1 /*****************************************************************************/
4 * stallion.c -- stallion multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/serial.h>
35 #include <linux/cd1400.h>
36 #include <linux/sc26198.h>
37 #include <linux/comstats.h>
38 #include <linux/stallion.h>
39 #include <linux/ioport.h>
40 #include <linux/init.h>
41 #include <linux/smp_lock.h>
42 #include <linux/device.h>
43 #include <linux/delay.h>
44 #include <linux/ctype.h>
47 #include <asm/uaccess.h>
49 #include <linux/pci.h>
51 /*****************************************************************************/
54 * Define different board types. Use the standard Stallion "assigned"
55 * board numbers. Boards supported in this driver are abbreviated as
56 * EIO = EasyIO and ECH = EasyConnection 8/32.
62 #define BRD_ECH64PCI 27
63 #define BRD_EASYIOPCI 28
69 unsigned long memaddr;
74 static unsigned int stl_nrbrds;
76 /*****************************************************************************/
79 * Define some important driver characteristics. Device major numbers
80 * allocated as per Linux Device Registry.
82 #ifndef STL_SIOMEMMAJOR
83 #define STL_SIOMEMMAJOR 28
85 #ifndef STL_SERIALMAJOR
86 #define STL_SERIALMAJOR 24
88 #ifndef STL_CALLOUTMAJOR
89 #define STL_CALLOUTMAJOR 25
93 * Set the TX buffer size. Bigger is better, but we don't want
94 * to chew too much memory with buffers!
96 #define STL_TXBUFLOW 512
97 #define STL_TXBUFSIZE 4096
99 /*****************************************************************************/
102 * Define our local driver identity first. Set up stuff to deal with
103 * all the local structures required by a serial tty driver.
105 static char *stl_drvtitle = "Stallion Multiport Serial Driver";
106 static char *stl_drvname = "stallion";
107 static char *stl_drvversion = "5.6.0";
109 static struct tty_driver *stl_serial;
112 * Define a local default termios struct. All ports will be created
113 * with this termios initially. Basically all it defines is a raw port
114 * at 9600, 8 data bits, 1 stop bit.
116 static struct ktermios stl_deftermios = {
117 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
124 * Define global place to put buffer overflow characters.
126 static char stl_unwanted[SC26198_RXFIFOSIZE];
128 /*****************************************************************************/
130 static DEFINE_MUTEX(stl_brdslock);
131 static struct stlbrd *stl_brds[STL_MAXBRDS];
134 * Per board state flags. Used with the state field of the board struct.
135 * Not really much here!
137 #define BRD_FOUND 0x1
138 #define STL_PROBED 0x2
142 * Define the port structure istate flags. These set of flags are
143 * modified at interrupt time - so setting and reseting them needs
144 * to be atomic. Use the bit clear/setting routines for this.
146 #define ASYI_TXBUSY 1
148 #define ASYI_TXFLOWED 3
151 * Define an array of board names as printable strings. Handy for
152 * referencing boards when printing trace and stuff.
154 static char *stl_brdnames[] = {
186 /*****************************************************************************/
189 * Define some string labels for arguments passed from the module
190 * load line. These allow for easy board definitions, and easy
191 * modification of the io, memory and irq resoucres.
193 static unsigned int stl_nargs;
194 static char *board0[4];
195 static char *board1[4];
196 static char *board2[4];
197 static char *board3[4];
199 static char **stl_brdsp[] = {
207 * Define a set of common board names, and types. This is used to
208 * parse any module arguments.
215 { "easyio", BRD_EASYIO },
216 { "eio", BRD_EASYIO },
217 { "20", BRD_EASYIO },
218 { "ec8/32", BRD_ECH },
219 { "ec8/32-at", BRD_ECH },
220 { "ec8/32-isa", BRD_ECH },
222 { "echat", BRD_ECH },
224 { "ec8/32-mc", BRD_ECHMC },
225 { "ec8/32-mca", BRD_ECHMC },
226 { "echmc", BRD_ECHMC },
227 { "echmca", BRD_ECHMC },
229 { "ec8/32-pc", BRD_ECHPCI },
230 { "ec8/32-pci", BRD_ECHPCI },
231 { "26", BRD_ECHPCI },
232 { "ec8/64-pc", BRD_ECH64PCI },
233 { "ec8/64-pci", BRD_ECH64PCI },
234 { "ech-pci", BRD_ECH64PCI },
235 { "echpci", BRD_ECH64PCI },
236 { "echpc", BRD_ECH64PCI },
237 { "27", BRD_ECH64PCI },
238 { "easyio-pc", BRD_EASYIOPCI },
239 { "easyio-pci", BRD_EASYIOPCI },
240 { "eio-pci", BRD_EASYIOPCI },
241 { "eiopci", BRD_EASYIOPCI },
242 { "28", BRD_EASYIOPCI },
246 * Define the module agruments.
249 module_param_array(board0, charp, &stl_nargs, 0);
250 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
251 module_param_array(board1, charp, &stl_nargs, 0);
252 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
253 module_param_array(board2, charp, &stl_nargs, 0);
254 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
255 module_param_array(board3, charp, &stl_nargs, 0);
256 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
258 /*****************************************************************************/
261 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
262 * to the directly accessible io ports of these boards (not the uarts -
263 * they are in cd1400.h and sc26198.h).
265 #define EIO_8PORTRS 0x04
266 #define EIO_4PORTRS 0x05
267 #define EIO_8PORTDI 0x00
268 #define EIO_8PORTM 0x06
270 #define EIO_IDBITMASK 0x07
272 #define EIO_BRDMASK 0xf0
275 #define ID_BRD16 0x30
277 #define EIO_INTRPEND 0x08
278 #define EIO_INTEDGE 0x00
279 #define EIO_INTLEVEL 0x08
283 #define ECH_IDBITMASK 0xe0
284 #define ECH_BRDENABLE 0x08
285 #define ECH_BRDDISABLE 0x00
286 #define ECH_INTENABLE 0x01
287 #define ECH_INTDISABLE 0x00
288 #define ECH_INTLEVEL 0x02
289 #define ECH_INTEDGE 0x00
290 #define ECH_INTRPEND 0x01
291 #define ECH_BRDRESET 0x01
293 #define ECHMC_INTENABLE 0x01
294 #define ECHMC_BRDRESET 0x02
296 #define ECH_PNLSTATUS 2
297 #define ECH_PNL16PORT 0x20
298 #define ECH_PNLIDMASK 0x07
299 #define ECH_PNLXPID 0x40
300 #define ECH_PNLINTRPEND 0x80
302 #define ECH_ADDR2MASK 0x1e0
305 * Define the vector mapping bits for the programmable interrupt board
306 * hardware. These bits encode the interrupt for the board to use - it
307 * is software selectable (except the EIO-8M).
309 static unsigned char stl_vecmap[] = {
310 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
311 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
315 * Lock ordering is that you may not take stallion_lock holding
319 static spinlock_t brd_lock; /* Guard the board mapping */
320 static spinlock_t stallion_lock; /* Guard the tty driver */
323 * Set up enable and disable macros for the ECH boards. They require
324 * the secondary io address space to be activated and deactivated.
325 * This way all ECH boards can share their secondary io region.
326 * If this is an ECH-PCI board then also need to set the page pointer
327 * to point to the correct page.
329 #define BRDENABLE(brdnr,pagenr) \
330 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
331 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
332 stl_brds[(brdnr)]->ioctrl); \
333 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
334 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
336 #define BRDDISABLE(brdnr) \
337 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
338 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
339 stl_brds[(brdnr)]->ioctrl);
341 #define STL_CD1400MAXBAUD 230400
342 #define STL_SC26198MAXBAUD 460800
344 #define STL_BAUDBASE 115200
345 #define STL_CLOSEDELAY (5 * HZ / 10)
347 /*****************************************************************************/
350 * Define the Stallion PCI vendor and device IDs.
352 #ifndef PCI_VENDOR_ID_STALLION
353 #define PCI_VENDOR_ID_STALLION 0x124d
355 #ifndef PCI_DEVICE_ID_ECHPCI832
356 #define PCI_DEVICE_ID_ECHPCI832 0x0000
358 #ifndef PCI_DEVICE_ID_ECHPCI864
359 #define PCI_DEVICE_ID_ECHPCI864 0x0002
361 #ifndef PCI_DEVICE_ID_EIOPCI
362 #define PCI_DEVICE_ID_EIOPCI 0x0003
366 * Define structure to hold all Stallion PCI boards.
369 static struct pci_device_id stl_pcibrds[] = {
370 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864),
371 .driver_data = BRD_ECH64PCI },
372 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI),
373 .driver_data = BRD_EASYIOPCI },
374 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832),
375 .driver_data = BRD_ECHPCI },
376 { PCI_DEVICE(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410),
377 .driver_data = BRD_ECHPCI },
380 MODULE_DEVICE_TABLE(pci, stl_pcibrds);
382 /*****************************************************************************/
385 * Define macros to extract a brd/port number from a minor number.
387 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
388 #define MINOR2PORT(min) ((min) & 0x3f)
391 * Define a baud rate table that converts termios baud rate selector
392 * into the actual baud rate value. All baud rate calculations are
393 * based on the actual baud rate required.
395 static unsigned int stl_baudrates[] = {
396 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
397 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
400 /*****************************************************************************/
403 * Declare all those functions in this driver!
406 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
407 static int stl_brdinit(struct stlbrd *brdp);
408 static int stl_getportstats(struct stlport *portp, comstats_t __user *cp);
409 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp);
410 static int stl_waitcarrier(struct stlport *portp, struct file *filp);
413 * CD1400 uart specific handling functions.
415 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value);
416 static int stl_cd1400getreg(struct stlport *portp, int regnr);
417 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value);
418 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
419 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
420 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp);
421 static int stl_cd1400getsignals(struct stlport *portp);
422 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts);
423 static void stl_cd1400ccrwait(struct stlport *portp);
424 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx);
425 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx);
426 static void stl_cd1400disableintrs(struct stlport *portp);
427 static void stl_cd1400sendbreak(struct stlport *portp, int len);
428 static void stl_cd1400flowctrl(struct stlport *portp, int state);
429 static void stl_cd1400sendflow(struct stlport *portp, int state);
430 static void stl_cd1400flush(struct stlport *portp);
431 static int stl_cd1400datastate(struct stlport *portp);
432 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase);
433 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase);
434 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr);
435 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr);
436 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr);
438 static inline int stl_cd1400breakisr(struct stlport *portp, int ioaddr);
441 * SC26198 uart specific handling functions.
443 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value);
444 static int stl_sc26198getreg(struct stlport *portp, int regnr);
445 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value);
446 static int stl_sc26198getglobreg(struct stlport *portp, int regnr);
447 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
448 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
449 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp);
450 static int stl_sc26198getsignals(struct stlport *portp);
451 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts);
452 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx);
453 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx);
454 static void stl_sc26198disableintrs(struct stlport *portp);
455 static void stl_sc26198sendbreak(struct stlport *portp, int len);
456 static void stl_sc26198flowctrl(struct stlport *portp, int state);
457 static void stl_sc26198sendflow(struct stlport *portp, int state);
458 static void stl_sc26198flush(struct stlport *portp);
459 static int stl_sc26198datastate(struct stlport *portp);
460 static void stl_sc26198wait(struct stlport *portp);
461 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty);
462 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase);
463 static void stl_sc26198txisr(struct stlport *port);
464 static void stl_sc26198rxisr(struct stlport *port, unsigned int iack);
465 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch);
466 static void stl_sc26198rxbadchars(struct stlport *portp);
467 static void stl_sc26198otherisr(struct stlport *port, unsigned int iack);
469 /*****************************************************************************/
472 * Generic UART support structure.
474 typedef struct uart {
475 int (*panelinit)(struct stlbrd *brdp, struct stlpanel *panelp);
476 void (*portinit)(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
477 void (*setport)(struct stlport *portp, struct ktermios *tiosp);
478 int (*getsignals)(struct stlport *portp);
479 void (*setsignals)(struct stlport *portp, int dtr, int rts);
480 void (*enablerxtx)(struct stlport *portp, int rx, int tx);
481 void (*startrxtx)(struct stlport *portp, int rx, int tx);
482 void (*disableintrs)(struct stlport *portp);
483 void (*sendbreak)(struct stlport *portp, int len);
484 void (*flowctrl)(struct stlport *portp, int state);
485 void (*sendflow)(struct stlport *portp, int state);
486 void (*flush)(struct stlport *portp);
487 int (*datastate)(struct stlport *portp);
488 void (*intr)(struct stlpanel *panelp, unsigned int iobase);
492 * Define some macros to make calling these functions nice and clean.
494 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
495 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
496 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
497 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
498 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
499 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
500 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
501 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
502 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
503 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
504 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
505 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
506 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
508 /*****************************************************************************/
511 * CD1400 UART specific data initialization.
513 static uart_t stl_cd1400uart = {
517 stl_cd1400getsignals,
518 stl_cd1400setsignals,
519 stl_cd1400enablerxtx,
521 stl_cd1400disableintrs,
531 * Define the offsets within the register bank of a cd1400 based panel.
532 * These io address offsets are common to the EasyIO board as well.
540 #define EREG_BANKSIZE 8
542 #define CD1400_CLK 25000000
543 #define CD1400_CLK8M 20000000
546 * Define the cd1400 baud rate clocks. These are used when calculating
547 * what clock and divisor to use for the required baud rate. Also
548 * define the maximum baud rate allowed, and the default base baud.
550 static int stl_cd1400clkdivs[] = {
551 CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
554 /*****************************************************************************/
557 * SC26198 UART specific data initization.
559 static uart_t stl_sc26198uart = {
560 stl_sc26198panelinit,
563 stl_sc26198getsignals,
564 stl_sc26198setsignals,
565 stl_sc26198enablerxtx,
566 stl_sc26198startrxtx,
567 stl_sc26198disableintrs,
568 stl_sc26198sendbreak,
572 stl_sc26198datastate,
577 * Define the offsets within the register bank of a sc26198 based panel.
585 #define XP_BANKSIZE 4
588 * Define the sc26198 baud rate table. Offsets within the table
589 * represent the actual baud rate selector of sc26198 registers.
591 static unsigned int sc26198_baudtable[] = {
592 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
593 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
594 230400, 460800, 921600
597 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
599 /*****************************************************************************/
602 * Define the driver info for a user level control device. Used mainly
603 * to get at port stats - only not using the port device itself.
605 static const struct file_operations stl_fsiomem = {
606 .owner = THIS_MODULE,
607 .ioctl = stl_memioctl,
610 static struct class *stallion_class;
612 static void stl_cd_change(struct stlport *portp)
614 unsigned int oldsigs = portp->sigs;
619 portp->sigs = stl_getsignals(portp);
621 if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
622 wake_up_interruptible(&portp->open_wait);
624 if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0))
625 if (portp->flags & ASYNC_CHECK_CD)
626 tty_hangup(portp->tty);
630 * Check for any arguments passed in on the module load command line.
