]> err.no Git - linux-2.6/blob - drivers/char/ipmi/ipmi_msghandler.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/gregkh/driver-2.6
[linux-2.6] / drivers / char / ipmi / ipmi_msghandler.c
1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/poll.h>
38 #include <linux/spinlock.h>
39 #include <linux/mutex.h>
40 #include <linux/slab.h>
41 #include <linux/ipmi.h>
42 #include <linux/ipmi_smi.h>
43 #include <linux/notifier.h>
44 #include <linux/init.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47
48 #define PFX "IPMI message handler: "
49
50 #define IPMI_DRIVER_VERSION "39.1"
51
52 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
53 static int ipmi_init_msghandler(void);
54
55 static int initialized;
56
57 #ifdef CONFIG_PROC_FS
58 static struct proc_dir_entry *proc_ipmi_root;
59 #endif /* CONFIG_PROC_FS */
60
61 /* Remain in auto-maintenance mode for this amount of time (in ms). */
62 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
63
64 #define MAX_EVENTS_IN_QUEUE     25
65
66 /* Don't let a message sit in a queue forever, always time it with at lest
67    the max message timer.  This is in milliseconds. */
68 #define MAX_MSG_TIMEOUT         60000
69
70
71 /*
72  * The main "user" data structure.
73  */
74 struct ipmi_user
75 {
76         struct list_head link;
77
78         /* Set to "0" when the user is destroyed. */
79         int valid;
80
81         struct kref refcount;
82
83         /* The upper layer that handles receive messages. */
84         struct ipmi_user_hndl *handler;
85         void             *handler_data;
86
87         /* The interface this user is bound to. */
88         ipmi_smi_t intf;
89
90         /* Does this interface receive IPMI events? */
91         int gets_events;
92 };
93
94 struct cmd_rcvr
95 {
96         struct list_head link;
97
98         ipmi_user_t   user;
99         unsigned char netfn;
100         unsigned char cmd;
101         unsigned int  chans;
102
103         /*
104          * This is used to form a linked lised during mass deletion.
105          * Since this is in an RCU list, we cannot use the link above
106          * or change any data until the RCU period completes.  So we
107          * use this next variable during mass deletion so we can have
108          * a list and don't have to wait and restart the search on
109          * every individual deletion of a command. */
110         struct cmd_rcvr *next;
111 };
112
113 struct seq_table
114 {
115         unsigned int         inuse : 1;
116         unsigned int         broadcast : 1;
117
118         unsigned long        timeout;
119         unsigned long        orig_timeout;
120         unsigned int         retries_left;
121
122         /* To verify on an incoming send message response that this is
123            the message that the response is for, we keep a sequence id
124            and increment it every time we send a message. */
125         long                 seqid;
126
127         /* This is held so we can properly respond to the message on a
128            timeout, and it is used to hold the temporary data for
129            retransmission, too. */
130         struct ipmi_recv_msg *recv_msg;
131 };
132
133 /* Store the information in a msgid (long) to allow us to find a
134    sequence table entry from the msgid. */
135 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
136
137 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
138         do {                                                            \
139                 seq = ((msgid >> 26) & 0x3f);                           \
140                 seqid = (msgid & 0x3fffff);                             \
141         } while (0)
142
143 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
144
145 struct ipmi_channel
146 {
147         unsigned char medium;
148         unsigned char protocol;
149
150         /* My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
151            but may be changed by the user. */
152         unsigned char address;
153
154         /* My LUN.  This should generally stay the SMS LUN, but just in
155            case... */
156         unsigned char lun;
157 };
158
159 #ifdef CONFIG_PROC_FS
160 struct ipmi_proc_entry
161 {
162         char                   *name;
163         struct ipmi_proc_entry *next;
164 };
165 #endif
166
167 struct bmc_device
168 {
169         struct platform_device *dev;
170         struct ipmi_device_id  id;
171         unsigned char          guid[16];
172         int                    guid_set;
173
174         struct kref            refcount;
175
176         /* bmc device attributes */
177         struct device_attribute device_id_attr;
178         struct device_attribute provides_dev_sdrs_attr;
179         struct device_attribute revision_attr;
180         struct device_attribute firmware_rev_attr;
181         struct device_attribute version_attr;
182         struct device_attribute add_dev_support_attr;
183         struct device_attribute manufacturer_id_attr;
184         struct device_attribute product_id_attr;
185         struct device_attribute guid_attr;
186         struct device_attribute aux_firmware_rev_attr;
187 };
188
189 #define IPMI_IPMB_NUM_SEQ       64
190 #define IPMI_MAX_CHANNELS       16
191 struct ipmi_smi
192 {
193         /* What interface number are we? */
194         int intf_num;
195
196         struct kref refcount;
197
198         /* Used for a list of interfaces. */
199         struct list_head link;
200
201         /* The list of upper layers that are using me.  seq_lock
202          * protects this. */
203         struct list_head users;
204
205         /* Information to supply to users. */
206         unsigned char ipmi_version_major;
207         unsigned char ipmi_version_minor;
208
209         /* Used for wake ups at startup. */
210         wait_queue_head_t waitq;
211
212         struct bmc_device *bmc;
213         char *my_dev_name;
214         char *sysfs_name;
215
216         /* This is the lower-layer's sender routine.  Note that you
217          * must either be holding the ipmi_interfaces_mutex or be in
218          * an umpreemptible region to use this.  You must fetch the
219          * value into a local variable and make sure it is not NULL. */
220         struct ipmi_smi_handlers *handlers;
