
1449 portp->tx.buf = NULL;
1450 portp->tx.head = NULL;
1451 portp->tx.tail = NULL;
1454 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
1455 portp->refcount = 0;
1456 wake_up_interruptible(&portp->open_wait);
1459 /*****************************************************************************/
1461 static void stl_breakctl(struct tty_struct *tty, int state)
1463 struct stlport *portp;
1465 pr_debug("stl_breakctl(tty=%p,state=%d)\n", tty, state);
1469 portp = tty->driver_data;
1473 stl_sendbreak(portp, ((state == -1) ? 1 : 2));
1476 /*****************************************************************************/
1478 static void stl_sendxchar(struct tty_struct *tty, char ch)
1480 struct stlport *portp;
1482 pr_debug("stl_sendxchar(tty=%p,ch=%x)\n", tty, ch);
1486 portp = tty->driver_data;
1490 if (ch == STOP_CHAR(tty))
1491 stl_sendflow(portp, 0);
1492 else if (ch == START_CHAR(tty))
1493 stl_sendflow(portp, 1);
1495 stl_putchar(tty, ch);
1498 /*****************************************************************************/
1503 * Format info for a specified port. The line is deliberately limited
1504 * to 80 characters. (If it is too long it will be truncated, if too
1505 * short then padded with spaces).
1508 static int stl_portinfo(struct stlport *portp, int portnr, char *pos)
1514 sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d",
1515 portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
1516 (int) portp->stats.txtotal, (int) portp->stats.rxtotal);
1518 if (portp->stats.rxframing)
1519 sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing);
1520 if (portp->stats.rxparity)
1521 sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity);
1522 if (portp->stats.rxbreaks)
1523 sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks);
1524 if (portp->stats.rxoverrun)
1525 sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun);
1527 sigs = stl_getsignals(portp);
1528 cnt = sprintf(sp, "%s%s%s%s%s ",
1529 (sigs & TIOCM_RTS) ? "|RTS" : "",
1530 (sigs & TIOCM_CTS) ? "|CTS" : "",
1531 (sigs & TIOCM_DTR) ? "|DTR" : "",
1532 (sigs & TIOCM_CD) ? "|DCD" : "",
1533 (sigs & TIOCM_DSR) ? "|DSR" : "");
1537 for (cnt = sp - pos; cnt < (MAXLINE - 1); cnt++)
1540 pos[(MAXLINE - 2)] = '+';
1541 pos[(MAXLINE - 1)] = '\n';
1546 /*****************************************************************************/
1549 * Port info, read from the /proc file system.
1552 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
1554 struct stlbrd *brdp;
1555 struct stlpanel *panelp;
1556 struct stlport *portp;
1557 unsigned int brdnr, panelnr, portnr;
1558 int totalport, curoff, maxoff;
1561 pr_debug("stl_readproc(page=%p,start=%p,off=%lx,count=%d,eof=%p,"
1562 "data=%p\n", page, start, off, count, eof, data);
1569 pos += sprintf(pos, "%s: version %s", stl_drvtitle,
1571 while (pos < (page + MAXLINE - 1))
1578 * We scan through for each board, panel and port. The offset is
1579 * calculated on the fly, and irrelevant ports are skipped.
1581 for (brdnr = 0; brdnr < stl_nrbrds; brdnr++) {
1582 brdp = stl_brds[brdnr];
1585 if (brdp->state == 0)
1588 maxoff = curoff + (brdp->nrports * MAXLINE);
1589 if (off >= maxoff) {
1594 totalport = brdnr * STL_MAXPORTS;
1595 for (panelnr = 0; panelnr < brdp->nrpanels; panelnr++) {
1596 panelp = brdp->panels[panelnr];
1600 maxoff = curoff + (panelp->nrports * MAXLINE);
1601 if (off >= maxoff) {
1603 totalport += panelp->nrports;
1607 for (portnr = 0; portnr < panelp->nrports; portnr++,
1609 portp = panelp->ports[portnr];
1612 if (off >= (curoff += MAXLINE))
1614 if ((pos - page + MAXLINE) > count)
1616 pos += stl_portinfo(portp, totalport, pos);
1628 /*****************************************************************************/
1631 * All board interrupts are vectored through here first. This code then
1632 * calls off to the approrpriate board interrupt handlers.
1635 static irqreturn_t stl_intr(int irq, void *dev_id)
1637 struct stlbrd *brdp = dev_id;
1639 pr_debug("stl_intr(brdp=%p,irq=%d)\n", brdp, brdp->irq);
1641 return IRQ_RETVAL((* brdp->isr)(brdp));
1644 /*****************************************************************************/
1647 * Interrupt service routine for EasyIO board types.
1650 static int stl_eiointr(struct stlbrd *brdp)
1652 struct stlpanel *panelp;
1653 unsigned int iobase;
1656 spin_lock(&brd_lock);
1657 panelp = brdp->panels[0];
1658 iobase = panelp->iobase;
1659 while (inb(brdp->iostatus) & EIO_INTRPEND) {
1661 (* panelp->isr)(panelp, iobase);
1663 spin_unlock(&brd_lock);
1667 /*****************************************************************************/
1670 * Interrupt service routine for ECH-AT board types.
1673 static int stl_echatintr(struct stlbrd *brdp)
1675 struct stlpanel *panelp;
1676 unsigned int ioaddr, bnknr;
1679 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1681 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1683 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1684 ioaddr = brdp->bnkstataddr[bnknr];
1685 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1686 panelp = brdp->bnk2panel[bnknr];
1687 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1692 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
1697 /*****************************************************************************/
1700 * Interrupt service routine for ECH-MCA board types.
1703 static int stl_echmcaintr(struct stlbrd *brdp)
1705 struct stlpanel *panelp;
1706 unsigned int ioaddr, bnknr;
1709 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1711 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1712 ioaddr = brdp->bnkstataddr[bnknr];
1713 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1714 panelp = brdp->bnk2panel[bnknr];
1715 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1722 /*****************************************************************************/
1725 * Interrupt service routine for ECH-PCI board types.
1728 static int stl_echpciintr(struct stlbrd *brdp)
1730 struct stlpanel *panelp;
1731 unsigned int ioaddr, bnknr, recheck;
1736 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1737 outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
1738 ioaddr = brdp->bnkstataddr[bnknr];
1739 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1740 panelp = brdp->bnk2panel[bnknr];
1741 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1752 /*****************************************************************************/
1755 * Interrupt service routine for ECH-8/64-PCI board types.
1758 static int stl_echpci64intr(struct stlbrd *brdp)
1760 struct stlpanel *panelp;
1761 unsigned int ioaddr, bnknr;
1764 while (inb(brdp->ioctrl) & 0x1) {
1766 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1767 ioaddr = brdp->bnkstataddr[bnknr];
1768 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1769 panelp = brdp->bnk2panel[bnknr];
1770 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1778 /*****************************************************************************/
1781 * Initialize all the ports on a panel.
1784 static int __devinit stl_initports(struct stlbrd *brdp, struct stlpanel *panelp)
1786 struct stlport *portp;
1790 pr_debug("stl_initports(brdp=%p,panelp=%p)\n", brdp, panelp);
1792 chipmask = stl_panelinit(brdp, panelp);
1795 * All UART's are initialized (if found!). Now go through and setup
1796 * each ports data structures.
1798 for (i = 0; i < panelp->nrports; i++) {
1799 portp = kzalloc(sizeof(struct stlport), GFP_KERNEL);
1801 printk("STALLION: failed to allocate memory "
1802 "(size=%Zd)\n", sizeof(struct stlport));
1806 portp->magic = STL_PORTMAGIC;
1808 portp->brdnr = panelp->brdnr;
1809 portp->panelnr = panelp->panelnr;
1810 portp->uartp = panelp->uartp;
1811 portp->clk = brdp->clk;
1812 portp->baud_base = STL_BAUDBASE;
1813 portp->close_delay = STL_CLOSEDELAY;
1814 portp->closing_wait = 30 * HZ;
1815 init_waitqueue_head(&portp->open_wait);
1816 init_waitqueue_head(&portp->close_wait);
1817 portp->stats.brd = portp->brdnr;
1818 portp->stats.panel = portp->panelnr;
1819 portp->stats.port = portp->portnr;
1820 panelp->ports[i] = portp;
1821 stl_portinit(brdp, panelp, portp);
1827 static void stl_cleanup_panels(struct stlbrd *brdp)
1829 struct stlpanel *panelp;
1830 struct stlport *portp;
1833 for (j = 0; j < STL_MAXPANELS; j++) {
1834 panelp = brdp->panels[j];
1837 for (k = 0; k < STL_PORTSPERPANEL; k++) {
1838 portp = panelp->ports[k];
1841 if (portp->tty != NULL)
1842 stl_hangup(portp->tty);
1843 kfree(portp->tx.buf);
1850 /*****************************************************************************/
1853 * Try to find and initialize an EasyIO board.
1856 static int __devinit stl_initeio(struct stlbrd *brdp)
1858 struct stlpanel *panelp;
1859 unsigned int status;
1863 pr_debug("stl_initeio(brdp=%p)\n", brdp);
1865 brdp->ioctrl = brdp->ioaddr1 + 1;
1866 brdp->iostatus = brdp->ioaddr1 + 2;
1868 status = inb(brdp->iostatus);
1869 if ((status & EIO_IDBITMASK) == EIO_MK3)
1873 * Handle board specific stuff now. The real difference is PCI
1876 if (brdp->brdtype == BRD_EASYIOPCI) {
1877 brdp->iosize1 = 0x80;
1878 brdp->iosize2 = 0x80;
1879 name = "serial(EIO-PCI)";
1880 outb(0x41, (brdp->ioaddr2 + 0x4c));
1883 name = "serial(EIO)";
1884 if ((brdp->irq < 0) || (brdp->irq > 15) ||
1885 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
1886 printk("STALLION: invalid irq=%d for brd=%d\n",
1887 brdp->irq, brdp->brdnr);
1891 outb((stl_vecmap[brdp->irq] | EIO_0WS |
1892 ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
1897 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
1898 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
1899 "%x conflicts with another device\n", brdp->brdnr,
1904 if (brdp->iosize2 > 0)
1905 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
1906 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
1907 "address %x conflicts with another device\n",
1908 brdp->brdnr, brdp->ioaddr2);
1909 printk(KERN_WARNING "STALLION: Warning, also "
1910 "releasing board %d I/O address %x \n",
1911 brdp->brdnr, brdp->ioaddr1);
1916 * Everything looks OK, so let's go ahead and probe for the hardware.
1918 brdp->clk = CD1400_CLK;
1919 brdp->isr = stl_eiointr;
1922 switch (status & EIO_IDBITMASK) {
1924 brdp->clk = CD1400_CLK8M;
1934 switch (status & EIO_BRDMASK) {
1953 * We have verified that the board is actually present, so now we
1954 * can complete the setup.