633 /*****************************************************************************/
636 * Parse the supplied argument string, into the board conf struct.
639 static int __init stl_parsebrd(struct stlconf *confp, char **argp)
644 pr_debug("stl_parsebrd(confp=%p,argp=%p)\n", confp, argp);
646 if ((argp[0] == NULL) || (*argp[0] == 0))
649 for (sp = argp[0], i = 0; (*sp != 0) && (i < 25); sp++, i++)
652 for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++)
653 if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
656 if (i == ARRAY_SIZE(stl_brdstr)) {
657 printk("STALLION: unknown board name, %s?\n", argp[0]);
661 confp->brdtype = stl_brdstr[i].type;
664 if ((argp[i] != NULL) && (*argp[i] != 0))
665 confp->ioaddr1 = simple_strtoul(argp[i], NULL, 0);
667 if (confp->brdtype == BRD_ECH) {
668 if ((argp[i] != NULL) && (*argp[i] != 0))
669 confp->ioaddr2 = simple_strtoul(argp[i], NULL, 0);
672 if ((argp[i] != NULL) && (*argp[i] != 0))
673 confp->irq = simple_strtoul(argp[i], NULL, 0);
677 /*****************************************************************************/
680 * Allocate a new board structure. Fill out the basic info in it.
683 static struct stlbrd *stl_allocbrd(void)
687 brdp = kzalloc(sizeof(struct stlbrd), GFP_KERNEL);
689 printk("STALLION: failed to allocate memory (size=%Zd)\n",
690 sizeof(struct stlbrd));
694 brdp->magic = STL_BOARDMAGIC;
698 /*****************************************************************************/
700 static int stl_open(struct tty_struct *tty, struct file *filp)
702 struct stlport *portp;
704 unsigned int minordev, brdnr, panelnr;
707 pr_debug("stl_open(tty=%p,filp=%p): device=%s\n", tty, filp, tty->name);
709 minordev = tty->index;
710 brdnr = MINOR2BRD(minordev);
711 if (brdnr >= stl_nrbrds)
713 brdp = stl_brds[brdnr];
716 minordev = MINOR2PORT(minordev);
717 for (portnr = -1, panelnr = 0; panelnr < STL_MAXPANELS; panelnr++) {
718 if (brdp->panels[panelnr] == NULL)
720 if (minordev < brdp->panels[panelnr]->nrports) {
724 minordev -= brdp->panels[panelnr]->nrports;
729 portp = brdp->panels[panelnr]->ports[portnr];
734 * On the first open of the device setup the port hardware, and
735 * initialize the per port data structure.
738 tty->driver_data = portp;
741 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
742 if (!portp->tx.buf) {
743 portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
746 portp->tx.head = portp->tx.buf;
747 portp->tx.tail = portp->tx.buf;
749 stl_setport(portp, tty->termios);
750 portp->sigs = stl_getsignals(portp);
751 stl_setsignals(portp, 1, 1);
752 stl_enablerxtx(portp, 1, 1);
753 stl_startrxtx(portp, 1, 0);
754 clear_bit(TTY_IO_ERROR, &tty->flags);
755 portp->flags |= ASYNC_INITIALIZED;
759 * Check if this port is in the middle of closing. If so then wait
760 * until it is closed then return error status, based on flag settings.
761 * The sleep here does not need interrupt protection since the wakeup
762 * for it is done with the same context.
764 if (portp->flags & ASYNC_CLOSING) {
765 interruptible_sleep_on(&portp->close_wait);
766 if (portp->flags & ASYNC_HUP_NOTIFY)
772 * Based on type of open being done check if it can overlap with any
773 * previous opens still in effect. If we are a normal serial device
774 * then also we might have to wait for carrier.
776 if (!(filp->f_flags & O_NONBLOCK))
777 if ((rc = stl_waitcarrier(portp, filp)) != 0)
780 portp->flags |= ASYNC_NORMAL_ACTIVE;
785 /*****************************************************************************/
788 * Possibly need to wait for carrier (DCD signal) to come high. Say
789 * maybe because if we are clocal then we don't need to wait...
792 static int stl_waitcarrier(struct stlport *portp, struct file *filp)
797 pr_debug("stl_waitcarrier(portp=%p,filp=%p)\n", portp, filp);
802 spin_lock_irqsave(&stallion_lock, flags);
804 if (portp->tty->termios->c_cflag & CLOCAL)
807 portp->openwaitcnt++;
808 if (! tty_hung_up_p(filp))
812 /* Takes brd_lock internally */
813 stl_setsignals(portp, 1, 1);
814 if (tty_hung_up_p(filp) ||
815 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
816 if (portp->flags & ASYNC_HUP_NOTIFY)
822 if (((portp->flags & ASYNC_CLOSING) == 0) &&
823 (doclocal || (portp->sigs & TIOCM_CD)))
825 if (signal_pending(current)) {
830 interruptible_sleep_on(&portp->open_wait);
833 if (! tty_hung_up_p(filp))
835 portp->openwaitcnt--;
836 spin_unlock_irqrestore(&stallion_lock, flags);
841 /*****************************************************************************/
843 static void stl_flushbuffer(struct tty_struct *tty)
845 struct stlport *portp;
847 pr_debug("stl_flushbuffer(tty=%p)\n", tty);
851 portp = tty->driver_data;
859 /*****************************************************************************/
861 static void stl_waituntilsent(struct tty_struct *tty, int timeout)
863 struct stlport *portp;
866 pr_debug("stl_waituntilsent(tty=%p,timeout=%d)\n", tty, timeout);
870 portp = tty->driver_data;
876 tend = jiffies + timeout;
879 while (stl_datastate(portp)) {
880 if (signal_pending(current))
882 msleep_interruptible(20);
883 if (time_after_eq(jiffies, tend))
889 /*****************************************************************************/
891 static void stl_close(struct tty_struct *tty, struct file *filp)
893 struct stlport *portp;
896 pr_debug("stl_close(tty=%p,filp=%p)\n", tty, filp);
898 portp = tty->driver_data;
902 spin_lock_irqsave(&stallion_lock, flags);
903 if (tty_hung_up_p(filp)) {
904 spin_unlock_irqrestore(&stallion_lock, flags);
907 if ((tty->count == 1) && (portp->refcount != 1))
909 if (portp->refcount-- > 1) {
910 spin_unlock_irqrestore(&stallion_lock, flags);
915 portp->flags |= ASYNC_CLOSING;
918 * May want to wait for any data to drain before closing. The BUSY
919 * flag keeps track of whether we are still sending or not - it is
920 * very accurate for the cd1400, not quite so for the sc26198.
921 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
925 spin_unlock_irqrestore(&stallion_lock, flags);
927 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
928 tty_wait_until_sent(tty, portp->closing_wait);
929 stl_waituntilsent(tty, (HZ / 2));
932 spin_lock_irqsave(&stallion_lock, flags);
933 portp->flags &= ~ASYNC_INITIALIZED;
934 spin_unlock_irqrestore(&stallion_lock, flags);
936 stl_disableintrs(portp);
937 if (tty->termios->c_cflag & HUPCL)
938 stl_setsignals(portp, 0, 0);
939 stl_enablerxtx(portp, 0, 0);
940 stl_flushbuffer(tty);
942 if (portp->tx.buf != NULL) {
943 kfree(portp->tx.buf);
944 portp->tx.buf = NULL;
945 portp->tx.head = NULL;
946 portp->tx.tail = NULL;
948 set_bit(TTY_IO_ERROR, &tty->flags);
949 tty_ldisc_flush(tty);
954 if (portp->openwaitcnt) {
955 if (portp->close_delay)
956 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
957 wake_up_interruptible(&portp->open_wait);
960 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
961 wake_up_interruptible(&portp->close_wait);
964 /*****************************************************************************/
967 * Write routine. Take data and stuff it in to the TX ring queue.
968 * If transmit interrupts are not running then start them.
971 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
973 struct stlport *portp;
974 unsigned int len, stlen;
975 unsigned char *chbuf;
978 pr_debug("stl_write(tty=%p,buf=%p,count=%d)\n", tty, buf, count);
980 portp = tty->driver_data;
983 if (portp->tx.buf == NULL)
987 * If copying direct from user space we must cater for page faults,
988 * causing us to "sleep" here for a while. To handle this copy in all
989 * the data we need now, into a local buffer. Then when we got it all
990 * copy it into the TX buffer.
992 chbuf = (unsigned char *) buf;
994 head = portp->tx.head;
995 tail = portp->tx.tail;
997 len = STL_TXBUFSIZE - (head - tail) - 1;
998 stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
1000 len = tail - head - 1;
1004 len = min(len, (unsigned int)count);
1007 stlen = min(len, stlen);
1008 memcpy(head, chbuf, stlen);
1013 if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
1014 head = portp->tx.buf;
1015 stlen = tail - head;
1018 portp->tx.head = head;
1020 clear_bit(ASYI_TXLOW, &portp->istate);
1021 stl_startrxtx(portp, -1, 1);
1026 /*****************************************************************************/
1028 static void stl_putchar(struct tty_struct *tty, unsigned char ch)
1030 struct stlport *portp;
1034 pr_debug("stl_putchar(tty=%p,ch=%x)\n", tty, ch);
1038 portp = tty->driver_data;
1041 if (portp->tx.buf == NULL)
1044 head = portp->tx.head;
1045 tail = portp->tx.tail;
1047 len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
1052 if (head >= (portp->tx.buf + STL_TXBUFSIZE))
1053 head = portp->tx.buf;
1055 portp->tx.head = head;
1058 /*****************************************************************************/
1061 * If there are any characters in the buffer then make sure that TX
1062 * interrupts are on and get'em out. Normally used after the putchar
1063 * routine has been called.
1066 static void stl_flushchars(struct tty_struct *tty)
1068 struct stlport *portp;
1070 pr_debug("stl_flushchars(tty=%p)\n", tty);
1074 portp = tty->driver_data;
1077 if (portp->tx.buf == NULL)
1080 stl_startrxtx(portp, -1, 1);
1083 /*****************************************************************************/
1085 static int stl_writeroom(struct tty_struct *tty)
1087 struct stlport *portp;
1090 pr_debug("stl_writeroom(tty=%p)\n", tty);
1094 portp = tty->driver_data;
1097 if (portp->tx.buf == NULL)
1100 head = portp->tx.head;
1101 tail = portp->tx.tail;
1102 return (head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1);
1105 /*****************************************************************************/
1108 * Return number of chars in the TX buffer. Normally we would just
1109 * calculate the number of chars in the buffer and return that, but if
1110 * the buffer is empty and TX interrupts are still on then we return
1111 * that the buffer still has 1 char in it. This way whoever called us
1112 * will not think that ALL chars have drained - since the UART still
1113 * must have some chars in it (we are busy after all).
1116 static int stl_charsinbuffer(struct tty_struct *tty)
1118 struct stlport *portp;
1122 pr_debug("stl_charsinbuffer(tty=%p)\n", tty);
1126 portp = tty->driver_data;
1129 if (portp->tx.buf == NULL)
1132 head = portp->tx.head;
1133 tail = portp->tx.tail;
1134 size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
1135 if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
1140 /*****************************************************************************/
1143 * Generate the serial struct info.
1146 static int stl_getserial(struct stlport *portp, struct serial_struct __user *sp)
1148 struct serial_struct sio;
1149 struct stlbrd *brdp;
1151 pr_debug("stl_getserial(portp=%p,sp=%p)\n", portp, sp);
1153 memset(&sio, 0, sizeof(struct serial_struct));
1154 sio.line = portp->portnr;
1155 sio.port = portp->ioaddr;
1156 sio.flags = portp->flags;
1157 sio.baud_base = portp->baud_base;
1158 sio.close_delay = portp->close_delay;
1159 sio.closing_wait = portp->closing_wait;
1160 sio.custom_divisor = portp->custom_divisor;
1162 if (portp->uartp == &stl_cd1400uart) {
1163 sio.type = PORT_CIRRUS;
1164 sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
1166 sio.type = PORT_UNKNOWN;
1167 sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
1170 brdp = stl_brds[portp->brdnr];
1172 sio.irq = brdp->irq;
1174 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
1177 /*****************************************************************************/
1180 * Set port according to the serial struct info.
1181 * At this point we do not do any auto-configure stuff, so we will
1182 * just quietly ignore any requests to change irq, etc.
1185 static int stl_setserial(struct stlport *portp, struct serial_struct __user *sp)
1187 struct serial_struct sio;
1189 pr_debug("stl_setserial(portp=%p,sp=%p)\n", portp, sp);
1191 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1193 if (!capable(CAP_SYS_ADMIN)) {
1194 if ((sio.baud_base != portp->baud_base) ||
1195 (sio.close_delay != portp->close_delay) ||
1196 ((sio.flags & ~ASYNC_USR_MASK) !=
1197 (portp->flags & ~ASYNC_USR_MASK)))
1201 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1202 (sio.flags & ASYNC_USR_MASK);
1203 portp->baud_base = sio.baud_base;
1204 portp->close_delay = sio.close_delay;
1205 portp->closing_wait = sio.closing_wait;
1206 portp->custom_divisor = sio.custom_divisor;
1207 stl_setport(portp, portp->tty->termios);
1211 /*****************************************************************************/
1213 static int stl_tiocmget(struct tty_struct *tty, struct file *file)
1215 struct stlport *portp;
1219 portp = tty->driver_data;
1222 if (tty->flags & (1 << TTY_IO_ERROR))
1225 return stl_getsignals(portp);
1228 static int stl_tiocmset(struct tty_struct *tty, struct file *file,
1229 unsigned int set, unsigned int clear)
1231 struct stlport *portp;
1232 int rts = -1, dtr = -1;
1236 portp = tty->driver_data;
1239 if (tty->flags & (1 << TTY_IO_ERROR))
1242 if (set & TIOCM_RTS)
1244 if (set & TIOCM_DTR)
1246 if (clear & TIOCM_RTS)
1248 if (clear & TIOCM_DTR)
1251 stl_setsignals(portp, dtr, rts);
1255 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1257 struct stlport *portp;
1260 void __user *argp = (void __user *)arg;
1262 pr_debug("stl_ioctl(tty=%p,file=%p,cmd=%x,arg=%lx)\n", tty, file, cmd,
1267 portp = tty->driver_data;
1271 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1272 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS))
1273 if (tty->flags & (1 << TTY_IO_ERROR))
1282 rc = stl_getserial(portp, argp);
1285 rc = stl_setserial(portp, argp);
1287 case COM_GETPORTSTATS:
1288 rc = stl_getportstats(portp, argp);
1290 case COM_CLRPORTSTATS:
1291 rc = stl_clrportstats(portp, argp);
1297 case TIOCSERGSTRUCT:
1298 case TIOCSERGETMULTI:
1299 case TIOCSERSETMULTI:
1308 /*****************************************************************************/
1311 * Start the transmitter again. Just turn TX interrupts back on.
