2 * linux/drivers/char/keyboard.c
4 * Written for linux by Johan Myreen as a translation from
5 * the assembly version by Linus (with diacriticals added)
7 * Some additional features added by Christoph Niemann (ChN), March 1993
9 * Loadable keymaps by Risto Kankkunen, May 1993
11 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
12 * Added decr/incr_console, dynamic keymaps, Unicode support,
13 * dynamic function/string keys, led setting, Sept 1994
14 * `Sticky' modifier keys, 951006.
16 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
18 * Modified to provide 'generic' keyboard support by Hamish Macdonald
19 * Merge with the m68k keyboard driver and split-off of the PC low-level
20 * parts by Geert Uytterhoeven, May 1997
22 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
23 * 30-07-98: Dead keys redone, aeb@cwi.nl.
24 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
27 #include <linux/consolemap.h>
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/slab.h>
36 #include <linux/irq.h>
38 #include <linux/kbd_kern.h>
39 #include <linux/kbd_diacr.h>
40 #include <linux/vt_kern.h>
41 #include <linux/sysrq.h>
42 #include <linux/input.h>
43 #include <linux/reboot.h>
44 #include <linux/notifier.h>
45 #include <linux/jiffies.h>
47 extern void ctrl_alt_del(void);
50 * Exported functions/variables
53 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
56 * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
57 * This seems a good reason to start with NumLock off. On HIL keyboards
58 * of PARISC machines however there is no NumLock key and everyone expects the keypad
59 * to be used for numbers.
62 #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
63 #define KBD_DEFLEDS (1 << VC_NUMLOCK)
70 void compute_shiftstate(void);
77 k_self, k_fn, k_spec, k_pad,\
78 k_dead, k_cons, k_cur, k_shift,\
79 k_meta, k_ascii, k_lock, k_lowercase,\
80 k_slock, k_dead2, k_brl, k_ignore
82 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
84 static k_handler_fn K_HANDLERS;
85 k_handler_fn *k_handler[16] = { K_HANDLERS };
86 EXPORT_SYMBOL_GPL(k_handler);
89 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
90 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
91 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
92 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
93 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
95 typedef void (fn_handler_fn)(struct vc_data *vc);
96 static fn_handler_fn FN_HANDLERS;
97 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
100 * Variables exported for vt_ioctl.c
103 /* maximum values each key_handler can handle */
104 const int max_vals[] = {
105 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
106 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
107 255, NR_LOCK - 1, 255, NR_BRL - 1
110 const int NR_TYPES = ARRAY_SIZE(max_vals);
112 struct kbd_struct kbd_table[MAX_NR_CONSOLES];
113 EXPORT_SYMBOL_GPL(kbd_table);
114 static struct kbd_struct *kbd = kbd_table;
116 struct vt_spawn_console vt_spawn_con = {
117 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
123 * Variables exported for vt.c
132 static struct input_handler kbd_handler;
133 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
134 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
135 static int dead_key_next;
136 static int npadch = -1; /* -1 or number assembled on pad */
137 static unsigned int diacr;
138 static char rep; /* flag telling character repeat */
140 static unsigned char ledstate = 0xff; /* undefined */
141 static unsigned char ledioctl;
143 static struct ledptr {
146 unsigned char valid:1;
149 /* Simple translation table for the SysRq keys */
151 #ifdef CONFIG_MAGIC_SYSRQ
152 unsigned char kbd_sysrq_xlate[KEY_MAX + 1] =
153 "\000\0331234567890-=\177\t" /* 0x00 - 0x0f */
154 "qwertyuiop[]\r\000as" /* 0x10 - 0x1f */
155 "dfghjkl;'`\000\\zxcv" /* 0x20 - 0x2f */
156 "bnm,./\000*\000 \000\201\202\203\204\205" /* 0x30 - 0x3f */
157 "\206\207\210\211\212\000\000789-456+1" /* 0x40 - 0x4f */
158 "230\177\000\000\213\214\000\000\000\000\000\000\000\000\000\000" /* 0x50 - 0x5f */
159 "\r\000/"; /* 0x60 - 0x6f */
160 static int sysrq_down;
161 static int sysrq_alt_use;
163 static int sysrq_alt;
166 * Notifier list for console keyboard events
168 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
170 int register_keyboard_notifier(struct notifier_block *nb)
172 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
174 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
176 int unregister_keyboard_notifier(struct notifier_block *nb)
178 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
180 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
183 * Translation of scancodes to keycodes. We set them on only the first
184 * keyboard in the list that accepts the scancode and keycode.