221         void                     *send_info;
222
223 #ifdef CONFIG_PROC_FS
224         /* A list of proc entries for this interface.  This does not
225            need a lock, only one thread creates it and only one thread
226            destroys it. */
227         spinlock_t             proc_entry_lock;
228         struct ipmi_proc_entry *proc_entries;
229 #endif
230
231         /* Driver-model device for the system interface. */
232         struct device          *si_dev;
233
234         /* A table of sequence numbers for this interface.  We use the
235            sequence numbers for IPMB messages that go out of the
236            interface to match them up with their responses.  A routine
237            is called periodically to time the items in this list. */
238         spinlock_t       seq_lock;
239         struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
240         int curr_seq;
241
242         /* Messages that were delayed for some reason (out of memory,
243            for instance), will go in here to be processed later in a
244            periodic timer interrupt. */
245         spinlock_t       waiting_msgs_lock;
246         struct list_head waiting_msgs;
247
248         /* The list of command receivers that are registered for commands
249            on this interface. */
250         struct mutex     cmd_rcvrs_mutex;
251         struct list_head cmd_rcvrs;
252
253         /* Events that were queues because no one was there to receive
254            them. */
255         spinlock_t       events_lock; /* For dealing with event stuff. */
256         struct list_head waiting_events;
257         unsigned int     waiting_events_count; /* How many events in queue? */
258         int              delivering_events;
259
260         /* The event receiver for my BMC, only really used at panic
261            shutdown as a place to store this. */
262         unsigned char event_receiver;
263         unsigned char event_receiver_lun;
264         unsigned char local_sel_device;
265         unsigned char local_event_generator;
266
267         /* For handling of maintenance mode. */
268         int maintenance_mode;
269         int maintenance_mode_enable;
270         int auto_maintenance_timeout;
271         spinlock_t maintenance_mode_lock; /* Used in a timer... */
272
273         /* A cheap hack, if this is non-null and a message to an
274            interface comes in with a NULL user, call this routine with
275            it.  Note that the message will still be freed by the
276            caller.  This only works on the system interface. */
277         void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
278
279         /* When we are scanning the channels for an SMI, this will
280            tell which channel we are scanning. */
281         int curr_channel;
282
283         /* Channel information */
284         struct ipmi_channel channels[IPMI_MAX_CHANNELS];
285
286         /* Proc FS stuff. */
287         struct proc_dir_entry *proc_dir;
288         char                  proc_dir_name[10];
289
290         spinlock_t   counter_lock; /* For making counters atomic. */
291
292         /* Commands we got that were invalid. */
293         unsigned int sent_invalid_commands;
294
295         /* Commands we sent to the MC. */
296         unsigned int sent_local_commands;
297         /* Responses from the MC that were delivered to a user. */
298         unsigned int handled_local_responses;
299         /* Responses from the MC that were not delivered to a user. */
300         unsigned int unhandled_local_responses;
301
302         /* Commands we sent out to the IPMB bus. */
303         unsigned int sent_ipmb_commands;
304         /* Commands sent on the IPMB that had errors on the SEND CMD */
305         unsigned int sent_ipmb_command_errs;
306         /* Each retransmit increments this count. */
307         unsigned int retransmitted_ipmb_commands;
308         /* When a message times out (runs out of retransmits) this is
309            incremented. */
310         unsigned int timed_out_ipmb_commands;
311
312         /* This is like above, but for broadcasts.  Broadcasts are
313            *not* included in the above count (they are expected to
314            time out). */
315         unsigned int timed_out_ipmb_broadcasts;
316
317         /* Responses I have sent to the IPMB bus. */
318         unsigned int sent_ipmb_responses;
319
320         /* The response was delivered to the user. */
321         unsigned int handled_ipmb_responses;
322         /* The response had invalid data in it. */
323         unsigned int invalid_ipmb_responses;
324         /* The response didn't have anyone waiting for it. */
325         unsigned int unhandled_ipmb_responses;
326
327         /* Commands we sent out to the IPMB bus. */
328         unsigned int sent_lan_commands;
329         /* Commands sent on the IPMB that had errors on the SEND CMD */
330         unsigned int sent_lan_command_errs;
331         /* Each retransmit increments this count. */
332         unsigned int retransmitted_lan_commands;
333         /* When a message times out (runs out of retransmits) this is
334            incremented. */
335         unsigned int timed_out_lan_commands;
336
337         /* Responses I have sent to the IPMB bus. */
338         unsigned int sent_lan_responses;
339
340         /* The response was delivered to the user. */
341         unsigned int handled_lan_responses;
342         /* The response had invalid data in it. */
343         unsigned int invalid_lan_responses;
344         /* The response didn't have anyone waiting for it. */
345         unsigned int unhandled_lan_responses;
346
347         /* The command was delivered to the user. */
348         unsigned int handled_commands;
349         /* The command had invalid data in it. */
350         unsigned int invalid_commands;
351         /* The command didn't have anyone waiting for it. */
352         unsigned int unhandled_commands;
353
354         /* Invalid data in an event. */
355         unsigned int invalid_events;
356         /* Events that were received with the proper format. */
357         unsigned int events;
358 };
359 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
360
361 /**
362  * The driver model view of the IPMI messaging driver.
