1 /*****************************************************************************/
4 * stallion.c -- stallion multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/serial.h>
35 #include <linux/cd1400.h>
36 #include <linux/sc26198.h>
37 #include <linux/comstats.h>
38 #include <linux/stallion.h>
39 #include <linux/ioport.h>
40 #include <linux/init.h>
41 #include <linux/smp_lock.h>
42 #include <linux/device.h>
43 #include <linux/delay.h>
44 #include <linux/ctype.h>
47 #include <asm/uaccess.h>
49 #include <linux/pci.h>
51 /*****************************************************************************/
54 * Define different board types. Use the standard Stallion "assigned"
55 * board numbers. Boards supported in this driver are abbreviated as
56 * EIO = EasyIO and ECH = EasyConnection 8/32.
62 #define BRD_ECH64PCI 27
63 #define BRD_EASYIOPCI 28
69 unsigned long memaddr;
74 static unsigned int stl_nrbrds;
76 /*****************************************************************************/
79 * Define some important driver characteristics. Device major numbers
80 * allocated as per Linux Device Registry.
82 #ifndef STL_SIOMEMMAJOR
83 #define STL_SIOMEMMAJOR 28
85 #ifndef STL_SERIALMAJOR
86 #define STL_SERIALMAJOR 24
88 #ifndef STL_CALLOUTMAJOR
89 #define STL_CALLOUTMAJOR 25
93 * Set the TX buffer size. Bigger is better, but we don't want
94 * to chew too much memory with buffers!
96 #define STL_TXBUFLOW 512
97 #define STL_TXBUFSIZE 4096
99 /*****************************************************************************/
102 * Define our local driver identity first. Set up stuff to deal with
103 * all the local structures required by a serial tty driver.
105 static char *stl_drvtitle = "Stallion Multiport Serial Driver";
106 static char *stl_drvname = "stallion";
107 static char *stl_drvversion = "5.6.0";
109 static struct tty_driver *stl_serial;
112 * Define a local default termios struct. All ports will be created
113 * with this termios initially. Basically all it defines is a raw port
114 * at 9600, 8 data bits, 1 stop bit.
116 static struct ktermios stl_deftermios = {
117 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
124 * Define global place to put buffer overflow characters.
126 static char stl_unwanted[SC26198_RXFIFOSIZE];
128 /*****************************************************************************/
130 static DEFINE_MUTEX(stl_brdslock);
131 static struct stlbrd *stl_brds[STL_MAXBRDS];
134 * Per board state flags. Used with the state field of the board struct.
135 * Not really much here!
137 #define BRD_FOUND 0x1
138 #define STL_PROBED 0x2
142 * Define the port structure istate flags. These set of flags are
143 * modified at interrupt time - so setting and reseting them needs
144 * to be atomic. Use the bit clear/setting routines for this.
146 #define ASYI_TXBUSY 1
148 #define ASYI_TXFLOWED 3
151 * Define an array of board names as printable strings. Handy for
152 * referencing boards when printing trace and stuff.
154 static char *stl_brdnames[] = {
186 /*****************************************************************************/
189 * Define some string labels for arguments passed from the module
190 * load line. These allow for easy board definitions, and easy
191 * modification of the io, memory and irq resoucres.
193 static unsigned int stl_nargs;
194 static char *board0[4];
195 static char *board1[4];
196 static char *board2[4];
197 static char *board3[4];
199 static char **stl_brdsp[] = {
207 * Define a set of common board names, and types. This is used to
208 * parse any module arguments.
215 { "easyio", BRD_EASYIO },
216 { "eio", BRD_EASYIO },
217 { "20", BRD_EASYIO },
218 { "ec8/32", BRD_ECH },
219 { "ec8/32-at", BRD_ECH },
220 { "ec8/32-isa", BRD_ECH },
222 { "echat", BRD_ECH },
224 { "ec8/32-mc", BRD_ECHMC },
225 { "ec8/32-mca", BRD_ECHMC },
226 { "echmc", BRD_ECHMC },
227 { "echmca", BRD_ECHMC },
229 { "ec8/32-pc", BRD_ECHPCI },
230 { "ec8/32-pci", BRD_ECHPCI },
231 { "26", BRD_ECHPCI },
232 { "ec8/64-pc", BRD_ECH64PCI },
233 { "ec8/64-pci", BRD_ECH64PCI },
234 { "ech-pci", BRD_ECH64PCI },
235 { "echpci", BRD_ECH64PCI },
236 { "echpc", BRD_ECH64PCI },
237 { "27", BRD_ECH64PCI },
238 { "easyio-pc", BRD_EASYIOPCI },
239 { "easyio-pci", BRD_EASYIOPCI },
240 { "eio-pci", BRD_EASYIOPCI },
241 { "eiopci", BRD_EASYIOPCI },
242 { "28", BRD_EASYIOPCI },
246 * Define the module agruments.
249 module_param_array(board0, charp, &stl_nargs, 0);
250 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
251 module_param_array(board1, charp, &stl_nargs, 0);
252 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
253 module_param_array(board2, charp, &stl_nargs, 0);
254 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
255 module_param_array(board3, charp, &stl_nargs, 0);
256 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
258 /*****************************************************************************/
261 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
262 * to the directly accessible io ports of these boards (not the uarts -
263 * they are in cd1400.h and sc26198.h).
265 #define EIO_8PORTRS 0x04
266 #define EIO_4PORTRS 0x05
267 #define EIO_8PORTDI 0x00
268 #define EIO_8PORTM 0x06
270 #define EIO_IDBITMASK 0x07
272 #define EIO_BRDMASK 0xf0
275 #define ID_BRD16 0x30
277 #define EIO_INTRPEND 0x08
278 #define EIO_INTEDGE 0x00
279 #define EIO_INTLEVEL 0x08
283 #define ECH_IDBITMASK 0xe0
284 #define ECH_BRDENABLE 0x08
285 #define ECH_BRDDISABLE 0x00
286 #define ECH_INTENABLE 0x01
287 #define ECH_INTDISABLE 0x00
288 #define ECH_INTLEVEL 0x02
289 #define ECH_INTEDGE 0x00
290 #define ECH_INTRPEND 0x01
291 #define ECH_BRDRESET 0x01
293 #define ECHMC_INTENABLE 0x01
294 #define ECHMC_BRDRESET 0x02
296 #define ECH_PNLSTATUS 2
297 #define ECH_PNL16PORT 0x20
298 #define ECH_PNLIDMASK 0x07
299 #define ECH_PNLXPID 0x40
300 #define ECH_PNLINTRPEND 0x80
302 #define ECH_ADDR2MASK 0x1e0
305 * Define the vector mapping bits for the programmable interrupt board
306 * hardware. These bits encode the interrupt for the board to use - it
307 * is software selectable (except the EIO-8M).
309 static unsigned char stl_vecmap[] = {
310 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
311 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
315 * Lock ordering is that you may not take stallion_lock holding
319 static spinlock_t brd_lock; /* Guard the board mapping */
320 static spinlock_t stallion_lock; /* Guard the tty driver */
323 * Set up enable and disable macros for the ECH boards. They require
324 * the secondary io address space to be activated and deactivated.
325 * This way all ECH boards can share their secondary io region.
326 * If this is an ECH-PCI board then also need to set the page pointer
327 * to point to the correct page.
329 #define BRDENABLE(brdnr,pagenr) \
330 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
331 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
332 stl_brds[(brdnr)]->ioctrl); \
333 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
334 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
336 #define BRDDISABLE(brdnr) \
337 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
338 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
339 stl_brds[(brdnr)]->ioctrl);
341 #define STL_CD1400MAXBAUD 230400
342 #define STL_SC26198MAXBAUD 460800
344 #define STL_BAUDBASE 115200
345 #define STL_CLOSEDELAY (5 * HZ / 10)
347 /*****************************************************************************/
350 * Define the Stallion PCI vendor and device IDs.
352 #ifndef PCI_VENDOR_ID_STALLION
353 #define PCI_VENDOR_ID_STALLION 0x124d
355 #ifndef PCI_DEVICE_ID_ECHPCI832
356 #define PCI_DEVICE_ID_ECHPCI832 0x0000
358 #ifndef PCI_DEVICE_ID_ECHPCI864
359 #define PCI_DEVICE_ID_ECHPCI864 0x0002
361 #ifndef PCI_DEVICE_ID_EIOPCI
362 #define PCI_DEVICE_ID_EIOPCI 0x0003
366 * Define structure to hold all Stallion PCI boards.
369 static struct pci_device_id stl_pcibrds[] = {
370 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864),
371 .driver_data = BRD_ECH64PCI },
372 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI),
373 .driver_data = BRD_EASYIOPCI },
374 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832),
375 .driver_data = BRD_ECHPCI },
376 { PCI_DEVICE(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410),
377 .driver_data = BRD_ECHPCI },
380 MODULE_DEVICE_TABLE(pci, stl_pcibrds);
382 /*****************************************************************************/
385 * Define macros to extract a brd/port number from a minor number.
387 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
388 #define MINOR2PORT(min) ((min) & 0x3f)
391 * Define a baud rate table that converts termios baud rate selector
392 * into the actual baud rate value. All baud rate calculations are
393 * based on the actual baud rate required.
395 static unsigned int stl_baudrates[] = {
396 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
397 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
400 /*****************************************************************************/
403 * Declare all those functions in this driver!
406 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
407 static int stl_brdinit(struct stlbrd *brdp);
408 static int stl_getportstats(struct stlport *portp, comstats_t __user *cp);
409 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp);
410 static int stl_waitcarrier(struct stlport *portp, struct file *filp);
413 * CD1400 uart specific handling functions.
415 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value);
416 static int stl_cd1400getreg(struct stlport *portp, int regnr);
417 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value);
418 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
419 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
420 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp);
421 static int stl_cd1400getsignals(struct stlport *portp);
422 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts);
423 static void stl_cd1400ccrwait(struct stlport *portp);
424 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx);
425 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx);
426 static void stl_cd1400disableintrs(struct stlport *portp);
427 static void stl_cd1400sendbreak(struct stlport *portp, int len);
428 static void stl_cd1400flowctrl(struct stlport *portp, int state);
429 static void stl_cd1400sendflow(struct stlport *portp, int state);
430 static void stl_cd1400flush(struct stlport *portp);
431 static int stl_cd1400datastate(struct stlport *portp);
432 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase);
433 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase);
434 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr);
435 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr);
436 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr);
438 static inline int stl_cd1400breakisr(struct stlport *portp, int ioaddr);
441 * SC26198 uart specific handling functions.
443 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value);
444 static int stl_sc26198getreg(struct stlport *portp, int regnr);
445 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value);
446 static int stl_sc26198getglobreg(struct stlport *portp, int regnr);
447 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
448 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
449 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp);
450 static int stl_sc26198getsignals(struct stlport *portp);
451 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts);
452 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx);
453 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx);
454 static void stl_sc26198disableintrs(struct stlport *portp);
455 static void stl_sc26198sendbreak(struct stlport *portp, int len);
456 static void stl_sc26198flowctrl(struct stlport *portp, int state);
457 static void stl_sc26198sendflow(struct stlport *portp, int state);
458 static void stl_sc26198flush(struct stlport *portp);
459 static int stl_sc26198datastate(struct stlport *portp);
460 static void stl_sc26198wait(struct stlport *portp);
461 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty);
462 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase);
463 static void stl_sc26198txisr(struct stlport *port);
464 static void stl_sc26198rxisr(struct stlport *port, unsigned int iack);
465 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch);
466 static void stl_sc26198rxbadchars(struct stlport *portp);
467 static void stl_sc26198otherisr(struct stlport *port, unsigned int iack);
469 /*****************************************************************************/
472 * Generic UART support structure.
474 typedef struct uart {
475 int (*panelinit)(struct stlbrd *brdp, struct stlpanel *panelp);
476 void (*portinit)(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
477 void (*setport)(struct stlport *portp, struct ktermios *tiosp);
478 int (*getsignals)(struct stlport *portp);
479 void (*setsignals)(struct stlport *portp, int dtr, int rts);
480 void (*enablerxtx)(struct stlport *portp, int rx, int tx);
481 void (*startrxtx)(struct stlport *portp, int rx, int tx);
482 void (*disableintrs)(struct stlport *portp);
483 void (*sendbreak)(struct stlport *portp, int len);
484 void (*flowctrl)(struct stlport *portp, int state);
485 void (*sendflow)(struct stlport *portp, int state);
486 void (*flush)(struct stlport *portp);
487 int (*datastate)(struct stlport *portp);
488 void (*intr)(struct stlpanel *panelp, unsigned int iobase);
492 * Define some macros to make calling these functions nice and clean.
494 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
495 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
496 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
497 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
498 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
499 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
500 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
501 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
502 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
503 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
504 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
505 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
506 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
508 /*****************************************************************************/
511 * CD1400 UART specific data initialization.
513 static uart_t stl_cd1400uart = {
517 stl_cd1400getsignals,
518 stl_cd1400setsignals,
519 stl_cd1400enablerxtx,
521 stl_cd1400disableintrs,
531 * Define the offsets within the register bank of a cd1400 based panel.
532 * These io address offsets are common to the EasyIO board as well.
540 #define EREG_BANKSIZE 8
542 #define CD1400_CLK 25000000
543 #define CD1400_CLK8M 20000000
546 * Define the cd1400 baud rate clocks. These are used when calculating
547 * what clock and divisor to use for the required baud rate. Also
548 * define the maximum baud rate allowed, and the default base baud.
550 static int stl_cd1400clkdivs[] = {
551 CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
554 /*****************************************************************************/
557 * SC26198 UART specific data initization.
559 static uart_t stl_sc26198uart = {
560 stl_sc26198panelinit,
563 stl_sc26198getsignals,
564 stl_sc26198setsignals,
565 stl_sc26198enablerxtx,
566 stl_sc26198startrxtx,
567 stl_sc26198disableintrs,
568 stl_sc26198sendbreak,
572 stl_sc26198datastate,
577 * Define the offsets within the register bank of a sc26198 based panel.
585 #define XP_BANKSIZE 4
588 * Define the sc26198 baud rate table. Offsets within the table
589 * represent the actual baud rate selector of sc26198 registers.
591 static unsigned int sc26198_baudtable[] = {
592 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
593 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
594 230400, 460800, 921600
597 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
599 /*****************************************************************************/
602 * Define the driver info for a user level control device. Used mainly
603 * to get at port stats - only not using the port device itself.
605 static const struct file_operations stl_fsiomem = {
606 .owner = THIS_MODULE,
607 .ioctl = stl_memioctl,
610 static struct class *stallion_class;
612 static void stl_cd_change(struct stlport *portp)
614 unsigned int oldsigs = portp->sigs;
619 portp->sigs = stl_getsignals(portp);
621 if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
622 wake_up_interruptible(&portp->open_wait);
624 if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0))
625 if (portp->flags & ASYNC_CHECK_CD)
626 tty_hangup(portp->tty);
630 * Check for any arguments passed in on the module load command line.