185 * Explanation for not choosing the first attached keyboard anymore:
186 * USB keyboards for example have two event devices: one for all "normal"
187 * keys and one for extra function keys (like "volume up", "make coffee",
188 * etc.). So this means that scancodes for the extra function keys won't
189 * be valid for the first event device, but will be for the second.
191 int getkeycode(unsigned int scancode)
193 struct input_handle *handle;
197 list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
198 error = input_get_keycode(handle->dev, scancode, &keycode);
206 int setkeycode(unsigned int scancode, unsigned int keycode)
208 struct input_handle *handle;
211 list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
212 error = input_set_keycode(handle->dev, scancode, keycode);
221 * Making beeps and bells.
223 static void kd_nosound(unsigned long ignored)
225 struct input_handle *handle;
227 list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
228 if (test_bit(EV_SND, handle->dev->evbit)) {
229 if (test_bit(SND_TONE, handle->dev->sndbit))
230 input_inject_event(handle, EV_SND, SND_TONE, 0);
231 if (test_bit(SND_BELL, handle->dev->sndbit))
232 input_inject_event(handle, EV_SND, SND_BELL, 0);
237 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
239 void kd_mksound(unsigned int hz, unsigned int ticks)
241 struct list_head *node;
243 del_timer(&kd_mksound_timer);
246 list_for_each_prev(node, &kbd_handler.h_list) {
247 struct input_handle *handle = to_handle_h(node);
248 if (test_bit(EV_SND, handle->dev->evbit)) {
249 if (test_bit(SND_TONE, handle->dev->sndbit)) {
250 input_inject_event(handle, EV_SND, SND_TONE, hz);
253 if (test_bit(SND_BELL, handle->dev->sndbit)) {
254 input_inject_event(handle, EV_SND, SND_BELL, 1);
260 mod_timer(&kd_mksound_timer, jiffies + ticks);
264 EXPORT_SYMBOL(kd_mksound);
267 * Setting the keyboard rate.
270 int kbd_rate(struct kbd_repeat *rep)
272 struct list_head *node;
276 list_for_each(node, &kbd_handler.h_list) {
277 struct input_handle *handle = to_handle_h(node);
278 struct input_dev *dev = handle->dev;
280 if (test_bit(EV_REP, dev->evbit)) {
282 input_inject_event(handle, EV_REP, REP_DELAY, rep->delay);
284 input_inject_event(handle, EV_REP, REP_PERIOD, rep->period);
285 d = dev->rep[REP_DELAY];
286 p = dev->rep[REP_PERIOD];
297 static void put_queue(struct vc_data *vc, int ch)
299 struct tty_struct *tty = vc->vc_tty;
302 tty_insert_flip_char(tty, ch, 0);
303 con_schedule_flip(tty);
307 static void puts_queue(struct vc_data *vc, char *cp)
309 struct tty_struct *tty = vc->vc_tty;
315 tty_insert_flip_char(tty, *cp, 0);
318 con_schedule_flip(tty);
321 static void applkey(struct vc_data *vc, int key, char mode)
323 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
325 buf[1] = (mode ? 'O' : '[');
331 * Many other routines do put_queue, but I think either
332 * they produce ASCII, or they produce some user-assigned
333 * string, and in both cases we might assume that it is
336 static void to_utf8(struct vc_data *vc, uint c)