363  */
364 static struct device_driver ipmidriver = {
365         .name = "ipmi",
366         .bus = &platform_bus_type
367 };
368 static DEFINE_MUTEX(ipmidriver_mutex);
369
370 static struct list_head ipmi_interfaces = LIST_HEAD_INIT(ipmi_interfaces);
371 static DEFINE_MUTEX(ipmi_interfaces_mutex);
372
373 /* List of watchers that want to know when smi's are added and
374    deleted. */
375 static struct list_head smi_watchers = LIST_HEAD_INIT(smi_watchers);
376 static DEFINE_MUTEX(smi_watchers_mutex);
377
378
379 static void free_recv_msg_list(struct list_head *q)
380 {
381         struct ipmi_recv_msg *msg, *msg2;
382
383         list_for_each_entry_safe(msg, msg2, q, link) {
384                 list_del(&msg->link);
385                 ipmi_free_recv_msg(msg);
386         }
387 }
388
389 static void free_smi_msg_list(struct list_head *q)
390 {
391         struct ipmi_smi_msg *msg, *msg2;
392
393         list_for_each_entry_safe(msg, msg2, q, link) {
394                 list_del(&msg->link);
395                 ipmi_free_smi_msg(msg);
396         }
397 }
398
399 static void clean_up_interface_data(ipmi_smi_t intf)
400 {
401         int              i;
402         struct cmd_rcvr  *rcvr, *rcvr2;
403         struct list_head list;
404
405         free_smi_msg_list(&intf->waiting_msgs);
406         free_recv_msg_list(&intf->waiting_events);
407
408         /*
409          * Wholesale remove all the entries from the list in the
410          * interface and wait for RCU to know that none are in use.
411          */
412         mutex_lock(&intf->cmd_rcvrs_mutex);
413         INIT_LIST_HEAD(&list);
414         list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
415         mutex_unlock(&intf->cmd_rcvrs_mutex);
416
417         list_for_each_entry_safe(rcvr, rcvr2, &list, link)
418                 kfree(rcvr);
419
420         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
421                 if ((intf->seq_table[i].inuse)
422                     && (intf->seq_table[i].recv_msg))
423                 {
424                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
425                 }
426         }
427 }
428
429 static void intf_free(struct kref *ref)
430 {
431         ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
432
433         clean_up_interface_data(intf);
434         kfree(intf);
435 }
436
437 struct watcher_entry {
438         int              intf_num;
439         ipmi_smi_t       intf;
440         struct list_head link;
441 };
442
443 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
444 {
445         ipmi_smi_t intf;
446         struct list_head to_deliver = LIST_HEAD_INIT(to_deliver);
447         struct watcher_entry *e, *e2;
448
449         mutex_lock(&smi_watchers_mutex);
450
451         mutex_lock(&ipmi_interfaces_mutex);
452
453         /* Build a list of things to deliver. */
454         list_for_each_entry(intf, &ipmi_interfaces, link) {
455                 if (intf->intf_num == -1)
456                         continue;
457                 e = kmalloc(sizeof(*e), GFP_KERNEL);
458                 if (!e)
459                         goto out_err;
460                 kref_get(&intf->refcount);
461                 e->intf = intf;
462                 e->intf_num = intf->intf_num;
463                 list_add_tail(&e->link, &to_deliver);
464         }
465
466         /* We will succeed, so add it to the list. */
467         list_add(&watcher->link, &smi_watchers);
468
469         mutex_unlock(&ipmi_interfaces_mutex);
470
471         list_for_each_entry_safe(e, e2, &to_deliver, link) {
472                 list_del(&e->link);
473                 watcher->new_smi(e->intf_num, e->intf->si_dev);
474                 kref_put(&e->intf->refcount, intf_free);
475                 kfree(e);
476         }
477
478         mutex_unlock(&smi_watchers_mutex);
479
480         return 0;
481
482  out_err:
483         mutex_unlock(&ipmi_interfaces_mutex);
484         mutex_unlock(&smi_watchers_mutex);
485         list_for_each_entry_safe(e, e2, &to_deliver, link) {
486                 list_del(&e->link);
487                 kref_put(&e->intf->refcount, intf_free);
488                 kfree(e);
489         }
490         return -ENOMEM;
491 }
492
493 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
494 {
495         mutex_lock(&smi_watchers_mutex);
496         list_del(&(watcher->link));
497         mutex_unlock(&smi_watchers_mutex);
498         return 0;
499 }
500
501 /*
502  * Must be called with smi_watchers_mutex held.