633 /*****************************************************************************/
636 * Parse the supplied argument string, into the board conf struct.
639 static int __init stl_parsebrd(struct stlconf *confp, char **argp)
644 pr_debug("stl_parsebrd(confp=%p,argp=%p)\n", confp, argp);
646 if ((argp[0] == NULL) || (*argp[0] == 0))
649 for (sp = argp[0], i = 0; (*sp != 0) && (i < 25); sp++, i++)
652 for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++)
653 if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
656 if (i == ARRAY_SIZE(stl_brdstr)) {
657 printk("STALLION: unknown board name, %s?\n", argp[0]);
661 confp->brdtype = stl_brdstr[i].type;
664 if ((argp[i] != NULL) && (*argp[i] != 0))
665 confp->ioaddr1 = simple_strtoul(argp[i], NULL, 0);
667 if (confp->brdtype == BRD_ECH) {
668 if ((argp[i] != NULL) && (*argp[i] != 0))
669 confp->ioaddr2 = simple_strtoul(argp[i], NULL, 0);
672 if ((argp[i] != NULL) && (*argp[i] != 0))
673 confp->irq = simple_strtoul(argp[i], NULL, 0);
677 /*****************************************************************************/
680 * Allocate a new board structure. Fill out the basic info in it.
683 static struct stlbrd *stl_allocbrd(void)
687 brdp = kzalloc(sizeof(struct stlbrd), GFP_KERNEL);
689 printk("STALLION: failed to allocate memory (size=%Zd)\n",
690 sizeof(struct stlbrd));
694 brdp->magic = STL_BOARDMAGIC;
698 /*****************************************************************************/
700 static int stl_open(struct tty_struct *tty, struct file *filp)
702 struct stlport *portp;
704 unsigned int minordev, brdnr, panelnr;
707 pr_debug("stl_open(tty=%p,filp=%p): device=%s\n", tty, filp, tty->name);
709 minordev = tty->index;
710 brdnr = MINOR2BRD(minordev);
711 if (brdnr >= stl_nrbrds)
713 brdp = stl_brds[brdnr];
716 minordev = MINOR2PORT(minordev);
717 for (portnr = -1, panelnr = 0; panelnr < STL_MAXPANELS; panelnr++) {
718 if (brdp->panels[panelnr] == NULL)
720 if (minordev < brdp->panels[panelnr]->nrports) {
724 minordev -= brdp->panels[panelnr]->nrports;
729 portp = brdp->panels[panelnr]->ports[portnr];
734 * On the first open of the device setup the port hardware, and
735 * initialize the per port data structure.
738 tty->driver_data = portp;
741 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
742 if (!portp->tx.buf) {
743 portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
746 portp->tx.head = portp->tx.buf;
747 portp->tx.tail = portp->tx.buf;
749 stl_setport(portp, tty->termios);
750 portp->sigs = stl_getsignals(portp);
751 stl_setsignals(portp, 1, 1);
752 stl_enablerxtx(portp, 1, 1);
753 stl_startrxtx(portp, 1, 0);
754 clear_bit(TTY_IO_ERROR, &tty->flags);
755 portp->flags |= ASYNC_INITIALIZED;
759 * Check if this port is in the middle of closing. If so then wait
760 * until it is closed then return error status, based on flag settings.
761 * The sleep here does not need interrupt protection since the wakeup
762 * for it is done with the same context.
764 if (portp->flags & ASYNC_CLOSING) {
765 interruptible_sleep_on(&portp->close_wait);
766 if (portp->flags & ASYNC_HUP_NOTIFY)
772 * Based on type of open being done check if it can overlap with any
773 * previous opens still in effect. If we are a normal serial device
774 * then also we might have to wait for carrier.
776 if (!(filp->f_flags & O_NONBLOCK))
777 if ((rc = stl_waitcarrier(portp, filp)) != 0)
780 portp->flags |= ASYNC_NORMAL_ACTIVE;
785 /*****************************************************************************/
788 * Possibly need to wait for carrier (DCD signal) to come high. Say
789 * maybe because if we are clocal then we don't need to wait...
792 static int stl_waitcarrier(struct stlport *portp, struct file *filp)
797 pr_debug("stl_waitcarrier(portp=%p,filp=%p)\n", portp, filp);
802 spin_lock_irqsave(&stallion_lock, flags);
804 if (portp->tty->termios->c_cflag & CLOCAL)
807 portp->openwaitcnt++;
808 if (! tty_hung_up_p(filp))
812 /* Takes brd_lock internally */
813 stl_setsignals(portp, 1, 1);
814 if (tty_hung_up_p(filp) ||
815 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
816 if (portp->flags & ASYNC_HUP_NOTIFY)
822 if (((portp->flags & ASYNC_CLOSING) == 0) &&
823 (doclocal || (portp->sigs & TIOCM_CD)))
825 if (signal_pending(current)) {
830 interruptible_sleep_on(&portp->open_wait);
833 if (! tty_hung_up_p(filp))
835 portp->openwaitcnt--;
836 spin_unlock_irqrestore(&stallion_lock, flags);
841 /*****************************************************************************/
843 static void stl_flushbuffer(struct tty_struct *tty)
845 struct stlport *portp;
847 pr_debug("stl_flushbuffer(tty=%p)\n", tty);
851 portp = tty->driver_data;
859 /*****************************************************************************/
861 static void stl_waituntilsent(struct tty_struct *tty, int timeout)
863 struct stlport *portp;
866 pr_debug("stl_waituntilsent(tty=%p,timeout=%d)\n", tty, timeout);
870 portp = tty->driver_data;
876 tend = jiffies + timeout;
878 while (stl_datastate(portp)) {
879 if (signal_pending(current))
881 msleep_interruptible(20);
882 if (time_after_eq(jiffies, tend))
887 /*****************************************************************************/
889 static void stl_close(struct tty_struct *tty, struct file *filp)
891 struct stlport *portp;
894 pr_debug("stl_close(tty=%p,filp=%p)\n", tty, filp);
896 portp = tty->driver_data;
900 spin_lock_irqsave(&stallion_lock, flags);
901 if (tty_hung_up_p(filp)) {
902 spin_unlock_irqrestore(&stallion_lock, flags);
905 if ((tty->count == 1) && (portp->refcount != 1))
907 if (portp->refcount-- > 1) {
908 spin_unlock_irqrestore(&stallion_lock, flags);
913 portp->flags |= ASYNC_CLOSING;
916 * May want to wait for any data to drain before closing. The BUSY
917 * flag keeps track of whether we are still sending or not - it is
918 * very accurate for the cd1400, not quite so for the sc26198.
919 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
923 spin_unlock_irqrestore(&stallion_lock, flags);
925 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
926 tty_wait_until_sent(tty, portp->closing_wait);
927 stl_waituntilsent(tty, (HZ / 2));
930 spin_lock_irqsave(&stallion_lock, flags);
931 portp->flags &= ~ASYNC_INITIALIZED;
932 spin_unlock_irqrestore(&stallion_lock, flags);
934 stl_disableintrs(portp);
935 if (tty->termios->c_cflag & HUPCL)
936 stl_setsignals(portp, 0, 0);
937 stl_enablerxtx(portp, 0, 0);
938 stl_flushbuffer(tty);
940 if (portp->tx.buf != NULL) {
941 kfree(portp->tx.buf);
942 portp->tx.buf = NULL;
943 portp->tx.head = NULL;
944 portp->tx.tail = NULL;
946 set_bit(TTY_IO_ERROR, &tty->flags);
947 tty_ldisc_flush(tty);
952 if (portp->openwaitcnt) {
953 if (portp->close_delay)
954 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
955 wake_up_interruptible(&portp->open_wait);
958 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
959 wake_up_interruptible(&portp->close_wait);
962 /*****************************************************************************/
965 * Write routine. Take data and stuff it in to the TX ring queue.
966 * If transmit interrupts are not running then start them.
969 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
971 struct stlport *portp;
972 unsigned int len, stlen;
973 unsigned char *chbuf;
976 pr_debug("stl_write(tty=%p,buf=%p,count=%d)\n", tty, buf, count);
978 portp = tty->driver_data;
981 if (portp->tx.buf == NULL)
985 * If copying direct from user space we must cater for page faults,
986 * causing us to "sleep" here for a while. To handle this copy in all
987 * the data we need now, into a local buffer. Then when we got it all
988 * copy it into the TX buffer.
990 chbuf = (unsigned char *) buf;
992 head = portp->tx.head;
993 tail = portp->tx.tail;
995 len = STL_TXBUFSIZE - (head - tail) - 1;
996 stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
998 len = tail - head - 1;
1002 len = min(len, (unsigned int)count);
1005 stlen = min(len, stlen);
1006 memcpy(head, chbuf, stlen);
1011 if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
1012 head = portp->tx.buf;
1013 stlen = tail - head;
1016 portp->tx.head = head;
1018 clear_bit(ASYI_TXLOW, &portp->istate);
1019 stl_startrxtx(portp, -1, 1);
1024 /*****************************************************************************/
1026 static void stl_putchar(struct tty_struct *tty, unsigned char ch)
1028 struct stlport *portp;
1032 pr_debug("stl_putchar(tty=%p,ch=%x)\n", tty, ch);
1036 portp = tty->driver_data;
1039 if (portp->tx.buf == NULL)
1042 head = portp->tx.head;
1043 tail = portp->tx.tail;
1045 len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
1050 if (head >= (portp->tx.buf + STL_TXBUFSIZE))
1051 head = portp->tx.buf;
1053 portp->tx.head = head;
1056 /*****************************************************************************/
1059 * If there are any characters in the buffer then make sure that TX
1060 * interrupts are on and get'em out. Normally used after the putchar
1061 * routine has been called.
1064 static void stl_flushchars(struct tty_struct *tty)
1066 struct stlport *portp;
1068 pr_debug("stl_flushchars(tty=%p)\n", tty);
1072 portp = tty->driver_data;
1075 if (portp->tx.buf == NULL)
1078 stl_startrxtx(portp, -1, 1);
1081 /*****************************************************************************/
1083 static int stl_writeroom(struct tty_struct *tty)
1085 struct stlport *portp;
1088 pr_debug("stl_writeroom(tty=%p)\n", tty);
1092 portp = tty->driver_data;
1095 if (portp->tx.buf == NULL)
1098 head = portp->tx.head;
1099 tail = portp->tx.tail;
1100 return (head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1);
1103 /*****************************************************************************/
1106 * Return number of chars in the TX buffer. Normally we would just
1107 * calculate the number of chars in the buffer and return that, but if
1108 * the buffer is empty and TX interrupts are still on then we return
1109 * that the buffer still has 1 char in it. This way whoever called us
1110 * will not think that ALL chars have drained - since the UART still
1111 * must have some chars in it (we are busy after all).
1114 static int stl_charsinbuffer(struct tty_struct *tty)
1116 struct stlport *portp;
1120 pr_debug("stl_charsinbuffer(tty=%p)\n", tty);
1124 portp = tty->driver_data;
1127 if (portp->tx.buf == NULL)
1130 head = portp->tx.head;
1131 tail = portp->tx.tail;
1132 size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
1133 if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
1138 /*****************************************************************************/
1141 * Generate the serial struct info.
1144 static int stl_getserial(struct stlport *portp, struct serial_struct __user *sp)
1146 struct serial_struct sio;
1147 struct stlbrd *brdp;
1149 pr_debug("stl_getserial(portp=%p,sp=%p)\n", portp, sp);
1151 memset(&sio, 0, sizeof(struct serial_struct));
1152 sio.line = portp->portnr;
1153 sio.port = portp->ioaddr;
1154 sio.flags = portp->flags;
1155 sio.baud_base = portp->baud_base;
1156 sio.close_delay = portp->close_delay;
1157 sio.closing_wait = portp->closing_wait;
1158 sio.custom_divisor = portp->custom_divisor;
1160 if (portp->uartp == &stl_cd1400uart) {
1161 sio.type = PORT_CIRRUS;
1162 sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
1164 sio.type = PORT_UNKNOWN;
1165 sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
1168 brdp = stl_brds[portp->brdnr];
1170 sio.irq = brdp->irq;
1172 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
1175 /*****************************************************************************/
1178 * Set port according to the serial struct info.
1179 * At this point we do not do any auto-configure stuff, so we will
1180 * just quietly ignore any requests to change irq, etc.
1183 static int stl_setserial(struct stlport *portp, struct serial_struct __user *sp)
1185 struct serial_struct sio;
1187 pr_debug("stl_setserial(portp=%p,sp=%p)\n", portp, sp);
1189 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1191 if (!capable(CAP_SYS_ADMIN)) {
1192 if ((sio.baud_base != portp->baud_base) ||
1193 (sio.close_delay != portp->close_delay) ||
1194 ((sio.flags & ~ASYNC_USR_MASK) !=
1195 (portp->flags & ~ASYNC_USR_MASK)))
1199 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1200 (sio.flags & ASYNC_USR_MASK);
1201 portp->baud_base = sio.baud_base;
1202 portp->close_delay = sio.close_delay;
1203 portp->closing_wait = sio.closing_wait;
1204 portp->custom_divisor = sio.custom_divisor;
1205 stl_setport(portp, portp->tty->termios);
1209 /*****************************************************************************/
1211 static int stl_tiocmget(struct tty_struct *tty, struct file *file)
1213 struct stlport *portp;
1217 portp = tty->driver_data;
1220 if (tty->flags & (1 << TTY_IO_ERROR))
1223 return stl_getsignals(portp);
1226 static int stl_tiocmset(struct tty_struct *tty, struct file *file,
1227 unsigned int set, unsigned int clear)
1229 struct stlport *portp;
1230 int rts = -1, dtr = -1;
1234 portp = tty->driver_data;
1237 if (tty->flags & (1 << TTY_IO_ERROR))
1240 if (set & TIOCM_RTS)
1242 if (set & TIOCM_DTR)
1244 if (clear & TIOCM_RTS)
1246 if (clear & TIOCM_DTR)
1249 stl_setsignals(portp, dtr, rts);
1253 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1255 struct stlport *portp;
1258 void __user *argp = (void __user *)arg;
1260 pr_debug("stl_ioctl(tty=%p,file=%p,cmd=%x,arg=%lx)\n", tty, file, cmd,
1265 portp = tty->driver_data;
1269 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1270 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS))
1271 if (tty->flags & (1 << TTY_IO_ERROR))
1278 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
1279 (unsigned __user *) argp);
1282 if (get_user(ival, (unsigned int __user *) arg))
1284 tty->termios->c_cflag =
1285 (tty->termios->c_cflag & ~CLOCAL) |
1286 (ival ? CLOCAL : 0);
1289 rc = stl_getserial(portp, argp);
1292 rc = stl_setserial(portp, argp);
1294 case COM_GETPORTSTATS:
1295 rc = stl_getportstats(portp, argp);
1297 case COM_CLRPORTSTATS:
1298 rc = stl_clrportstats(portp, argp);
1304 case TIOCSERGSTRUCT:
1305 case TIOCSERGETMULTI:
1306 case TIOCSERSETMULTI:
1315 /*****************************************************************************/
1318 * Start the transmitter again. Just turn TX interrupts back on.