1314 static void stl_start(struct tty_struct *tty)
1316 struct stlport *portp;
1318 pr_debug("stl_start(tty=%p)\n", tty);
1322 portp = tty->driver_data;
1325 stl_startrxtx(portp, -1, 1);
1328 /*****************************************************************************/
1330 static void stl_settermios(struct tty_struct *tty, struct ktermios *old)
1332 struct stlport *portp;
1333 struct ktermios *tiosp;
1335 pr_debug("stl_settermios(tty=%p,old=%p)\n", tty, old);
1339 portp = tty->driver_data;
1343 tiosp = tty->termios;
1344 if ((tiosp->c_cflag == old->c_cflag) &&
1345 (tiosp->c_iflag == old->c_iflag))
1348 stl_setport(portp, tiosp);
1349 stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
1351 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
1352 tty->hw_stopped = 0;
1355 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1356 wake_up_interruptible(&portp->open_wait);
1359 /*****************************************************************************/
1362 * Attempt to flow control who ever is sending us data. Based on termios
1363 * settings use software or/and hardware flow control.
1366 static void stl_throttle(struct tty_struct *tty)
1368 struct stlport *portp;
1370 pr_debug("stl_throttle(tty=%p)\n", tty);
1374 portp = tty->driver_data;
1377 stl_flowctrl(portp, 0);
1380 /*****************************************************************************/
1383 * Unflow control the device sending us data...
1386 static void stl_unthrottle(struct tty_struct *tty)
1388 struct stlport *portp;
1390 pr_debug("stl_unthrottle(tty=%p)\n", tty);
1394 portp = tty->driver_data;
1397 stl_flowctrl(portp, 1);
1400 /*****************************************************************************/
1403 * Stop the transmitter. Basically to do this we will just turn TX
1407 static void stl_stop(struct tty_struct *tty)
1409 struct stlport *portp;
1411 pr_debug("stl_stop(tty=%p)\n", tty);
1415 portp = tty->driver_data;
1418 stl_startrxtx(portp, -1, 0);
1421 /*****************************************************************************/
1424 * Hangup this port. This is pretty much like closing the port, only
1425 * a little more brutal. No waiting for data to drain. Shutdown the
1426 * port and maybe drop signals.
1429 static void stl_hangup(struct tty_struct *tty)
1431 struct stlport *portp;
1433 pr_debug("stl_hangup(tty=%p)\n", tty);
1437 portp = tty->driver_data;
1441 portp->flags &= ~ASYNC_INITIALIZED;
1442 stl_disableintrs(portp);
1443 if (tty->termios->c_cflag & HUPCL)
1444 stl_setsignals(portp, 0, 0);
1445 stl_enablerxtx(portp, 0, 0);
1446 stl_flushbuffer(tty);
1448 set_bit(TTY_IO_ERROR, &tty->flags);
1449 if (portp->tx.buf != NULL) {
1450 kfree(portp->tx.buf);
1451 portp->tx.buf = NULL;
1452 portp->tx.head = NULL;
1453 portp->tx.tail = NULL;
1456 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
1457 portp->refcount = 0;
1458 wake_up_interruptible(&portp->open_wait);
1461 /*****************************************************************************/
1463 static void stl_breakctl(struct tty_struct *tty, int state)
1465 struct stlport *portp;
1467 pr_debug("stl_breakctl(tty=%p,state=%d)\n", tty, state);
1471 portp = tty->driver_data;
1475 stl_sendbreak(portp, ((state == -1) ? 1 : 2));
1478 /*****************************************************************************/
1480 static void stl_sendxchar(struct tty_struct *tty, char ch)
1482 struct stlport *portp;
1484 pr_debug("stl_sendxchar(tty=%p,ch=%x)\n", tty, ch);
1488 portp = tty->driver_data;
1492 if (ch == STOP_CHAR(tty))
1493 stl_sendflow(portp, 0);
1494 else if (ch == START_CHAR(tty))
1495 stl_sendflow(portp, 1);
1497 stl_putchar(tty, ch);
1500 /*****************************************************************************/
1505 * Format info for a specified port. The line is deliberately limited
1506 * to 80 characters. (If it is too long it will be truncated, if too
1507 * short then padded with spaces).
1510 static int stl_portinfo(struct stlport *portp, int portnr, char *pos)
1516 sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d",
1517 portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
1518 (int) portp->stats.txtotal, (int) portp->stats.rxtotal);
1520 if (portp->stats.rxframing)
1521 sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing);
1522 if (portp->stats.rxparity)
1523 sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity);
1524 if (portp->stats.rxbreaks)
1525 sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks);
1526 if (portp->stats.rxoverrun)
1527 sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun);
1529 sigs = stl_getsignals(portp);
1530 cnt = sprintf(sp, "%s%s%s%s%s ",
1531 (sigs & TIOCM_RTS) ? "|RTS" : "",
1532 (sigs & TIOCM_CTS) ? "|CTS" : "",
1533 (sigs & TIOCM_DTR) ? "|DTR" : "",
1534 (sigs & TIOCM_CD) ? "|DCD" : "",
1535 (sigs & TIOCM_DSR) ? "|DSR" : "");
1539 for (cnt = sp - pos; cnt < (MAXLINE - 1); cnt++)
1542 pos[(MAXLINE - 2)] = '+';
1543 pos[(MAXLINE - 1)] = '\n';
1548 /*****************************************************************************/
1551 * Port info, read from the /proc file system.
1554 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
1556 struct stlbrd *brdp;
1557 struct stlpanel *panelp;
1558 struct stlport *portp;
1559 unsigned int brdnr, panelnr, portnr;
1560 int totalport, curoff, maxoff;
1563 pr_debug("stl_readproc(page=%p,start=%p,off=%lx,count=%d,eof=%p,"
1564 "data=%p\n", page, start, off, count, eof, data);
1571 pos += sprintf(pos, "%s: version %s", stl_drvtitle,
1573 while (pos < (page + MAXLINE - 1))
1580 * We scan through for each board, panel and port. The offset is
1581 * calculated on the fly, and irrelevant ports are skipped.
1583 for (brdnr = 0; brdnr < stl_nrbrds; brdnr++) {
1584 brdp = stl_brds[brdnr];
1587 if (brdp->state == 0)
1590 maxoff = curoff + (brdp->nrports * MAXLINE);
1591 if (off >= maxoff) {
1596 totalport = brdnr * STL_MAXPORTS;
1597 for (panelnr = 0; panelnr < brdp->nrpanels; panelnr++) {
1598 panelp = brdp->panels[panelnr];
1602 maxoff = curoff + (panelp->nrports * MAXLINE);
1603 if (off >= maxoff) {
1605 totalport += panelp->nrports;
1609 for (portnr = 0; portnr < panelp->nrports; portnr++,
1611 portp = panelp->ports[portnr];
1614 if (off >= (curoff += MAXLINE))
1616 if ((pos - page + MAXLINE) > count)
1618 pos += stl_portinfo(portp, totalport, pos);
1630 /*****************************************************************************/
1633 * All board interrupts are vectored through here first. This code then
1634 * calls off to the approrpriate board interrupt handlers.
1637 static irqreturn_t stl_intr(int irq, void *dev_id)
1639 struct stlbrd *brdp = dev_id;
1641 pr_debug("stl_intr(brdp=%p,irq=%d)\n", brdp, brdp->irq);
1643 return IRQ_RETVAL((* brdp->isr)(brdp));
1646 /*****************************************************************************/
1649 * Interrupt service routine for EasyIO board types.
1652 static int stl_eiointr(struct stlbrd *brdp)
1654 struct stlpanel *panelp;
1655 unsigned int iobase;
1658 spin_lock(&brd_lock);
1659 panelp = brdp->panels[0];
1660 iobase = panelp->iobase;
1661 while (inb(brdp->iostatus) & EIO_INTRPEND) {
1663 (* panelp->isr)(panelp, iobase);
1665 spin_unlock(&brd_lock);
1669 /*****************************************************************************/
1672 * Interrupt service routine for ECH-AT board types.
1675 static int stl_echatintr(struct stlbrd *brdp)
1677 struct stlpanel *panelp;
1678 unsigned int ioaddr, bnknr;
1681 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1683 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1685 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1686 ioaddr = brdp->bnkstataddr[bnknr];
1687 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1688 panelp = brdp->bnk2panel[bnknr];
1689 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1694 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
1699 /*****************************************************************************/
1702 * Interrupt service routine for ECH-MCA board types.
1705 static int stl_echmcaintr(struct stlbrd *brdp)
1707 struct stlpanel *panelp;
1708 unsigned int ioaddr, bnknr;
1711 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1713 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1714 ioaddr = brdp->bnkstataddr[bnknr];
1715 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1716 panelp = brdp->bnk2panel[bnknr];
1717 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1724 /*****************************************************************************/
1727 * Interrupt service routine for ECH-PCI board types.
1730 static int stl_echpciintr(struct stlbrd *brdp)
1732 struct stlpanel *panelp;
1733 unsigned int ioaddr, bnknr, recheck;
1738 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1739 outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
1740 ioaddr = brdp->bnkstataddr[bnknr];
1741 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1742 panelp = brdp->bnk2panel[bnknr];
1743 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1754 /*****************************************************************************/
1757 * Interrupt service routine for ECH-8/64-PCI board types.
1760 static int stl_echpci64intr(struct stlbrd *brdp)
1762 struct stlpanel *panelp;
1763 unsigned int ioaddr, bnknr;
1766 while (inb(brdp->ioctrl) & 0x1) {
1768 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1769 ioaddr = brdp->bnkstataddr[bnknr];
1770 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1771 panelp = brdp->bnk2panel[bnknr];
1772 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1780 /*****************************************************************************/
1783 * Initialize all the ports on a panel.
1786 static int __devinit stl_initports(struct stlbrd *brdp, struct stlpanel *panelp)
1788 struct stlport *portp;
1792 pr_debug("stl_initports(brdp=%p,panelp=%p)\n", brdp, panelp);
1794 chipmask = stl_panelinit(brdp, panelp);
1797 * All UART's are initialized (if found!). Now go through and setup
1798 * each ports data structures.
1800 for (i = 0; i < panelp->nrports; i++) {
1801 portp = kzalloc(sizeof(struct stlport), GFP_KERNEL);
1803 printk("STALLION: failed to allocate memory "
1804 "(size=%Zd)\n", sizeof(struct stlport));
1808 portp->magic = STL_PORTMAGIC;
1810 portp->brdnr = panelp->brdnr;
1811 portp->panelnr = panelp->panelnr;
1812 portp->uartp = panelp->uartp;
1813 portp->clk = brdp->clk;
1814 portp->baud_base = STL_BAUDBASE;
1815 portp->close_delay = STL_CLOSEDELAY;
1816 portp->closing_wait = 30 * HZ;
1817 init_waitqueue_head(&portp->open_wait);
1818 init_waitqueue_head(&portp->close_wait);
1819 portp->stats.brd = portp->brdnr;
1820 portp->stats.panel = portp->panelnr;
1821 portp->stats.port = portp->portnr;
1822 panelp->ports[i] = portp;
1823 stl_portinit(brdp, panelp, portp);
1829 static void stl_cleanup_panels(struct stlbrd *brdp)
1831 struct stlpanel *panelp;
1832 struct stlport *portp;
1835 for (j = 0; j < STL_MAXPANELS; j++) {
1836 panelp = brdp->panels[j];
1839 for (k = 0; k < STL_PORTSPERPANEL; k++) {
1840 portp = panelp->ports[k];
1843 if (portp->tty != NULL)
1844 stl_hangup(portp->tty);
1845 kfree(portp->tx.buf);
1852 /*****************************************************************************/
1855 * Try to find and initialize an EasyIO board.
1858 static int __devinit stl_initeio(struct stlbrd *brdp)
1860 struct stlpanel *panelp;
1861 unsigned int status;
1865 pr_debug("stl_initeio(brdp=%p)\n", brdp);
1867 brdp->ioctrl = brdp->ioaddr1 + 1;
1868 brdp->iostatus = brdp->ioaddr1 + 2;
1870 status = inb(brdp->iostatus);
1871 if ((status & EIO_IDBITMASK) == EIO_MK3)
1875 * Handle board specific stuff now. The real difference is PCI
1878 if (brdp->brdtype == BRD_EASYIOPCI) {
1879 brdp->iosize1 = 0x80;
1880 brdp->iosize2 = 0x80;
1881 name = "serial(EIO-PCI)";
1882 outb(0x41, (brdp->ioaddr2 + 0x4c));
1885 name = "serial(EIO)";
1886 if ((brdp->irq < 0) || (brdp->irq > 15) ||
1887 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
1888 printk("STALLION: invalid irq=%d for brd=%d\n",
1889 brdp->irq, brdp->brdnr);
1893 outb((stl_vecmap[brdp->irq] | EIO_0WS |
1894 ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
1899 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
1900 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
1901 "%x conflicts with another device\n", brdp->brdnr,
1906 if (brdp->iosize2 > 0)
1907 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
1908 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
1909 "address %x conflicts with another device\n",
1910 brdp->brdnr, brdp->ioaddr2);
1911 printk(KERN_WARNING "STALLION: Warning, also "
1912 "releasing board %d I/O address %x \n",
1913 brdp->brdnr, brdp->ioaddr1);
1918 * Everything looks OK, so let's go ahead and probe for the hardware.
1920 brdp->clk = CD1400_CLK;
1921 brdp->isr = stl_eiointr;
1924 switch (status & EIO_IDBITMASK) {
1926 brdp->clk = CD1400_CLK8M;
1936 switch (status & EIO_BRDMASK) {
1955 * We have verified that the board is actually present, so now we
1956 * can complete the setup.
1959 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
1961 printk(KERN_WARNING "STALLION: failed to allocate memory "
1962 "(size=%Zd)\n", sizeof(struct stlpanel));
1967 panelp->magic = STL_PANELMAGIC;
1968 panelp->brdnr = brdp->brdnr;
1969 panelp->panelnr = 0;
1970 panelp->nrports = brdp->nrports;
1971 panelp->iobase = brdp->ioaddr1;
1972 panelp->hwid = status;
1973 if ((status & EIO_IDBITMASK) == EIO_MK3) {
1974 panelp->uartp = &stl_sc26198uart;
1975 panelp->isr = stl_sc26198intr;
1977 panelp->uartp = &stl_cd1400uart;
1978 panelp->isr = stl_cd1400eiointr;
1981 brdp->panels[0] = panelp;
1983 brdp->state |= BRD_FOUND;
1984 brdp->hwid = status;
1985 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
1986 printk("STALLION: failed to register interrupt "
1987 "routine for %s irq=%d\n", name, brdp->irq);
1994 stl_cleanup_panels(brdp);
1996 if (brdp->iosize2 > 0)
1997 release_region(brdp->ioaddr2, brdp->iosize2);
1999 release_region(brdp->ioaddr1, brdp->iosize1);
2004 /*****************************************************************************/
2007 * Try to find an ECH board and initialize it. This code is capable of
2008 * dealing with all types of ECH board.