1957 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
1959 printk(KERN_WARNING "STALLION: failed to allocate memory "
1960 "(size=%Zd)\n", sizeof(struct stlpanel));
1965 panelp->magic = STL_PANELMAGIC;
1966 panelp->brdnr = brdp->brdnr;
1967 panelp->panelnr = 0;
1968 panelp->nrports = brdp->nrports;
1969 panelp->iobase = brdp->ioaddr1;
1970 panelp->hwid = status;
1971 if ((status & EIO_IDBITMASK) == EIO_MK3) {
1972 panelp->uartp = &stl_sc26198uart;
1973 panelp->isr = stl_sc26198intr;
1975 panelp->uartp = &stl_cd1400uart;
1976 panelp->isr = stl_cd1400eiointr;
1979 brdp->panels[0] = panelp;
1981 brdp->state |= BRD_FOUND;
1982 brdp->hwid = status;
1983 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
1984 printk("STALLION: failed to register interrupt "
1985 "routine for %s irq=%d\n", name, brdp->irq);
1992 stl_cleanup_panels(brdp);
1994 if (brdp->iosize2 > 0)
1995 release_region(brdp->ioaddr2, brdp->iosize2);
1997 release_region(brdp->ioaddr1, brdp->iosize1);
2002 /*****************************************************************************/
2005 * Try to find an ECH board and initialize it. This code is capable of
2006 * dealing with all types of ECH board.
2009 static int __devinit stl_initech(struct stlbrd *brdp)
2011 struct stlpanel *panelp;
2012 unsigned int status, nxtid, ioaddr, conflict, panelnr, banknr, i;
2016 pr_debug("stl_initech(brdp=%p)\n", brdp);
2022 * Set up the initial board register contents for boards. This varies a
2023 * bit between the different board types. So we need to handle each
2024 * separately. Also do a check that the supplied IRQ is good.
2026 switch (brdp->brdtype) {
2029 brdp->isr = stl_echatintr;
2030 brdp->ioctrl = brdp->ioaddr1 + 1;
2031 brdp->iostatus = brdp->ioaddr1 + 1;
2032 status = inb(brdp->iostatus);
2033 if ((status & ECH_IDBITMASK) != ECH_ID) {
2037 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2038 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2039 printk("STALLION: invalid irq=%d for brd=%d\n",
2040 brdp->irq, brdp->brdnr);
2044 status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
2045 status |= (stl_vecmap[brdp->irq] << 1);
2046 outb((status | ECH_BRDRESET), brdp->ioaddr1);
2047 brdp->ioctrlval = ECH_INTENABLE |
2048 ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
2049 for (i = 0; i < 10; i++)
2050 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
2053 name = "serial(EC8/32)";
2054 outb(status, brdp->ioaddr1);
2058 brdp->isr = stl_echmcaintr;
2059 brdp->ioctrl = brdp->ioaddr1 + 0x20;
2060 brdp->iostatus = brdp->ioctrl;
2061 status = inb(brdp->iostatus);
2062 if ((status & ECH_IDBITMASK) != ECH_ID) {
2066 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2067 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2068 printk("STALLION: invalid irq=%d for brd=%d\n",
2069 brdp->irq, brdp->brdnr);
2073 outb(ECHMC_BRDRESET, brdp->ioctrl);
2074 outb(ECHMC_INTENABLE, brdp->ioctrl);
2076 name = "serial(EC8/32-MC)";
2080 brdp->isr = stl_echpciintr;
2081 brdp->ioctrl = brdp->ioaddr1 + 2;
2084 name = "serial(EC8/32-PCI)";
2088 brdp->isr = stl_echpci64intr;
2089 brdp->ioctrl = brdp->ioaddr2 + 0x40;
2090 outb(0x43, (brdp->ioaddr1 + 0x4c));
2091 brdp->iosize1 = 0x80;
2092 brdp->iosize2 = 0x80;
2093 name = "serial(EC8/64-PCI)";
2097 printk("STALLION: unknown board type=%d\n", brdp->brdtype);
2103 * Check boards for possible IO address conflicts and return fail status
2104 * if an IO conflict found.
2107 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2108 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2109 "%x conflicts with another device\n", brdp->brdnr,
2114 if (brdp->iosize2 > 0)
2115 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2116 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2117 "address %x conflicts with another device\n",
2118 brdp->brdnr, brdp->ioaddr2);
2119 printk(KERN_WARNING "STALLION: Warning, also "
2120 "releasing board %d I/O address %x \n",
2121 brdp->brdnr, brdp->ioaddr1);
2126 * Scan through the secondary io address space looking for panels.
2127 * As we find'em allocate and initialize panel structures for each.
2129 brdp->clk = CD1400_CLK;
2130 brdp->hwid = status;
2132 ioaddr = brdp->ioaddr2;
2137 for (i = 0; i < STL_MAXPANELS; i++) {
2138 if (brdp->brdtype == BRD_ECHPCI) {
2139 outb(nxtid, brdp->ioctrl);
2140 ioaddr = brdp->ioaddr2;
2142 status = inb(ioaddr + ECH_PNLSTATUS);
2143 if ((status & ECH_PNLIDMASK) != nxtid)
2145 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
2147 printk("STALLION: failed to allocate memory "
2148 "(size=%Zd)\n", sizeof(struct stlpanel));
2152 panelp->magic = STL_PANELMAGIC;
2153 panelp->brdnr = brdp->brdnr;
2154 panelp->panelnr = panelnr;
2155 panelp->iobase = ioaddr;
2156 panelp->pagenr = nxtid;
2157 panelp->hwid = status;
2158 brdp->bnk2panel[banknr] = panelp;
2159 brdp->bnkpageaddr[banknr] = nxtid;
2160 brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
2162 if (status & ECH_PNLXPID) {
2163 panelp->uartp = &stl_sc26198uart;
2164 panelp->isr = stl_sc26198intr;
2165 if (status & ECH_PNL16PORT) {
2166 panelp->nrports = 16;
2167 brdp->bnk2panel[banknr] = panelp;
2168 brdp->bnkpageaddr[banknr] = nxtid;
2169 brdp->bnkstataddr[banknr++] = ioaddr + 4 +
2172 panelp->nrports = 8;
2174 panelp->uartp = &stl_cd1400uart;
2175 panelp->isr = stl_cd1400echintr;
2176 if (status & ECH_PNL16PORT) {
2177 panelp->nrports = 16;
2178 panelp->ackmask = 0x80;
2179 if (brdp->brdtype != BRD_ECHPCI)
2180 ioaddr += EREG_BANKSIZE;
2181 brdp->bnk2panel[banknr] = panelp;
2182 brdp->bnkpageaddr[banknr] = ++nxtid;
2183 brdp->bnkstataddr[banknr++] = ioaddr +
2186 panelp->nrports = 8;
2187 panelp->ackmask = 0xc0;
2192 ioaddr += EREG_BANKSIZE;
2193 brdp->nrports += panelp->nrports;
2194 brdp->panels[panelnr++] = panelp;
2195 if ((brdp->brdtype != BRD_ECHPCI) &&
2196 (ioaddr >= (brdp->ioaddr2 + brdp->iosize2))) {
2202 brdp->nrpanels = panelnr;
2203 brdp->nrbnks = banknr;
2204 if (brdp->brdtype == BRD_ECH)
2205 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2207 brdp->state |= BRD_FOUND;
2208 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
2209 printk("STALLION: failed to register interrupt "
2210 "routine for %s irq=%d\n", name, brdp->irq);
2217 stl_cleanup_panels(brdp);
2218 if (brdp->iosize2 > 0)
2219 release_region(brdp->ioaddr2, brdp->iosize2);
2221 release_region(brdp->ioaddr1, brdp->iosize1);
2226 /*****************************************************************************/
2229 * Initialize and configure the specified board.
2230 * Scan through all the boards in the configuration and see what we
2231 * can find. Handle EIO and the ECH boards a little differently here
2232 * since the initial search and setup is very different.
2235 static int __devinit stl_brdinit(struct stlbrd *brdp)
2239 pr_debug("stl_brdinit(brdp=%p)\n", brdp);
2241 switch (brdp->brdtype) {
2244 retval = stl_initeio(brdp);
2252 retval = stl_initech(brdp);
2257 printk("STALLION: board=%d is unknown board type=%d\n",
2258 brdp->brdnr, brdp->brdtype);
2263 if ((brdp->state & BRD_FOUND) == 0) {
2264 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2265 stl_brdnames[brdp->brdtype], brdp->brdnr,
2266 brdp->ioaddr1, brdp->irq);
2270 for (i = 0; i < STL_MAXPANELS; i++)
2271 if (brdp->panels[i] != NULL)
2272 stl_initports(brdp, brdp->panels[i]);
2274 printk("STALLION: %s found, board=%d io=%x irq=%d "
2275 "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
2276 brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
2281 free_irq(brdp->irq, brdp);
2283 stl_cleanup_panels(brdp);
2285 release_region(brdp->ioaddr1, brdp->iosize1);
2286 if (brdp->iosize2 > 0)
2287 release_region(brdp->ioaddr2, brdp->iosize2);
2292 /*****************************************************************************/
2295 * Find the next available board number that is free.
2298 static int __devinit stl_getbrdnr(void)
2302 for (i = 0; i < STL_MAXBRDS; i++)
2303 if (stl_brds[i] == NULL) {
2304 if (i >= stl_nrbrds)
2312 /*****************************************************************************/
2314 * We have a Stallion board. Allocate a board structure and
2315 * initialize it. Read its IO and IRQ resources from PCI
2316 * configuration space.
2319 static int __devinit stl_pciprobe(struct pci_dev *pdev,
2320 const struct pci_device_id *ent)
2322 struct stlbrd *brdp;
2323 unsigned int i, brdtype = ent->driver_data;
2324 int brdnr, retval = -ENODEV;
2326 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE)
2329 retval = pci_enable_device(pdev);
2332 brdp = stl_allocbrd();
2337 mutex_lock(&stl_brdslock);
2338 brdnr = stl_getbrdnr();
2340 dev_err(&pdev->dev, "too many boards found, "
2341 "maximum supported %d\n", STL_MAXBRDS);
2342 mutex_unlock(&stl_brdslock);
2346 brdp->brdnr = (unsigned int)brdnr;
2347 stl_brds[brdp->brdnr] = brdp;
2348 mutex_unlock(&stl_brdslock);
2350 brdp->brdtype = brdtype;
2351 brdp->state |= STL_PROBED;
2354 * We have all resources from the board, so let's setup the actual
2355 * board structure now.