1321 static void stl_start(struct tty_struct *tty)
1323 struct stlport *portp;
1325 pr_debug("stl_start(tty=%p)\n", tty);
1329 portp = tty->driver_data;
1332 stl_startrxtx(portp, -1, 1);
1335 /*****************************************************************************/
1337 static void stl_settermios(struct tty_struct *tty, struct ktermios *old)
1339 struct stlport *portp;
1340 struct ktermios *tiosp;
1342 pr_debug("stl_settermios(tty=%p,old=%p)\n", tty, old);
1346 portp = tty->driver_data;
1350 tiosp = tty->termios;
1351 if ((tiosp->c_cflag == old->c_cflag) &&
1352 (tiosp->c_iflag == old->c_iflag))
1355 stl_setport(portp, tiosp);
1356 stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
1358 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
1359 tty->hw_stopped = 0;
1362 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1363 wake_up_interruptible(&portp->open_wait);
1366 /*****************************************************************************/
1369 * Attempt to flow control who ever is sending us data. Based on termios
1370 * settings use software or/and hardware flow control.
1373 static void stl_throttle(struct tty_struct *tty)
1375 struct stlport *portp;
1377 pr_debug("stl_throttle(tty=%p)\n", tty);
1381 portp = tty->driver_data;
1384 stl_flowctrl(portp, 0);
1387 /*****************************************************************************/
1390 * Unflow control the device sending us data...
1393 static void stl_unthrottle(struct tty_struct *tty)
1395 struct stlport *portp;
1397 pr_debug("stl_unthrottle(tty=%p)\n", tty);
1401 portp = tty->driver_data;
1404 stl_flowctrl(portp, 1);
1407 /*****************************************************************************/
1410 * Stop the transmitter. Basically to do this we will just turn TX
1414 static void stl_stop(struct tty_struct *tty)
1416 struct stlport *portp;
1418 pr_debug("stl_stop(tty=%p)\n", tty);
1422 portp = tty->driver_data;
1425 stl_startrxtx(portp, -1, 0);
1428 /*****************************************************************************/
1431 * Hangup this port. This is pretty much like closing the port, only
1432 * a little more brutal. No waiting for data to drain. Shutdown the
1433 * port and maybe drop signals.
1436 static void stl_hangup(struct tty_struct *tty)
1438 struct stlport *portp;
1440 pr_debug("stl_hangup(tty=%p)\n", tty);
1444 portp = tty->driver_data;
1448 portp->flags &= ~ASYNC_INITIALIZED;
1449 stl_disableintrs(portp);
1450 if (tty->termios->c_cflag & HUPCL)
1451 stl_setsignals(portp, 0, 0);
1452 stl_enablerxtx(portp, 0, 0);
1453 stl_flushbuffer(tty);
1455 set_bit(TTY_IO_ERROR, &tty->flags);
1456 if (portp->tx.buf != NULL) {
1457 kfree(portp->tx.buf);
1458 portp->tx.buf = NULL;
1459 portp->tx.head = NULL;
1460 portp->tx.tail = NULL;
1463 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
1464 portp->refcount = 0;
1465 wake_up_interruptible(&portp->open_wait);
1468 /*****************************************************************************/
1470 static void stl_breakctl(struct tty_struct *tty, int state)
1472 struct stlport *portp;
1474 pr_debug("stl_breakctl(tty=%p,state=%d)\n", tty, state);
1478 portp = tty->driver_data;
1482 stl_sendbreak(portp, ((state == -1) ? 1 : 2));
1485 /*****************************************************************************/
1487 static void stl_sendxchar(struct tty_struct *tty, char ch)
1489 struct stlport *portp;
1491 pr_debug("stl_sendxchar(tty=%p,ch=%x)\n", tty, ch);
1495 portp = tty->driver_data;
1499 if (ch == STOP_CHAR(tty))
1500 stl_sendflow(portp, 0);
1501 else if (ch == START_CHAR(tty))
1502 stl_sendflow(portp, 1);
1504 stl_putchar(tty, ch);
1507 /*****************************************************************************/
1512 * Format info for a specified port. The line is deliberately limited
1513 * to 80 characters. (If it is too long it will be truncated, if too
1514 * short then padded with spaces).
1517 static int stl_portinfo(struct stlport *portp, int portnr, char *pos)
1523 sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d",
1524 portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
1525 (int) portp->stats.txtotal, (int) portp->stats.rxtotal);
1527 if (portp->stats.rxframing)
1528 sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing);
1529 if (portp->stats.rxparity)
1530 sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity);
1531 if (portp->stats.rxbreaks)
1532 sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks);
1533 if (portp->stats.rxoverrun)
1534 sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun);
1536 sigs = stl_getsignals(portp);
1537 cnt = sprintf(sp, "%s%s%s%s%s ",
1538 (sigs & TIOCM_RTS) ? "|RTS" : "",
1539 (sigs & TIOCM_CTS) ? "|CTS" : "",
1540 (sigs & TIOCM_DTR) ? "|DTR" : "",
1541 (sigs & TIOCM_CD) ? "|DCD" : "",
1542 (sigs & TIOCM_DSR) ? "|DSR" : "");
1546 for (cnt = sp - pos; cnt < (MAXLINE - 1); cnt++)
1549 pos[(MAXLINE - 2)] = '+';
1550 pos[(MAXLINE - 1)] = '\n';
1555 /*****************************************************************************/
1558 * Port info, read from the /proc file system.
1561 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
1563 struct stlbrd *brdp;
1564 struct stlpanel *panelp;
1565 struct stlport *portp;
1566 unsigned int brdnr, panelnr, portnr;
1567 int totalport, curoff, maxoff;
1570 pr_debug("stl_readproc(page=%p,start=%p,off=%lx,count=%d,eof=%p,"
1571 "data=%p\n", page, start, off, count, eof, data);
1578 pos += sprintf(pos, "%s: version %s", stl_drvtitle,
1580 while (pos < (page + MAXLINE - 1))
1587 * We scan through for each board, panel and port. The offset is
1588 * calculated on the fly, and irrelevant ports are skipped.
1590 for (brdnr = 0; brdnr < stl_nrbrds; brdnr++) {
1591 brdp = stl_brds[brdnr];
1594 if (brdp->state == 0)
1597 maxoff = curoff + (brdp->nrports * MAXLINE);
1598 if (off >= maxoff) {
1603 totalport = brdnr * STL_MAXPORTS;
1604 for (panelnr = 0; panelnr < brdp->nrpanels; panelnr++) {
1605 panelp = brdp->panels[panelnr];
1609 maxoff = curoff + (panelp->nrports * MAXLINE);
1610 if (off >= maxoff) {
1612 totalport += panelp->nrports;
1616 for (portnr = 0; portnr < panelp->nrports; portnr++,
1618 portp = panelp->ports[portnr];
1621 if (off >= (curoff += MAXLINE))
1623 if ((pos - page + MAXLINE) > count)
1625 pos += stl_portinfo(portp, totalport, pos);
1637 /*****************************************************************************/
1640 * All board interrupts are vectored through here first. This code then
1641 * calls off to the approrpriate board interrupt handlers.
1644 static irqreturn_t stl_intr(int irq, void *dev_id)
1646 struct stlbrd *brdp = dev_id;
1648 pr_debug("stl_intr(brdp=%p,irq=%d)\n", brdp, brdp->irq);
1650 return IRQ_RETVAL((* brdp->isr)(brdp));
1653 /*****************************************************************************/
1656 * Interrupt service routine for EasyIO board types.
1659 static int stl_eiointr(struct stlbrd *brdp)
1661 struct stlpanel *panelp;
1662 unsigned int iobase;
1665 spin_lock(&brd_lock);
1666 panelp = brdp->panels[0];
1667 iobase = panelp->iobase;
1668 while (inb(brdp->iostatus) & EIO_INTRPEND) {
1670 (* panelp->isr)(panelp, iobase);
1672 spin_unlock(&brd_lock);
1676 /*****************************************************************************/
1679 * Interrupt service routine for ECH-AT board types.
1682 static int stl_echatintr(struct stlbrd *brdp)
1684 struct stlpanel *panelp;
1685 unsigned int ioaddr, bnknr;
1688 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1690 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1692 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1693 ioaddr = brdp->bnkstataddr[bnknr];
1694 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1695 panelp = brdp->bnk2panel[bnknr];
1696 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1701 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
1706 /*****************************************************************************/
1709 * Interrupt service routine for ECH-MCA board types.
1712 static int stl_echmcaintr(struct stlbrd *brdp)
1714 struct stlpanel *panelp;
1715 unsigned int ioaddr, bnknr;
1718 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1720 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1721 ioaddr = brdp->bnkstataddr[bnknr];
1722 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1723 panelp = brdp->bnk2panel[bnknr];
1724 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1731 /*****************************************************************************/
1734 * Interrupt service routine for ECH-PCI board types.
1737 static int stl_echpciintr(struct stlbrd *brdp)
1739 struct stlpanel *panelp;
1740 unsigned int ioaddr, bnknr, recheck;
1745 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1746 outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
1747 ioaddr = brdp->bnkstataddr[bnknr];
1748 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1749 panelp = brdp->bnk2panel[bnknr];
1750 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1761 /*****************************************************************************/
1764 * Interrupt service routine for ECH-8/64-PCI board types.
1767 static int stl_echpci64intr(struct stlbrd *brdp)
1769 struct stlpanel *panelp;
1770 unsigned int ioaddr, bnknr;
1773 while (inb(brdp->ioctrl) & 0x1) {
1775 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1776 ioaddr = brdp->bnkstataddr[bnknr];
1777 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1778 panelp = brdp->bnk2panel[bnknr];
1779 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1787 /*****************************************************************************/
1790 * Initialize all the ports on a panel.
1793 static int __devinit stl_initports(struct stlbrd *brdp, struct stlpanel *panelp)
1795 struct stlport *portp;
1799 pr_debug("stl_initports(brdp=%p,panelp=%p)\n", brdp, panelp);
1801 chipmask = stl_panelinit(brdp, panelp);
1804 * All UART's are initialized (if found!). Now go through and setup
1805 * each ports data structures.
1807 for (i = 0; i < panelp->nrports; i++) {
1808 portp = kzalloc(sizeof(struct stlport), GFP_KERNEL);
1810 printk("STALLION: failed to allocate memory "
1811 "(size=%Zd)\n", sizeof(struct stlport));
1815 portp->magic = STL_PORTMAGIC;
1817 portp->brdnr = panelp->brdnr;
1818 portp->panelnr = panelp->panelnr;
1819 portp->uartp = panelp->uartp;
1820 portp->clk = brdp->clk;
1821 portp->baud_base = STL_BAUDBASE;
1822 portp->close_delay = STL_CLOSEDELAY;
1823 portp->closing_wait = 30 * HZ;
1824 init_waitqueue_head(&portp->open_wait);
1825 init_waitqueue_head(&portp->close_wait);
1826 portp->stats.brd = portp->brdnr;
1827 portp->stats.panel = portp->panelnr;
1828 portp->stats.port = portp->portnr;
1829 panelp->ports[i] = portp;
1830 stl_portinit(brdp, panelp, portp);
1836 static void stl_cleanup_panels(struct stlbrd *brdp)
1838 struct stlpanel *panelp;
1839 struct stlport *portp;
1842 for (j = 0; j < STL_MAXPANELS; j++) {
1843 panelp = brdp->panels[j];
1846 for (k = 0; k < STL_PORTSPERPANEL; k++) {
1847 portp = panelp->ports[k];
1850 if (portp->tty != NULL)
1851 stl_hangup(portp->tty);
1852 kfree(portp->tx.buf);
1859 /*****************************************************************************/
1862 * Try to find and initialize an EasyIO board.
1865 static int __devinit stl_initeio(struct stlbrd *brdp)
1867 struct stlpanel *panelp;
1868 unsigned int status;
1872 pr_debug("stl_initeio(brdp=%p)\n", brdp);
1874 brdp->ioctrl = brdp->ioaddr1 + 1;
1875 brdp->iostatus = brdp->ioaddr1 + 2;
1877 status = inb(brdp->iostatus);
1878 if ((status & EIO_IDBITMASK) == EIO_MK3)
1882 * Handle board specific stuff now. The real difference is PCI
1885 if (brdp->brdtype == BRD_EASYIOPCI) {
1886 brdp->iosize1 = 0x80;
1887 brdp->iosize2 = 0x80;
1888 name = "serial(EIO-PCI)";
1889 outb(0x41, (brdp->ioaddr2 + 0x4c));
1892 name = "serial(EIO)";
1893 if ((brdp->irq < 0) || (brdp->irq > 15) ||
1894 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
1895 printk("STALLION: invalid irq=%d for brd=%d\n",
1896 brdp->irq, brdp->brdnr);
1900 outb((stl_vecmap[brdp->irq] | EIO_0WS |
1901 ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
1906 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
1907 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
1908 "%x conflicts with another device\n", brdp->brdnr,
1913 if (brdp->iosize2 > 0)
1914 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
1915 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
1916 "address %x conflicts with another device\n",
1917 brdp->brdnr, brdp->ioaddr2);
1918 printk(KERN_WARNING "STALLION: Warning, also "
1919 "releasing board %d I/O address %x \n",
1920 brdp->brdnr, brdp->ioaddr1);
1925 * Everything looks OK, so let's go ahead and probe for the hardware.
1927 brdp->clk = CD1400_CLK;
1928 brdp->isr = stl_eiointr;
1931 switch (status & EIO_IDBITMASK) {
1933 brdp->clk = CD1400_CLK8M;
1943 switch (status & EIO_BRDMASK) {
1962 * We have verified that the board is actually present, so now we
1963 * can complete the setup.