2011 static int __devinit stl_initech(struct stlbrd *brdp)
2013 struct stlpanel *panelp;
2014 unsigned int status, nxtid, ioaddr, conflict, panelnr, banknr, i;
2018 pr_debug("stl_initech(brdp=%p)\n", brdp);
2024 * Set up the initial board register contents for boards. This varies a
2025 * bit between the different board types. So we need to handle each
2026 * separately. Also do a check that the supplied IRQ is good.
2028 switch (brdp->brdtype) {
2031 brdp->isr = stl_echatintr;
2032 brdp->ioctrl = brdp->ioaddr1 + 1;
2033 brdp->iostatus = brdp->ioaddr1 + 1;
2034 status = inb(brdp->iostatus);
2035 if ((status & ECH_IDBITMASK) != ECH_ID) {
2039 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2040 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2041 printk("STALLION: invalid irq=%d for brd=%d\n",
2042 brdp->irq, brdp->brdnr);
2046 status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
2047 status |= (stl_vecmap[brdp->irq] << 1);
2048 outb((status | ECH_BRDRESET), brdp->ioaddr1);
2049 brdp->ioctrlval = ECH_INTENABLE |
2050 ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
2051 for (i = 0; i < 10; i++)
2052 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
2055 name = "serial(EC8/32)";
2056 outb(status, brdp->ioaddr1);
2060 brdp->isr = stl_echmcaintr;
2061 brdp->ioctrl = brdp->ioaddr1 + 0x20;
2062 brdp->iostatus = brdp->ioctrl;
2063 status = inb(brdp->iostatus);
2064 if ((status & ECH_IDBITMASK) != ECH_ID) {
2068 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2069 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2070 printk("STALLION: invalid irq=%d for brd=%d\n",
2071 brdp->irq, brdp->brdnr);
2075 outb(ECHMC_BRDRESET, brdp->ioctrl);
2076 outb(ECHMC_INTENABLE, brdp->ioctrl);
2078 name = "serial(EC8/32-MC)";
2082 brdp->isr = stl_echpciintr;
2083 brdp->ioctrl = brdp->ioaddr1 + 2;
2086 name = "serial(EC8/32-PCI)";
2090 brdp->isr = stl_echpci64intr;
2091 brdp->ioctrl = brdp->ioaddr2 + 0x40;
2092 outb(0x43, (brdp->ioaddr1 + 0x4c));
2093 brdp->iosize1 = 0x80;
2094 brdp->iosize2 = 0x80;
2095 name = "serial(EC8/64-PCI)";
2099 printk("STALLION: unknown board type=%d\n", brdp->brdtype);
2105 * Check boards for possible IO address conflicts and return fail status
2106 * if an IO conflict found.
2109 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2110 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2111 "%x conflicts with another device\n", brdp->brdnr,
2116 if (brdp->iosize2 > 0)
2117 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2118 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2119 "address %x conflicts with another device\n",
2120 brdp->brdnr, brdp->ioaddr2);
2121 printk(KERN_WARNING "STALLION: Warning, also "
2122 "releasing board %d I/O address %x \n",
2123 brdp->brdnr, brdp->ioaddr1);
2128 * Scan through the secondary io address space looking for panels.
2129 * As we find'em allocate and initialize panel structures for each.
2131 brdp->clk = CD1400_CLK;
2132 brdp->hwid = status;
2134 ioaddr = brdp->ioaddr2;
2139 for (i = 0; i < STL_MAXPANELS; i++) {
2140 if (brdp->brdtype == BRD_ECHPCI) {
2141 outb(nxtid, brdp->ioctrl);
2142 ioaddr = brdp->ioaddr2;
2144 status = inb(ioaddr + ECH_PNLSTATUS);
2145 if ((status & ECH_PNLIDMASK) != nxtid)
2147 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
2149 printk("STALLION: failed to allocate memory "
2150 "(size=%Zd)\n", sizeof(struct stlpanel));
2154 panelp->magic = STL_PANELMAGIC;
2155 panelp->brdnr = brdp->brdnr;
2156 panelp->panelnr = panelnr;
2157 panelp->iobase = ioaddr;
2158 panelp->pagenr = nxtid;
2159 panelp->hwid = status;
2160 brdp->bnk2panel[banknr] = panelp;
2161 brdp->bnkpageaddr[banknr] = nxtid;
2162 brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
2164 if (status & ECH_PNLXPID) {
2165 panelp->uartp = &stl_sc26198uart;
2166 panelp->isr = stl_sc26198intr;
2167 if (status & ECH_PNL16PORT) {
2168 panelp->nrports = 16;
2169 brdp->bnk2panel[banknr] = panelp;
2170 brdp->bnkpageaddr[banknr] = nxtid;
2171 brdp->bnkstataddr[banknr++] = ioaddr + 4 +
2174 panelp->nrports = 8;
2176 panelp->uartp = &stl_cd1400uart;
2177 panelp->isr = stl_cd1400echintr;
2178 if (status & ECH_PNL16PORT) {
2179 panelp->nrports = 16;
2180 panelp->ackmask = 0x80;
2181 if (brdp->brdtype != BRD_ECHPCI)
2182 ioaddr += EREG_BANKSIZE;
2183 brdp->bnk2panel[banknr] = panelp;
2184 brdp->bnkpageaddr[banknr] = ++nxtid;
2185 brdp->bnkstataddr[banknr++] = ioaddr +
2188 panelp->nrports = 8;
2189 panelp->ackmask = 0xc0;
2194 ioaddr += EREG_BANKSIZE;
2195 brdp->nrports += panelp->nrports;
2196 brdp->panels[panelnr++] = panelp;
2197 if ((brdp->brdtype != BRD_ECHPCI) &&
2198 (ioaddr >= (brdp->ioaddr2 + brdp->iosize2))) {
2204 brdp->nrpanels = panelnr;
2205 brdp->nrbnks = banknr;
2206 if (brdp->brdtype == BRD_ECH)
2207 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2209 brdp->state |= BRD_FOUND;
2210 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
2211 printk("STALLION: failed to register interrupt "
2212 "routine for %s irq=%d\n", name, brdp->irq);
2219 stl_cleanup_panels(brdp);
2220 if (brdp->iosize2 > 0)
2221 release_region(brdp->ioaddr2, brdp->iosize2);
2223 release_region(brdp->ioaddr1, brdp->iosize1);
2228 /*****************************************************************************/
2231 * Initialize and configure the specified board.
2232 * Scan through all the boards in the configuration and see what we
2233 * can find. Handle EIO and the ECH boards a little differently here
2234 * since the initial search and setup is very different.
2237 static int __devinit stl_brdinit(struct stlbrd *brdp)
2241 pr_debug("stl_brdinit(brdp=%p)\n", brdp);
2243 switch (brdp->brdtype) {
2246 retval = stl_initeio(brdp);
2254 retval = stl_initech(brdp);
2259 printk("STALLION: board=%d is unknown board type=%d\n",
2260 brdp->brdnr, brdp->brdtype);
2265 if ((brdp->state & BRD_FOUND) == 0) {
2266 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2267 stl_brdnames[brdp->brdtype], brdp->brdnr,
2268 brdp->ioaddr1, brdp->irq);
2272 for (i = 0; i < STL_MAXPANELS; i++)
2273 if (brdp->panels[i] != NULL)
2274 stl_initports(brdp, brdp->panels[i]);
2276 printk("STALLION: %s found, board=%d io=%x irq=%d "
2277 "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
2278 brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
2283 free_irq(brdp->irq, brdp);
2285 stl_cleanup_panels(brdp);
2287 release_region(brdp->ioaddr1, brdp->iosize1);
2288 if (brdp->iosize2 > 0)
2289 release_region(brdp->ioaddr2, brdp->iosize2);
2294 /*****************************************************************************/
2297 * Find the next available board number that is free.
2300 static int __devinit stl_getbrdnr(void)
2304 for (i = 0; i < STL_MAXBRDS; i++)
2305 if (stl_brds[i] == NULL) {
2306 if (i >= stl_nrbrds)
2314 /*****************************************************************************/
2316 * We have a Stallion board. Allocate a board structure and
2317 * initialize it. Read its IO and IRQ resources from PCI
2318 * configuration space.
2321 static int __devinit stl_pciprobe(struct pci_dev *pdev,
2322 const struct pci_device_id *ent)
2324 struct stlbrd *brdp;
2325 unsigned int i, brdtype = ent->driver_data;
2326 int brdnr, retval = -ENODEV;
2328 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE)
2331 retval = pci_enable_device(pdev);
2334 brdp = stl_allocbrd();
2339 mutex_lock(&stl_brdslock);
2340 brdnr = stl_getbrdnr();
2342 dev_err(&pdev->dev, "too many boards found, "
2343 "maximum supported %d\n", STL_MAXBRDS);
2344 mutex_unlock(&stl_brdslock);
2348 brdp->brdnr = (unsigned int)brdnr;
2349 stl_brds[brdp->brdnr] = brdp;
2350 mutex_unlock(&stl_brdslock);
2352 brdp->brdtype = brdtype;
2353 brdp->state |= STL_PROBED;
2356 * We have all resources from the board, so let's setup the actual
2357 * board structure now.
2361 brdp->ioaddr2 = pci_resource_start(pdev, 0);
2362 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2365 brdp->ioaddr2 = pci_resource_start(pdev, 2);
2366 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2369 brdp->ioaddr1 = pci_resource_start(pdev, 2);
2370 brdp->ioaddr2 = pci_resource_start(pdev, 1);
2373 dev_err(&pdev->dev, "unknown PCI board type=%u\n", brdtype);
2377 brdp->irq = pdev->irq;
2378 retval = stl_brdinit(brdp);
2382 pci_set_drvdata(pdev, brdp);
2384 for (i = 0; i < brdp->nrports; i++)
2385 tty_register_device(stl_serial,
2386 brdp->brdnr * STL_MAXPORTS + i, &pdev->dev);
2390 stl_brds[brdp->brdnr] = NULL;
2397 static void __devexit stl_pciremove(struct pci_dev *pdev)
2399 struct stlbrd *brdp = pci_get_drvdata(pdev);
2402 free_irq(brdp->irq, brdp);
2404 stl_cleanup_panels(brdp);
2406 release_region(brdp->ioaddr1, brdp->iosize1);
2407 if (brdp->iosize2 > 0)
2408 release_region(brdp->ioaddr2, brdp->iosize2);
2410 for (i = 0; i < brdp->nrports; i++)
2411 tty_unregister_device(stl_serial,
2412 brdp->brdnr * STL_MAXPORTS + i);
2414 stl_brds[brdp->brdnr] = NULL;
2418 static struct pci_driver stl_pcidriver = {
2420 .id_table = stl_pcibrds,
2421 .probe = stl_pciprobe,
2422 .remove = __devexit_p(stl_pciremove)
2425 /*****************************************************************************/
2428 * Return the board stats structure to user app.
2431 static int stl_getbrdstats(combrd_t __user *bp)
2433 combrd_t stl_brdstats;
2434 struct stlbrd *brdp;
2435 struct stlpanel *panelp;
2438 if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
2440 if (stl_brdstats.brd >= STL_MAXBRDS)
2442 brdp = stl_brds[stl_brdstats.brd];
2446 memset(&stl_brdstats, 0, sizeof(combrd_t));
2447 stl_brdstats.brd = brdp->brdnr;
2448 stl_brdstats.type = brdp->brdtype;
2449 stl_brdstats.hwid = brdp->hwid;
2450 stl_brdstats.state = brdp->state;
2451 stl_brdstats.ioaddr = brdp->ioaddr1;
2452 stl_brdstats.ioaddr2 = brdp->ioaddr2;
2453 stl_brdstats.irq = brdp->irq;
2454 stl_brdstats.nrpanels = brdp->nrpanels;
2455 stl_brdstats.nrports = brdp->nrports;
2456 for (i = 0; i < brdp->nrpanels; i++) {
2457 panelp = brdp->panels[i];
2458 stl_brdstats.panels[i].panel = i;
2459 stl_brdstats.panels[i].hwid = panelp->hwid;
2460 stl_brdstats.panels[i].nrports = panelp->nrports;
2463 return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
2466 /*****************************************************************************/
2469 * Resolve the referenced port number into a port struct pointer.
2472 static struct stlport *stl_getport(int brdnr, int panelnr, int portnr)
2474 struct stlbrd *brdp;
2475 struct stlpanel *panelp;
2477 if (brdnr < 0 || brdnr >= STL_MAXBRDS)
2479 brdp = stl_brds[brdnr];
2482 if (panelnr < 0 || (unsigned int)panelnr >= brdp->nrpanels)
2484 panelp = brdp->panels[panelnr];
2487 if (portnr < 0 || (unsigned int)portnr >= panelp->nrports)
2489 return panelp->ports[portnr];
2492 /*****************************************************************************/
2495 * Return the port stats structure to user app. A NULL port struct
2496 * pointer passed in means that we need to find out from the app
2497 * what port to get stats for (used through board control device).
2500 static int stl_getportstats(struct stlport *portp, comstats_t __user *cp)
2502 comstats_t stl_comstats;
2503 unsigned char *head, *tail;
2504 unsigned long flags;
2507 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2509 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2515 portp->stats.state = portp->istate;
2516 portp->stats.flags = portp->flags;
2517 portp->stats.hwid = portp->hwid;
2519 portp->stats.ttystate = 0;
2520 portp->stats.cflags = 0;
2521 portp->stats.iflags = 0;
2522 portp->stats.oflags = 0;
2523 portp->stats.lflags = 0;
2524 portp->stats.rxbuffered = 0;
2526 spin_lock_irqsave(&stallion_lock, flags);
2527 if (portp->tty != NULL)
2528 if (portp->tty->driver_data == portp) {
2529 portp->stats.ttystate = portp->tty->flags;
2530 /* No longer available as a statistic */
2531 portp->stats.rxbuffered = 1; /*portp->tty->flip.count; */
2532 if (portp->tty->termios != NULL) {
2533 portp->stats.cflags = portp->tty->termios->c_cflag;
2534 portp->stats.iflags = portp->tty->termios->c_iflag;
2535 portp->stats.oflags = portp->tty->termios->c_oflag;
2536 portp->stats.lflags = portp->tty->termios->c_lflag;
2539 spin_unlock_irqrestore(&stallion_lock, flags);
2541 head = portp->tx.head;
2542 tail = portp->tx.tail;
2543 portp->stats.txbuffered = (head >= tail) ? (head - tail) :
2544 (STL_TXBUFSIZE - (tail - head));
2546 portp->stats.signals = (unsigned long) stl_getsignals(portp);
2548 return copy_to_user(cp, &portp->stats,
2549 sizeof(comstats_t)) ? -EFAULT : 0;
2552 /*****************************************************************************/
2555 * Clear the port stats structure. We also return it zeroed out...