2359 brdp->ioaddr2 = pci_resource_start(pdev, 0);
2360 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2363 brdp->ioaddr2 = pci_resource_start(pdev, 2);
2364 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2367 brdp->ioaddr1 = pci_resource_start(pdev, 2);
2368 brdp->ioaddr2 = pci_resource_start(pdev, 1);
2371 dev_err(&pdev->dev, "unknown PCI board type=%u\n", brdtype);
2375 brdp->irq = pdev->irq;
2376 retval = stl_brdinit(brdp);
2380 pci_set_drvdata(pdev, brdp);
2382 for (i = 0; i < brdp->nrports; i++)
2383 tty_register_device(stl_serial,
2384 brdp->brdnr * STL_MAXPORTS + i, &pdev->dev);
2388 stl_brds[brdp->brdnr] = NULL;
2395 static void __devexit stl_pciremove(struct pci_dev *pdev)
2397 struct stlbrd *brdp = pci_get_drvdata(pdev);
2400 free_irq(brdp->irq, brdp);
2402 stl_cleanup_panels(brdp);
2404 release_region(brdp->ioaddr1, brdp->iosize1);
2405 if (brdp->iosize2 > 0)
2406 release_region(brdp->ioaddr2, brdp->iosize2);
2408 for (i = 0; i < brdp->nrports; i++)
2409 tty_unregister_device(stl_serial,
2410 brdp->brdnr * STL_MAXPORTS + i);
2412 stl_brds[brdp->brdnr] = NULL;
2416 static struct pci_driver stl_pcidriver = {
2418 .id_table = stl_pcibrds,
2419 .probe = stl_pciprobe,
2420 .remove = __devexit_p(stl_pciremove)
2423 /*****************************************************************************/
2426 * Return the board stats structure to user app.
2429 static int stl_getbrdstats(combrd_t __user *bp)
2431 combrd_t stl_brdstats;
2432 struct stlbrd *brdp;
2433 struct stlpanel *panelp;
2436 if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
2438 if (stl_brdstats.brd >= STL_MAXBRDS)
2440 brdp = stl_brds[stl_brdstats.brd];
2444 memset(&stl_brdstats, 0, sizeof(combrd_t));
2445 stl_brdstats.brd = brdp->brdnr;
2446 stl_brdstats.type = brdp->brdtype;
2447 stl_brdstats.hwid = brdp->hwid;
2448 stl_brdstats.state = brdp->state;
2449 stl_brdstats.ioaddr = brdp->ioaddr1;
2450 stl_brdstats.ioaddr2 = brdp->ioaddr2;
2451 stl_brdstats.irq = brdp->irq;
2452 stl_brdstats.nrpanels = brdp->nrpanels;
2453 stl_brdstats.nrports = brdp->nrports;
2454 for (i = 0; i < brdp->nrpanels; i++) {
2455 panelp = brdp->panels[i];
2456 stl_brdstats.panels[i].panel = i;
2457 stl_brdstats.panels[i].hwid = panelp->hwid;
2458 stl_brdstats.panels[i].nrports = panelp->nrports;
2461 return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
2464 /*****************************************************************************/
2467 * Resolve the referenced port number into a port struct pointer.
2470 static struct stlport *stl_getport(int brdnr, int panelnr, int portnr)
2472 struct stlbrd *brdp;
2473 struct stlpanel *panelp;
2475 if (brdnr < 0 || brdnr >= STL_MAXBRDS)
2477 brdp = stl_brds[brdnr];
2480 if (panelnr < 0 || (unsigned int)panelnr >= brdp->nrpanels)
2482 panelp = brdp->panels[panelnr];
2485 if (portnr < 0 || (unsigned int)portnr >= panelp->nrports)
2487 return panelp->ports[portnr];
2490 /*****************************************************************************/
2493 * Return the port stats structure to user app. A NULL port struct
2494 * pointer passed in means that we need to find out from the app
2495 * what port to get stats for (used through board control device).
2498 static int stl_getportstats(struct stlport *portp, comstats_t __user *cp)
2500 comstats_t stl_comstats;
2501 unsigned char *head, *tail;
2502 unsigned long flags;
2505 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2507 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2513 portp->stats.state = portp->istate;
2514 portp->stats.flags = portp->flags;
2515 portp->stats.hwid = portp->hwid;
2517 portp->stats.ttystate = 0;
2518 portp->stats.cflags = 0;
2519 portp->stats.iflags = 0;
2520 portp->stats.oflags = 0;
2521 portp->stats.lflags = 0;
2522 portp->stats.rxbuffered = 0;
2524 spin_lock_irqsave(&stallion_lock, flags);
2525 if (portp->tty != NULL)
2526 if (portp->tty->driver_data == portp) {
2527 portp->stats.ttystate = portp->tty->flags;
2528 /* No longer available as a statistic */
2529 portp->stats.rxbuffered = 1; /*portp->tty->flip.count; */
2530 if (portp->tty->termios != NULL) {
2531 portp->stats.cflags = portp->tty->termios->c_cflag;
2532 portp->stats.iflags = portp->tty->termios->c_iflag;
2533 portp->stats.oflags = portp->tty->termios->c_oflag;
2534 portp->stats.lflags = portp->tty->termios->c_lflag;
2537 spin_unlock_irqrestore(&stallion_lock, flags);
2539 head = portp->tx.head;
2540 tail = portp->tx.tail;
2541 portp->stats.txbuffered = (head >= tail) ? (head - tail) :
2542 (STL_TXBUFSIZE - (tail - head));
2544 portp->stats.signals = (unsigned long) stl_getsignals(portp);
2546 return copy_to_user(cp, &portp->stats,
2547 sizeof(comstats_t)) ? -EFAULT : 0;
2550 /*****************************************************************************/
2553 * Clear the port stats structure. We also return it zeroed out...
2556 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp)
2558 comstats_t stl_comstats;
2561 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2563 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2569 memset(&portp->stats, 0, sizeof(comstats_t));
2570 portp->stats.brd = portp->brdnr;
2571 portp->stats.panel = portp->panelnr;
2572 portp->stats.port = portp->portnr;
2573 return copy_to_user(cp, &portp->stats,
2574 sizeof(comstats_t)) ? -EFAULT : 0;
2577 /*****************************************************************************/
2580 * Return the entire driver ports structure to a user app.
2583 static int stl_getportstruct(struct stlport __user *arg)
2585 struct stlport stl_dummyport;
2586 struct stlport *portp;
2588 if (copy_from_user(&stl_dummyport, arg, sizeof(struct stlport)))
2590 portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
2591 stl_dummyport.portnr);
2594 return copy_to_user(arg, portp, sizeof(struct stlport)) ? -EFAULT : 0;
2597 /*****************************************************************************/
2600 * Return the entire driver board structure to a user app.
2603 static int stl_getbrdstruct(struct stlbrd __user *arg)
2605 struct stlbrd stl_dummybrd;
2606 struct stlbrd *brdp;
2608 if (copy_from_user(&stl_dummybrd, arg, sizeof(struct stlbrd)))
2610 if (stl_dummybrd.brdnr >= STL_MAXBRDS)
2612 brdp = stl_brds[stl_dummybrd.brdnr];
2615 return copy_to_user(arg, brdp, sizeof(struct stlbrd)) ? -EFAULT : 0;
2618 /*****************************************************************************/
2621 * The "staliomem" device is also required to do some special operations
2622 * on the board and/or ports. In this driver it is mostly used for stats
2626 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
2629 void __user *argp = (void __user *)arg;
2631 pr_debug("stl_memioctl(ip=%p,fp=%p,cmd=%x,arg=%lx)\n", ip, fp, cmd,arg);
2634 if (brdnr >= STL_MAXBRDS)
2639 case COM_GETPORTSTATS:
2640 rc = stl_getportstats(NULL, argp);
2642 case COM_CLRPORTSTATS:
2643 rc = stl_clrportstats(NULL, argp);
2645 case COM_GETBRDSTATS:
2646 rc = stl_getbrdstats(argp);
2649 rc = stl_getportstruct(argp);
2652 rc = stl_getbrdstruct(argp);
2662 static const struct tty_operations stl_ops = {
2666 .put_char = stl_putchar,
2667 .flush_chars = stl_flushchars,
2668 .write_room = stl_writeroom,
2669 .chars_in_buffer = stl_charsinbuffer,
2671 .set_termios = stl_settermios,
2672 .throttle = stl_throttle,
2673 .unthrottle = stl_unthrottle,
2676 .hangup = stl_hangup,
2677 .flush_buffer = stl_flushbuffer,
2678 .break_ctl = stl_breakctl,
2679 .wait_until_sent = stl_waituntilsent,
2680 .send_xchar = stl_sendxchar,
2681 .read_proc = stl_readproc,
2682 .tiocmget = stl_tiocmget,
2683 .tiocmset = stl_tiocmset,
2686 /*****************************************************************************/
2687 /* CD1400 HARDWARE FUNCTIONS */
2688 /*****************************************************************************/
2691 * These functions get/set/update the registers of the cd1400 UARTs.
2692 * Access to the cd1400 registers is via an address/data io port pair.
2693 * (Maybe should make this inline...)
2696 static int stl_cd1400getreg(struct stlport *portp, int regnr)
2698 outb((regnr + portp->uartaddr), portp->ioaddr);
2699 return inb(portp->ioaddr + EREG_DATA);
2702 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value)
2704 outb(regnr + portp->uartaddr, portp->ioaddr);
2705 outb(value, portp->ioaddr + EREG_DATA);
2708 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value)
2710 outb(regnr + portp->uartaddr, portp->ioaddr);
2711 if (inb(portp->ioaddr + EREG_DATA) != value) {
2712 outb(value, portp->ioaddr + EREG_DATA);
2718 /*****************************************************************************/
2721 * Inbitialize the UARTs in a panel. We don't care what sort of board
2722 * these ports are on - since the port io registers are almost
2723 * identical when dealing with ports.
2726 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
2730 int nrchips, uartaddr, ioaddr;
2731 unsigned long flags;
2733 pr_debug("stl_panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
2735 spin_lock_irqsave(&brd_lock, flags);
2736 BRDENABLE(panelp->brdnr, panelp->pagenr);
2739 * Check that each chip is present and started up OK.
2742 nrchips = panelp->nrports / CD1400_PORTS;
2743 for (i = 0; i < nrchips; i++) {
2744 if (brdp->brdtype == BRD_ECHPCI) {
2745 outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
2746 ioaddr = panelp->iobase;
2748 ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
2749 uartaddr = (i & 0x01) ? 0x080 : 0;
2750 outb((GFRCR + uartaddr), ioaddr);
2751 outb(0, (ioaddr + EREG_DATA));
2752 outb((CCR + uartaddr), ioaddr);
2753 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2754 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2755 outb((GFRCR + uartaddr), ioaddr);
2756 for (j = 0; j < CCR_MAXWAIT; j++)
2757 if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
2760 if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
2761 printk("STALLION: cd1400 not responding, "
2762 "brd=%d panel=%d chip=%d\n",
2763 panelp->brdnr, panelp->panelnr, i);
2766 chipmask |= (0x1 << i);
2767 outb((PPR + uartaddr), ioaddr);
2768 outb(PPR_SCALAR, (ioaddr + EREG_DATA));
2771 BRDDISABLE(panelp->brdnr);
2772 spin_unlock_irqrestore(&brd_lock, flags);
2776 /*****************************************************************************/
2779 * Initialize hardware specific port registers.