1966 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
1968 printk(KERN_WARNING "STALLION: failed to allocate memory "
1969 "(size=%Zd)\n", sizeof(struct stlpanel));
1974 panelp->magic = STL_PANELMAGIC;
1975 panelp->brdnr = brdp->brdnr;
1976 panelp->panelnr = 0;
1977 panelp->nrports = brdp->nrports;
1978 panelp->iobase = brdp->ioaddr1;
1979 panelp->hwid = status;
1980 if ((status & EIO_IDBITMASK) == EIO_MK3) {
1981 panelp->uartp = &stl_sc26198uart;
1982 panelp->isr = stl_sc26198intr;
1984 panelp->uartp = &stl_cd1400uart;
1985 panelp->isr = stl_cd1400eiointr;
1988 brdp->panels[0] = panelp;
1990 brdp->state |= BRD_FOUND;
1991 brdp->hwid = status;
1992 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
1993 printk("STALLION: failed to register interrupt "
1994 "routine for %s irq=%d\n", name, brdp->irq);
2001 stl_cleanup_panels(brdp);
2003 if (brdp->iosize2 > 0)
2004 release_region(brdp->ioaddr2, brdp->iosize2);
2006 release_region(brdp->ioaddr1, brdp->iosize1);
2011 /*****************************************************************************/
2014 * Try to find an ECH board and initialize it. This code is capable of
2015 * dealing with all types of ECH board.
2018 static int __devinit stl_initech(struct stlbrd *brdp)
2020 struct stlpanel *panelp;
2021 unsigned int status, nxtid, ioaddr, conflict, panelnr, banknr, i;
2025 pr_debug("stl_initech(brdp=%p)\n", brdp);
2031 * Set up the initial board register contents for boards. This varies a
2032 * bit between the different board types. So we need to handle each
2033 * separately. Also do a check that the supplied IRQ is good.
2035 switch (brdp->brdtype) {
2038 brdp->isr = stl_echatintr;
2039 brdp->ioctrl = brdp->ioaddr1 + 1;
2040 brdp->iostatus = brdp->ioaddr1 + 1;
2041 status = inb(brdp->iostatus);
2042 if ((status & ECH_IDBITMASK) != ECH_ID) {
2046 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2047 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2048 printk("STALLION: invalid irq=%d for brd=%d\n",
2049 brdp->irq, brdp->brdnr);
2053 status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
2054 status |= (stl_vecmap[brdp->irq] << 1);
2055 outb((status | ECH_BRDRESET), brdp->ioaddr1);
2056 brdp->ioctrlval = ECH_INTENABLE |
2057 ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
2058 for (i = 0; i < 10; i++)
2059 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
2062 name = "serial(EC8/32)";
2063 outb(status, brdp->ioaddr1);
2067 brdp->isr = stl_echmcaintr;
2068 brdp->ioctrl = brdp->ioaddr1 + 0x20;
2069 brdp->iostatus = brdp->ioctrl;
2070 status = inb(brdp->iostatus);
2071 if ((status & ECH_IDBITMASK) != ECH_ID) {
2075 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2076 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2077 printk("STALLION: invalid irq=%d for brd=%d\n",
2078 brdp->irq, brdp->brdnr);
2082 outb(ECHMC_BRDRESET, brdp->ioctrl);
2083 outb(ECHMC_INTENABLE, brdp->ioctrl);
2085 name = "serial(EC8/32-MC)";
2089 brdp->isr = stl_echpciintr;
2090 brdp->ioctrl = brdp->ioaddr1 + 2;
2093 name = "serial(EC8/32-PCI)";
2097 brdp->isr = stl_echpci64intr;
2098 brdp->ioctrl = brdp->ioaddr2 + 0x40;
2099 outb(0x43, (brdp->ioaddr1 + 0x4c));
2100 brdp->iosize1 = 0x80;
2101 brdp->iosize2 = 0x80;
2102 name = "serial(EC8/64-PCI)";
2106 printk("STALLION: unknown board type=%d\n", brdp->brdtype);
2112 * Check boards for possible IO address conflicts and return fail status
2113 * if an IO conflict found.
2116 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2117 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2118 "%x conflicts with another device\n", brdp->brdnr,
2123 if (brdp->iosize2 > 0)
2124 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2125 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2126 "address %x conflicts with another device\n",
2127 brdp->brdnr, brdp->ioaddr2);
2128 printk(KERN_WARNING "STALLION: Warning, also "
2129 "releasing board %d I/O address %x \n",
2130 brdp->brdnr, brdp->ioaddr1);
2135 * Scan through the secondary io address space looking for panels.
2136 * As we find'em allocate and initialize panel structures for each.
2138 brdp->clk = CD1400_CLK;
2139 brdp->hwid = status;
2141 ioaddr = brdp->ioaddr2;
2146 for (i = 0; i < STL_MAXPANELS; i++) {
2147 if (brdp->brdtype == BRD_ECHPCI) {
2148 outb(nxtid, brdp->ioctrl);
2149 ioaddr = brdp->ioaddr2;
2151 status = inb(ioaddr + ECH_PNLSTATUS);
2152 if ((status & ECH_PNLIDMASK) != nxtid)
2154 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
2156 printk("STALLION: failed to allocate memory "
2157 "(size=%Zd)\n", sizeof(struct stlpanel));
2161 panelp->magic = STL_PANELMAGIC;
2162 panelp->brdnr = brdp->brdnr;
2163 panelp->panelnr = panelnr;
2164 panelp->iobase = ioaddr;
2165 panelp->pagenr = nxtid;
2166 panelp->hwid = status;
2167 brdp->bnk2panel[banknr] = panelp;
2168 brdp->bnkpageaddr[banknr] = nxtid;
2169 brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
2171 if (status & ECH_PNLXPID) {
2172 panelp->uartp = &stl_sc26198uart;
2173 panelp->isr = stl_sc26198intr;
2174 if (status & ECH_PNL16PORT) {
2175 panelp->nrports = 16;
2176 brdp->bnk2panel[banknr] = panelp;
2177 brdp->bnkpageaddr[banknr] = nxtid;
2178 brdp->bnkstataddr[banknr++] = ioaddr + 4 +
2181 panelp->nrports = 8;
2183 panelp->uartp = &stl_cd1400uart;
2184 panelp->isr = stl_cd1400echintr;
2185 if (status & ECH_PNL16PORT) {
2186 panelp->nrports = 16;
2187 panelp->ackmask = 0x80;
2188 if (brdp->brdtype != BRD_ECHPCI)
2189 ioaddr += EREG_BANKSIZE;
2190 brdp->bnk2panel[banknr] = panelp;
2191 brdp->bnkpageaddr[banknr] = ++nxtid;
2192 brdp->bnkstataddr[banknr++] = ioaddr +
2195 panelp->nrports = 8;
2196 panelp->ackmask = 0xc0;
2201 ioaddr += EREG_BANKSIZE;
2202 brdp->nrports += panelp->nrports;
2203 brdp->panels[panelnr++] = panelp;
2204 if ((brdp->brdtype != BRD_ECHPCI) &&
2205 (ioaddr >= (brdp->ioaddr2 + brdp->iosize2))) {
2211 brdp->nrpanels = panelnr;
2212 brdp->nrbnks = banknr;
2213 if (brdp->brdtype == BRD_ECH)
2214 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2216 brdp->state |= BRD_FOUND;
2217 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
2218 printk("STALLION: failed to register interrupt "
2219 "routine for %s irq=%d\n", name, brdp->irq);
2226 stl_cleanup_panels(brdp);
2227 if (brdp->iosize2 > 0)
2228 release_region(brdp->ioaddr2, brdp->iosize2);
2230 release_region(brdp->ioaddr1, brdp->iosize1);
2235 /*****************************************************************************/
2238 * Initialize and configure the specified board.
2239 * Scan through all the boards in the configuration and see what we
2240 * can find. Handle EIO and the ECH boards a little differently here
2241 * since the initial search and setup is very different.
2244 static int __devinit stl_brdinit(struct stlbrd *brdp)
2248 pr_debug("stl_brdinit(brdp=%p)\n", brdp);
2250 switch (brdp->brdtype) {
2253 retval = stl_initeio(brdp);
2261 retval = stl_initech(brdp);
2266 printk("STALLION: board=%d is unknown board type=%d\n",
2267 brdp->brdnr, brdp->brdtype);
2272 if ((brdp->state & BRD_FOUND) == 0) {
2273 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2274 stl_brdnames[brdp->brdtype], brdp->brdnr,
2275 brdp->ioaddr1, brdp->irq);
2279 for (i = 0; i < STL_MAXPANELS; i++)
2280 if (brdp->panels[i] != NULL)
2281 stl_initports(brdp, brdp->panels[i]);
2283 printk("STALLION: %s found, board=%d io=%x irq=%d "
2284 "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
2285 brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
2290 free_irq(brdp->irq, brdp);
2292 stl_cleanup_panels(brdp);
2294 release_region(brdp->ioaddr1, brdp->iosize1);
2295 if (brdp->iosize2 > 0)
2296 release_region(brdp->ioaddr2, brdp->iosize2);
2301 /*****************************************************************************/
2304 * Find the next available board number that is free.
2307 static int __devinit stl_getbrdnr(void)
2311 for (i = 0; i < STL_MAXBRDS; i++)
2312 if (stl_brds[i] == NULL) {
2313 if (i >= stl_nrbrds)
2321 /*****************************************************************************/
2323 * We have a Stallion board. Allocate a board structure and
2324 * initialize it. Read its IO and IRQ resources from PCI
2325 * configuration space.
2328 static int __devinit stl_pciprobe(struct pci_dev *pdev,
2329 const struct pci_device_id *ent)
2331 struct stlbrd *brdp;
2332 unsigned int i, brdtype = ent->driver_data;
2333 int brdnr, retval = -ENODEV;
2335 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE)
2338 retval = pci_enable_device(pdev);
2341 brdp = stl_allocbrd();
2346 mutex_lock(&stl_brdslock);
2347 brdnr = stl_getbrdnr();
2349 dev_err(&pdev->dev, "too many boards found, "
2350 "maximum supported %d\n", STL_MAXBRDS);
2351 mutex_unlock(&stl_brdslock);
2355 brdp->brdnr = (unsigned int)brdnr;
2356 stl_brds[brdp->brdnr] = brdp;
2357 mutex_unlock(&stl_brdslock);
2359 brdp->brdtype = brdtype;
2360 brdp->state |= STL_PROBED;
2363 * We have all resources from the board, so let's setup the actual
2364 * board structure now.
2368 brdp->ioaddr2 = pci_resource_start(pdev, 0);
2369 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2372 brdp->ioaddr2 = pci_resource_start(pdev, 2);
2373 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2376 brdp->ioaddr1 = pci_resource_start(pdev, 2);
2377 brdp->ioaddr2 = pci_resource_start(pdev, 1);
2380 dev_err(&pdev->dev, "unknown PCI board type=%u\n", brdtype);
2384 brdp->irq = pdev->irq;
2385 retval = stl_brdinit(brdp);
2389 pci_set_drvdata(pdev, brdp);
2391 for (i = 0; i < brdp->nrports; i++)
2392 tty_register_device(stl_serial,
2393 brdp->brdnr * STL_MAXPORTS + i, &pdev->dev);
2397 stl_brds[brdp->brdnr] = NULL;
2404 static void __devexit stl_pciremove(struct pci_dev *pdev)
2406 struct stlbrd *brdp = pci_get_drvdata(pdev);
2409 free_irq(brdp->irq, brdp);
2411 stl_cleanup_panels(brdp);
2413 release_region(brdp->ioaddr1, brdp->iosize1);
2414 if (brdp->iosize2 > 0)
2415 release_region(brdp->ioaddr2, brdp->iosize2);
2417 for (i = 0; i < brdp->nrports; i++)
2418 tty_unregister_device(stl_serial,
2419 brdp->brdnr * STL_MAXPORTS + i);
2421 stl_brds[brdp->brdnr] = NULL;
2425 static struct pci_driver stl_pcidriver = {
2427 .id_table = stl_pcibrds,
2428 .probe = stl_pciprobe,
2429 .remove = __devexit_p(stl_pciremove)
2432 /*****************************************************************************/
2435 * Return the board stats structure to user app.
2438 static int stl_getbrdstats(combrd_t __user *bp)
2440 combrd_t stl_brdstats;
2441 struct stlbrd *brdp;
2442 struct stlpanel *panelp;
2445 if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
2447 if (stl_brdstats.brd >= STL_MAXBRDS)
2449 brdp = stl_brds[stl_brdstats.brd];
2453 memset(&stl_brdstats, 0, sizeof(combrd_t));
2454 stl_brdstats.brd = brdp->brdnr;
2455 stl_brdstats.type = brdp->brdtype;
2456 stl_brdstats.hwid = brdp->hwid;
2457 stl_brdstats.state = brdp->state;
2458 stl_brdstats.ioaddr = brdp->ioaddr1;
2459 stl_brdstats.ioaddr2 = brdp->ioaddr2;
2460 stl_brdstats.irq = brdp->irq;
2461 stl_brdstats.nrpanels = brdp->nrpanels;
2462 stl_brdstats.nrports = brdp->nrports;
2463 for (i = 0; i < brdp->nrpanels; i++) {
2464 panelp = brdp->panels[i];
2465 stl_brdstats.panels[i].panel = i;
2466 stl_brdstats.panels[i].hwid = panelp->hwid;
2467 stl_brdstats.panels[i].nrports = panelp->nrports;
2470 return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
2473 /*****************************************************************************/
2476 * Resolve the referenced port number into a port struct pointer.
2479 static struct stlport *stl_getport(int brdnr, int panelnr, int portnr)
2481 struct stlbrd *brdp;
2482 struct stlpanel *panelp;
2484 if (brdnr < 0 || brdnr >= STL_MAXBRDS)
2486 brdp = stl_brds[brdnr];
2489 if (panelnr < 0 || (unsigned int)panelnr >= brdp->nrpanels)
2491 panelp = brdp->panels[panelnr];
2494 if (portnr < 0 || (unsigned int)portnr >= panelp->nrports)
2496 return panelp->ports[portnr];
2499 /*****************************************************************************/
2502 * Return the port stats structure to user app. A NULL port struct
2503 * pointer passed in means that we need to find out from the app
2504 * what port to get stats for (used through board control device).
2507 static int stl_getportstats(struct stlport *portp, comstats_t __user *cp)
2509 comstats_t stl_comstats;
2510 unsigned char *head, *tail;
2511 unsigned long flags;
2514 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2516 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2522 portp->stats.state = portp->istate;
2523 portp->stats.flags = portp->flags;
2524 portp->stats.hwid = portp->hwid;
2526 portp->stats.ttystate = 0;
2527 portp->stats.cflags = 0;
2528 portp->stats.iflags = 0;
2529 portp->stats.oflags = 0;
2530 portp->stats.lflags = 0;
2531 portp->stats.rxbuffered = 0;
2533 spin_lock_irqsave(&stallion_lock, flags);
2534 if (portp->tty != NULL)
2535 if (portp->tty->driver_data == portp) {
2536 portp->stats.ttystate = portp->tty->flags;
2537 /* No longer available as a statistic */
2538 portp->stats.rxbuffered = 1; /*portp->tty->flip.count; */
2539 if (portp->tty->termios != NULL) {
2540 portp->stats.cflags = portp->tty->termios->c_cflag;
2541 portp->stats.iflags = portp->tty->termios->c_iflag;
2542 portp->stats.oflags = portp->tty->termios->c_oflag;
2543 portp->stats.lflags = portp->tty->termios->c_lflag;
2546 spin_unlock_irqrestore(&stallion_lock, flags);
2548 head = portp->tx.head;
2549 tail = portp->tx.tail;
2550 portp->stats.txbuffered = (head >= tail) ? (head - tail) :
2551 (STL_TXBUFSIZE - (tail - head));
2553 portp->stats.signals = (unsigned long) stl_getsignals(portp);
2555 return copy_to_user(cp, &portp->stats,
2556 sizeof(comstats_t)) ? -EFAULT : 0;
2559 /*****************************************************************************/
2562 * Clear the port stats structure. We also return it zeroed out...