341 else if (c < 0x800) {
342 /* 110***** 10****** */
343 put_queue(vc, 0xc0 | (c >> 6));
344 put_queue(vc, 0x80 | (c & 0x3f));
345 } else if (c < 0x10000) {
346 if (c >= 0xD800 && c < 0xE000)
350 /* 1110**** 10****** 10****** */
351 put_queue(vc, 0xe0 | (c >> 12));
352 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
353 put_queue(vc, 0x80 | (c & 0x3f));
354 } else if (c < 0x110000) {
355 /* 11110*** 10****** 10****** 10****** */
356 put_queue(vc, 0xf0 | (c >> 18));
357 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
358 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
359 put_queue(vc, 0x80 | (c & 0x3f));
364 * Called after returning from RAW mode or when changing consoles - recompute
365 * shift_down[] and shift_state from key_down[] maybe called when keymap is
366 * undefined, so that shiftkey release is seen
368 void compute_shiftstate(void)
370 unsigned int i, j, k, sym, val;
373 memset(shift_down, 0, sizeof(shift_down));
375 for (i = 0; i < ARRAY_SIZE(key_down); i++) {
380 k = i * BITS_PER_LONG;
382 for (j = 0; j < BITS_PER_LONG; j++, k++) {
384 if (!test_bit(k, key_down))
387 sym = U(key_maps[0][k]);
388 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
392 if (val == KVAL(K_CAPSSHIFT))
396 shift_state |= (1 << val);
402 * We have a combining character DIACR here, followed by the character CH.
403 * If the combination occurs in the table, return the corresponding value.
404 * Otherwise, if CH is a space or equals DIACR, return DIACR.
405 * Otherwise, conclude that DIACR was not combining after all,
406 * queue it and return CH.
408 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
410 unsigned int d = diacr;
415 if ((d & ~0xff) == BRL_UC_ROW) {
416 if ((ch & ~0xff) == BRL_UC_ROW)
419 for (i = 0; i < accent_table_size; i++)
420 if (accent_table[i].diacr == d && accent_table[i].base == ch)
421 return accent_table[i].result;
424 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
427 if (kbd->kbdmode == VC_UNICODE)
430 int c = conv_uni_to_8bit(d);
439 * Special function handlers
441 static void fn_enter(struct vc_data *vc)
444 if (kbd->kbdmode == VC_UNICODE)
447 int c = conv_uni_to_8bit(diacr);
454 if (vc_kbd_mode(kbd, VC_CRLF))
458 static void fn_caps_toggle(struct vc_data *vc)
462 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
465 static void fn_caps_on(struct vc_data *vc)
469 set_vc_kbd_led(kbd, VC_CAPSLOCK);
472 static void fn_show_ptregs(struct vc_data *vc)
474 struct pt_regs *regs = get_irq_regs();
479 static void fn_hold(struct vc_data *vc)
481 struct tty_struct *tty = vc->vc_tty;
487 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
488 * these routines are also activated by ^S/^Q.
489 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
497 static void fn_num(struct vc_data *vc)
499 if (vc_kbd_mode(kbd,VC_APPLIC))
506 * Bind this to Shift-NumLock if you work in application keypad mode
507 * but want to be able to change the NumLock flag.
508 * Bind this to NumLock if you prefer that the NumLock key always
509 * changes the NumLock flag.