2558 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp)
2560 comstats_t stl_comstats;
2563 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2565 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2571 memset(&portp->stats, 0, sizeof(comstats_t));
2572 portp->stats.brd = portp->brdnr;
2573 portp->stats.panel = portp->panelnr;
2574 portp->stats.port = portp->portnr;
2575 return copy_to_user(cp, &portp->stats,
2576 sizeof(comstats_t)) ? -EFAULT : 0;
2579 /*****************************************************************************/
2582 * Return the entire driver ports structure to a user app.
2585 static int stl_getportstruct(struct stlport __user *arg)
2587 struct stlport stl_dummyport;
2588 struct stlport *portp;
2590 if (copy_from_user(&stl_dummyport, arg, sizeof(struct stlport)))
2592 portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
2593 stl_dummyport.portnr);
2596 return copy_to_user(arg, portp, sizeof(struct stlport)) ? -EFAULT : 0;
2599 /*****************************************************************************/
2602 * Return the entire driver board structure to a user app.
2605 static int stl_getbrdstruct(struct stlbrd __user *arg)
2607 struct stlbrd stl_dummybrd;
2608 struct stlbrd *brdp;
2610 if (copy_from_user(&stl_dummybrd, arg, sizeof(struct stlbrd)))
2612 if (stl_dummybrd.brdnr >= STL_MAXBRDS)
2614 brdp = stl_brds[stl_dummybrd.brdnr];
2617 return copy_to_user(arg, brdp, sizeof(struct stlbrd)) ? -EFAULT : 0;
2620 /*****************************************************************************/
2623 * The "staliomem" device is also required to do some special operations
2624 * on the board and/or ports. In this driver it is mostly used for stats
2628 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
2631 void __user *argp = (void __user *)arg;
2633 pr_debug("stl_memioctl(ip=%p,fp=%p,cmd=%x,arg=%lx)\n", ip, fp, cmd,arg);
2636 if (brdnr >= STL_MAXBRDS)
2641 case COM_GETPORTSTATS:
2642 rc = stl_getportstats(NULL, argp);
2644 case COM_CLRPORTSTATS:
2645 rc = stl_clrportstats(NULL, argp);
2647 case COM_GETBRDSTATS:
2648 rc = stl_getbrdstats(argp);
2651 rc = stl_getportstruct(argp);
2654 rc = stl_getbrdstruct(argp);
2664 static const struct tty_operations stl_ops = {
2668 .put_char = stl_putchar,
2669 .flush_chars = stl_flushchars,
2670 .write_room = stl_writeroom,
2671 .chars_in_buffer = stl_charsinbuffer,
2673 .set_termios = stl_settermios,
2674 .throttle = stl_throttle,
2675 .unthrottle = stl_unthrottle,
2678 .hangup = stl_hangup,
2679 .flush_buffer = stl_flushbuffer,
2680 .break_ctl = stl_breakctl,
2681 .wait_until_sent = stl_waituntilsent,
2682 .send_xchar = stl_sendxchar,
2683 .read_proc = stl_readproc,
2684 .tiocmget = stl_tiocmget,
2685 .tiocmset = stl_tiocmset,
2688 /*****************************************************************************/
2689 /* CD1400 HARDWARE FUNCTIONS */
2690 /*****************************************************************************/
2693 * These functions get/set/update the registers of the cd1400 UARTs.
2694 * Access to the cd1400 registers is via an address/data io port pair.
2695 * (Maybe should make this inline...)
2698 static int stl_cd1400getreg(struct stlport *portp, int regnr)
2700 outb((regnr + portp->uartaddr), portp->ioaddr);
2701 return inb(portp->ioaddr + EREG_DATA);
2704 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value)
2706 outb(regnr + portp->uartaddr, portp->ioaddr);
2707 outb(value, portp->ioaddr + EREG_DATA);
2710 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value)
2712 outb(regnr + portp->uartaddr, portp->ioaddr);
2713 if (inb(portp->ioaddr + EREG_DATA) != value) {
2714 outb(value, portp->ioaddr + EREG_DATA);
2720 /*****************************************************************************/
2723 * Inbitialize the UARTs in a panel. We don't care what sort of board
2724 * these ports are on - since the port io registers are almost
2725 * identical when dealing with ports.
2728 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
2732 int nrchips, uartaddr, ioaddr;
2733 unsigned long flags;
2735 pr_debug("stl_panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
2737 spin_lock_irqsave(&brd_lock, flags);
2738 BRDENABLE(panelp->brdnr, panelp->pagenr);
2741 * Check that each chip is present and started up OK.
2744 nrchips = panelp->nrports / CD1400_PORTS;
2745 for (i = 0; i < nrchips; i++) {
2746 if (brdp->brdtype == BRD_ECHPCI) {
2747 outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
2748 ioaddr = panelp->iobase;
2750 ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
2751 uartaddr = (i & 0x01) ? 0x080 : 0;
2752 outb((GFRCR + uartaddr), ioaddr);
2753 outb(0, (ioaddr + EREG_DATA));
2754 outb((CCR + uartaddr), ioaddr);
2755 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2756 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2757 outb((GFRCR + uartaddr), ioaddr);
2758 for (j = 0; j < CCR_MAXWAIT; j++)
2759 if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
2762 if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
2763 printk("STALLION: cd1400 not responding, "
2764 "brd=%d panel=%d chip=%d\n",
2765 panelp->brdnr, panelp->panelnr, i);
2768 chipmask |= (0x1 << i);
2769 outb((PPR + uartaddr), ioaddr);
2770 outb(PPR_SCALAR, (ioaddr + EREG_DATA));
2773 BRDDISABLE(panelp->brdnr);
2774 spin_unlock_irqrestore(&brd_lock, flags);
2778 /*****************************************************************************/
2781 * Initialize hardware specific port registers.
2784 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
2786 unsigned long flags;
2787 pr_debug("stl_cd1400portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
2790 if ((brdp == NULL) || (panelp == NULL) ||
2794 spin_lock_irqsave(&brd_lock, flags);
2795 portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
2796 (portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
2797 portp->uartaddr = (portp->portnr & 0x04) << 5;
2798 portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
2800 BRDENABLE(portp->brdnr, portp->pagenr);
2801 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
2802 stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
2803 portp->hwid = stl_cd1400getreg(portp, GFRCR);
2804 BRDDISABLE(portp->brdnr);
2805 spin_unlock_irqrestore(&brd_lock, flags);
2808 /*****************************************************************************/
2811 * Wait for the command register to be ready. We will poll this,
2812 * since it won't usually take too long to be ready.
2815 static void stl_cd1400ccrwait(struct stlport *portp)
2819 for (i = 0; i < CCR_MAXWAIT; i++)
2820 if (stl_cd1400getreg(portp, CCR) == 0)
2823 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
2824 portp->portnr, portp->panelnr, portp->brdnr);
2827 /*****************************************************************************/
2830 * Set up the cd1400 registers for a port based on the termios port
2834 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp)
2836 struct stlbrd *brdp;
2837 unsigned long flags;
2838 unsigned int clkdiv, baudrate;
2839 unsigned char cor1, cor2, cor3;
2840 unsigned char cor4, cor5, ccr;
2841 unsigned char srer, sreron, sreroff;
2842 unsigned char mcor1, mcor2, rtpr;
2843 unsigned char clk, div;
2859 brdp = stl_brds[portp->brdnr];
2864 * Set up the RX char ignore mask with those RX error types we
2865 * can ignore. We can get the cd1400 to help us out a little here,
2866 * it will ignore parity errors and breaks for us.
2868 portp->rxignoremsk = 0;
2869 if (tiosp->c_iflag & IGNPAR) {
2870 portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
2871 cor1 |= COR1_PARIGNORE;
2873 if (tiosp->c_iflag & IGNBRK) {
2874 portp->rxignoremsk |= ST_BREAK;
2875 cor4 |= COR4_IGNBRK;
2878 portp->rxmarkmsk = ST_OVERRUN;
2879 if (tiosp->c_iflag & (INPCK | PARMRK))
2880 portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
2881 if (tiosp->c_iflag & BRKINT)
2882 portp->rxmarkmsk |= ST_BREAK;
2885 * Go through the char size, parity and stop bits and set all the
2886 * option register appropriately.
2888 switch (tiosp->c_cflag & CSIZE) {
2903 if (tiosp->c_cflag & CSTOPB)
2908 if (tiosp->c_cflag & PARENB) {
2909 if (tiosp->c_cflag & PARODD)
2910 cor1 |= (COR1_PARENB | COR1_PARODD);
2912 cor1 |= (COR1_PARENB | COR1_PAREVEN);
2914 cor1 |= COR1_PARNONE;
2918 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
2919 * space for hardware flow control and the like. This should be set to
2920 * VMIN. Also here we will set the RX data timeout to 10ms - this should
2921 * really be based on VTIME.
2923 cor3 |= FIFO_RXTHRESHOLD;
2927 * Calculate the baud rate timers. For now we will just assume that
2928 * the input and output baud are the same. Could have used a baud
2929 * table here, but this way we can generate virtually any baud rate
2932 baudrate = tiosp->c_cflag & CBAUD;
2933 if (baudrate & CBAUDEX) {
2934 baudrate &= ~CBAUDEX;
2935 if ((baudrate < 1) || (baudrate > 4))
2936 tiosp->c_cflag &= ~CBAUDEX;
2940 baudrate = stl_baudrates[baudrate];
2941 if ((tiosp->c_cflag & CBAUD) == B38400) {
2942 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2944 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2946 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2948 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2950 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2951 baudrate = (portp->baud_base / portp->custom_divisor);
2953 if (baudrate > STL_CD1400MAXBAUD)
2954 baudrate = STL_CD1400MAXBAUD;
2957 for (clk = 0; clk < CD1400_NUMCLKS; clk++) {
2958 clkdiv = (portp->clk / stl_cd1400clkdivs[clk]) / baudrate;
2962 div = (unsigned char) clkdiv;
2966 * Check what form of modem signaling is required and set it up.
2968 if ((tiosp->c_cflag & CLOCAL) == 0) {
2971 sreron |= SRER_MODEM;
2972 portp->flags |= ASYNC_CHECK_CD;
2974 portp->flags &= ~ASYNC_CHECK_CD;
2977 * Setup cd1400 enhanced modes if we can. In particular we want to
2978 * handle as much of the flow control as possible automatically. As
2979 * well as saving a few CPU cycles it will also greatly improve flow
2980 * control reliability.
2982 if (tiosp->c_iflag & IXON) {
2985 if (tiosp->c_iflag & IXANY)
2989 if (tiosp->c_cflag & CRTSCTS) {
2991 mcor1 |= FIFO_RTSTHRESHOLD;
2995 * All cd1400 register values calculated so go through and set
2999 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3000 portp->portnr, portp->panelnr, portp->brdnr);
3001 pr_debug(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
3002 cor1, cor2, cor3, cor4, cor5);
3003 pr_debug(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
3004 mcor1, mcor2, rtpr, sreron, sreroff);
3005 pr_debug(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
3006 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3007 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3008 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3010 spin_lock_irqsave(&brd_lock, flags);
3011 BRDENABLE(portp->brdnr, portp->pagenr);
3012 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
3013 srer = stl_cd1400getreg(portp, SRER);
3014 stl_cd1400setreg(portp, SRER, 0);
3015 if (stl_cd1400updatereg(portp, COR1, cor1))
3017 if (stl_cd1400updatereg(portp, COR2, cor2))
3019 if (stl_cd1400updatereg(portp, COR3, cor3))
3022 stl_cd1400ccrwait(portp);
3023 stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
3025 stl_cd1400setreg(portp, COR4, cor4);
3026 stl_cd1400setreg(portp, COR5, cor5);
3027 stl_cd1400setreg(portp, MCOR1, mcor1);
3028 stl_cd1400setreg(portp, MCOR2, mcor2);
3030 stl_cd1400setreg(portp, TCOR, clk);
3031 stl_cd1400setreg(portp, TBPR, div);
3032 stl_cd1400setreg(portp, RCOR, clk);
3033 stl_cd1400setreg(portp, RBPR, div);
3035 stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
3036 stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
3037 stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
3038 stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
3039 stl_cd1400setreg(portp, RTPR, rtpr);
3040 mcor1 = stl_cd1400getreg(portp, MSVR1);
3041 if (mcor1 & MSVR1_DCD)
3042 portp->sigs |= TIOCM_CD;
3044 portp->sigs &= ~TIOCM_CD;
3045 stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
3046 BRDDISABLE(portp->brdnr);
3047 spin_unlock_irqrestore(&brd_lock, flags);
3050 /*****************************************************************************/
3053 * Set the state of the DTR and RTS signals.
3056 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts)
3058 unsigned char msvr1, msvr2;
3059 unsigned long flags;
3061 pr_debug("stl_cd1400setsignals(portp=%p,dtr=%d,rts=%d)\n",
3071 spin_lock_irqsave(&brd_lock, flags);
3072 BRDENABLE(portp->brdnr, portp->pagenr);
3073 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3075 stl_cd1400setreg(portp, MSVR2, msvr2);
3077 stl_cd1400setreg(portp, MSVR1, msvr1);
3078 BRDDISABLE(portp->brdnr);
3079 spin_unlock_irqrestore(&brd_lock, flags);
3082 /*****************************************************************************/
3085 * Return the state of the signals.
3088 static int stl_cd1400getsignals(struct stlport *portp)
3090 unsigned char msvr1, msvr2;
3091 unsigned long flags;
3094 pr_debug("stl_cd1400getsignals(portp=%p)\n", portp);
3096 spin_lock_irqsave(&brd_lock, flags);
3097 BRDENABLE(portp->brdnr, portp->pagenr);
3098 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3099 msvr1 = stl_cd1400getreg(portp, MSVR1);
3100 msvr2 = stl_cd1400getreg(portp, MSVR2);
3101 BRDDISABLE(portp->brdnr);
3102 spin_unlock_irqrestore(&brd_lock, flags);
3105 sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
3106 sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
3107 sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
3108 sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
3110 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
3111 sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
3118 /*****************************************************************************/
3121 * Enable/Disable the Transmitter and/or Receiver.