2565 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp)
2567 comstats_t stl_comstats;
2570 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2572 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2578 memset(&portp->stats, 0, sizeof(comstats_t));
2579 portp->stats.brd = portp->brdnr;
2580 portp->stats.panel = portp->panelnr;
2581 portp->stats.port = portp->portnr;
2582 return copy_to_user(cp, &portp->stats,
2583 sizeof(comstats_t)) ? -EFAULT : 0;
2586 /*****************************************************************************/
2589 * Return the entire driver ports structure to a user app.
2592 static int stl_getportstruct(struct stlport __user *arg)
2594 struct stlport stl_dummyport;
2595 struct stlport *portp;
2597 if (copy_from_user(&stl_dummyport, arg, sizeof(struct stlport)))
2599 portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
2600 stl_dummyport.portnr);
2603 return copy_to_user(arg, portp, sizeof(struct stlport)) ? -EFAULT : 0;
2606 /*****************************************************************************/
2609 * Return the entire driver board structure to a user app.
2612 static int stl_getbrdstruct(struct stlbrd __user *arg)
2614 struct stlbrd stl_dummybrd;
2615 struct stlbrd *brdp;
2617 if (copy_from_user(&stl_dummybrd, arg, sizeof(struct stlbrd)))
2619 if (stl_dummybrd.brdnr >= STL_MAXBRDS)
2621 brdp = stl_brds[stl_dummybrd.brdnr];
2624 return copy_to_user(arg, brdp, sizeof(struct stlbrd)) ? -EFAULT : 0;
2627 /*****************************************************************************/
2630 * The "staliomem" device is also required to do some special operations
2631 * on the board and/or ports. In this driver it is mostly used for stats
2635 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
2638 void __user *argp = (void __user *)arg;
2640 pr_debug("stl_memioctl(ip=%p,fp=%p,cmd=%x,arg=%lx)\n", ip, fp, cmd,arg);
2643 if (brdnr >= STL_MAXBRDS)
2648 case COM_GETPORTSTATS:
2649 rc = stl_getportstats(NULL, argp);
2651 case COM_CLRPORTSTATS:
2652 rc = stl_clrportstats(NULL, argp);
2654 case COM_GETBRDSTATS:
2655 rc = stl_getbrdstats(argp);
2658 rc = stl_getportstruct(argp);
2661 rc = stl_getbrdstruct(argp);
2671 static const struct tty_operations stl_ops = {
2675 .put_char = stl_putchar,
2676 .flush_chars = stl_flushchars,
2677 .write_room = stl_writeroom,
2678 .chars_in_buffer = stl_charsinbuffer,
2680 .set_termios = stl_settermios,
2681 .throttle = stl_throttle,
2682 .unthrottle = stl_unthrottle,
2685 .hangup = stl_hangup,
2686 .flush_buffer = stl_flushbuffer,
2687 .break_ctl = stl_breakctl,
2688 .wait_until_sent = stl_waituntilsent,
2689 .send_xchar = stl_sendxchar,
2690 .read_proc = stl_readproc,
2691 .tiocmget = stl_tiocmget,
2692 .tiocmset = stl_tiocmset,
2695 /*****************************************************************************/
2696 /* CD1400 HARDWARE FUNCTIONS */
2697 /*****************************************************************************/
2700 * These functions get/set/update the registers of the cd1400 UARTs.
2701 * Access to the cd1400 registers is via an address/data io port pair.
2702 * (Maybe should make this inline...)
2705 static int stl_cd1400getreg(struct stlport *portp, int regnr)
2707 outb((regnr + portp->uartaddr), portp->ioaddr);
2708 return inb(portp->ioaddr + EREG_DATA);
2711 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value)
2713 outb(regnr + portp->uartaddr, portp->ioaddr);
2714 outb(value, portp->ioaddr + EREG_DATA);
2717 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value)
2719 outb(regnr + portp->uartaddr, portp->ioaddr);
2720 if (inb(portp->ioaddr + EREG_DATA) != value) {
2721 outb(value, portp->ioaddr + EREG_DATA);
2727 /*****************************************************************************/
2730 * Inbitialize the UARTs in a panel. We don't care what sort of board
2731 * these ports are on - since the port io registers are almost
2732 * identical when dealing with ports.
2735 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
2739 int nrchips, uartaddr, ioaddr;
2740 unsigned long flags;
2742 pr_debug("stl_panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
2744 spin_lock_irqsave(&brd_lock, flags);
2745 BRDENABLE(panelp->brdnr, panelp->pagenr);
2748 * Check that each chip is present and started up OK.
2751 nrchips = panelp->nrports / CD1400_PORTS;
2752 for (i = 0; i < nrchips; i++) {
2753 if (brdp->brdtype == BRD_ECHPCI) {
2754 outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
2755 ioaddr = panelp->iobase;
2757 ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
2758 uartaddr = (i & 0x01) ? 0x080 : 0;
2759 outb((GFRCR + uartaddr), ioaddr);
2760 outb(0, (ioaddr + EREG_DATA));
2761 outb((CCR + uartaddr), ioaddr);
2762 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2763 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2764 outb((GFRCR + uartaddr), ioaddr);
2765 for (j = 0; j < CCR_MAXWAIT; j++)
2766 if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
2769 if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
2770 printk("STALLION: cd1400 not responding, "
2771 "brd=%d panel=%d chip=%d\n",
2772 panelp->brdnr, panelp->panelnr, i);
2775 chipmask |= (0x1 << i);
2776 outb((PPR + uartaddr), ioaddr);
2777 outb(PPR_SCALAR, (ioaddr + EREG_DATA));
2780 BRDDISABLE(panelp->brdnr);
2781 spin_unlock_irqrestore(&brd_lock, flags);
2785 /*****************************************************************************/
2788 * Initialize hardware specific port registers.
2791 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
2793 unsigned long flags;
2794 pr_debug("stl_cd1400portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
2797 if ((brdp == NULL) || (panelp == NULL) ||
2801 spin_lock_irqsave(&brd_lock, flags);
2802 portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
2803 (portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
2804 portp->uartaddr = (portp->portnr & 0x04) << 5;
2805 portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
2807 BRDENABLE(portp->brdnr, portp->pagenr);
2808 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
2809 stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
2810 portp->hwid = stl_cd1400getreg(portp, GFRCR);
2811 BRDDISABLE(portp->brdnr);
2812 spin_unlock_irqrestore(&brd_lock, flags);
2815 /*****************************************************************************/
2818 * Wait for the command register to be ready. We will poll this,
2819 * since it won't usually take too long to be ready.
2822 static void stl_cd1400ccrwait(struct stlport *portp)
2826 for (i = 0; i < CCR_MAXWAIT; i++)
2827 if (stl_cd1400getreg(portp, CCR) == 0)
2830 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
2831 portp->portnr, portp->panelnr, portp->brdnr);
2834 /*****************************************************************************/
2837 * Set up the cd1400 registers for a port based on the termios port
2841 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp)
2843 struct stlbrd *brdp;
2844 unsigned long flags;
2845 unsigned int clkdiv, baudrate;
2846 unsigned char cor1, cor2, cor3;
2847 unsigned char cor4, cor5, ccr;
2848 unsigned char srer, sreron, sreroff;
2849 unsigned char mcor1, mcor2, rtpr;
2850 unsigned char clk, div;
2866 brdp = stl_brds[portp->brdnr];
2871 * Set up the RX char ignore mask with those RX error types we
2872 * can ignore. We can get the cd1400 to help us out a little here,
2873 * it will ignore parity errors and breaks for us.
2875 portp->rxignoremsk = 0;
2876 if (tiosp->c_iflag & IGNPAR) {
2877 portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
2878 cor1 |= COR1_PARIGNORE;
2880 if (tiosp->c_iflag & IGNBRK) {
2881 portp->rxignoremsk |= ST_BREAK;
2882 cor4 |= COR4_IGNBRK;
2885 portp->rxmarkmsk = ST_OVERRUN;
2886 if (tiosp->c_iflag & (INPCK | PARMRK))
2887 portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
2888 if (tiosp->c_iflag & BRKINT)
2889 portp->rxmarkmsk |= ST_BREAK;
2892 * Go through the char size, parity and stop bits and set all the
2893 * option register appropriately.
2895 switch (tiosp->c_cflag & CSIZE) {
2910 if (tiosp->c_cflag & CSTOPB)
2915 if (tiosp->c_cflag & PARENB) {
2916 if (tiosp->c_cflag & PARODD)
2917 cor1 |= (COR1_PARENB | COR1_PARODD);
2919 cor1 |= (COR1_PARENB | COR1_PAREVEN);
2921 cor1 |= COR1_PARNONE;
2925 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
2926 * space for hardware flow control and the like. This should be set to
2927 * VMIN. Also here we will set the RX data timeout to 10ms - this should
2928 * really be based on VTIME.
2930 cor3 |= FIFO_RXTHRESHOLD;
2934 * Calculate the baud rate timers. For now we will just assume that
2935 * the input and output baud are the same. Could have used a baud
2936 * table here, but this way we can generate virtually any baud rate
2939 baudrate = tiosp->c_cflag & CBAUD;
2940 if (baudrate & CBAUDEX) {
2941 baudrate &= ~CBAUDEX;
2942 if ((baudrate < 1) || (baudrate > 4))
2943 tiosp->c_cflag &= ~CBAUDEX;
2947 baudrate = stl_baudrates[baudrate];
2948 if ((tiosp->c_cflag & CBAUD) == B38400) {
2949 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2951 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2953 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2955 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2957 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2958 baudrate = (portp->baud_base / portp->custom_divisor);
2960 if (baudrate > STL_CD1400MAXBAUD)
2961 baudrate = STL_CD1400MAXBAUD;
2964 for (clk = 0; clk < CD1400_NUMCLKS; clk++) {
2965 clkdiv = (portp->clk / stl_cd1400clkdivs[clk]) / baudrate;
2969 div = (unsigned char) clkdiv;
2973 * Check what form of modem signaling is required and set it up.
2975 if ((tiosp->c_cflag & CLOCAL) == 0) {
2978 sreron |= SRER_MODEM;
2979 portp->flags |= ASYNC_CHECK_CD;
2981 portp->flags &= ~ASYNC_CHECK_CD;
2984 * Setup cd1400 enhanced modes if we can. In particular we want to
2985 * handle as much of the flow control as possible automatically. As
2986 * well as saving a few CPU cycles it will also greatly improve flow
2987 * control reliability.
2989 if (tiosp->c_iflag & IXON) {
2992 if (tiosp->c_iflag & IXANY)
2996 if (tiosp->c_cflag & CRTSCTS) {
2998 mcor1 |= FIFO_RTSTHRESHOLD;
3002 * All cd1400 register values calculated so go through and set
3006 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3007 portp->portnr, portp->panelnr, portp->brdnr);
3008 pr_debug(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
3009 cor1, cor2, cor3, cor4, cor5);
3010 pr_debug(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
3011 mcor1, mcor2, rtpr, sreron, sreroff);
3012 pr_debug(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
3013 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3014 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3015 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3017 spin_lock_irqsave(&brd_lock, flags);
3018 BRDENABLE(portp->brdnr, portp->pagenr);
3019 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
3020 srer = stl_cd1400getreg(portp, SRER);
3021 stl_cd1400setreg(portp, SRER, 0);
3022 if (stl_cd1400updatereg(portp, COR1, cor1))
3024 if (stl_cd1400updatereg(portp, COR2, cor2))
3026 if (stl_cd1400updatereg(portp, COR3, cor3))
3029 stl_cd1400ccrwait(portp);
3030 stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
3032 stl_cd1400setreg(portp, COR4, cor4);
3033 stl_cd1400setreg(portp, COR5, cor5);
3034 stl_cd1400setreg(portp, MCOR1, mcor1);
3035 stl_cd1400setreg(portp, MCOR2, mcor2);
3037 stl_cd1400setreg(portp, TCOR, clk);
3038 stl_cd1400setreg(portp, TBPR, div);
3039 stl_cd1400setreg(portp, RCOR, clk);
3040 stl_cd1400setreg(portp, RBPR, div);
3042 stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
3043 stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
3044 stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
3045 stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
3046 stl_cd1400setreg(portp, RTPR, rtpr);
3047 mcor1 = stl_cd1400getreg(portp, MSVR1);
3048 if (mcor1 & MSVR1_DCD)
3049 portp->sigs |= TIOCM_CD;
3051 portp->sigs &= ~TIOCM_CD;
3052 stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
3053 BRDDISABLE(portp->brdnr);
3054 spin_unlock_irqrestore(&brd_lock, flags);
3057 /*****************************************************************************/
3060 * Set the state of the DTR and RTS signals.
3063 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts)
3065 unsigned char msvr1, msvr2;
3066 unsigned long flags;
3068 pr_debug("stl_cd1400setsignals(portp=%p,dtr=%d,rts=%d)\n",
3078 spin_lock_irqsave(&brd_lock, flags);
3079 BRDENABLE(portp->brdnr, portp->pagenr);
3080 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3082 stl_cd1400setreg(portp, MSVR2, msvr2);
3084 stl_cd1400setreg(portp, MSVR1, msvr1);
3085 BRDDISABLE(portp->brdnr);
3086 spin_unlock_irqrestore(&brd_lock, flags);
3089 /*****************************************************************************/
3092 * Return the state of the signals.
3095 static int stl_cd1400getsignals(struct stlport *portp)
3097 unsigned char msvr1, msvr2;
3098 unsigned long flags;
3101 pr_debug("stl_cd1400getsignals(portp=%p)\n", portp);
3103 spin_lock_irqsave(&brd_lock, flags);
3104 BRDENABLE(portp->brdnr, portp->pagenr);
3105 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3106 msvr1 = stl_cd1400getreg(portp, MSVR1);
3107 msvr2 = stl_cd1400getreg(portp, MSVR2);
3108 BRDDISABLE(portp->brdnr);
3109 spin_unlock_irqrestore(&brd_lock, flags);
3112 sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
3113 sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
3114 sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
3115 sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
3117 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
3118 sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
3125 /*****************************************************************************/
3128 * Enable/Disable the Transmitter and/or Receiver.