2782 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
2784 unsigned long flags;
2785 pr_debug("stl_cd1400portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
2788 if ((brdp == NULL) || (panelp == NULL) ||
2792 spin_lock_irqsave(&brd_lock, flags);
2793 portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
2794 (portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
2795 portp->uartaddr = (portp->portnr & 0x04) << 5;
2796 portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
2798 BRDENABLE(portp->brdnr, portp->pagenr);
2799 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
2800 stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
2801 portp->hwid = stl_cd1400getreg(portp, GFRCR);
2802 BRDDISABLE(portp->brdnr);
2803 spin_unlock_irqrestore(&brd_lock, flags);
2806 /*****************************************************************************/
2809 * Wait for the command register to be ready. We will poll this,
2810 * since it won't usually take too long to be ready.
2813 static void stl_cd1400ccrwait(struct stlport *portp)
2817 for (i = 0; i < CCR_MAXWAIT; i++)
2818 if (stl_cd1400getreg(portp, CCR) == 0)
2821 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
2822 portp->portnr, portp->panelnr, portp->brdnr);
2825 /*****************************************************************************/
2828 * Set up the cd1400 registers for a port based on the termios port
2832 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp)
2834 struct stlbrd *brdp;
2835 unsigned long flags;
2836 unsigned int clkdiv, baudrate;
2837 unsigned char cor1, cor2, cor3;
2838 unsigned char cor4, cor5, ccr;
2839 unsigned char srer, sreron, sreroff;
2840 unsigned char mcor1, mcor2, rtpr;
2841 unsigned char clk, div;
2857 brdp = stl_brds[portp->brdnr];
2862 * Set up the RX char ignore mask with those RX error types we
2863 * can ignore. We can get the cd1400 to help us out a little here,
2864 * it will ignore parity errors and breaks for us.
2866 portp->rxignoremsk = 0;
2867 if (tiosp->c_iflag & IGNPAR) {
2868 portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
2869 cor1 |= COR1_PARIGNORE;
2871 if (tiosp->c_iflag & IGNBRK) {
2872 portp->rxignoremsk |= ST_BREAK;
2873 cor4 |= COR4_IGNBRK;
2876 portp->rxmarkmsk = ST_OVERRUN;
2877 if (tiosp->c_iflag & (INPCK | PARMRK))
2878 portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
2879 if (tiosp->c_iflag & BRKINT)
2880 portp->rxmarkmsk |= ST_BREAK;
2883 * Go through the char size, parity and stop bits and set all the
2884 * option register appropriately.
2886 switch (tiosp->c_cflag & CSIZE) {
2901 if (tiosp->c_cflag & CSTOPB)
2906 if (tiosp->c_cflag & PARENB) {
2907 if (tiosp->c_cflag & PARODD)
2908 cor1 |= (COR1_PARENB | COR1_PARODD);
2910 cor1 |= (COR1_PARENB | COR1_PAREVEN);
2912 cor1 |= COR1_PARNONE;
2916 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
2917 * space for hardware flow control and the like. This should be set to
2918 * VMIN. Also here we will set the RX data timeout to 10ms - this should
2919 * really be based on VTIME.
2921 cor3 |= FIFO_RXTHRESHOLD;
2925 * Calculate the baud rate timers. For now we will just assume that
2926 * the input and output baud are the same. Could have used a baud
2927 * table here, but this way we can generate virtually any baud rate
2930 baudrate = tiosp->c_cflag & CBAUD;
2931 if (baudrate & CBAUDEX) {
2932 baudrate &= ~CBAUDEX;
2933 if ((baudrate < 1) || (baudrate > 4))
2934 tiosp->c_cflag &= ~CBAUDEX;
2938 baudrate = stl_baudrates[baudrate];
2939 if ((tiosp->c_cflag & CBAUD) == B38400) {
2940 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2942 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2944 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2946 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2948 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2949 baudrate = (portp->baud_base / portp->custom_divisor);
2951 if (baudrate > STL_CD1400MAXBAUD)
2952 baudrate = STL_CD1400MAXBAUD;
2955 for (clk = 0; clk < CD1400_NUMCLKS; clk++) {
2956 clkdiv = (portp->clk / stl_cd1400clkdivs[clk]) / baudrate;
2960 div = (unsigned char) clkdiv;
2964 * Check what form of modem signaling is required and set it up.
2966 if ((tiosp->c_cflag & CLOCAL) == 0) {
2969 sreron |= SRER_MODEM;
2970 portp->flags |= ASYNC_CHECK_CD;
2972 portp->flags &= ~ASYNC_CHECK_CD;
2975 * Setup cd1400 enhanced modes if we can. In particular we want to
2976 * handle as much of the flow control as possible automatically. As
2977 * well as saving a few CPU cycles it will also greatly improve flow
2978 * control reliability.
2980 if (tiosp->c_iflag & IXON) {
2983 if (tiosp->c_iflag & IXANY)
2987 if (tiosp->c_cflag & CRTSCTS) {
2989 mcor1 |= FIFO_RTSTHRESHOLD;
2993 * All cd1400 register values calculated so go through and set
2997 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
2998 portp->portnr, portp->panelnr, portp->brdnr);
2999 pr_debug(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
3000 cor1, cor2, cor3, cor4, cor5);
3001 pr_debug(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
3002 mcor1, mcor2, rtpr, sreron, sreroff);
3003 pr_debug(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
3004 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3005 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3006 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3008 spin_lock_irqsave(&brd_lock, flags);
3009 BRDENABLE(portp->brdnr, portp->pagenr);
3010 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
3011 srer = stl_cd1400getreg(portp, SRER);
3012 stl_cd1400setreg(portp, SRER, 0);
3013 if (stl_cd1400updatereg(portp, COR1, cor1))
3015 if (stl_cd1400updatereg(portp, COR2, cor2))
3017 if (stl_cd1400updatereg(portp, COR3, cor3))
3020 stl_cd1400ccrwait(portp);
3021 stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
3023 stl_cd1400setreg(portp, COR4, cor4);
3024 stl_cd1400setreg(portp, COR5, cor5);
3025 stl_cd1400setreg(portp, MCOR1, mcor1);
3026 stl_cd1400setreg(portp, MCOR2, mcor2);
3028 stl_cd1400setreg(portp, TCOR, clk);
3029 stl_cd1400setreg(portp, TBPR, div);
3030 stl_cd1400setreg(portp, RCOR, clk);
3031 stl_cd1400setreg(portp, RBPR, div);
3033 stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
3034 stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
3035 stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
3036 stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
3037 stl_cd1400setreg(portp, RTPR, rtpr);
3038 mcor1 = stl_cd1400getreg(portp, MSVR1);
3039 if (mcor1 & MSVR1_DCD)
3040 portp->sigs |= TIOCM_CD;
3042 portp->sigs &= ~TIOCM_CD;
3043 stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
3044 BRDDISABLE(portp->brdnr);
3045 spin_unlock_irqrestore(&brd_lock, flags);
3048 /*****************************************************************************/
3051 * Set the state of the DTR and RTS signals.
3054 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts)
3056 unsigned char msvr1, msvr2;
3057 unsigned long flags;
3059 pr_debug("stl_cd1400setsignals(portp=%p,dtr=%d,rts=%d)\n",
3069 spin_lock_irqsave(&brd_lock, flags);
3070 BRDENABLE(portp->brdnr, portp->pagenr);
3071 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3073 stl_cd1400setreg(portp, MSVR2, msvr2);
3075 stl_cd1400setreg(portp, MSVR1, msvr1);
3076 BRDDISABLE(portp->brdnr);
3077 spin_unlock_irqrestore(&brd_lock, flags);
3080 /*****************************************************************************/
3083 * Return the state of the signals.
3086 static int stl_cd1400getsignals(struct stlport *portp)
3088 unsigned char msvr1, msvr2;
3089 unsigned long flags;
3092 pr_debug("stl_cd1400getsignals(portp=%p)\n", portp);
3094 spin_lock_irqsave(&brd_lock, flags);
3095 BRDENABLE(portp->brdnr, portp->pagenr);
3096 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3097 msvr1 = stl_cd1400getreg(portp, MSVR1);
3098 msvr2 = stl_cd1400getreg(portp, MSVR2);
3099 BRDDISABLE(portp->brdnr);
3100 spin_unlock_irqrestore(&brd_lock, flags);
3103 sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
3104 sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
3105 sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
3106 sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
3108 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
3109 sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
3116 /*****************************************************************************/
3119 * Enable/Disable the Transmitter and/or Receiver.
3122 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx)
3125 unsigned long flags;
3127 pr_debug("stl_cd1400enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3132 ccr |= CCR_TXDISABLE;
3134 ccr |= CCR_TXENABLE;
3136 ccr |= CCR_RXDISABLE;
3138 ccr |= CCR_RXENABLE;
3140 spin_lock_irqsave(&brd_lock, flags);
3141 BRDENABLE(portp->brdnr, portp->pagenr);
3142 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3143 stl_cd1400ccrwait(portp);
3144 stl_cd1400setreg(portp, CCR, ccr);
3145 stl_cd1400ccrwait(portp);
3146 BRDDISABLE(portp->brdnr);
3147 spin_unlock_irqrestore(&brd_lock, flags);
3150 /*****************************************************************************/
3153 * Start/stop the Transmitter and/or Receiver.
3156 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx)
3158 unsigned char sreron, sreroff;
3159 unsigned long flags;
3161 pr_debug("stl_cd1400startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3166 sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
3168 sreron |= SRER_TXDATA;
3170 sreron |= SRER_TXEMPTY;
3172 sreroff |= SRER_RXDATA;
3174 sreron |= SRER_RXDATA;
3176 spin_lock_irqsave(&brd_lock, flags);
3177 BRDENABLE(portp->brdnr, portp->pagenr);
3178 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3179 stl_cd1400setreg(portp, SRER,
3180 ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
3181 BRDDISABLE(portp->brdnr);
3183 set_bit(ASYI_TXBUSY, &portp->istate);
3184 spin_unlock_irqrestore(&brd_lock, flags);
3187 /*****************************************************************************/
3190 * Disable all interrupts from this port.