3124 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx)
3127 unsigned long flags;
3129 pr_debug("stl_cd1400enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3134 ccr |= CCR_TXDISABLE;
3136 ccr |= CCR_TXENABLE;
3138 ccr |= CCR_RXDISABLE;
3140 ccr |= CCR_RXENABLE;
3142 spin_lock_irqsave(&brd_lock, flags);
3143 BRDENABLE(portp->brdnr, portp->pagenr);
3144 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3145 stl_cd1400ccrwait(portp);
3146 stl_cd1400setreg(portp, CCR, ccr);
3147 stl_cd1400ccrwait(portp);
3148 BRDDISABLE(portp->brdnr);
3149 spin_unlock_irqrestore(&brd_lock, flags);
3152 /*****************************************************************************/
3155 * Start/stop the Transmitter and/or Receiver.
3158 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx)
3160 unsigned char sreron, sreroff;
3161 unsigned long flags;
3163 pr_debug("stl_cd1400startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3168 sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
3170 sreron |= SRER_TXDATA;
3172 sreron |= SRER_TXEMPTY;
3174 sreroff |= SRER_RXDATA;
3176 sreron |= SRER_RXDATA;
3178 spin_lock_irqsave(&brd_lock, flags);
3179 BRDENABLE(portp->brdnr, portp->pagenr);
3180 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3181 stl_cd1400setreg(portp, SRER,
3182 ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
3183 BRDDISABLE(portp->brdnr);
3185 set_bit(ASYI_TXBUSY, &portp->istate);
3186 spin_unlock_irqrestore(&brd_lock, flags);
3189 /*****************************************************************************/
3192 * Disable all interrupts from this port.
3195 static void stl_cd1400disableintrs(struct stlport *portp)
3197 unsigned long flags;
3199 pr_debug("stl_cd1400disableintrs(portp=%p)\n", portp);
3201 spin_lock_irqsave(&brd_lock, flags);
3202 BRDENABLE(portp->brdnr, portp->pagenr);
3203 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3204 stl_cd1400setreg(portp, SRER, 0);
3205 BRDDISABLE(portp->brdnr);
3206 spin_unlock_irqrestore(&brd_lock, flags);
3209 /*****************************************************************************/
3211 static void stl_cd1400sendbreak(struct stlport *portp, int len)
3213 unsigned long flags;
3215 pr_debug("stl_cd1400sendbreak(portp=%p,len=%d)\n", portp, len);
3217 spin_lock_irqsave(&brd_lock, flags);
3218 BRDENABLE(portp->brdnr, portp->pagenr);
3219 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3220 stl_cd1400setreg(portp, SRER,
3221 ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
3223 BRDDISABLE(portp->brdnr);
3224 portp->brklen = len;
3226 portp->stats.txbreaks++;
3227 spin_unlock_irqrestore(&brd_lock, flags);
3230 /*****************************************************************************/
3233 * Take flow control actions...
3236 static void stl_cd1400flowctrl(struct stlport *portp, int state)
3238 struct tty_struct *tty;
3239 unsigned long flags;
3241 pr_debug("stl_cd1400flowctrl(portp=%p,state=%x)\n", portp, state);
3249 spin_lock_irqsave(&brd_lock, flags);
3250 BRDENABLE(portp->brdnr, portp->pagenr);
3251 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3254 if (tty->termios->c_iflag & IXOFF) {
3255 stl_cd1400ccrwait(portp);
3256 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3257 portp->stats.rxxon++;
3258 stl_cd1400ccrwait(portp);
3261 * Question: should we return RTS to what it was before? It may
3262 * have been set by an ioctl... Suppose not, since if you have
3263 * hardware flow control set then it is pretty silly to go and
3264 * set the RTS line by hand.
3266 if (tty->termios->c_cflag & CRTSCTS) {
3267 stl_cd1400setreg(portp, MCOR1,
3268 (stl_cd1400getreg(portp, MCOR1) |
3269 FIFO_RTSTHRESHOLD));
3270 stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
3271 portp->stats.rxrtson++;
3274 if (tty->termios->c_iflag & IXOFF) {
3275 stl_cd1400ccrwait(portp);
3276 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3277 portp->stats.rxxoff++;
3278 stl_cd1400ccrwait(portp);
3280 if (tty->termios->c_cflag & CRTSCTS) {
3281 stl_cd1400setreg(portp, MCOR1,
3282 (stl_cd1400getreg(portp, MCOR1) & 0xf0));
3283 stl_cd1400setreg(portp, MSVR2, 0);
3284 portp->stats.rxrtsoff++;
3288 BRDDISABLE(portp->brdnr);
3289 spin_unlock_irqrestore(&brd_lock, flags);
3292 /*****************************************************************************/
3295 * Send a flow control character...
3298 static void stl_cd1400sendflow(struct stlport *portp, int state)
3300 struct tty_struct *tty;
3301 unsigned long flags;
3303 pr_debug("stl_cd1400sendflow(portp=%p,state=%x)\n", portp, state);
3311 spin_lock_irqsave(&brd_lock, flags);
3312 BRDENABLE(portp->brdnr, portp->pagenr);
3313 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3315 stl_cd1400ccrwait(portp);
3316 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3317 portp->stats.rxxon++;
3318 stl_cd1400ccrwait(portp);
3320 stl_cd1400ccrwait(portp);
3321 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3322 portp->stats.rxxoff++;
3323 stl_cd1400ccrwait(portp);
3325 BRDDISABLE(portp->brdnr);
3326 spin_unlock_irqrestore(&brd_lock, flags);
3329 /*****************************************************************************/
3331 static void stl_cd1400flush(struct stlport *portp)
3333 unsigned long flags;
3335 pr_debug("stl_cd1400flush(portp=%p)\n", portp);
3340 spin_lock_irqsave(&brd_lock, flags);
3341 BRDENABLE(portp->brdnr, portp->pagenr);
3342 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3343 stl_cd1400ccrwait(portp);
3344 stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
3345 stl_cd1400ccrwait(portp);
3346 portp->tx.tail = portp->tx.head;
3347 BRDDISABLE(portp->brdnr);
3348 spin_unlock_irqrestore(&brd_lock, flags);
3351 /*****************************************************************************/
3354 * Return the current state of data flow on this port. This is only
3355 * really interresting when determining if data has fully completed
3356 * transmission or not... This is easy for the cd1400, it accurately
3357 * maintains the busy port flag.
3360 static int stl_cd1400datastate(struct stlport *portp)
3362 pr_debug("stl_cd1400datastate(portp=%p)\n", portp);
3367 return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0;
3370 /*****************************************************************************/
3373 * Interrupt service routine for cd1400 EasyIO boards.
3376 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase)
3378 unsigned char svrtype;
3380 pr_debug("stl_cd1400eiointr(panelp=%p,iobase=%x)\n", panelp, iobase);
3382 spin_lock(&brd_lock);
3384 svrtype = inb(iobase + EREG_DATA);
3385 if (panelp->nrports > 4) {
3386 outb((SVRR + 0x80), iobase);
3387 svrtype |= inb(iobase + EREG_DATA);
3390 if (svrtype & SVRR_RX)
3391 stl_cd1400rxisr(panelp, iobase);
3392 else if (svrtype & SVRR_TX)
3393 stl_cd1400txisr(panelp, iobase);
3394 else if (svrtype & SVRR_MDM)
3395 stl_cd1400mdmisr(panelp, iobase);
3397 spin_unlock(&brd_lock);
3400 /*****************************************************************************/
3403 * Interrupt service routine for cd1400 panels.
3406 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase)
3408 unsigned char svrtype;
3410 pr_debug("stl_cd1400echintr(panelp=%p,iobase=%x)\n", panelp, iobase);
3413 svrtype = inb(iobase + EREG_DATA);
3414 outb((SVRR + 0x80), iobase);
3415 svrtype |= inb(iobase + EREG_DATA);
3416 if (svrtype & SVRR_RX)
3417 stl_cd1400rxisr(panelp, iobase);
3418 else if (svrtype & SVRR_TX)
3419 stl_cd1400txisr(panelp, iobase);
3420 else if (svrtype & SVRR_MDM)
3421 stl_cd1400mdmisr(panelp, iobase);
3425 /*****************************************************************************/
3428 * Unfortunately we need to handle breaks in the TX data stream, since
3429 * this is the only way to generate them on the cd1400.
3432 static int stl_cd1400breakisr(struct stlport *portp, int ioaddr)
3434 if (portp->brklen == 1) {
3435 outb((COR2 + portp->uartaddr), ioaddr);
3436 outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
3437 (ioaddr + EREG_DATA));
3438 outb((TDR + portp->uartaddr), ioaddr);
3439 outb(ETC_CMD, (ioaddr + EREG_DATA));
3440 outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
3441 outb((SRER + portp->uartaddr), ioaddr);
3442 outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
3443 (ioaddr + EREG_DATA));
3445 } else if (portp->brklen > 1) {
3446 outb((TDR + portp->uartaddr), ioaddr);
3447 outb(ETC_CMD, (ioaddr + EREG_DATA));
3448 outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
3452 outb((COR2 + portp->uartaddr), ioaddr);
3453 outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
3454 (ioaddr + EREG_DATA));
3460 /*****************************************************************************/
3463 * Transmit interrupt handler. This has gotta be fast! Handling TX
3464 * chars is pretty simple, stuff as many as possible from the TX buffer
3465 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3466 * are embedded as commands in the data stream. Oh no, had to use a goto!
3467 * This could be optimized more, will do when I get time...
3468 * In practice it is possible that interrupts are enabled but that the
3469 * port has been hung up. Need to handle not having any TX buffer here,
3470 * this is done by using the side effect that head and tail will also
3471 * be NULL if the buffer has been freed.
3474 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr)
3476 struct stlport *portp;
3479 unsigned char ioack, srer;
3481 pr_debug("stl_cd1400txisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3483 ioack = inb(ioaddr + EREG_TXACK);
3484 if (((ioack & panelp->ackmask) != 0) ||
3485 ((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
3486 printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
3489 portp = panelp->ports[(ioack >> 3)];
3492 * Unfortunately we need to handle breaks in the data stream, since
3493 * this is the only way to generate them on the cd1400. Do it now if
3494 * a break is to be sent.
3496 if (portp->brklen != 0)
3497 if (stl_cd1400breakisr(portp, ioaddr))
3500 head = portp->tx.head;
3501 tail = portp->tx.tail;
3502 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
3503 if ((len == 0) || ((len < STL_TXBUFLOW) &&
3504 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
3505 set_bit(ASYI_TXLOW, &portp->istate);
3507 tty_wakeup(portp->tty);
3511 outb((SRER + portp->uartaddr), ioaddr);
3512 srer = inb(ioaddr + EREG_DATA);
3513 if (srer & SRER_TXDATA) {
3514 srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
3516 srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
3517 clear_bit(ASYI_TXBUSY, &portp->istate);
3519 outb(srer, (ioaddr + EREG_DATA));
3521 len = min(len, CD1400_TXFIFOSIZE);
3522 portp->stats.txtotal += len;
3523 stlen = min_t(unsigned int, len,
3524 (portp->tx.buf + STL_TXBUFSIZE) - tail);
3525 outb((TDR + portp->uartaddr), ioaddr);
3526 outsb((ioaddr + EREG_DATA), tail, stlen);
3529 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
3530 tail = portp->tx.buf;
3532 outsb((ioaddr + EREG_DATA), tail, len);
3535 portp->tx.tail = tail;
3539 outb((EOSRR + portp->uartaddr), ioaddr);
3540 outb(0, (ioaddr + EREG_DATA));
3543 /*****************************************************************************/
3546 * Receive character interrupt handler. Determine if we have good chars
3547 * or bad chars and then process appropriately. Good chars are easy
3548 * just shove the lot into the RX buffer and set all status byte to 0.
3549 * If a bad RX char then process as required. This routine needs to be
3550 * fast! In practice it is possible that we get an interrupt on a port
3551 * that is closed. This can happen on hangups - since they completely
3552 * shutdown a port not in user context. Need to handle this case.
3555 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr)
3557 struct stlport *portp;
3558 struct tty_struct *tty;
3559 unsigned int ioack, len, buflen;
3560 unsigned char status;
3563 pr_debug("stl_cd1400rxisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3565 ioack = inb(ioaddr + EREG_RXACK);
3566 if ((ioack & panelp->ackmask) != 0) {
3567 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3570 portp = panelp->ports[(ioack >> 3)];
3573 if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
3574 outb((RDCR + portp->uartaddr), ioaddr);
3575 len = inb(ioaddr + EREG_DATA);
3576 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
3577 len = min_t(unsigned int, len, sizeof(stl_unwanted));
3578 outb((RDSR + portp->uartaddr), ioaddr);
3579 insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
3580 portp->stats.rxlost += len;
3581 portp->stats.rxtotal += len;
3583 len = min(len, buflen);
3586 outb((RDSR + portp->uartaddr), ioaddr);
3587 tty_prepare_flip_string(tty, &ptr, len);
3588 insb((ioaddr + EREG_DATA), ptr, len);
3589 tty_schedule_flip(tty);
3590 portp->stats.rxtotal += len;
3593 } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
3594 outb((RDSR + portp->uartaddr), ioaddr);
3595 status = inb(ioaddr + EREG_DATA);
3596 ch = inb(ioaddr + EREG_DATA);
3597 if (status & ST_PARITY)
3598 portp->stats.rxparity++;
3599 if (status & ST_FRAMING)
3600 portp->stats.rxframing++;
3601 if (status & ST_OVERRUN)
3602 portp->stats.rxoverrun++;
3603 if (status & ST_BREAK)
3604 portp->stats.rxbreaks++;
3605 if (status & ST_SCHARMASK) {
3606 if ((status & ST_SCHARMASK) == ST_SCHAR1)
3607 portp->stats.txxon++;
3608 if ((status & ST_SCHARMASK) == ST_SCHAR2)
3609 portp->stats.txxoff++;
3612 if (tty != NULL && (portp->rxignoremsk & status) == 0) {
3613 if (portp->rxmarkmsk & status) {
3614 if (status & ST_BREAK) {
3616 if (portp->flags & ASYNC_SAK) {
3618 BRDENABLE(portp->brdnr, portp->pagenr);
3620 } else if (status & ST_PARITY)
3621 status = TTY_PARITY;
3622 else if (status & ST_FRAMING)
3624 else if(status & ST_OVERRUN)
3625 status = TTY_OVERRUN;
3630 tty_insert_flip_char(tty, ch, status);
3631 tty_schedule_flip(tty);
3634 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3639 outb((EOSRR + portp->uartaddr), ioaddr);
3640 outb(0, (ioaddr + EREG_DATA));
3643 /*****************************************************************************/
3646 * Modem interrupt handler. The is called when the modem signal line
3647 * (DCD) has changed state. Leave most of the work to the off-level
3648 * processing routine.