3131 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx)
3134 unsigned long flags;
3136 pr_debug("stl_cd1400enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3141 ccr |= CCR_TXDISABLE;
3143 ccr |= CCR_TXENABLE;
3145 ccr |= CCR_RXDISABLE;
3147 ccr |= CCR_RXENABLE;
3149 spin_lock_irqsave(&brd_lock, flags);
3150 BRDENABLE(portp->brdnr, portp->pagenr);
3151 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3152 stl_cd1400ccrwait(portp);
3153 stl_cd1400setreg(portp, CCR, ccr);
3154 stl_cd1400ccrwait(portp);
3155 BRDDISABLE(portp->brdnr);
3156 spin_unlock_irqrestore(&brd_lock, flags);
3159 /*****************************************************************************/
3162 * Start/stop the Transmitter and/or Receiver.
3165 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx)
3167 unsigned char sreron, sreroff;
3168 unsigned long flags;
3170 pr_debug("stl_cd1400startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3175 sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
3177 sreron |= SRER_TXDATA;
3179 sreron |= SRER_TXEMPTY;
3181 sreroff |= SRER_RXDATA;
3183 sreron |= SRER_RXDATA;
3185 spin_lock_irqsave(&brd_lock, flags);
3186 BRDENABLE(portp->brdnr, portp->pagenr);
3187 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3188 stl_cd1400setreg(portp, SRER,
3189 ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
3190 BRDDISABLE(portp->brdnr);
3192 set_bit(ASYI_TXBUSY, &portp->istate);
3193 spin_unlock_irqrestore(&brd_lock, flags);
3196 /*****************************************************************************/
3199 * Disable all interrupts from this port.
3202 static void stl_cd1400disableintrs(struct stlport *portp)
3204 unsigned long flags;
3206 pr_debug("stl_cd1400disableintrs(portp=%p)\n", portp);
3208 spin_lock_irqsave(&brd_lock, flags);
3209 BRDENABLE(portp->brdnr, portp->pagenr);
3210 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3211 stl_cd1400setreg(portp, SRER, 0);
3212 BRDDISABLE(portp->brdnr);
3213 spin_unlock_irqrestore(&brd_lock, flags);
3216 /*****************************************************************************/
3218 static void stl_cd1400sendbreak(struct stlport *portp, int len)
3220 unsigned long flags;
3222 pr_debug("stl_cd1400sendbreak(portp=%p,len=%d)\n", portp, len);
3224 spin_lock_irqsave(&brd_lock, flags);
3225 BRDENABLE(portp->brdnr, portp->pagenr);
3226 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3227 stl_cd1400setreg(portp, SRER,
3228 ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
3230 BRDDISABLE(portp->brdnr);
3231 portp->brklen = len;
3233 portp->stats.txbreaks++;
3234 spin_unlock_irqrestore(&brd_lock, flags);
3237 /*****************************************************************************/
3240 * Take flow control actions...
3243 static void stl_cd1400flowctrl(struct stlport *portp, int state)
3245 struct tty_struct *tty;
3246 unsigned long flags;
3248 pr_debug("stl_cd1400flowctrl(portp=%p,state=%x)\n", portp, state);
3256 spin_lock_irqsave(&brd_lock, flags);
3257 BRDENABLE(portp->brdnr, portp->pagenr);
3258 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3261 if (tty->termios->c_iflag & IXOFF) {
3262 stl_cd1400ccrwait(portp);
3263 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3264 portp->stats.rxxon++;
3265 stl_cd1400ccrwait(portp);
3268 * Question: should we return RTS to what it was before? It may
3269 * have been set by an ioctl... Suppose not, since if you have
3270 * hardware flow control set then it is pretty silly to go and
3271 * set the RTS line by hand.
3273 if (tty->termios->c_cflag & CRTSCTS) {
3274 stl_cd1400setreg(portp, MCOR1,
3275 (stl_cd1400getreg(portp, MCOR1) |
3276 FIFO_RTSTHRESHOLD));
3277 stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
3278 portp->stats.rxrtson++;
3281 if (tty->termios->c_iflag & IXOFF) {
3282 stl_cd1400ccrwait(portp);
3283 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3284 portp->stats.rxxoff++;
3285 stl_cd1400ccrwait(portp);
3287 if (tty->termios->c_cflag & CRTSCTS) {
3288 stl_cd1400setreg(portp, MCOR1,
3289 (stl_cd1400getreg(portp, MCOR1) & 0xf0));
3290 stl_cd1400setreg(portp, MSVR2, 0);
3291 portp->stats.rxrtsoff++;
3295 BRDDISABLE(portp->brdnr);
3296 spin_unlock_irqrestore(&brd_lock, flags);
3299 /*****************************************************************************/
3302 * Send a flow control character...
3305 static void stl_cd1400sendflow(struct stlport *portp, int state)
3307 struct tty_struct *tty;
3308 unsigned long flags;
3310 pr_debug("stl_cd1400sendflow(portp=%p,state=%x)\n", portp, state);
3318 spin_lock_irqsave(&brd_lock, flags);
3319 BRDENABLE(portp->brdnr, portp->pagenr);
3320 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3322 stl_cd1400ccrwait(portp);
3323 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3324 portp->stats.rxxon++;
3325 stl_cd1400ccrwait(portp);
3327 stl_cd1400ccrwait(portp);
3328 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3329 portp->stats.rxxoff++;
3330 stl_cd1400ccrwait(portp);
3332 BRDDISABLE(portp->brdnr);
3333 spin_unlock_irqrestore(&brd_lock, flags);
3336 /*****************************************************************************/
3338 static void stl_cd1400flush(struct stlport *portp)
3340 unsigned long flags;
3342 pr_debug("stl_cd1400flush(portp=%p)\n", portp);
3347 spin_lock_irqsave(&brd_lock, flags);
3348 BRDENABLE(portp->brdnr, portp->pagenr);
3349 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3350 stl_cd1400ccrwait(portp);
3351 stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
3352 stl_cd1400ccrwait(portp);
3353 portp->tx.tail = portp->tx.head;
3354 BRDDISABLE(portp->brdnr);
3355 spin_unlock_irqrestore(&brd_lock, flags);
3358 /*****************************************************************************/
3361 * Return the current state of data flow on this port. This is only
3362 * really interresting when determining if data has fully completed
3363 * transmission or not... This is easy for the cd1400, it accurately
3364 * maintains the busy port flag.
3367 static int stl_cd1400datastate(struct stlport *portp)
3369 pr_debug("stl_cd1400datastate(portp=%p)\n", portp);
3374 return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0;
3377 /*****************************************************************************/
3380 * Interrupt service routine for cd1400 EasyIO boards.
3383 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase)
3385 unsigned char svrtype;
3387 pr_debug("stl_cd1400eiointr(panelp=%p,iobase=%x)\n", panelp, iobase);
3389 spin_lock(&brd_lock);
3391 svrtype = inb(iobase + EREG_DATA);
3392 if (panelp->nrports > 4) {
3393 outb((SVRR + 0x80), iobase);
3394 svrtype |= inb(iobase + EREG_DATA);
3397 if (svrtype & SVRR_RX)
3398 stl_cd1400rxisr(panelp, iobase);
3399 else if (svrtype & SVRR_TX)
3400 stl_cd1400txisr(panelp, iobase);
3401 else if (svrtype & SVRR_MDM)
3402 stl_cd1400mdmisr(panelp, iobase);
3404 spin_unlock(&brd_lock);
3407 /*****************************************************************************/
3410 * Interrupt service routine for cd1400 panels.
3413 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase)
3415 unsigned char svrtype;
3417 pr_debug("stl_cd1400echintr(panelp=%p,iobase=%x)\n", panelp, iobase);
3420 svrtype = inb(iobase + EREG_DATA);
3421 outb((SVRR + 0x80), iobase);
3422 svrtype |= inb(iobase + EREG_DATA);
3423 if (svrtype & SVRR_RX)
3424 stl_cd1400rxisr(panelp, iobase);
3425 else if (svrtype & SVRR_TX)
3426 stl_cd1400txisr(panelp, iobase);
3427 else if (svrtype & SVRR_MDM)
3428 stl_cd1400mdmisr(panelp, iobase);
3432 /*****************************************************************************/
3435 * Unfortunately we need to handle breaks in the TX data stream, since
3436 * this is the only way to generate them on the cd1400.
3439 static int stl_cd1400breakisr(struct stlport *portp, int ioaddr)
3441 if (portp->brklen == 1) {
3442 outb((COR2 + portp->uartaddr), ioaddr);
3443 outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
3444 (ioaddr + EREG_DATA));
3445 outb((TDR + portp->uartaddr), ioaddr);
3446 outb(ETC_CMD, (ioaddr + EREG_DATA));
3447 outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
3448 outb((SRER + portp->uartaddr), ioaddr);
3449 outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
3450 (ioaddr + EREG_DATA));
3452 } else if (portp->brklen > 1) {
3453 outb((TDR + portp->uartaddr), ioaddr);
3454 outb(ETC_CMD, (ioaddr + EREG_DATA));
3455 outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
3459 outb((COR2 + portp->uartaddr), ioaddr);
3460 outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
3461 (ioaddr + EREG_DATA));
3467 /*****************************************************************************/
3470 * Transmit interrupt handler. This has gotta be fast! Handling TX
3471 * chars is pretty simple, stuff as many as possible from the TX buffer
3472 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3473 * are embedded as commands in the data stream. Oh no, had to use a goto!
3474 * This could be optimized more, will do when I get time...
3475 * In practice it is possible that interrupts are enabled but that the
3476 * port has been hung up. Need to handle not having any TX buffer here,
3477 * this is done by using the side effect that head and tail will also
3478 * be NULL if the buffer has been freed.
3481 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr)
3483 struct stlport *portp;
3486 unsigned char ioack, srer;
3488 pr_debug("stl_cd1400txisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3490 ioack = inb(ioaddr + EREG_TXACK);
3491 if (((ioack & panelp->ackmask) != 0) ||
3492 ((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
3493 printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
3496 portp = panelp->ports[(ioack >> 3)];
3499 * Unfortunately we need to handle breaks in the data stream, since
3500 * this is the only way to generate them on the cd1400. Do it now if
3501 * a break is to be sent.
3503 if (portp->brklen != 0)
3504 if (stl_cd1400breakisr(portp, ioaddr))
3507 head = portp->tx.head;
3508 tail = portp->tx.tail;
3509 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
3510 if ((len == 0) || ((len < STL_TXBUFLOW) &&
3511 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
3512 set_bit(ASYI_TXLOW, &portp->istate);
3514 tty_wakeup(portp->tty);
3518 outb((SRER + portp->uartaddr), ioaddr);
3519 srer = inb(ioaddr + EREG_DATA);
3520 if (srer & SRER_TXDATA) {
3521 srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
3523 srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
3524 clear_bit(ASYI_TXBUSY, &portp->istate);
3526 outb(srer, (ioaddr + EREG_DATA));
3528 len = min(len, CD1400_TXFIFOSIZE);
3529 portp->stats.txtotal += len;
3530 stlen = min_t(unsigned int, len,
3531 (portp->tx.buf + STL_TXBUFSIZE) - tail);
3532 outb((TDR + portp->uartaddr), ioaddr);
3533 outsb((ioaddr + EREG_DATA), tail, stlen);
3536 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
3537 tail = portp->tx.buf;
3539 outsb((ioaddr + EREG_DATA), tail, len);
3542 portp->tx.tail = tail;
3546 outb((EOSRR + portp->uartaddr), ioaddr);
3547 outb(0, (ioaddr + EREG_DATA));
3550 /*****************************************************************************/
3553 * Receive character interrupt handler. Determine if we have good chars
3554 * or bad chars and then process appropriately. Good chars are easy
3555 * just shove the lot into the RX buffer and set all status byte to 0.
3556 * If a bad RX char then process as required. This routine needs to be
3557 * fast! In practice it is possible that we get an interrupt on a port
3558 * that is closed. This can happen on hangups - since they completely
3559 * shutdown a port not in user context. Need to handle this case.
3562 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr)
3564 struct stlport *portp;
3565 struct tty_struct *tty;
3566 unsigned int ioack, len, buflen;
3567 unsigned char status;
3570 pr_debug("stl_cd1400rxisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3572 ioack = inb(ioaddr + EREG_RXACK);
3573 if ((ioack & panelp->ackmask) != 0) {
3574 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3577 portp = panelp->ports[(ioack >> 3)];
3580 if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
3581 outb((RDCR + portp->uartaddr), ioaddr);
3582 len = inb(ioaddr + EREG_DATA);
3583 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
3584 len = min_t(unsigned int, len, sizeof(stl_unwanted));
3585 outb((RDSR + portp->uartaddr), ioaddr);
3586 insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
3587 portp->stats.rxlost += len;
3588 portp->stats.rxtotal += len;
3590 len = min(len, buflen);
3593 outb((RDSR + portp->uartaddr), ioaddr);
3594 tty_prepare_flip_string(tty, &ptr, len);
3595 insb((ioaddr + EREG_DATA), ptr, len);
3596 tty_schedule_flip(tty);
3597 portp->stats.rxtotal += len;
3600 } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
3601 outb((RDSR + portp->uartaddr), ioaddr);
3602 status = inb(ioaddr + EREG_DATA);
3603 ch = inb(ioaddr + EREG_DATA);
3604 if (status & ST_PARITY)
3605 portp->stats.rxparity++;
3606 if (status & ST_FRAMING)
3607 portp->stats.rxframing++;
3608 if (status & ST_OVERRUN)
3609 portp->stats.rxoverrun++;
3610 if (status & ST_BREAK)
3611 portp->stats.rxbreaks++;
3612 if (status & ST_SCHARMASK) {
3613 if ((status & ST_SCHARMASK) == ST_SCHAR1)
3614 portp->stats.txxon++;
3615 if ((status & ST_SCHARMASK) == ST_SCHAR2)
3616 portp->stats.txxoff++;
3619 if (tty != NULL && (portp->rxignoremsk & status) == 0) {
3620 if (portp->rxmarkmsk & status) {
3621 if (status & ST_BREAK) {
3623 if (portp->flags & ASYNC_SAK) {
3625 BRDENABLE(portp->brdnr, portp->pagenr);
3627 } else if (status & ST_PARITY)
3628 status = TTY_PARITY;
3629 else if (status & ST_FRAMING)
3631 else if(status & ST_OVERRUN)
3632 status = TTY_OVERRUN;
3637 tty_insert_flip_char(tty, ch, status);
3638 tty_schedule_flip(tty);
3641 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3646 outb((EOSRR + portp->uartaddr), ioaddr);
3647 outb(0, (ioaddr + EREG_DATA));
3650 /*****************************************************************************/
3653 * Modem interrupt handler. The is called when the modem signal line
3654 * (DCD) has changed state. Leave most of the work to the off-level
3655 * processing routine.