3193 static void stl_cd1400disableintrs(struct stlport *portp)
3195 unsigned long flags;
3197 pr_debug("stl_cd1400disableintrs(portp=%p)\n", portp);
3199 spin_lock_irqsave(&brd_lock, flags);
3200 BRDENABLE(portp->brdnr, portp->pagenr);
3201 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3202 stl_cd1400setreg(portp, SRER, 0);
3203 BRDDISABLE(portp->brdnr);
3204 spin_unlock_irqrestore(&brd_lock, flags);
3207 /*****************************************************************************/
3209 static void stl_cd1400sendbreak(struct stlport *portp, int len)
3211 unsigned long flags;
3213 pr_debug("stl_cd1400sendbreak(portp=%p,len=%d)\n", portp, len);
3215 spin_lock_irqsave(&brd_lock, flags);
3216 BRDENABLE(portp->brdnr, portp->pagenr);
3217 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3218 stl_cd1400setreg(portp, SRER,
3219 ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
3221 BRDDISABLE(portp->brdnr);
3222 portp->brklen = len;
3224 portp->stats.txbreaks++;
3225 spin_unlock_irqrestore(&brd_lock, flags);
3228 /*****************************************************************************/
3231 * Take flow control actions...
3234 static void stl_cd1400flowctrl(struct stlport *portp, int state)
3236 struct tty_struct *tty;
3237 unsigned long flags;
3239 pr_debug("stl_cd1400flowctrl(portp=%p,state=%x)\n", portp, state);
3247 spin_lock_irqsave(&brd_lock, flags);
3248 BRDENABLE(portp->brdnr, portp->pagenr);
3249 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3252 if (tty->termios->c_iflag & IXOFF) {
3253 stl_cd1400ccrwait(portp);
3254 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3255 portp->stats.rxxon++;
3256 stl_cd1400ccrwait(portp);
3259 * Question: should we return RTS to what it was before? It may
3260 * have been set by an ioctl... Suppose not, since if you have
3261 * hardware flow control set then it is pretty silly to go and
3262 * set the RTS line by hand.
3264 if (tty->termios->c_cflag & CRTSCTS) {
3265 stl_cd1400setreg(portp, MCOR1,
3266 (stl_cd1400getreg(portp, MCOR1) |
3267 FIFO_RTSTHRESHOLD));
3268 stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
3269 portp->stats.rxrtson++;
3272 if (tty->termios->c_iflag & IXOFF) {
3273 stl_cd1400ccrwait(portp);
3274 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3275 portp->stats.rxxoff++;
3276 stl_cd1400ccrwait(portp);
3278 if (tty->termios->c_cflag & CRTSCTS) {
3279 stl_cd1400setreg(portp, MCOR1,
3280 (stl_cd1400getreg(portp, MCOR1) & 0xf0));
3281 stl_cd1400setreg(portp, MSVR2, 0);
3282 portp->stats.rxrtsoff++;
3286 BRDDISABLE(portp->brdnr);
3287 spin_unlock_irqrestore(&brd_lock, flags);
3290 /*****************************************************************************/
3293 * Send a flow control character...
3296 static void stl_cd1400sendflow(struct stlport *portp, int state)
3298 struct tty_struct *tty;
3299 unsigned long flags;
3301 pr_debug("stl_cd1400sendflow(portp=%p,state=%x)\n", portp, state);
3309 spin_lock_irqsave(&brd_lock, flags);
3310 BRDENABLE(portp->brdnr, portp->pagenr);
3311 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3313 stl_cd1400ccrwait(portp);
3314 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3315 portp->stats.rxxon++;
3316 stl_cd1400ccrwait(portp);
3318 stl_cd1400ccrwait(portp);
3319 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3320 portp->stats.rxxoff++;
3321 stl_cd1400ccrwait(portp);
3323 BRDDISABLE(portp->brdnr);
3324 spin_unlock_irqrestore(&brd_lock, flags);
3327 /*****************************************************************************/
3329 static void stl_cd1400flush(struct stlport *portp)
3331 unsigned long flags;
3333 pr_debug("stl_cd1400flush(portp=%p)\n", portp);
3338 spin_lock_irqsave(&brd_lock, flags);
3339 BRDENABLE(portp->brdnr, portp->pagenr);
3340 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3341 stl_cd1400ccrwait(portp);
3342 stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
3343 stl_cd1400ccrwait(portp);
3344 portp->tx.tail = portp->tx.head;
3345 BRDDISABLE(portp->brdnr);
3346 spin_unlock_irqrestore(&brd_lock, flags);
3349 /*****************************************************************************/
3352 * Return the current state of data flow on this port. This is only
3353 * really interresting when determining if data has fully completed
3354 * transmission or not... This is easy for the cd1400, it accurately
3355 * maintains the busy port flag.
3358 static int stl_cd1400datastate(struct stlport *portp)
3360 pr_debug("stl_cd1400datastate(portp=%p)\n", portp);
3365 return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0;
3368 /*****************************************************************************/
3371 * Interrupt service routine for cd1400 EasyIO boards.
3374 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase)
3376 unsigned char svrtype;
3378 pr_debug("stl_cd1400eiointr(panelp=%p,iobase=%x)\n", panelp, iobase);
3380 spin_lock(&brd_lock);
3382 svrtype = inb(iobase + EREG_DATA);
3383 if (panelp->nrports > 4) {
3384 outb((SVRR + 0x80), iobase);
3385 svrtype |= inb(iobase + EREG_DATA);
3388 if (svrtype & SVRR_RX)
3389 stl_cd1400rxisr(panelp, iobase);
3390 else if (svrtype & SVRR_TX)
3391 stl_cd1400txisr(panelp, iobase);
3392 else if (svrtype & SVRR_MDM)
3393 stl_cd1400mdmisr(panelp, iobase);
3395 spin_unlock(&brd_lock);
3398 /*****************************************************************************/
3401 * Interrupt service routine for cd1400 panels.
3404 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase)
3406 unsigned char svrtype;
3408 pr_debug("stl_cd1400echintr(panelp=%p,iobase=%x)\n", panelp, iobase);
3411 svrtype = inb(iobase + EREG_DATA);
3412 outb((SVRR + 0x80), iobase);
3413 svrtype |= inb(iobase + EREG_DATA);
3414 if (svrtype & SVRR_RX)
3415 stl_cd1400rxisr(panelp, iobase);
3416 else if (svrtype & SVRR_TX)
3417 stl_cd1400txisr(panelp, iobase);
3418 else if (svrtype & SVRR_MDM)
3419 stl_cd1400mdmisr(panelp, iobase);
3423 /*****************************************************************************/
3426 * Unfortunately we need to handle breaks in the TX data stream, since
3427 * this is the only way to generate them on the cd1400.
3430 static int stl_cd1400breakisr(struct stlport *portp, int ioaddr)
3432 if (portp->brklen == 1) {
3433 outb((COR2 + portp->uartaddr), ioaddr);
3434 outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
3435 (ioaddr + EREG_DATA));
3436 outb((TDR + portp->uartaddr), ioaddr);
3437 outb(ETC_CMD, (ioaddr + EREG_DATA));
3438 outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
3439 outb((SRER + portp->uartaddr), ioaddr);
3440 outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
3441 (ioaddr + EREG_DATA));
3443 } else if (portp->brklen > 1) {
3444 outb((TDR + portp->uartaddr), ioaddr);
3445 outb(ETC_CMD, (ioaddr + EREG_DATA));
3446 outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
3450 outb((COR2 + portp->uartaddr), ioaddr);
3451 outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
3452 (ioaddr + EREG_DATA));
3458 /*****************************************************************************/
3461 * Transmit interrupt handler. This has gotta be fast! Handling TX
3462 * chars is pretty simple, stuff as many as possible from the TX buffer
3463 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3464 * are embedded as commands in the data stream. Oh no, had to use a goto!
3465 * This could be optimized more, will do when I get time...
3466 * In practice it is possible that interrupts are enabled but that the
3467 * port has been hung up. Need to handle not having any TX buffer here,
3468 * this is done by using the side effect that head and tail will also
3469 * be NULL if the buffer has been freed.
3472 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr)
3474 struct stlport *portp;
3477 unsigned char ioack, srer;
3479 pr_debug("stl_cd1400txisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3481 ioack = inb(ioaddr + EREG_TXACK);
3482 if (((ioack & panelp->ackmask) != 0) ||
3483 ((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
3484 printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
3487 portp = panelp->ports[(ioack >> 3)];
3490 * Unfortunately we need to handle breaks in the data stream, since
3491 * this is the only way to generate them on the cd1400. Do it now if
3492 * a break is to be sent.
3494 if (portp->brklen != 0)
3495 if (stl_cd1400breakisr(portp, ioaddr))
3498 head = portp->tx.head;
3499 tail = portp->tx.tail;
3500 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
3501 if ((len == 0) || ((len < STL_TXBUFLOW) &&
3502 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
3503 set_bit(ASYI_TXLOW, &portp->istate);
3505 tty_wakeup(portp->tty);
3509 outb((SRER + portp->uartaddr), ioaddr);
3510 srer = inb(ioaddr + EREG_DATA);
3511 if (srer & SRER_TXDATA) {
3512 srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
3514 srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
3515 clear_bit(ASYI_TXBUSY, &portp->istate);
3517 outb(srer, (ioaddr + EREG_DATA));
3519 len = min(len, CD1400_TXFIFOSIZE);
3520 portp->stats.txtotal += len;
3521 stlen = min_t(unsigned int, len,
3522 (portp->tx.buf + STL_TXBUFSIZE) - tail);
3523 outb((TDR + portp->uartaddr), ioaddr);
3524 outsb((ioaddr + EREG_DATA), tail, stlen);
3527 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
3528 tail = portp->tx.buf;
3530 outsb((ioaddr + EREG_DATA), tail, len);
3533 portp->tx.tail = tail;
3537 outb((EOSRR + portp->uartaddr), ioaddr);
3538 outb(0, (ioaddr + EREG_DATA));
3541 /*****************************************************************************/
3544 * Receive character interrupt handler. Determine if we have good chars
3545 * or bad chars and then process appropriately. Good chars are easy
3546 * just shove the lot into the RX buffer and set all status byte to 0.
3547 * If a bad RX char then process as required. This routine needs to be
3548 * fast! In practice it is possible that we get an interrupt on a port
3549 * that is closed. This can happen on hangups - since they completely
3550 * shutdown a port not in user context. Need to handle this case.