3651 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr)
3653 struct stlport *portp;
3657 pr_debug("stl_cd1400mdmisr(panelp=%p)\n", panelp);
3659 ioack = inb(ioaddr + EREG_MDACK);
3660 if (((ioack & panelp->ackmask) != 0) ||
3661 ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
3662 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
3665 portp = panelp->ports[(ioack >> 3)];
3667 outb((MISR + portp->uartaddr), ioaddr);
3668 misr = inb(ioaddr + EREG_DATA);
3669 if (misr & MISR_DCD) {
3670 stl_cd_change(portp);
3671 portp->stats.modem++;
3674 outb((EOSRR + portp->uartaddr), ioaddr);
3675 outb(0, (ioaddr + EREG_DATA));
3678 /*****************************************************************************/
3679 /* SC26198 HARDWARE FUNCTIONS */
3680 /*****************************************************************************/
3683 * These functions get/set/update the registers of the sc26198 UARTs.
3684 * Access to the sc26198 registers is via an address/data io port pair.
3685 * (Maybe should make this inline...)
3688 static int stl_sc26198getreg(struct stlport *portp, int regnr)
3690 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3691 return inb(portp->ioaddr + XP_DATA);
3694 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value)
3696 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3697 outb(value, (portp->ioaddr + XP_DATA));
3700 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value)
3702 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3703 if (inb(portp->ioaddr + XP_DATA) != value) {
3704 outb(value, (portp->ioaddr + XP_DATA));
3710 /*****************************************************************************/
3713 * Functions to get and set the sc26198 global registers.
3716 static int stl_sc26198getglobreg(struct stlport *portp, int regnr)
3718 outb(regnr, (portp->ioaddr + XP_ADDR));
3719 return inb(portp->ioaddr + XP_DATA);
3723 static void stl_sc26198setglobreg(struct stlport *portp, int regnr, int value)
3725 outb(regnr, (portp->ioaddr + XP_ADDR));
3726 outb(value, (portp->ioaddr + XP_DATA));
3730 /*****************************************************************************/
3733 * Inbitialize the UARTs in a panel. We don't care what sort of board
3734 * these ports are on - since the port io registers are almost
3735 * identical when dealing with ports.
3738 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
3741 int nrchips, ioaddr;
3743 pr_debug("stl_sc26198panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
3745 BRDENABLE(panelp->brdnr, panelp->pagenr);
3748 * Check that each chip is present and started up OK.
3751 nrchips = (panelp->nrports + 4) / SC26198_PORTS;
3752 if (brdp->brdtype == BRD_ECHPCI)
3753 outb(panelp->pagenr, brdp->ioctrl);
3755 for (i = 0; i < nrchips; i++) {
3756 ioaddr = panelp->iobase + (i * 4);
3757 outb(SCCR, (ioaddr + XP_ADDR));
3758 outb(CR_RESETALL, (ioaddr + XP_DATA));
3759 outb(TSTR, (ioaddr + XP_ADDR));
3760 if (inb(ioaddr + XP_DATA) != 0) {
3761 printk("STALLION: sc26198 not responding, "
3762 "brd=%d panel=%d chip=%d\n",
3763 panelp->brdnr, panelp->panelnr, i);
3766 chipmask |= (0x1 << i);
3767 outb(GCCR, (ioaddr + XP_ADDR));
3768 outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
3769 outb(WDTRCR, (ioaddr + XP_ADDR));
3770 outb(0xff, (ioaddr + XP_DATA));
3773 BRDDISABLE(panelp->brdnr);
3777 /*****************************************************************************/
3780 * Initialize hardware specific port registers.
3783 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
3785 pr_debug("stl_sc26198portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
3788 if ((brdp == NULL) || (panelp == NULL) ||
3792 portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
3793 portp->uartaddr = (portp->portnr & 0x07) << 4;
3794 portp->pagenr = panelp->pagenr;
3797 BRDENABLE(portp->brdnr, portp->pagenr);
3798 stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
3799 BRDDISABLE(portp->brdnr);
3802 /*****************************************************************************/
3805 * Set up the sc26198 registers for a port based on the termios port
3809 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp)
3811 struct stlbrd *brdp;
3812 unsigned long flags;
3813 unsigned int baudrate;
3814 unsigned char mr0, mr1, mr2, clk;
3815 unsigned char imron, imroff, iopr, ipr;
3825 brdp = stl_brds[portp->brdnr];
3830 * Set up the RX char ignore mask with those RX error types we
3833 portp->rxignoremsk = 0;
3834 if (tiosp->c_iflag & IGNPAR)
3835 portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
3837 if (tiosp->c_iflag & IGNBRK)
3838 portp->rxignoremsk |= SR_RXBREAK;
3840 portp->rxmarkmsk = SR_RXOVERRUN;
3841 if (tiosp->c_iflag & (INPCK | PARMRK))
3842 portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
3843 if (tiosp->c_iflag & BRKINT)
3844 portp->rxmarkmsk |= SR_RXBREAK;
3847 * Go through the char size, parity and stop bits and set all the
3848 * option register appropriately.
3850 switch (tiosp->c_cflag & CSIZE) {
3865 if (tiosp->c_cflag & CSTOPB)
3870 if (tiosp->c_cflag & PARENB) {
3871 if (tiosp->c_cflag & PARODD)
3872 mr1 |= (MR1_PARENB | MR1_PARODD);
3874 mr1 |= (MR1_PARENB | MR1_PAREVEN);
3878 mr1 |= MR1_ERRBLOCK;
3881 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
3882 * space for hardware flow control and the like. This should be set to
3885 mr2 |= MR2_RXFIFOHALF;
3888 * Calculate the baud rate timers. For now we will just assume that
3889 * the input and output baud are the same. The sc26198 has a fixed
3890 * baud rate table, so only discrete baud rates possible.
3892 baudrate = tiosp->c_cflag & CBAUD;
3893 if (baudrate & CBAUDEX) {
3894 baudrate &= ~CBAUDEX;
3895 if ((baudrate < 1) || (baudrate > 4))
3896 tiosp->c_cflag &= ~CBAUDEX;
3900 baudrate = stl_baudrates[baudrate];
3901 if ((tiosp->c_cflag & CBAUD) == B38400) {
3902 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3904 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3906 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3908 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3910 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3911 baudrate = (portp->baud_base / portp->custom_divisor);
3913 if (baudrate > STL_SC26198MAXBAUD)
3914 baudrate = STL_SC26198MAXBAUD;
3917 for (clk = 0; clk < SC26198_NRBAUDS; clk++)
3918 if (baudrate <= sc26198_baudtable[clk])
3922 * Check what form of modem signaling is required and set it up.
3924 if (tiosp->c_cflag & CLOCAL) {
3925 portp->flags &= ~ASYNC_CHECK_CD;
3927 iopr |= IOPR_DCDCOS;
3929 portp->flags |= ASYNC_CHECK_CD;
3933 * Setup sc26198 enhanced modes if we can. In particular we want to
3934 * handle as much of the flow control as possible automatically. As
3935 * well as saving a few CPU cycles it will also greatly improve flow
3936 * control reliability.
3938 if (tiosp->c_iflag & IXON) {
3939 mr0 |= MR0_SWFTX | MR0_SWFT;
3940 imron |= IR_XONXOFF;
3942 imroff |= IR_XONXOFF;
3944 if (tiosp->c_iflag & IXOFF)
3947 if (tiosp->c_cflag & CRTSCTS) {
3953 * All sc26198 register values calculated so go through and set
3957 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3958 portp->portnr, portp->panelnr, portp->brdnr);
3959 pr_debug(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
3960 pr_debug(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
3961 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3962 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3963 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3965 spin_lock_irqsave(&brd_lock, flags);
3966 BRDENABLE(portp->brdnr, portp->pagenr);
3967 stl_sc26198setreg(portp, IMR, 0);
3968 stl_sc26198updatereg(portp, MR0, mr0);
3969 stl_sc26198updatereg(portp, MR1, mr1);
3970 stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
3971 stl_sc26198updatereg(portp, MR2, mr2);
3972 stl_sc26198updatereg(portp, IOPIOR,
3973 ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
3976 stl_sc26198setreg(portp, TXCSR, clk);
3977 stl_sc26198setreg(portp, RXCSR, clk);
3980 stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
3981 stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
3983 ipr = stl_sc26198getreg(portp, IPR);
3985 portp->sigs &= ~TIOCM_CD;
3987 portp->sigs |= TIOCM_CD;
3989 portp->imr = (portp->imr & ~imroff) | imron;
3990 stl_sc26198setreg(portp, IMR, portp->imr);
3991 BRDDISABLE(portp->brdnr);
3992 spin_unlock_irqrestore(&brd_lock, flags);
3995 /*****************************************************************************/
3998 * Set the state of the DTR and RTS signals.
4001 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts)
4003 unsigned char iopioron, iopioroff;
4004 unsigned long flags;
4006 pr_debug("stl_sc26198setsignals(portp=%p,dtr=%d,rts=%d)\n", portp,
4012 iopioroff |= IPR_DTR;
4014 iopioron |= IPR_DTR;
4016 iopioroff |= IPR_RTS;
4018 iopioron |= IPR_RTS;
4020 spin_lock_irqsave(&brd_lock, flags);
4021 BRDENABLE(portp->brdnr, portp->pagenr);
4022 stl_sc26198setreg(portp, IOPIOR,
4023 ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
4024 BRDDISABLE(portp->brdnr);
4025 spin_unlock_irqrestore(&brd_lock, flags);
4028 /*****************************************************************************/
4031 * Return the state of the signals.
4034 static int stl_sc26198getsignals(struct stlport *portp)
4037 unsigned long flags;
4040 pr_debug("stl_sc26198getsignals(portp=%p)\n", portp);
4042 spin_lock_irqsave(&brd_lock, flags);
4043 BRDENABLE(portp->brdnr, portp->pagenr);
4044 ipr = stl_sc26198getreg(portp, IPR);
4045 BRDDISABLE(portp->brdnr);
4046 spin_unlock_irqrestore(&brd_lock, flags);
4049 sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
4050 sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
4051 sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
4052 sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
4057 /*****************************************************************************/
4060 * Enable/Disable the Transmitter and/or Receiver.
4063 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx)
4066 unsigned long flags;
4068 pr_debug("stl_sc26198enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx,tx);
4070 ccr = portp->crenable;
4072 ccr &= ~CR_TXENABLE;
4076 ccr &= ~CR_RXENABLE;
4080 spin_lock_irqsave(&brd_lock, flags);
4081 BRDENABLE(portp->brdnr, portp->pagenr);
4082 stl_sc26198setreg(portp, SCCR, ccr);
4083 BRDDISABLE(portp->brdnr);
4084 portp->crenable = ccr;
4085 spin_unlock_irqrestore(&brd_lock, flags);
4088 /*****************************************************************************/
4091 * Start/stop the Transmitter and/or Receiver.
4094 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx)
4097 unsigned long flags;
4099 pr_debug("stl_sc26198startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
4107 imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
4109 imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
4111 spin_lock_irqsave(&brd_lock, flags);
4112 BRDENABLE(portp->brdnr, portp->pagenr);
4113 stl_sc26198setreg(portp, IMR, imr);
4114 BRDDISABLE(portp->brdnr);
4117 set_bit(ASYI_TXBUSY, &portp->istate);
4118 spin_unlock_irqrestore(&brd_lock, flags);
4121 /*****************************************************************************/
4124 * Disable all interrupts from this port.
4127 static void stl_sc26198disableintrs(struct stlport *portp)
4129 unsigned long flags;
4131 pr_debug("stl_sc26198disableintrs(portp=%p)\n", portp);
4133 spin_lock_irqsave(&brd_lock, flags);
4134 BRDENABLE(portp->brdnr, portp->pagenr);
4136 stl_sc26198setreg(portp, IMR, 0);
4137 BRDDISABLE(portp->brdnr);
4138 spin_unlock_irqrestore(&brd_lock, flags);
4141 /*****************************************************************************/
4143 static void stl_sc26198sendbreak(struct stlport *portp, int len)
4145 unsigned long flags;
4147 pr_debug("stl_sc26198sendbreak(portp=%p,len=%d)\n", portp, len);
4149 spin_lock_irqsave(&brd_lock, flags);
4150 BRDENABLE(portp->brdnr, portp->pagenr);
4152 stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
4153 portp->stats.txbreaks++;
4155 stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
4157 BRDDISABLE(portp->brdnr);
4158 spin_unlock_irqrestore(&brd_lock, flags);
4161 /*****************************************************************************/
4164 * Take flow control actions...
4167 static void stl_sc26198flowctrl(struct stlport *portp, int state)
4169 struct tty_struct *tty;
4170 unsigned long flags;
4173 pr_debug("stl_sc26198flowctrl(portp=%p,state=%x)\n", portp, state);
4181 spin_lock_irqsave(&brd_lock, flags);
4182 BRDENABLE(portp->brdnr, portp->pagenr);
4185 if (tty->termios->c_iflag & IXOFF) {
4186 mr0 = stl_sc26198getreg(portp, MR0);
4187 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4188 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4190 portp->stats.rxxon++;
4191 stl_sc26198wait(portp);
4192 stl_sc26198setreg(portp, MR0, mr0);
4195 * Question: should we return RTS to what it was before? It may
4196 * have been set by an ioctl... Suppose not, since if you have
4197 * hardware flow control set then it is pretty silly to go and
4198 * set the RTS line by hand.
4200 if (tty->termios->c_cflag & CRTSCTS) {
4201 stl_sc26198setreg(portp, MR1,
4202 (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
4203 stl_sc26198setreg(portp, IOPIOR,
4204 (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
4205 portp->stats.rxrtson++;
4208 if (tty->termios->c_iflag & IXOFF) {
4209 mr0 = stl_sc26198getreg(portp, MR0);
4210 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4211 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4213 portp->stats.rxxoff++;
4214 stl_sc26198wait(portp);
4215 stl_sc26198setreg(portp, MR0, mr0);
4217 if (tty->termios->c_cflag & CRTSCTS) {
4218 stl_sc26198setreg(portp, MR1,
4219 (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
4220 stl_sc26198setreg(portp, IOPIOR,
4221 (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
4222 portp->stats.rxrtsoff++;
4226 BRDDISABLE(portp->brdnr);
4227 spin_unlock_irqrestore(&brd_lock, flags);
4230 /*****************************************************************************/
4233 * Send a flow control character.