3658 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr)
3660 struct stlport *portp;
3664 pr_debug("stl_cd1400mdmisr(panelp=%p)\n", panelp);
3666 ioack = inb(ioaddr + EREG_MDACK);
3667 if (((ioack & panelp->ackmask) != 0) ||
3668 ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
3669 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
3672 portp = panelp->ports[(ioack >> 3)];
3674 outb((MISR + portp->uartaddr), ioaddr);
3675 misr = inb(ioaddr + EREG_DATA);
3676 if (misr & MISR_DCD) {
3677 stl_cd_change(portp);
3678 portp->stats.modem++;
3681 outb((EOSRR + portp->uartaddr), ioaddr);
3682 outb(0, (ioaddr + EREG_DATA));
3685 /*****************************************************************************/
3686 /* SC26198 HARDWARE FUNCTIONS */
3687 /*****************************************************************************/
3690 * These functions get/set/update the registers of the sc26198 UARTs.
3691 * Access to the sc26198 registers is via an address/data io port pair.
3692 * (Maybe should make this inline...)
3695 static int stl_sc26198getreg(struct stlport *portp, int regnr)
3697 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3698 return inb(portp->ioaddr + XP_DATA);
3701 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value)
3703 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3704 outb(value, (portp->ioaddr + XP_DATA));
3707 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value)
3709 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3710 if (inb(portp->ioaddr + XP_DATA) != value) {
3711 outb(value, (portp->ioaddr + XP_DATA));
3717 /*****************************************************************************/
3720 * Functions to get and set the sc26198 global registers.
3723 static int stl_sc26198getglobreg(struct stlport *portp, int regnr)
3725 outb(regnr, (portp->ioaddr + XP_ADDR));
3726 return inb(portp->ioaddr + XP_DATA);
3730 static void stl_sc26198setglobreg(struct stlport *portp, int regnr, int value)
3732 outb(regnr, (portp->ioaddr + XP_ADDR));
3733 outb(value, (portp->ioaddr + XP_DATA));
3737 /*****************************************************************************/
3740 * Inbitialize the UARTs in a panel. We don't care what sort of board
3741 * these ports are on - since the port io registers are almost
3742 * identical when dealing with ports.
3745 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
3748 int nrchips, ioaddr;
3750 pr_debug("stl_sc26198panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
3752 BRDENABLE(panelp->brdnr, panelp->pagenr);
3755 * Check that each chip is present and started up OK.
3758 nrchips = (panelp->nrports + 4) / SC26198_PORTS;
3759 if (brdp->brdtype == BRD_ECHPCI)
3760 outb(panelp->pagenr, brdp->ioctrl);
3762 for (i = 0; i < nrchips; i++) {
3763 ioaddr = panelp->iobase + (i * 4);
3764 outb(SCCR, (ioaddr + XP_ADDR));
3765 outb(CR_RESETALL, (ioaddr + XP_DATA));
3766 outb(TSTR, (ioaddr + XP_ADDR));
3767 if (inb(ioaddr + XP_DATA) != 0) {
3768 printk("STALLION: sc26198 not responding, "
3769 "brd=%d panel=%d chip=%d\n",
3770 panelp->brdnr, panelp->panelnr, i);
3773 chipmask |= (0x1 << i);
3774 outb(GCCR, (ioaddr + XP_ADDR));
3775 outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
3776 outb(WDTRCR, (ioaddr + XP_ADDR));
3777 outb(0xff, (ioaddr + XP_DATA));
3780 BRDDISABLE(panelp->brdnr);
3784 /*****************************************************************************/
3787 * Initialize hardware specific port registers.
3790 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
3792 pr_debug("stl_sc26198portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
3795 if ((brdp == NULL) || (panelp == NULL) ||
3799 portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
3800 portp->uartaddr = (portp->portnr & 0x07) << 4;
3801 portp->pagenr = panelp->pagenr;
3804 BRDENABLE(portp->brdnr, portp->pagenr);
3805 stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
3806 BRDDISABLE(portp->brdnr);
3809 /*****************************************************************************/
3812 * Set up the sc26198 registers for a port based on the termios port
3816 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp)
3818 struct stlbrd *brdp;
3819 unsigned long flags;
3820 unsigned int baudrate;
3821 unsigned char mr0, mr1, mr2, clk;
3822 unsigned char imron, imroff, iopr, ipr;
3832 brdp = stl_brds[portp->brdnr];
3837 * Set up the RX char ignore mask with those RX error types we
3840 portp->rxignoremsk = 0;
3841 if (tiosp->c_iflag & IGNPAR)
3842 portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
3844 if (tiosp->c_iflag & IGNBRK)
3845 portp->rxignoremsk |= SR_RXBREAK;
3847 portp->rxmarkmsk = SR_RXOVERRUN;
3848 if (tiosp->c_iflag & (INPCK | PARMRK))
3849 portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
3850 if (tiosp->c_iflag & BRKINT)
3851 portp->rxmarkmsk |= SR_RXBREAK;
3854 * Go through the char size, parity and stop bits and set all the
3855 * option register appropriately.
3857 switch (tiosp->c_cflag & CSIZE) {
3872 if (tiosp->c_cflag & CSTOPB)
3877 if (tiosp->c_cflag & PARENB) {
3878 if (tiosp->c_cflag & PARODD)
3879 mr1 |= (MR1_PARENB | MR1_PARODD);
3881 mr1 |= (MR1_PARENB | MR1_PAREVEN);
3885 mr1 |= MR1_ERRBLOCK;
3888 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
3889 * space for hardware flow control and the like. This should be set to
3892 mr2 |= MR2_RXFIFOHALF;
3895 * Calculate the baud rate timers. For now we will just assume that
3896 * the input and output baud are the same. The sc26198 has a fixed
3897 * baud rate table, so only discrete baud rates possible.
3899 baudrate = tiosp->c_cflag & CBAUD;
3900 if (baudrate & CBAUDEX) {
3901 baudrate &= ~CBAUDEX;
3902 if ((baudrate < 1) || (baudrate > 4))
3903 tiosp->c_cflag &= ~CBAUDEX;
3907 baudrate = stl_baudrates[baudrate];
3908 if ((tiosp->c_cflag & CBAUD) == B38400) {
3909 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3911 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3913 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3915 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3917 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3918 baudrate = (portp->baud_base / portp->custom_divisor);
3920 if (baudrate > STL_SC26198MAXBAUD)
3921 baudrate = STL_SC26198MAXBAUD;
3924 for (clk = 0; clk < SC26198_NRBAUDS; clk++)
3925 if (baudrate <= sc26198_baudtable[clk])
3929 * Check what form of modem signaling is required and set it up.
3931 if (tiosp->c_cflag & CLOCAL) {
3932 portp->flags &= ~ASYNC_CHECK_CD;
3934 iopr |= IOPR_DCDCOS;
3936 portp->flags |= ASYNC_CHECK_CD;
3940 * Setup sc26198 enhanced modes if we can. In particular we want to
3941 * handle as much of the flow control as possible automatically. As
3942 * well as saving a few CPU cycles it will also greatly improve flow
3943 * control reliability.
3945 if (tiosp->c_iflag & IXON) {
3946 mr0 |= MR0_SWFTX | MR0_SWFT;
3947 imron |= IR_XONXOFF;
3949 imroff |= IR_XONXOFF;
3951 if (tiosp->c_iflag & IXOFF)
3954 if (tiosp->c_cflag & CRTSCTS) {
3960 * All sc26198 register values calculated so go through and set
3964 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3965 portp->portnr, portp->panelnr, portp->brdnr);
3966 pr_debug(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
3967 pr_debug(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
3968 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3969 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3970 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3972 spin_lock_irqsave(&brd_lock, flags);
3973 BRDENABLE(portp->brdnr, portp->pagenr);
3974 stl_sc26198setreg(portp, IMR, 0);
3975 stl_sc26198updatereg(portp, MR0, mr0);
3976 stl_sc26198updatereg(portp, MR1, mr1);
3977 stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
3978 stl_sc26198updatereg(portp, MR2, mr2);
3979 stl_sc26198updatereg(portp, IOPIOR,
3980 ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
3983 stl_sc26198setreg(portp, TXCSR, clk);
3984 stl_sc26198setreg(portp, RXCSR, clk);
3987 stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
3988 stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
3990 ipr = stl_sc26198getreg(portp, IPR);
3992 portp->sigs &= ~TIOCM_CD;
3994 portp->sigs |= TIOCM_CD;
3996 portp->imr = (portp->imr & ~imroff) | imron;
3997 stl_sc26198setreg(portp, IMR, portp->imr);
3998 BRDDISABLE(portp->brdnr);
3999 spin_unlock_irqrestore(&brd_lock, flags);
4002 /*****************************************************************************/
4005 * Set the state of the DTR and RTS signals.
4008 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts)
4010 unsigned char iopioron, iopioroff;
4011 unsigned long flags;
4013 pr_debug("stl_sc26198setsignals(portp=%p,dtr=%d,rts=%d)\n", portp,
4019 iopioroff |= IPR_DTR;
4021 iopioron |= IPR_DTR;
4023 iopioroff |= IPR_RTS;
4025 iopioron |= IPR_RTS;
4027 spin_lock_irqsave(&brd_lock, flags);
4028 BRDENABLE(portp->brdnr, portp->pagenr);
4029 stl_sc26198setreg(portp, IOPIOR,
4030 ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
4031 BRDDISABLE(portp->brdnr);
4032 spin_unlock_irqrestore(&brd_lock, flags);
4035 /*****************************************************************************/
4038 * Return the state of the signals.
4041 static int stl_sc26198getsignals(struct stlport *portp)
4044 unsigned long flags;
4047 pr_debug("stl_sc26198getsignals(portp=%p)\n", portp);
4049 spin_lock_irqsave(&brd_lock, flags);
4050 BRDENABLE(portp->brdnr, portp->pagenr);
4051 ipr = stl_sc26198getreg(portp, IPR);
4052 BRDDISABLE(portp->brdnr);
4053 spin_unlock_irqrestore(&brd_lock, flags);
4056 sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
4057 sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
4058 sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
4059 sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
4064 /*****************************************************************************/
4067 * Enable/Disable the Transmitter and/or Receiver.
4070 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx)
4073 unsigned long flags;
4075 pr_debug("stl_sc26198enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx,tx);
4077 ccr = portp->crenable;
4079 ccr &= ~CR_TXENABLE;
4083 ccr &= ~CR_RXENABLE;
4087 spin_lock_irqsave(&brd_lock, flags);
4088 BRDENABLE(portp->brdnr, portp->pagenr);
4089 stl_sc26198setreg(portp, SCCR, ccr);
4090 BRDDISABLE(portp->brdnr);
4091 portp->crenable = ccr;
4092 spin_unlock_irqrestore(&brd_lock, flags);
4095 /*****************************************************************************/
4098 * Start/stop the Transmitter and/or Receiver.
4101 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx)
4104 unsigned long flags;
4106 pr_debug("stl_sc26198startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
4114 imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
4116 imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
4118 spin_lock_irqsave(&brd_lock, flags);
4119 BRDENABLE(portp->brdnr, portp->pagenr);
4120 stl_sc26198setreg(portp, IMR, imr);
4121 BRDDISABLE(portp->brdnr);
4124 set_bit(ASYI_TXBUSY, &portp->istate);
4125 spin_unlock_irqrestore(&brd_lock, flags);
4128 /*****************************************************************************/
4131 * Disable all interrupts from this port.
4134 static void stl_sc26198disableintrs(struct stlport *portp)
4136 unsigned long flags;
4138 pr_debug("stl_sc26198disableintrs(portp=%p)\n", portp);
4140 spin_lock_irqsave(&brd_lock, flags);
4141 BRDENABLE(portp->brdnr, portp->pagenr);
4143 stl_sc26198setreg(portp, IMR, 0);
4144 BRDDISABLE(portp->brdnr);
4145 spin_unlock_irqrestore(&brd_lock, flags);
4148 /*****************************************************************************/
4150 static void stl_sc26198sendbreak(struct stlport *portp, int len)
4152 unsigned long flags;
4154 pr_debug("stl_sc26198sendbreak(portp=%p,len=%d)\n", portp, len);
4156 spin_lock_irqsave(&brd_lock, flags);
4157 BRDENABLE(portp->brdnr, portp->pagenr);
4159 stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
4160 portp->stats.txbreaks++;
4162 stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
4164 BRDDISABLE(portp->brdnr);
4165 spin_unlock_irqrestore(&brd_lock, flags);
4168 /*****************************************************************************/
4171 * Take flow control actions...
4174 static void stl_sc26198flowctrl(struct stlport *portp, int state)
4176 struct tty_struct *tty;
4177 unsigned long flags;
4180 pr_debug("stl_sc26198flowctrl(portp=%p,state=%x)\n", portp, state);
4188 spin_lock_irqsave(&brd_lock, flags);
4189 BRDENABLE(portp->brdnr, portp->pagenr);
4192 if (tty->termios->c_iflag & IXOFF) {
4193 mr0 = stl_sc26198getreg(portp, MR0);
4194 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4195 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4197 portp->stats.rxxon++;
4198 stl_sc26198wait(portp);
4199 stl_sc26198setreg(portp, MR0, mr0);
4202 * Question: should we return RTS to what it was before? It may
4203 * have been set by an ioctl... Suppose not, since if you have
4204 * hardware flow control set then it is pretty silly to go and
4205 * set the RTS line by hand.
4207 if (tty->termios->c_cflag & CRTSCTS) {
4208 stl_sc26198setreg(portp, MR1,
4209 (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
4210 stl_sc26198setreg(portp, IOPIOR,
4211 (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
4212 portp->stats.rxrtson++;
4215 if (tty->termios->c_iflag & IXOFF) {
4216 mr0 = stl_sc26198getreg(portp, MR0);
4217 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4218 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4220 portp->stats.rxxoff++;
4221 stl_sc26198wait(portp);
4222 stl_sc26198setreg(portp, MR0, mr0);
4224 if (tty->termios->c_cflag & CRTSCTS) {
4225 stl_sc26198setreg(portp, MR1,
4226 (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
4227 stl_sc26198setreg(portp, IOPIOR,
4228 (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
4229 portp->stats.rxrtsoff++;
4233 BRDDISABLE(portp->brdnr);
4234 spin_unlock_irqrestore(&brd_lock, flags);
4237 /*****************************************************************************/
4240 * Send a flow control character.