3553 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr)
3555 struct stlport *portp;
3556 struct tty_struct *tty;
3557 unsigned int ioack, len, buflen;
3558 unsigned char status;
3561 pr_debug("stl_cd1400rxisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3563 ioack = inb(ioaddr + EREG_RXACK);
3564 if ((ioack & panelp->ackmask) != 0) {
3565 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3568 portp = panelp->ports[(ioack >> 3)];
3571 if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
3572 outb((RDCR + portp->uartaddr), ioaddr);
3573 len = inb(ioaddr + EREG_DATA);
3574 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
3575 len = min_t(unsigned int, len, sizeof(stl_unwanted));
3576 outb((RDSR + portp->uartaddr), ioaddr);
3577 insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
3578 portp->stats.rxlost += len;
3579 portp->stats.rxtotal += len;
3581 len = min(len, buflen);
3584 outb((RDSR + portp->uartaddr), ioaddr);
3585 tty_prepare_flip_string(tty, &ptr, len);
3586 insb((ioaddr + EREG_DATA), ptr, len);
3587 tty_schedule_flip(tty);
3588 portp->stats.rxtotal += len;
3591 } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
3592 outb((RDSR + portp->uartaddr), ioaddr);
3593 status = inb(ioaddr + EREG_DATA);
3594 ch = inb(ioaddr + EREG_DATA);
3595 if (status & ST_PARITY)
3596 portp->stats.rxparity++;
3597 if (status & ST_FRAMING)
3598 portp->stats.rxframing++;
3599 if (status & ST_OVERRUN)
3600 portp->stats.rxoverrun++;
3601 if (status & ST_BREAK)
3602 portp->stats.rxbreaks++;
3603 if (status & ST_SCHARMASK) {
3604 if ((status & ST_SCHARMASK) == ST_SCHAR1)
3605 portp->stats.txxon++;
3606 if ((status & ST_SCHARMASK) == ST_SCHAR2)
3607 portp->stats.txxoff++;
3610 if (tty != NULL && (portp->rxignoremsk & status) == 0) {
3611 if (portp->rxmarkmsk & status) {
3612 if (status & ST_BREAK) {
3614 if (portp->flags & ASYNC_SAK) {
3616 BRDENABLE(portp->brdnr, portp->pagenr);
3618 } else if (status & ST_PARITY)
3619 status = TTY_PARITY;
3620 else if (status & ST_FRAMING)
3622 else if(status & ST_OVERRUN)
3623 status = TTY_OVERRUN;
3628 tty_insert_flip_char(tty, ch, status);
3629 tty_schedule_flip(tty);
3632 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3637 outb((EOSRR + portp->uartaddr), ioaddr);
3638 outb(0, (ioaddr + EREG_DATA));
3641 /*****************************************************************************/
3644 * Modem interrupt handler. The is called when the modem signal line
3645 * (DCD) has changed state. Leave most of the work to the off-level
3646 * processing routine.
3649 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr)
3651 struct stlport *portp;
3655 pr_debug("stl_cd1400mdmisr(panelp=%p)\n", panelp);
3657 ioack = inb(ioaddr + EREG_MDACK);
3658 if (((ioack & panelp->ackmask) != 0) ||
3659 ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
3660 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
3663 portp = panelp->ports[(ioack >> 3)];
3665 outb((MISR + portp->uartaddr), ioaddr);
3666 misr = inb(ioaddr + EREG_DATA);
3667 if (misr & MISR_DCD) {
3668 stl_cd_change(portp);
3669 portp->stats.modem++;
3672 outb((EOSRR + portp->uartaddr), ioaddr);
3673 outb(0, (ioaddr + EREG_DATA));
3676 /*****************************************************************************/
3677 /* SC26198 HARDWARE FUNCTIONS */
3678 /*****************************************************************************/
3681 * These functions get/set/update the registers of the sc26198 UARTs.
3682 * Access to the sc26198 registers is via an address/data io port pair.
3683 * (Maybe should make this inline...)
3686 static int stl_sc26198getreg(struct stlport *portp, int regnr)
3688 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3689 return inb(portp->ioaddr + XP_DATA);
3692 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value)
3694 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3695 outb(value, (portp->ioaddr + XP_DATA));
3698 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value)
3700 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3701 if (inb(portp->ioaddr + XP_DATA) != value) {
3702 outb(value, (portp->ioaddr + XP_DATA));
3708 /*****************************************************************************/
3711 * Functions to get and set the sc26198 global registers.
3714 static int stl_sc26198getglobreg(struct stlport *portp, int regnr)
3716 outb(regnr, (portp->ioaddr + XP_ADDR));
3717 return inb(portp->ioaddr + XP_DATA);
3721 static void stl_sc26198setglobreg(struct stlport *portp, int regnr, int value)
3723 outb(regnr, (portp->ioaddr + XP_ADDR));
3724 outb(value, (portp->ioaddr + XP_DATA));
3728 /*****************************************************************************/
3731 * Inbitialize the UARTs in a panel. We don't care what sort of board
3732 * these ports are on - since the port io registers are almost
3733 * identical when dealing with ports.
3736 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
3739 int nrchips, ioaddr;
3741 pr_debug("stl_sc26198panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
3743 BRDENABLE(panelp->brdnr, panelp->pagenr);
3746 * Check that each chip is present and started up OK.
3749 nrchips = (panelp->nrports + 4) / SC26198_PORTS;
3750 if (brdp->brdtype == BRD_ECHPCI)
3751 outb(panelp->pagenr, brdp->ioctrl);
3753 for (i = 0; i < nrchips; i++) {
3754 ioaddr = panelp->iobase + (i * 4);
3755 outb(SCCR, (ioaddr + XP_ADDR));
3756 outb(CR_RESETALL, (ioaddr + XP_DATA));
3757 outb(TSTR, (ioaddr + XP_ADDR));
3758 if (inb(ioaddr + XP_DATA) != 0) {
3759 printk("STALLION: sc26198 not responding, "
3760 "brd=%d panel=%d chip=%d\n",
3761 panelp->brdnr, panelp->panelnr, i);
3764 chipmask |= (0x1 << i);
3765 outb(GCCR, (ioaddr + XP_ADDR));
3766 outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
3767 outb(WDTRCR, (ioaddr + XP_ADDR));
3768 outb(0xff, (ioaddr + XP_DATA));
3771 BRDDISABLE(panelp->brdnr);
3775 /*****************************************************************************/
3778 * Initialize hardware specific port registers.
3781 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
3783 pr_debug("stl_sc26198portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
3786 if ((brdp == NULL) || (panelp == NULL) ||
3790 portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
3791 portp->uartaddr = (portp->portnr & 0x07) << 4;
3792 portp->pagenr = panelp->pagenr;
3795 BRDENABLE(portp->brdnr, portp->pagenr);
3796 stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
3797 BRDDISABLE(portp->brdnr);
3800 /*****************************************************************************/
3803 * Set up the sc26198 registers for a port based on the termios port
3807 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp)
3809 struct stlbrd *brdp;
3810 unsigned long flags;
3811 unsigned int baudrate;
3812 unsigned char mr0, mr1, mr2, clk;
3813 unsigned char imron, imroff, iopr, ipr;
3823 brdp = stl_brds[portp->brdnr];
3828 * Set up the RX char ignore mask with those RX error types we
3831 portp->rxignoremsk = 0;
3832 if (tiosp->c_iflag & IGNPAR)
3833 portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
3835 if (tiosp->c_iflag & IGNBRK)
3836 portp->rxignoremsk |= SR_RXBREAK;
3838 portp->rxmarkmsk = SR_RXOVERRUN;
3839 if (tiosp->c_iflag & (INPCK | PARMRK))
3840 portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
3841 if (tiosp->c_iflag & BRKINT)
3842 portp->rxmarkmsk |= SR_RXBREAK;
3845 * Go through the char size, parity and stop bits and set all the
3846 * option register appropriately.
3848 switch (tiosp->c_cflag & CSIZE) {
3863 if (tiosp->c_cflag & CSTOPB)
3868 if (tiosp->c_cflag & PARENB) {
3869 if (tiosp->c_cflag & PARODD)
3870 mr1 |= (MR1_PARENB | MR1_PARODD);
3872 mr1 |= (MR1_PARENB | MR1_PAREVEN);
3876 mr1 |= MR1_ERRBLOCK;
3879 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
3880 * space for hardware flow control and the like. This should be set to
3883 mr2 |= MR2_RXFIFOHALF;
3886 * Calculate the baud rate timers. For now we will just assume that
3887 * the input and output baud are the same. The sc26198 has a fixed
3888 * baud rate table, so only discrete baud rates possible.
3890 baudrate = tiosp->c_cflag & CBAUD;
3891 if (baudrate & CBAUDEX) {
3892 baudrate &= ~CBAUDEX;
3893 if ((baudrate < 1) || (baudrate > 4))
3894 tiosp->c_cflag &= ~CBAUDEX;
3898 baudrate = stl_baudrates[baudrate];
3899 if ((tiosp->c_cflag & CBAUD) == B38400) {
3900 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3902 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3904 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3906 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3908 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3909 baudrate = (portp->baud_base / portp->custom_divisor);
3911 if (baudrate > STL_SC26198MAXBAUD)
3912 baudrate = STL_SC26198MAXBAUD;
3915 for (clk = 0; clk < SC26198_NRBAUDS; clk++)
3916 if (baudrate <= sc26198_baudtable[clk])
3920 * Check what form of modem signaling is required and set it up.
3922 if (tiosp->c_cflag & CLOCAL) {
3923 portp->flags &= ~ASYNC_CHECK_CD;
3925 iopr |= IOPR_DCDCOS;
3927 portp->flags |= ASYNC_CHECK_CD;
3931 * Setup sc26198 enhanced modes if we can. In particular we want to
3932 * handle as much of the flow control as possible automatically. As
3933 * well as saving a few CPU cycles it will also greatly improve flow
3934 * control reliability.
3936 if (tiosp->c_iflag & IXON) {
3937 mr0 |= MR0_SWFTX | MR0_SWFT;
3938 imron |= IR_XONXOFF;
3940 imroff |= IR_XONXOFF;
3942 if (tiosp->c_iflag & IXOFF)
3945 if (tiosp->c_cflag & CRTSCTS) {
3951 * All sc26198 register values calculated so go through and set
3955 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3956 portp->portnr, portp->panelnr, portp->brdnr);
3957 pr_debug(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
3958 pr_debug(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
3959 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3960 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3961 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3963 spin_lock_irqsave(&brd_lock, flags);
3964 BRDENABLE(portp->brdnr, portp->pagenr);
3965 stl_sc26198setreg(portp, IMR, 0);
3966 stl_sc26198updatereg(portp, MR0, mr0);
3967 stl_sc26198updatereg(portp, MR1, mr1);
3968 stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
3969 stl_sc26198updatereg(portp, MR2, mr2);
3970 stl_sc26198updatereg(portp, IOPIOR,
3971 ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
3974 stl_sc26198setreg(portp, TXCSR, clk);
3975 stl_sc26198setreg(portp, RXCSR, clk);
3978 stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
3979 stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
3981 ipr = stl_sc26198getreg(portp, IPR);
3983 portp->sigs &= ~TIOCM_CD;
3985 portp->sigs |= TIOCM_CD;
3987 portp->imr = (portp->imr & ~imroff) | imron;
3988 stl_sc26198setreg(portp, IMR, portp->imr);
3989 BRDDISABLE(portp->brdnr);
3990 spin_unlock_irqrestore(&brd_lock, flags);
3993 /*****************************************************************************/
3996 * Set the state of the DTR and RTS signals.