4236 static void stl_sc26198sendflow(struct stlport *portp, int state)
4238 struct tty_struct *tty;
4239 unsigned long flags;
4242 pr_debug("stl_sc26198sendflow(portp=%p,state=%x)\n", portp, state);
4250 spin_lock_irqsave(&brd_lock, flags);
4251 BRDENABLE(portp->brdnr, portp->pagenr);
4253 mr0 = stl_sc26198getreg(portp, MR0);
4254 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4255 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4257 portp->stats.rxxon++;
4258 stl_sc26198wait(portp);
4259 stl_sc26198setreg(portp, MR0, mr0);
4261 mr0 = stl_sc26198getreg(portp, MR0);
4262 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4263 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4265 portp->stats.rxxoff++;
4266 stl_sc26198wait(portp);
4267 stl_sc26198setreg(portp, MR0, mr0);
4269 BRDDISABLE(portp->brdnr);
4270 spin_unlock_irqrestore(&brd_lock, flags);
4273 /*****************************************************************************/
4275 static void stl_sc26198flush(struct stlport *portp)
4277 unsigned long flags;
4279 pr_debug("stl_sc26198flush(portp=%p)\n", portp);
4284 spin_lock_irqsave(&brd_lock, flags);
4285 BRDENABLE(portp->brdnr, portp->pagenr);
4286 stl_sc26198setreg(portp, SCCR, CR_TXRESET);
4287 stl_sc26198setreg(portp, SCCR, portp->crenable);
4288 BRDDISABLE(portp->brdnr);
4289 portp->tx.tail = portp->tx.head;
4290 spin_unlock_irqrestore(&brd_lock, flags);
4293 /*****************************************************************************/
4296 * Return the current state of data flow on this port. This is only
4297 * really interresting when determining if data has fully completed
4298 * transmission or not... The sc26198 interrupt scheme cannot
4299 * determine when all data has actually drained, so we need to
4300 * check the port statusy register to be sure.
4303 static int stl_sc26198datastate(struct stlport *portp)
4305 unsigned long flags;
4308 pr_debug("stl_sc26198datastate(portp=%p)\n", portp);
4312 if (test_bit(ASYI_TXBUSY, &portp->istate))
4315 spin_lock_irqsave(&brd_lock, flags);
4316 BRDENABLE(portp->brdnr, portp->pagenr);
4317 sr = stl_sc26198getreg(portp, SR);
4318 BRDDISABLE(portp->brdnr);
4319 spin_unlock_irqrestore(&brd_lock, flags);
4321 return (sr & SR_TXEMPTY) ? 0 : 1;
4324 /*****************************************************************************/
4327 * Delay for a small amount of time, to give the sc26198 a chance
4328 * to process a command...
4331 static void stl_sc26198wait(struct stlport *portp)
4335 pr_debug("stl_sc26198wait(portp=%p)\n", portp);
4340 for (i = 0; i < 20; i++)
4341 stl_sc26198getglobreg(portp, TSTR);
4344 /*****************************************************************************/
4347 * If we are TX flow controlled and in IXANY mode then we may
4348 * need to unflow control here. We gotta do this because of the
4349 * automatic flow control modes of the sc26198.
4352 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty)
4356 mr0 = stl_sc26198getreg(portp, MR0);
4357 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4358 stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
4359 stl_sc26198wait(portp);
4360 stl_sc26198setreg(portp, MR0, mr0);
4361 clear_bit(ASYI_TXFLOWED, &portp->istate);
4364 /*****************************************************************************/
4367 * Interrupt service routine for sc26198 panels.
4370 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase)
4372 struct stlport *portp;
4375 spin_lock(&brd_lock);
4378 * Work around bug in sc26198 chip... Cannot have A6 address
4379 * line of UART high, else iack will be returned as 0.
4381 outb(0, (iobase + 1));
4383 iack = inb(iobase + XP_IACK);
4384 portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
4386 if (iack & IVR_RXDATA)
4387 stl_sc26198rxisr(portp, iack);
4388 else if (iack & IVR_TXDATA)
4389 stl_sc26198txisr(portp);
4391 stl_sc26198otherisr(portp, iack);
4393 spin_unlock(&brd_lock);
4396 /*****************************************************************************/
4399 * Transmit interrupt handler. This has gotta be fast! Handling TX
4400 * chars is pretty simple, stuff as many as possible from the TX buffer
4401 * into the sc26198 FIFO.
4402 * In practice it is possible that interrupts are enabled but that the
4403 * port has been hung up. Need to handle not having any TX buffer here,
4404 * this is done by using the side effect that head and tail will also
4405 * be NULL if the buffer has been freed.
4408 static void stl_sc26198txisr(struct stlport *portp)
4410 unsigned int ioaddr;
4415 pr_debug("stl_sc26198txisr(portp=%p)\n", portp);
4417 ioaddr = portp->ioaddr;
4418 head = portp->tx.head;
4419 tail = portp->tx.tail;
4420 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
4421 if ((len == 0) || ((len < STL_TXBUFLOW) &&
4422 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
4423 set_bit(ASYI_TXLOW, &portp->istate);
4425 tty_wakeup(portp->tty);
4429 outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
4430 mr0 = inb(ioaddr + XP_DATA);
4431 if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
4432 portp->imr &= ~IR_TXRDY;
4433 outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
4434 outb(portp->imr, (ioaddr + XP_DATA));
4435 clear_bit(ASYI_TXBUSY, &portp->istate);
4437 mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
4438 outb(mr0, (ioaddr + XP_DATA));
4441 len = min(len, SC26198_TXFIFOSIZE);
4442 portp->stats.txtotal += len;
4443 stlen = min_t(unsigned int, len,
4444 (portp->tx.buf + STL_TXBUFSIZE) - tail);
4445 outb(GTXFIFO, (ioaddr + XP_ADDR));
4446 outsb((ioaddr + XP_DATA), tail, stlen);
4449 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4450 tail = portp->tx.buf;
4452 outsb((ioaddr + XP_DATA), tail, len);
4455 portp->tx.tail = tail;
4459 /*****************************************************************************/
4462 * Receive character interrupt handler. Determine if we have good chars
4463 * or bad chars and then process appropriately. Good chars are easy
4464 * just shove the lot into the RX buffer and set all status byte to 0.
4465 * If a bad RX char then process as required. This routine needs to be
4466 * fast! In practice it is possible that we get an interrupt on a port
4467 * that is closed. This can happen on hangups - since they completely
4468 * shutdown a port not in user context. Need to handle this case.
4471 static void stl_sc26198rxisr(struct stlport *portp, unsigned int iack)
4473 struct tty_struct *tty;
4474 unsigned int len, buflen, ioaddr;
4476 pr_debug("stl_sc26198rxisr(portp=%p,iack=%x)\n", portp, iack);
4479 ioaddr = portp->ioaddr;
4480 outb(GIBCR, (ioaddr + XP_ADDR));
4481 len = inb(ioaddr + XP_DATA) + 1;
4483 if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
4484 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
4485 len = min_t(unsigned int, len, sizeof(stl_unwanted));
4486 outb(GRXFIFO, (ioaddr + XP_ADDR));
4487 insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
4488 portp->stats.rxlost += len;
4489 portp->stats.rxtotal += len;
4491 len = min(len, buflen);
4494 outb(GRXFIFO, (ioaddr + XP_ADDR));
4495 tty_prepare_flip_string(tty, &ptr, len);
4496 insb((ioaddr + XP_DATA), ptr, len);
4497 tty_schedule_flip(tty);
4498 portp->stats.rxtotal += len;
4502 stl_sc26198rxbadchars(portp);
4506 * If we are TX flow controlled and in IXANY mode then we may need
4507 * to unflow control here. We gotta do this because of the automatic
4508 * flow control modes of the sc26198.
4510 if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
4511 if ((tty != NULL) &&
4512 (tty->termios != NULL) &&
4513 (tty->termios->c_iflag & IXANY)) {
4514 stl_sc26198txunflow(portp, tty);
4519 /*****************************************************************************/
4522 * Process an RX bad character.
4525 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch)
4527 struct tty_struct *tty;
4528 unsigned int ioaddr;
4531 ioaddr = portp->ioaddr;
4533 if (status & SR_RXPARITY)
4534 portp->stats.rxparity++;
4535 if (status & SR_RXFRAMING)
4536 portp->stats.rxframing++;
4537 if (status & SR_RXOVERRUN)
4538 portp->stats.rxoverrun++;
4539 if (status & SR_RXBREAK)
4540 portp->stats.rxbreaks++;
4542 if ((tty != NULL) &&
4543 ((portp->rxignoremsk & status) == 0)) {
4544 if (portp->rxmarkmsk & status) {
4545 if (status & SR_RXBREAK) {
4547 if (portp->flags & ASYNC_SAK) {
4549 BRDENABLE(portp->brdnr, portp->pagenr);
4551 } else if (status & SR_RXPARITY)
4552 status = TTY_PARITY;
4553 else if (status & SR_RXFRAMING)
4555 else if(status & SR_RXOVERRUN)
4556 status = TTY_OVERRUN;
4562 tty_insert_flip_char(tty, ch, status);
4563 tty_schedule_flip(tty);
4566 portp->stats.rxtotal++;
4570 /*****************************************************************************/
4573 * Process all characters in the RX FIFO of the UART. Check all char
4574 * status bytes as well, and process as required. We need to check
4575 * all bytes in the FIFO, in case some more enter the FIFO while we
4576 * are here. To get the exact character error type we need to switch
4577 * into CHAR error mode (that is why we need to make sure we empty
4581 static void stl_sc26198rxbadchars(struct stlport *portp)
4583 unsigned char status, mr1;
4587 * To get the precise error type for each character we must switch
4588 * back into CHAR error mode.
4590 mr1 = stl_sc26198getreg(portp, MR1);
4591 stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
4593 while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
4594 stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
4595 ch = stl_sc26198getreg(portp, RXFIFO);
4596 stl_sc26198rxbadch(portp, status, ch);
4600 * To get correct interrupt class we must switch back into BLOCK
4603 stl_sc26198setreg(portp, MR1, mr1);
4606 /*****************************************************************************/
4609 * Other interrupt handler. This includes modem signals, flow
4610 * control actions, etc. Most stuff is left to off-level interrupt
4614 static void stl_sc26198otherisr(struct stlport *portp, unsigned int iack)
4616 unsigned char cir, ipr, xisr;
4618 pr_debug("stl_sc26198otherisr(portp=%p,iack=%x)\n", portp, iack);
4620 cir = stl_sc26198getglobreg(portp, CIR);
4622 switch (cir & CIR_SUBTYPEMASK) {
4624 ipr = stl_sc26198getreg(portp, IPR);
4625 if (ipr & IPR_DCDCHANGE) {
4626 stl_cd_change(portp);
4627 portp->stats.modem++;
4630 case CIR_SUBXONXOFF:
4631 xisr = stl_sc26198getreg(portp, XISR);
4632 if (xisr & XISR_RXXONGOT) {
4633 set_bit(ASYI_TXFLOWED, &portp->istate);
4634 portp->stats.txxoff++;
4636 if (xisr & XISR_RXXOFFGOT) {
4637 clear_bit(ASYI_TXFLOWED, &portp->istate);
4638 portp->stats.txxon++;
4642 stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
4643 stl_sc26198rxbadchars(portp);
4650 static void stl_free_isabrds(void)
4652 struct stlbrd *brdp;
4655 for (i = 0; i < stl_nrbrds; i++) {
4656 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4659 free_irq(brdp->irq, brdp);
4661 stl_cleanup_panels(brdp);
4663 release_region(brdp->ioaddr1, brdp->iosize1);
4664 if (brdp->iosize2 > 0)
4665 release_region(brdp->ioaddr2, brdp->iosize2);
4673 * Loadable module initialization stuff.
4675 static int __init stallion_module_init(void)
4677 struct stlbrd *brdp;
4678 struct stlconf conf;
4682 printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
4684 spin_lock_init(&stallion_lock);
4685 spin_lock_init(&brd_lock);
4687 stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4693 stl_serial->owner = THIS_MODULE;
4694 stl_serial->driver_name = stl_drvname;
4695 stl_serial->name = "ttyE";
4696 stl_serial->major = STL_SERIALMAJOR;
4697 stl_serial->minor_start = 0;
4698 stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
4699 stl_serial->subtype = SERIAL_TYPE_NORMAL;
4700 stl_serial->init_termios = stl_deftermios;
4701 stl_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4702 tty_set_operations(stl_serial, &stl_ops);
4704 retval = tty_register_driver(stl_serial);
4706 printk("STALLION: failed to register serial driver\n");
4711 * Find any dynamically supported boards. That is via module load
4714 for (i = stl_nrbrds; i < stl_nargs; i++) {
4715 memset(&conf, 0, sizeof(conf));
4716 if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
4718 if ((brdp = stl_allocbrd()) == NULL)
4721 brdp->brdtype = conf.brdtype;
4722 brdp->ioaddr1 = conf.ioaddr1;
4723 brdp->ioaddr2 = conf.ioaddr2;
4724 brdp->irq = conf.irq;
4725 brdp->irqtype = conf.irqtype;
4726 stl_brds[brdp->brdnr] = brdp;
4727 if (stl_brdinit(brdp)) {
4728 stl_brds[brdp->brdnr] = NULL;
4731 for (j = 0; j < brdp->nrports; j++)
4732 tty_register_device(stl_serial,
4733 brdp->brdnr * STL_MAXPORTS + j, NULL);
4738 /* this has to be _after_ isa finding because of locking */
4739 retval = pci_register_driver(&stl_pcidriver);
4740 if (retval && stl_nrbrds == 0) {
4741 printk(KERN_ERR "STALLION: can't register pci driver\n");
4746 * Set up a character driver for per board stuff. This is mainly used
4747 * to do stats ioctls on the ports.
4749 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
4750 printk("STALLION: failed to register serial board device\n");
4752 stallion_class = class_create(THIS_MODULE, "staliomem");
4753 if (IS_ERR(stallion_class))
4754 printk("STALLION: failed to create class\n");
4755 for (i = 0; i < 4; i++)
4756 device_create(stallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4761 tty_unregister_driver(stl_serial);
4763 put_tty_driver(stl_serial);
4768 static void __exit stallion_module_exit(void)
4770 struct stlbrd *brdp;
4773 pr_debug("cleanup_module()\n");
4775 printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
4779 * Free up all allocated resources used by the ports. This includes
4780 * memory and interrupts. As part of this process we will also do
4781 * a hangup on every open port - to try to flush out any processes
4782 * hanging onto ports.
4784 for (i = 0; i < stl_nrbrds; i++) {
4785 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4787 for (j = 0; j < brdp->nrports; j++)
4788 tty_unregister_device(stl_serial,
4789 brdp->brdnr * STL_MAXPORTS + j);
4792 for (i = 0; i < 4; i++)
4793 device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
4794 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4795 class_destroy(stallion_class);
4797 pci_unregister_driver(&stl_pcidriver);
4801 tty_unregister_driver(stl_serial);
4802 put_tty_driver(stl_serial);
4805 module_init(stallion_module_init);
4806 module_exit(stallion_module_exit);
4808 MODULE_AUTHOR("Greg Ungerer");
4809 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
4810 MODULE_LICENSE("GPL");