4243 static void stl_sc26198sendflow(struct stlport *portp, int state)
4245 struct tty_struct *tty;
4246 unsigned long flags;
4249 pr_debug("stl_sc26198sendflow(portp=%p,state=%x)\n", portp, state);
4257 spin_lock_irqsave(&brd_lock, flags);
4258 BRDENABLE(portp->brdnr, portp->pagenr);
4260 mr0 = stl_sc26198getreg(portp, MR0);
4261 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4262 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4264 portp->stats.rxxon++;
4265 stl_sc26198wait(portp);
4266 stl_sc26198setreg(portp, MR0, mr0);
4268 mr0 = stl_sc26198getreg(portp, MR0);
4269 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4270 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4272 portp->stats.rxxoff++;
4273 stl_sc26198wait(portp);
4274 stl_sc26198setreg(portp, MR0, mr0);
4276 BRDDISABLE(portp->brdnr);
4277 spin_unlock_irqrestore(&brd_lock, flags);
4280 /*****************************************************************************/
4282 static void stl_sc26198flush(struct stlport *portp)
4284 unsigned long flags;
4286 pr_debug("stl_sc26198flush(portp=%p)\n", portp);
4291 spin_lock_irqsave(&brd_lock, flags);
4292 BRDENABLE(portp->brdnr, portp->pagenr);
4293 stl_sc26198setreg(portp, SCCR, CR_TXRESET);
4294 stl_sc26198setreg(portp, SCCR, portp->crenable);
4295 BRDDISABLE(portp->brdnr);
4296 portp->tx.tail = portp->tx.head;
4297 spin_unlock_irqrestore(&brd_lock, flags);
4300 /*****************************************************************************/
4303 * Return the current state of data flow on this port. This is only
4304 * really interresting when determining if data has fully completed
4305 * transmission or not... The sc26198 interrupt scheme cannot
4306 * determine when all data has actually drained, so we need to
4307 * check the port statusy register to be sure.
4310 static int stl_sc26198datastate(struct stlport *portp)
4312 unsigned long flags;
4315 pr_debug("stl_sc26198datastate(portp=%p)\n", portp);
4319 if (test_bit(ASYI_TXBUSY, &portp->istate))
4322 spin_lock_irqsave(&brd_lock, flags);
4323 BRDENABLE(portp->brdnr, portp->pagenr);
4324 sr = stl_sc26198getreg(portp, SR);
4325 BRDDISABLE(portp->brdnr);
4326 spin_unlock_irqrestore(&brd_lock, flags);
4328 return (sr & SR_TXEMPTY) ? 0 : 1;
4331 /*****************************************************************************/
4334 * Delay for a small amount of time, to give the sc26198 a chance
4335 * to process a command...
4338 static void stl_sc26198wait(struct stlport *portp)
4342 pr_debug("stl_sc26198wait(portp=%p)\n", portp);
4347 for (i = 0; i < 20; i++)
4348 stl_sc26198getglobreg(portp, TSTR);
4351 /*****************************************************************************/
4354 * If we are TX flow controlled and in IXANY mode then we may
4355 * need to unflow control here. We gotta do this because of the
4356 * automatic flow control modes of the sc26198.
4359 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty)
4363 mr0 = stl_sc26198getreg(portp, MR0);
4364 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4365 stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
4366 stl_sc26198wait(portp);
4367 stl_sc26198setreg(portp, MR0, mr0);
4368 clear_bit(ASYI_TXFLOWED, &portp->istate);
4371 /*****************************************************************************/
4374 * Interrupt service routine for sc26198 panels.
4377 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase)
4379 struct stlport *portp;
4382 spin_lock(&brd_lock);
4385 * Work around bug in sc26198 chip... Cannot have A6 address
4386 * line of UART high, else iack will be returned as 0.
4388 outb(0, (iobase + 1));
4390 iack = inb(iobase + XP_IACK);
4391 portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
4393 if (iack & IVR_RXDATA)
4394 stl_sc26198rxisr(portp, iack);
4395 else if (iack & IVR_TXDATA)
4396 stl_sc26198txisr(portp);
4398 stl_sc26198otherisr(portp, iack);
4400 spin_unlock(&brd_lock);
4403 /*****************************************************************************/
4406 * Transmit interrupt handler. This has gotta be fast! Handling TX
4407 * chars is pretty simple, stuff as many as possible from the TX buffer
4408 * into the sc26198 FIFO.
4409 * In practice it is possible that interrupts are enabled but that the
4410 * port has been hung up. Need to handle not having any TX buffer here,
4411 * this is done by using the side effect that head and tail will also
4412 * be NULL if the buffer has been freed.
4415 static void stl_sc26198txisr(struct stlport *portp)
4417 unsigned int ioaddr;
4422 pr_debug("stl_sc26198txisr(portp=%p)\n", portp);
4424 ioaddr = portp->ioaddr;
4425 head = portp->tx.head;
4426 tail = portp->tx.tail;
4427 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
4428 if ((len == 0) || ((len < STL_TXBUFLOW) &&
4429 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
4430 set_bit(ASYI_TXLOW, &portp->istate);
4432 tty_wakeup(portp->tty);
4436 outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
4437 mr0 = inb(ioaddr + XP_DATA);
4438 if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
4439 portp->imr &= ~IR_TXRDY;
4440 outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
4441 outb(portp->imr, (ioaddr + XP_DATA));
4442 clear_bit(ASYI_TXBUSY, &portp->istate);
4444 mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
4445 outb(mr0, (ioaddr + XP_DATA));
4448 len = min(len, SC26198_TXFIFOSIZE);
4449 portp->stats.txtotal += len;
4450 stlen = min_t(unsigned int, len,
4451 (portp->tx.buf + STL_TXBUFSIZE) - tail);
4452 outb(GTXFIFO, (ioaddr + XP_ADDR));
4453 outsb((ioaddr + XP_DATA), tail, stlen);
4456 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4457 tail = portp->tx.buf;
4459 outsb((ioaddr + XP_DATA), tail, len);
4462 portp->tx.tail = tail;
4466 /*****************************************************************************/
4469 * Receive character interrupt handler. Determine if we have good chars
4470 * or bad chars and then process appropriately. Good chars are easy
4471 * just shove the lot into the RX buffer and set all status byte to 0.
4472 * If a bad RX char then process as required. This routine needs to be
4473 * fast! In practice it is possible that we get an interrupt on a port
4474 * that is closed. This can happen on hangups - since they completely
4475 * shutdown a port not in user context. Need to handle this case.
4478 static void stl_sc26198rxisr(struct stlport *portp, unsigned int iack)
4480 struct tty_struct *tty;
4481 unsigned int len, buflen, ioaddr;
4483 pr_debug("stl_sc26198rxisr(portp=%p,iack=%x)\n", portp, iack);
4486 ioaddr = portp->ioaddr;
4487 outb(GIBCR, (ioaddr + XP_ADDR));
4488 len = inb(ioaddr + XP_DATA) + 1;
4490 if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
4491 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
4492 len = min_t(unsigned int, len, sizeof(stl_unwanted));
4493 outb(GRXFIFO, (ioaddr + XP_ADDR));
4494 insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
4495 portp->stats.rxlost += len;
4496 portp->stats.rxtotal += len;
4498 len = min(len, buflen);
4501 outb(GRXFIFO, (ioaddr + XP_ADDR));
4502 tty_prepare_flip_string(tty, &ptr, len);
4503 insb((ioaddr + XP_DATA), ptr, len);
4504 tty_schedule_flip(tty);
4505 portp->stats.rxtotal += len;
4509 stl_sc26198rxbadchars(portp);
4513 * If we are TX flow controlled and in IXANY mode then we may need
4514 * to unflow control here. We gotta do this because of the automatic
4515 * flow control modes of the sc26198.
4517 if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
4518 if ((tty != NULL) &&
4519 (tty->termios != NULL) &&
4520 (tty->termios->c_iflag & IXANY)) {
4521 stl_sc26198txunflow(portp, tty);
4526 /*****************************************************************************/
4529 * Process an RX bad character.
4532 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch)
4534 struct tty_struct *tty;
4535 unsigned int ioaddr;
4538 ioaddr = portp->ioaddr;
4540 if (status & SR_RXPARITY)
4541 portp->stats.rxparity++;
4542 if (status & SR_RXFRAMING)
4543 portp->stats.rxframing++;
4544 if (status & SR_RXOVERRUN)
4545 portp->stats.rxoverrun++;
4546 if (status & SR_RXBREAK)
4547 portp->stats.rxbreaks++;
4549 if ((tty != NULL) &&
4550 ((portp->rxignoremsk & status) == 0)) {
4551 if (portp->rxmarkmsk & status) {
4552 if (status & SR_RXBREAK) {
4554 if (portp->flags & ASYNC_SAK) {
4556 BRDENABLE(portp->brdnr, portp->pagenr);
4558 } else if (status & SR_RXPARITY)
4559 status = TTY_PARITY;
4560 else if (status & SR_RXFRAMING)
4562 else if(status & SR_RXOVERRUN)
4563 status = TTY_OVERRUN;
4569 tty_insert_flip_char(tty, ch, status);
4570 tty_schedule_flip(tty);
4573 portp->stats.rxtotal++;
4577 /*****************************************************************************/
4580 * Process all characters in the RX FIFO of the UART. Check all char
4581 * status bytes as well, and process as required. We need to check
4582 * all bytes in the FIFO, in case some more enter the FIFO while we
4583 * are here. To get the exact character error type we need to switch
4584 * into CHAR error mode (that is why we need to make sure we empty
4588 static void stl_sc26198rxbadchars(struct stlport *portp)
4590 unsigned char status, mr1;
4594 * To get the precise error type for each character we must switch
4595 * back into CHAR error mode.
4597 mr1 = stl_sc26198getreg(portp, MR1);
4598 stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
4600 while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
4601 stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
4602 ch = stl_sc26198getreg(portp, RXFIFO);
4603 stl_sc26198rxbadch(portp, status, ch);
4607 * To get correct interrupt class we must switch back into BLOCK
4610 stl_sc26198setreg(portp, MR1, mr1);
4613 /*****************************************************************************/
4616 * Other interrupt handler. This includes modem signals, flow
4617 * control actions, etc. Most stuff is left to off-level interrupt
4621 static void stl_sc26198otherisr(struct stlport *portp, unsigned int iack)
4623 unsigned char cir, ipr, xisr;
4625 pr_debug("stl_sc26198otherisr(portp=%p,iack=%x)\n", portp, iack);
4627 cir = stl_sc26198getglobreg(portp, CIR);
4629 switch (cir & CIR_SUBTYPEMASK) {
4631 ipr = stl_sc26198getreg(portp, IPR);
4632 if (ipr & IPR_DCDCHANGE) {
4633 stl_cd_change(portp);
4634 portp->stats.modem++;
4637 case CIR_SUBXONXOFF:
4638 xisr = stl_sc26198getreg(portp, XISR);
4639 if (xisr & XISR_RXXONGOT) {
4640 set_bit(ASYI_TXFLOWED, &portp->istate);
4641 portp->stats.txxoff++;
4643 if (xisr & XISR_RXXOFFGOT) {
4644 clear_bit(ASYI_TXFLOWED, &portp->istate);
4645 portp->stats.txxon++;
4649 stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
4650 stl_sc26198rxbadchars(portp);
4657 static void stl_free_isabrds(void)
4659 struct stlbrd *brdp;
4662 for (i = 0; i < stl_nrbrds; i++) {
4663 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4666 free_irq(brdp->irq, brdp);
4668 stl_cleanup_panels(brdp);
4670 release_region(brdp->ioaddr1, brdp->iosize1);
4671 if (brdp->iosize2 > 0)
4672 release_region(brdp->ioaddr2, brdp->iosize2);
4680 * Loadable module initialization stuff.
4682 static int __init stallion_module_init(void)
4684 struct stlbrd *brdp;
4685 struct stlconf conf;
4689 printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
4691 spin_lock_init(&stallion_lock);
4692 spin_lock_init(&brd_lock);
4694 stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4700 stl_serial->owner = THIS_MODULE;
4701 stl_serial->driver_name = stl_drvname;
4702 stl_serial->name = "ttyE";
4703 stl_serial->major = STL_SERIALMAJOR;
4704 stl_serial->minor_start = 0;
4705 stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
4706 stl_serial->subtype = SERIAL_TYPE_NORMAL;
4707 stl_serial->init_termios = stl_deftermios;
4708 stl_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4709 tty_set_operations(stl_serial, &stl_ops);
4711 retval = tty_register_driver(stl_serial);
4713 printk("STALLION: failed to register serial driver\n");
4718 * Find any dynamically supported boards. That is via module load
4721 for (i = stl_nrbrds; i < stl_nargs; i++) {
4722 memset(&conf, 0, sizeof(conf));
4723 if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
4725 if ((brdp = stl_allocbrd()) == NULL)
4728 brdp->brdtype = conf.brdtype;
4729 brdp->ioaddr1 = conf.ioaddr1;
4730 brdp->ioaddr2 = conf.ioaddr2;
4731 brdp->irq = conf.irq;
4732 brdp->irqtype = conf.irqtype;
4733 stl_brds[brdp->brdnr] = brdp;
4734 if (stl_brdinit(brdp)) {
4735 stl_brds[brdp->brdnr] = NULL;
4738 for (j = 0; j < brdp->nrports; j++)
4739 tty_register_device(stl_serial,
4740 brdp->brdnr * STL_MAXPORTS + j, NULL);
4745 /* this has to be _after_ isa finding because of locking */
4746 retval = pci_register_driver(&stl_pcidriver);
4747 if (retval && stl_nrbrds == 0) {
4748 printk(KERN_ERR "STALLION: can't register pci driver\n");
4753 * Set up a character driver for per board stuff. This is mainly used
4754 * to do stats ioctls on the ports.
4756 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
4757 printk("STALLION: failed to register serial board device\n");
4759 stallion_class = class_create(THIS_MODULE, "staliomem");
4760 if (IS_ERR(stallion_class))
4761 printk("STALLION: failed to create class\n");
4762 for (i = 0; i < 4; i++)
4763 device_create(stallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4768 tty_unregister_driver(stl_serial);
4770 put_tty_driver(stl_serial);
4775 static void __exit stallion_module_exit(void)
4777 struct stlbrd *brdp;
4780 pr_debug("cleanup_module()\n");
4782 printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
4786 * Free up all allocated resources used by the ports. This includes
4787 * memory and interrupts. As part of this process we will also do
4788 * a hangup on every open port - to try to flush out any processes
4789 * hanging onto ports.
4791 for (i = 0; i < stl_nrbrds; i++) {
4792 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4794 for (j = 0; j < brdp->nrports; j++)
4795 tty_unregister_device(stl_serial,
4796 brdp->brdnr * STL_MAXPORTS + j);
4799 for (i = 0; i < 4; i++)
4800 device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
4801 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4802 class_destroy(stallion_class);
4804 pci_unregister_driver(&stl_pcidriver);
4808 tty_unregister_driver(stl_serial);
4809 put_tty_driver(stl_serial);
4812 module_init(stallion_module_init);
4813 module_exit(stallion_module_exit);
4815 MODULE_AUTHOR("Greg Ungerer");
4816 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
4817 MODULE_LICENSE("GPL");