3999 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts)
4001 unsigned char iopioron, iopioroff;
4002 unsigned long flags;
4004 pr_debug("stl_sc26198setsignals(portp=%p,dtr=%d,rts=%d)\n", portp,
4010 iopioroff |= IPR_DTR;
4012 iopioron |= IPR_DTR;
4014 iopioroff |= IPR_RTS;
4016 iopioron |= IPR_RTS;
4018 spin_lock_irqsave(&brd_lock, flags);
4019 BRDENABLE(portp->brdnr, portp->pagenr);
4020 stl_sc26198setreg(portp, IOPIOR,
4021 ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
4022 BRDDISABLE(portp->brdnr);
4023 spin_unlock_irqrestore(&brd_lock, flags);
4026 /*****************************************************************************/
4029 * Return the state of the signals.
4032 static int stl_sc26198getsignals(struct stlport *portp)
4035 unsigned long flags;
4038 pr_debug("stl_sc26198getsignals(portp=%p)\n", portp);
4040 spin_lock_irqsave(&brd_lock, flags);
4041 BRDENABLE(portp->brdnr, portp->pagenr);
4042 ipr = stl_sc26198getreg(portp, IPR);
4043 BRDDISABLE(portp->brdnr);
4044 spin_unlock_irqrestore(&brd_lock, flags);
4047 sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
4048 sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
4049 sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
4050 sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
4055 /*****************************************************************************/
4058 * Enable/Disable the Transmitter and/or Receiver.
4061 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx)
4064 unsigned long flags;
4066 pr_debug("stl_sc26198enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx,tx);
4068 ccr = portp->crenable;
4070 ccr &= ~CR_TXENABLE;
4074 ccr &= ~CR_RXENABLE;
4078 spin_lock_irqsave(&brd_lock, flags);
4079 BRDENABLE(portp->brdnr, portp->pagenr);
4080 stl_sc26198setreg(portp, SCCR, ccr);
4081 BRDDISABLE(portp->brdnr);
4082 portp->crenable = ccr;
4083 spin_unlock_irqrestore(&brd_lock, flags);
4086 /*****************************************************************************/
4089 * Start/stop the Transmitter and/or Receiver.
4092 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx)
4095 unsigned long flags;
4097 pr_debug("stl_sc26198startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
4105 imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
4107 imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
4109 spin_lock_irqsave(&brd_lock, flags);
4110 BRDENABLE(portp->brdnr, portp->pagenr);
4111 stl_sc26198setreg(portp, IMR, imr);
4112 BRDDISABLE(portp->brdnr);
4115 set_bit(ASYI_TXBUSY, &portp->istate);
4116 spin_unlock_irqrestore(&brd_lock, flags);
4119 /*****************************************************************************/
4122 * Disable all interrupts from this port.
4125 static void stl_sc26198disableintrs(struct stlport *portp)
4127 unsigned long flags;
4129 pr_debug("stl_sc26198disableintrs(portp=%p)\n", portp);
4131 spin_lock_irqsave(&brd_lock, flags);
4132 BRDENABLE(portp->brdnr, portp->pagenr);
4134 stl_sc26198setreg(portp, IMR, 0);
4135 BRDDISABLE(portp->brdnr);
4136 spin_unlock_irqrestore(&brd_lock, flags);
4139 /*****************************************************************************/
4141 static void stl_sc26198sendbreak(struct stlport *portp, int len)
4143 unsigned long flags;
4145 pr_debug("stl_sc26198sendbreak(portp=%p,len=%d)\n", portp, len);
4147 spin_lock_irqsave(&brd_lock, flags);
4148 BRDENABLE(portp->brdnr, portp->pagenr);
4150 stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
4151 portp->stats.txbreaks++;
4153 stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
4155 BRDDISABLE(portp->brdnr);
4156 spin_unlock_irqrestore(&brd_lock, flags);
4159 /*****************************************************************************/
4162 * Take flow control actions...
4165 static void stl_sc26198flowctrl(struct stlport *portp, int state)
4167 struct tty_struct *tty;
4168 unsigned long flags;
4171 pr_debug("stl_sc26198flowctrl(portp=%p,state=%x)\n", portp, state);
4179 spin_lock_irqsave(&brd_lock, flags);
4180 BRDENABLE(portp->brdnr, portp->pagenr);
4183 if (tty->termios->c_iflag & IXOFF) {
4184 mr0 = stl_sc26198getreg(portp, MR0);
4185 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4186 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4188 portp->stats.rxxon++;
4189 stl_sc26198wait(portp);
4190 stl_sc26198setreg(portp, MR0, mr0);
4193 * Question: should we return RTS to what it was before? It may
4194 * have been set by an ioctl... Suppose not, since if you have
4195 * hardware flow control set then it is pretty silly to go and
4196 * set the RTS line by hand.
4198 if (tty->termios->c_cflag & CRTSCTS) {
4199 stl_sc26198setreg(portp, MR1,
4200 (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
4201 stl_sc26198setreg(portp, IOPIOR,
4202 (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
4203 portp->stats.rxrtson++;
4206 if (tty->termios->c_iflag & IXOFF) {
4207 mr0 = stl_sc26198getreg(portp, MR0);
4208 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4209 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4211 portp->stats.rxxoff++;
4212 stl_sc26198wait(portp);
4213 stl_sc26198setreg(portp, MR0, mr0);
4215 if (tty->termios->c_cflag & CRTSCTS) {
4216 stl_sc26198setreg(portp, MR1,
4217 (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
4218 stl_sc26198setreg(portp, IOPIOR,
4219 (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
4220 portp->stats.rxrtsoff++;
4224 BRDDISABLE(portp->brdnr);
4225 spin_unlock_irqrestore(&brd_lock, flags);
4228 /*****************************************************************************/
4231 * Send a flow control character.
4234 static void stl_sc26198sendflow(struct stlport *portp, int state)
4236 struct tty_struct *tty;
4237 unsigned long flags;
4240 pr_debug("stl_sc26198sendflow(portp=%p,state=%x)\n", portp, state);
4248 spin_lock_irqsave(&brd_lock, flags);
4249 BRDENABLE(portp->brdnr, portp->pagenr);
4251 mr0 = stl_sc26198getreg(portp, MR0);
4252 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4253 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4255 portp->stats.rxxon++;
4256 stl_sc26198wait(portp);
4257 stl_sc26198setreg(portp, MR0, mr0);
4259 mr0 = stl_sc26198getreg(portp, MR0);
4260 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4261 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4263 portp->stats.rxxoff++;
4264 stl_sc26198wait(portp);
4265 stl_sc26198setreg(portp, MR0, mr0);
4267 BRDDISABLE(portp->brdnr);
4268 spin_unlock_irqrestore(&brd_lock, flags);
4271 /*****************************************************************************/
4273 static void stl_sc26198flush(struct stlport *portp)
4275 unsigned long flags;
4277 pr_debug("stl_sc26198flush(portp=%p)\n", portp);
4282 spin_lock_irqsave(&brd_lock, flags);
4283 BRDENABLE(portp->brdnr, portp->pagenr);
4284 stl_sc26198setreg(portp, SCCR, CR_TXRESET);
4285 stl_sc26198setreg(portp, SCCR, portp->crenable);
4286 BRDDISABLE(portp->brdnr);
4287 portp->tx.tail = portp->tx.head;
4288 spin_unlock_irqrestore(&brd_lock, flags);
4291 /*****************************************************************************/
4294 * Return the current state of data flow on this port. This is only
4295 * really interresting when determining if data has fully completed
4296 * transmission or not... The sc26198 interrupt scheme cannot
4297 * determine when all data has actually drained, so we need to
4298 * check the port statusy register to be sure.
4301 static int stl_sc26198datastate(struct stlport *portp)
4303 unsigned long flags;
4306 pr_debug("stl_sc26198datastate(portp=%p)\n", portp);
4310 if (test_bit(ASYI_TXBUSY, &portp->istate))
4313 spin_lock_irqsave(&brd_lock, flags);
4314 BRDENABLE(portp->brdnr, portp->pagenr);
4315 sr = stl_sc26198getreg(portp, SR);
4316 BRDDISABLE(portp->brdnr);
4317 spin_unlock_irqrestore(&brd_lock, flags);
4319 return (sr & SR_TXEMPTY) ? 0 : 1;
4322 /*****************************************************************************/
4325 * Delay for a small amount of time, to give the sc26198 a chance
4326 * to process a command...
4329 static void stl_sc26198wait(struct stlport *portp)
4333 pr_debug("stl_sc26198wait(portp=%p)\n", portp);
4338 for (i = 0; i < 20; i++)
4339 stl_sc26198getglobreg(portp, TSTR);
4342 /*****************************************************************************/
4345 * If we are TX flow controlled and in IXANY mode then we may
4346 * need to unflow control here. We gotta do this because of the
4347 * automatic flow control modes of the sc26198.
4350 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty)
4354 mr0 = stl_sc26198getreg(portp, MR0);
4355 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4356 stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
4357 stl_sc26198wait(portp);
4358 stl_sc26198setreg(portp, MR0, mr0);
4359 clear_bit(ASYI_TXFLOWED, &portp->istate);
4362 /*****************************************************************************/
4365 * Interrupt service routine for sc26198 panels.
4368 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase)
4370 struct stlport *portp;
4373 spin_lock(&brd_lock);
4376 * Work around bug in sc26198 chip... Cannot have A6 address
4377 * line of UART high, else iack will be returned as 0.
4379 outb(0, (iobase + 1));
4381 iack = inb(iobase + XP_IACK);
4382 portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
4384 if (iack & IVR_RXDATA)
4385 stl_sc26198rxisr(portp, iack);
4386 else if (iack & IVR_TXDATA)
4387 stl_sc26198txisr(portp);
4389 stl_sc26198otherisr(portp, iack);
4391 spin_unlock(&brd_lock);
4394 /*****************************************************************************/
4397 * Transmit interrupt handler. This has gotta be fast! Handling TX
4398 * chars is pretty simple, stuff as many as possible from the TX buffer
4399 * into the sc26198 FIFO.
4400 * In practice it is possible that interrupts are enabled but that the
4401 * port has been hung up. Need to handle not having any TX buffer here,
4402 * this is done by using the side effect that head and tail will also
4403 * be NULL if the buffer has been freed.