511 static void fn_bare_num(struct vc_data *vc)
514 chg_vc_kbd_led(kbd, VC_NUMLOCK);
517 static void fn_lastcons(struct vc_data *vc)
519 /* switch to the last used console, ChN */
520 set_console(last_console);
523 static void fn_dec_console(struct vc_data *vc)
525 int i, cur = fg_console;
527 /* Currently switching? Queue this next switch relative to that. */
528 if (want_console != -1)
531 for (i = cur - 1; i != cur; i--) {
533 i = MAX_NR_CONSOLES - 1;
534 if (vc_cons_allocated(i))
540 static void fn_inc_console(struct vc_data *vc)
542 int i, cur = fg_console;
544 /* Currently switching? Queue this next switch relative to that. */
545 if (want_console != -1)
548 for (i = cur+1; i != cur; i++) {
549 if (i == MAX_NR_CONSOLES)
551 if (vc_cons_allocated(i))
557 static void fn_send_intr(struct vc_data *vc)
559 struct tty_struct *tty = vc->vc_tty;
563 tty_insert_flip_char(tty, 0, TTY_BREAK);
564 con_schedule_flip(tty);
567 static void fn_scroll_forw(struct vc_data *vc)
572 static void fn_scroll_back(struct vc_data *vc)
577 static void fn_show_mem(struct vc_data *vc)
582 static void fn_show_state(struct vc_data *vc)
587 static void fn_boot_it(struct vc_data *vc)
592 static void fn_compose(struct vc_data *vc)
597 static void fn_spawn_con(struct vc_data *vc)
599 spin_lock(&vt_spawn_con.lock);
600 if (vt_spawn_con.pid)
601 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
602 put_pid(vt_spawn_con.pid);
603 vt_spawn_con.pid = NULL;
605 spin_unlock(&vt_spawn_con.lock);
608 static void fn_SAK(struct vc_data *vc)
610 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
611 schedule_work(SAK_work);
614 static void fn_null(struct vc_data *vc)
616 compute_shiftstate();
620 * Special key handlers
622 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
626 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
630 if (value >= ARRAY_SIZE(fn_handler))
632 if ((kbd->kbdmode == VC_RAW ||
633 kbd->kbdmode == VC_MEDIUMRAW) &&
634 value != KVAL(K_SAK))
635 return; /* SAK is allowed even in raw mode */
636 fn_handler[value](vc);
639 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
641 printk(KERN_ERR "keyboard.c: k_lowercase was called - impossible\n");
644 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
647 return; /* no action, if this is a key release */
650 value = handle_diacr(vc, value);
657 if (kbd->kbdmode == VC_UNICODE)
660 int c = conv_uni_to_8bit(value);
667 * Handle dead key. Note that we now may have several
668 * dead keys modifying the same character. Very useful
671 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
675 diacr = (diacr ? handle_diacr(vc, value) : value);
678 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
681 if (kbd->kbdmode == VC_UNICODE)
684 uni = conv_8bit_to_uni(value);
685 k_unicode(vc, uni, up_flag);
688 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
690 k_deadunicode(vc, value, up_flag);
694 * Obsolete - for backwards compatibility only
696 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
698 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
699 value = ret_diacr[value];
700 k_deadunicode(vc, value, up_flag);
703 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
710 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
717 if (v < ARRAY_SIZE(func_table)) {
718 if (func_table[value])
719 puts_queue(vc, func_table[value]);
721 printk(KERN_ERR "k_fn called with value=%d\n", value);
724 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
726 static const char cur_chars[] = "BDCA";
730 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
733 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
735 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
736 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
739 return; /* no action, if this is a key release */
741 /* kludge... shift forces cursor/number keys */
742 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
743 applkey(vc, app_map[value], 1);
747 if (!vc_kbd_led(kbd, VC_NUMLOCK))
751 k_fn(vc, KVAL(K_REMOVE), 0);
754 k_fn(vc, KVAL(K_INSERT), 0);
757 k_fn(vc, KVAL(K_SELECT), 0);
760 k_cur(vc, KVAL(K_DOWN), 0);
763 k_fn(vc, KVAL(K_PGDN), 0);
766 k_cur(vc, KVAL(K_LEFT), 0);