4406 static void stl_sc26198txisr(struct stlport *portp)
4408 unsigned int ioaddr;
4413 pr_debug("stl_sc26198txisr(portp=%p)\n", portp);
4415 ioaddr = portp->ioaddr;
4416 head = portp->tx.head;
4417 tail = portp->tx.tail;
4418 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
4419 if ((len == 0) || ((len < STL_TXBUFLOW) &&
4420 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
4421 set_bit(ASYI_TXLOW, &portp->istate);
4423 tty_wakeup(portp->tty);
4427 outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
4428 mr0 = inb(ioaddr + XP_DATA);
4429 if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
4430 portp->imr &= ~IR_TXRDY;
4431 outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
4432 outb(portp->imr, (ioaddr + XP_DATA));
4433 clear_bit(ASYI_TXBUSY, &portp->istate);
4435 mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
4436 outb(mr0, (ioaddr + XP_DATA));
4439 len = min(len, SC26198_TXFIFOSIZE);
4440 portp->stats.txtotal += len;
4441 stlen = min_t(unsigned int, len,
4442 (portp->tx.buf + STL_TXBUFSIZE) - tail);
4443 outb(GTXFIFO, (ioaddr + XP_ADDR));
4444 outsb((ioaddr + XP_DATA), tail, stlen);
4447 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4448 tail = portp->tx.buf;
4450 outsb((ioaddr + XP_DATA), tail, len);
4453 portp->tx.tail = tail;
4457 /*****************************************************************************/
4460 * Receive character interrupt handler. Determine if we have good chars
4461 * or bad chars and then process appropriately. Good chars are easy
4462 * just shove the lot into the RX buffer and set all status byte to 0.
4463 * If a bad RX char then process as required. This routine needs to be
4464 * fast! In practice it is possible that we get an interrupt on a port
4465 * that is closed. This can happen on hangups - since they completely
4466 * shutdown a port not in user context. Need to handle this case.
4469 static void stl_sc26198rxisr(struct stlport *portp, unsigned int iack)
4471 struct tty_struct *tty;
4472 unsigned int len, buflen, ioaddr;
4474 pr_debug("stl_sc26198rxisr(portp=%p,iack=%x)\n", portp, iack);
4477 ioaddr = portp->ioaddr;
4478 outb(GIBCR, (ioaddr + XP_ADDR));
4479 len = inb(ioaddr + XP_DATA) + 1;
4481 if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
4482 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
4483 len = min_t(unsigned int, len, sizeof(stl_unwanted));
4484 outb(GRXFIFO, (ioaddr + XP_ADDR));
4485 insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
4486 portp->stats.rxlost += len;
4487 portp->stats.rxtotal += len;
4489 len = min(len, buflen);
4492 outb(GRXFIFO, (ioaddr + XP_ADDR));
4493 tty_prepare_flip_string(tty, &ptr, len);
4494 insb((ioaddr + XP_DATA), ptr, len);
4495 tty_schedule_flip(tty);
4496 portp->stats.rxtotal += len;
4500 stl_sc26198rxbadchars(portp);
4504 * If we are TX flow controlled and in IXANY mode then we may need
4505 * to unflow control here. We gotta do this because of the automatic
4506 * flow control modes of the sc26198.
4508 if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
4509 if ((tty != NULL) &&
4510 (tty->termios != NULL) &&
4511 (tty->termios->c_iflag & IXANY)) {
4512 stl_sc26198txunflow(portp, tty);
4517 /*****************************************************************************/
4520 * Process an RX bad character.
4523 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch)
4525 struct tty_struct *tty;
4526 unsigned int ioaddr;
4529 ioaddr = portp->ioaddr;
4531 if (status & SR_RXPARITY)
4532 portp->stats.rxparity++;
4533 if (status & SR_RXFRAMING)
4534 portp->stats.rxframing++;
4535 if (status & SR_RXOVERRUN)
4536 portp->stats.rxoverrun++;
4537 if (status & SR_RXBREAK)
4538 portp->stats.rxbreaks++;
4540 if ((tty != NULL) &&
4541 ((portp->rxignoremsk & status) == 0)) {
4542 if (portp->rxmarkmsk & status) {
4543 if (status & SR_RXBREAK) {
4545 if (portp->flags & ASYNC_SAK) {
4547 BRDENABLE(portp->brdnr, portp->pagenr);
4549 } else if (status & SR_RXPARITY)
4550 status = TTY_PARITY;
4551 else if (status & SR_RXFRAMING)
4553 else if(status & SR_RXOVERRUN)
4554 status = TTY_OVERRUN;
4560 tty_insert_flip_char(tty, ch, status);
4561 tty_schedule_flip(tty);
4564 portp->stats.rxtotal++;
4568 /*****************************************************************************/
4571 * Process all characters in the RX FIFO of the UART. Check all char
4572 * status bytes as well, and process as required. We need to check
4573 * all bytes in the FIFO, in case some more enter the FIFO while we
4574 * are here. To get the exact character error type we need to switch
4575 * into CHAR error mode (that is why we need to make sure we empty
4579 static void stl_sc26198rxbadchars(struct stlport *portp)
4581 unsigned char status, mr1;
4585 * To get the precise error type for each character we must switch
4586 * back into CHAR error mode.
4588 mr1 = stl_sc26198getreg(portp, MR1);
4589 stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
4591 while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
4592 stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
4593 ch = stl_sc26198getreg(portp, RXFIFO);
4594 stl_sc26198rxbadch(portp, status, ch);
4598 * To get correct interrupt class we must switch back into BLOCK
4601 stl_sc26198setreg(portp, MR1, mr1);
4604 /*****************************************************************************/
4607 * Other interrupt handler. This includes modem signals, flow
4608 * control actions, etc. Most stuff is left to off-level interrupt
4612 static void stl_sc26198otherisr(struct stlport *portp, unsigned int iack)
4614 unsigned char cir, ipr, xisr;
4616 pr_debug("stl_sc26198otherisr(portp=%p,iack=%x)\n", portp, iack);
4618 cir = stl_sc26198getglobreg(portp, CIR);
4620 switch (cir & CIR_SUBTYPEMASK) {
4622 ipr = stl_sc26198getreg(portp, IPR);
4623 if (ipr & IPR_DCDCHANGE) {
4624 stl_cd_change(portp);
4625 portp->stats.modem++;
4628 case CIR_SUBXONXOFF:
4629 xisr = stl_sc26198getreg(portp, XISR);
4630 if (xisr & XISR_RXXONGOT) {
4631 set_bit(ASYI_TXFLOWED, &portp->istate);
4632 portp->stats.txxoff++;
4634 if (xisr & XISR_RXXOFFGOT) {
4635 clear_bit(ASYI_TXFLOWED, &portp->istate);
4636 portp->stats.txxon++;
4640 stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
4641 stl_sc26198rxbadchars(portp);
4648 static void stl_free_isabrds(void)
4650 struct stlbrd *brdp;
4653 for (i = 0; i < stl_nrbrds; i++) {
4654 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4657 free_irq(brdp->irq, brdp);
4659 stl_cleanup_panels(brdp);
4661 release_region(brdp->ioaddr1, brdp->iosize1);
4662 if (brdp->iosize2 > 0)
4663 release_region(brdp->ioaddr2, brdp->iosize2);
4671 * Loadable module initialization stuff.
4673 static int __init stallion_module_init(void)
4675 struct stlbrd *brdp;
4676 struct stlconf conf;
4680 printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
4682 spin_lock_init(&stallion_lock);
4683 spin_lock_init(&brd_lock);
4685 stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4691 stl_serial->owner = THIS_MODULE;
4692 stl_serial->driver_name = stl_drvname;
4693 stl_serial->name = "ttyE";
4694 stl_serial->major = STL_SERIALMAJOR;
4695 stl_serial->minor_start = 0;
4696 stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
4697 stl_serial->subtype = SERIAL_TYPE_NORMAL;
4698 stl_serial->init_termios = stl_deftermios;
4699 stl_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4700 tty_set_operations(stl_serial, &stl_ops);
4702 retval = tty_register_driver(stl_serial);
4704 printk("STALLION: failed to register serial driver\n");
4709 * Find any dynamically supported boards. That is via module load
4712 for (i = stl_nrbrds; i < stl_nargs; i++) {
4713 memset(&conf, 0, sizeof(conf));
4714 if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
4716 if ((brdp = stl_allocbrd()) == NULL)
4719 brdp->brdtype = conf.brdtype;
4720 brdp->ioaddr1 = conf.ioaddr1;
4721 brdp->ioaddr2 = conf.ioaddr2;
4722 brdp->irq = conf.irq;
4723 brdp->irqtype = conf.irqtype;
4724 stl_brds[brdp->brdnr] = brdp;
4725 if (stl_brdinit(brdp)) {
4726 stl_brds[brdp->brdnr] = NULL;
4729 for (j = 0; j < brdp->nrports; j++)
4730 tty_register_device(stl_serial,
4731 brdp->brdnr * STL_MAXPORTS + j, NULL);
4736 /* this has to be _after_ isa finding because of locking */
4737 retval = pci_register_driver(&stl_pcidriver);
4738 if (retval && stl_nrbrds == 0) {
4739 printk(KERN_ERR "STALLION: can't register pci driver\n");
4744 * Set up a character driver for per board stuff. This is mainly used
4745 * to do stats ioctls on the ports.
4747 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
4748 printk("STALLION: failed to register serial board device\n");
4750 stallion_class = class_create(THIS_MODULE, "staliomem");
4751 if (IS_ERR(stallion_class))
4752 printk("STALLION: failed to create class\n");
4753 for (i = 0; i < 4; i++)
4754 device_create(stallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4759 tty_unregister_driver(stl_serial);
4761 put_tty_driver(stl_serial);
4766 static void __exit stallion_module_exit(void)
4768 struct stlbrd *brdp;
4771 pr_debug("cleanup_module()\n");
4773 printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
4777 * Free up all allocated resources used by the ports. This includes
4778 * memory and interrupts. As part of this process we will also do
4779 * a hangup on every open port - to try to flush out any processes
4780 * hanging onto ports.
4782 for (i = 0; i < stl_nrbrds; i++) {
4783 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4785 for (j = 0; j < brdp->nrports; j++)
4786 tty_unregister_device(stl_serial,
4787 brdp->brdnr * STL_MAXPORTS + j);
4790 for (i = 0; i < 4; i++)
4791 device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
4792 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4793 class_destroy(stallion_class);
4795 pci_unregister_driver(&stl_pcidriver);
4799 tty_unregister_driver(stl_serial);
4800 put_tty_driver(stl_serial);
4803 module_init(stallion_module_init);
4804 module_exit(stallion_module_exit);
4806 MODULE_AUTHOR("Greg Ungerer");
4807 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
4808 MODULE_LICENSE("GPL");