769 k_cur(vc, KVAL(K_RIGHT), 0);
772 k_fn(vc, KVAL(K_FIND), 0);
775 k_cur(vc, KVAL(K_UP), 0);
778 k_fn(vc, KVAL(K_PGUP), 0);
781 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
785 put_queue(vc, pad_chars[value]);
786 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
790 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
792 int old_state = shift_state;
798 * a CapsShift key acts like Shift but undoes CapsLock
800 if (value == KVAL(K_CAPSSHIFT)) {
801 value = KVAL(K_SHIFT);
803 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
808 * handle the case that two shift or control
809 * keys are depressed simultaneously
811 if (shift_down[value])
816 if (shift_down[value])
817 shift_state |= (1 << value);
819 shift_state &= ~(1 << value);
822 if (up_flag && shift_state != old_state && npadch != -1) {
823 if (kbd->kbdmode == VC_UNICODE)
826 put_queue(vc, npadch & 0xff);
831 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
836 if (vc_kbd_mode(kbd, VC_META)) {
837 put_queue(vc, '\033');
838 put_queue(vc, value);
840 put_queue(vc, value | 0x80);
843 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
851 /* decimal input of code, while Alt depressed */
854 /* hexadecimal input of code, while AltGr depressed */
862 npadch = npadch * base + value;
865 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
869 chg_vc_kbd_lock(kbd, value);
872 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
874 k_shift(vc, value, up_flag);
877 chg_vc_kbd_slock(kbd, value);
878 /* try to make Alt, oops, AltGr and such work */
879 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
881 chg_vc_kbd_slock(kbd, value);
885 /* by default, 300ms interval for combination release */
886 static unsigned brl_timeout = 300;
887 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
888 module_param(brl_timeout, uint, 0644);
890 static unsigned brl_nbchords = 1;
891 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
892 module_param(brl_nbchords, uint, 0644);
894 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
896 static unsigned long chords;
897 static unsigned committed;
900 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
902 committed |= pattern;
904 if (chords == brl_nbchords) {
905 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
912 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
914 static unsigned pressed,committing;
915 static unsigned long releasestart;
917 if (kbd->kbdmode != VC_UNICODE) {
919 printk("keyboard mode must be unicode for braille patterns\n");
924 k_unicode(vc, BRL_UC_ROW, up_flag);
935 releasestart + msecs_to_jiffies(brl_timeout))) {
936 committing = pressed;
937 releasestart = jiffies;
939 pressed &= ~(1 << (value - 1));
942 k_brlcommit(vc, committing, 0);
948 k_brlcommit(vc, committing, 0);
951 pressed &= ~(1 << (value - 1));
954 pressed |= 1 << (value - 1);
956 committing = pressed;
961 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
962 * or (ii) whatever pattern of lights people want to show using KDSETLED,
963 * or (iii) specified bits of specified words in kernel memory.
965 unsigned char getledstate(void)
970 void setledstate(struct kbd_struct *kbd, unsigned int led)
974 kbd->ledmode = LED_SHOW_IOCTL;
976 kbd->ledmode = LED_SHOW_FLAGS;
980 static inline unsigned char getleds(void)
982 struct kbd_struct *kbd = kbd_table + fg_console;
986 if (kbd->ledmode == LED_SHOW_IOCTL)
989 leds = kbd->ledflagstate;
991 if (kbd->ledmode == LED_SHOW_MEM) {
992 for (i = 0; i < 3; i++)
993 if (ledptrs[i].valid) {
994 if (*ledptrs[i].addr & ledptrs[i].mask)
1004 * This routine is the bottom half of the keyboard interrupt
1005 * routine, and runs with all interrupts enabled. It does
1006 * console changing, led setting and copy_to_cooked, which can
1007 * take a reasonably long time.
1009 * Aside from timing (which isn't really that important for
1010 * keyboard interrupts as they happen often), using the software
1011 * interrupt routines for this thing allows us to easily mask
1012 * this when we don't want any of the above to happen.
1013 * This allows for easy and efficient race-condition prevention
1014 * for kbd_start => input_inject_event(dev, EV_LED, ...) => ...
1017 static void kbd_bh(unsigned long dummy)
1019 struct list_head *node;
1020 unsigned char leds = getleds();
1022 if (leds != ledstate) {
1023 list_for_each(node, &kbd_handler.h_list) {
1024 struct input_handle *handle = to_handle_h(node);
1025 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1026 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1027 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1028 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1035 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1037 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1038 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1039 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1040 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1041 defined(CONFIG_AVR32)
1043 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1044 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1046 static const unsigned short x86_keycodes[256] =
1047 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1048 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1049 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1050 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1051 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1052 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1053 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1054 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1055 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1056 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1057 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1058 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1059 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1060 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1061 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1064 static int sparc_l1_a_state = 0;
1065 extern void sun_do_break(void);
1068 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1069 unsigned char up_flag)
1075 put_queue(vc, 0xe1);
1076 put_queue(vc, 0x1d | up_flag);
1077 put_queue(vc, 0x45 | up_flag);
1082 put_queue(vc, 0xf2);
1087 put_queue(vc, 0xf1);
1092 * Real AT keyboards (that's what we're trying
1093 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1094 * pressing PrtSc/SysRq alone, but simply 0x54
1095 * when pressing Alt+PrtSc/SysRq.
1098 put_queue(vc, 0x54 | up_flag);
1100 put_queue(vc, 0xe0);
1101 put_queue(vc, 0x2a | up_flag);
1102 put_queue(vc, 0xe0);
1103 put_queue(vc, 0x37 | up_flag);
1111 code = x86_keycodes[keycode];
1116 put_queue(vc, 0xe0);
1117 put_queue(vc, (code & 0x7f) | up_flag);
1127 #define HW_RAW(dev) 0
1129 #warning "Cannot generate rawmode keyboard for your architecture yet."
1131 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1136 put_queue(vc, keycode | up_flag);
1141 static void kbd_rawcode(unsigned char data)
1143 struct vc_data *vc = vc_cons[fg_console].d;
1144 kbd = kbd_table + fg_console;
1145 if (kbd->kbdmode == VC_RAW)
1146 put_queue(vc, data);
1149 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1151 struct vc_data *vc = vc_cons[fg_console].d;
1152 unsigned short keysym, *key_map;
1153 unsigned char type, raw_mode;
1154 struct tty_struct *tty;
1156 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1160 if (tty && (!tty->driver_data)) {
1161 /* No driver data? Strange. Okay we fix it then. */
1162 tty->driver_data = vc;
1165 kbd = kbd_table + fg_console;
1167 if (keycode == KEY_LEFTALT || keycode == KEY_RIGHTALT)
1168 sysrq_alt = down ? keycode : 0;
1170 if (keycode == KEY_STOP)
1171 sparc_l1_a_state = down;
1176 #ifdef CONFIG_MAC_EMUMOUSEBTN
1177 if (mac_hid_mouse_emulate_buttons(1, keycode, down))
1179 #endif /* CONFIG_MAC_EMUMOUSEBTN */
1181 if ((raw_mode = (kbd->kbdmode == VC_RAW)) && !hw_raw)
1182 if (emulate_raw(vc, keycode, !down << 7))
1183 if (keycode < BTN_MISC && printk_ratelimit())
1184 printk(KERN_WARNING "keyboard.c: can't emulate rawmode for keycode %d\n", keycode);
1186 #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
1187 if (keycode == KEY_SYSRQ && (sysrq_down || (down == 1 && sysrq_alt))) {
1190 sysrq_alt_use = sysrq_alt;
1194 if (sysrq_down && !down && keycode == sysrq_alt_use)
1196 if (sysrq_down && down && !rep) {
1197 handle_sysrq(kbd_sysrq_xlate[keycode], tty);
1202 if (keycode == KEY_A && sparc_l1_a_state) {
1203 sparc_l1_a_state = 0;
1208 if (kbd->kbdmode == VC_MEDIUMRAW) {
1210 * This is extended medium raw mode, with keys above 127
1211 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1212 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1213 * interfere with anything else. The two bytes after 0 will
1214 * always have the up flag set not to interfere with older
1215 * applications. This allows for 16384 different keycodes,
1216 * which should be enough.
1218 if (keycode < 128) {
1219 put_queue(vc, keycode | (!down << 7));
1221 put_queue(vc, !down << 7);
1222 put_queue(vc, (keycode >> 7) | 0x80);
1223 put_queue(vc, keycode | 0x80);
1229 set_bit(keycode, key_down);
1231 clear_bit(keycode, key_down);
1234 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1235 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1237 * Don't repeat a key if the input buffers are not empty and the
1238 * characters get aren't echoed locally. This makes key repeat
1239 * usable with slow applications and under heavy loads.
1244 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1245 param.ledstate = kbd->ledflagstate;
1246 key_map = key_maps[shift_final];
1248 if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYCODE, ¶m) == NOTIFY_STOP || !key_map) {
1249 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNBOUND_KEYCODE, ¶m);
1250 compute_shiftstate();
1251 kbd->slockstate = 0;
1255 if (keycode > NR_KEYS)
1256 if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1257 keysym = K(KT_BRL, keycode - KEY_BRL_DOT1 + 1);
1261 keysym = key_map[keycode];
1263 type = KTYP(keysym);
1266 param.value = keysym;
1267 if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNICODE, ¶m) == NOTIFY_STOP)
1269 if (down && !raw_mode)
1270 to_utf8(vc, keysym);
1276 if (type == KT_LETTER) {
1278 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1279 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1281 keysym = key_map[keycode];
1284 param.value = keysym;
1286 if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYSYM, ¶m) == NOTIFY_STOP)
1289 if (raw_mode && type != KT_SPEC && type != KT_SHIFT)
1292 (*k_handler[type])(vc, keysym & 0xff, !down);
1294 param.ledstate = kbd->ledflagstate;
1295 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1297 if (type != KT_SLOCK)
1298 kbd->slockstate = 0;
1301 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1302 unsigned int event_code, int value)
1304 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1306 if (event_type == EV_KEY)
1307 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1308 tasklet_schedule(&keyboard_tasklet);
1309 do_poke_blanked_console = 1;
1310 schedule_console_callback();
1314 * When a keyboard (or other input device) is found, the kbd_connect
1315 * function is called. The function then looks at the device, and if it
1316 * likes it, it can open it and get events from it. In this (kbd_connect)
1317 * function, we should decide which VT to bind that keyboard to initially.
1319 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1320 const struct input_device_id *id)
1322 struct input_handle *handle;
1326 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1327 if (test_bit(i, dev->keybit))
1330 if (i == BTN_MISC && !test_bit(EV_SND, dev->evbit))
1333 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1338 handle->handler = handler;
1339 handle->name = "kbd";
1341 error = input_register_handle(handle);
1343 goto err_free_handle;
1345 error = input_open_device(handle);
1347 goto err_unregister_handle;
1351 err_unregister_handle:
1352 input_unregister_handle(handle);
1358 static void kbd_disconnect(struct input_handle *handle)
1360 input_close_device(handle);
1361 input_unregister_handle(handle);
1366 * Start keyboard handler on the new keyboard by refreshing LED state to
1367 * match the rest of the system.
1369 static void kbd_start(struct input_handle *handle)
1371 unsigned char leds = ledstate;
1373 tasklet_disable(&keyboard_tasklet);
1375 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1376 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1377 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1378 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1380 tasklet_enable(&keyboard_tasklet);
1383 static const struct input_device_id kbd_ids[] = {
1385 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1386 .evbit = { BIT_MASK(EV_KEY) },
1390 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1391 .evbit = { BIT_MASK(EV_SND) },
1394 { }, /* Terminating entry */
1397 MODULE_DEVICE_TABLE(input, kbd_ids);
1399 static struct input_handler kbd_handler = {
1401 .connect = kbd_connect,
1402 .disconnect = kbd_disconnect,
1405 .id_table = kbd_ids,
1408 int __init kbd_init(void)
1413 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1414 kbd_table[i].ledflagstate = KBD_DEFLEDS;
1415 kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
1416 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1417 kbd_table[i].lockstate = KBD_DEFLOCK;
1418 kbd_table[i].slockstate = 0;
1419 kbd_table[i].modeflags = KBD_DEFMODE;
1420 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1423 error = input_register_handler(&kbd_handler);
1427 tasklet_enable(&keyboard_tasklet);
1428 tasklet_schedule(&keyboard_tasklet);