503  */
504 static void
505 call_smi_watchers(int i, struct device *dev)
506 {
507         struct ipmi_smi_watcher *w;
508
509         list_for_each_entry(w, &smi_watchers, link) {
510                 if (try_module_get(w->owner)) {
511                         w->new_smi(i, dev);
512                         module_put(w->owner);
513                 }
514         }
515 }
516
517 static int
518 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
519 {
520         if (addr1->addr_type != addr2->addr_type)
521                 return 0;
522
523         if (addr1->channel != addr2->channel)
524                 return 0;
525
526         if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
527                 struct ipmi_system_interface_addr *smi_addr1
528                     = (struct ipmi_system_interface_addr *) addr1;
529                 struct ipmi_system_interface_addr *smi_addr2
530                     = (struct ipmi_system_interface_addr *) addr2;
531                 return (smi_addr1->lun == smi_addr2->lun);
532         }
533
534         if ((addr1->addr_type == IPMI_IPMB_ADDR_TYPE)
535             || (addr1->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
536         {
537                 struct ipmi_ipmb_addr *ipmb_addr1
538                     = (struct ipmi_ipmb_addr *) addr1;
539                 struct ipmi_ipmb_addr *ipmb_addr2
540                     = (struct ipmi_ipmb_addr *) addr2;
541
542                 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
543                         && (ipmb_addr1->lun == ipmb_addr2->lun));
544         }
545
546         if (addr1->addr_type == IPMI_LAN_ADDR_TYPE) {
547                 struct ipmi_lan_addr *lan_addr1
548                         = (struct ipmi_lan_addr *) addr1;
549                 struct ipmi_lan_addr *lan_addr2
550                     = (struct ipmi_lan_addr *) addr2;
551
552                 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
553                         && (lan_addr1->local_SWID == lan_addr2->local_SWID)
554                         && (lan_addr1->session_handle
555                             == lan_addr2->session_handle)
556                         && (lan_addr1->lun == lan_addr2->lun));
557         }
558
559         return 1;
560 }
561
562 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
563 {
564         if (len < sizeof(struct ipmi_system_interface_addr)) {
565                 return -EINVAL;
566         }
567
568         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
569                 if (addr->channel != IPMI_BMC_CHANNEL)
570                         return -EINVAL;
571                 return 0;
572         }
573
574         if ((addr->channel == IPMI_BMC_CHANNEL)
575             || (addr->channel >= IPMI_MAX_CHANNELS)
576             || (addr->channel < 0))
577                 return -EINVAL;
578
579         if ((addr->addr_type == IPMI_IPMB_ADDR_TYPE)
580             || (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
581         {
582                 if (len < sizeof(struct ipmi_ipmb_addr)) {
583                         return -EINVAL;
584                 }
585                 return 0;
586         }
587
588         if (addr->addr_type == IPMI_LAN_ADDR_TYPE) {
589                 if (len < sizeof(struct ipmi_lan_addr)) {
590                         return -EINVAL;
591                 }
592                 return 0;
593         }
594
595         return -EINVAL;
596 }
597
598 unsigned int ipmi_addr_length(int addr_type)
599 {
600         if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
601                 return sizeof(struct ipmi_system_interface_addr);
602
603         if ((addr_type == IPMI_IPMB_ADDR_TYPE)
604             || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
605         {
606                 return sizeof(struct ipmi_ipmb_addr);
607         }
608
609         if (addr_type == IPMI_LAN_ADDR_TYPE)
610                 return sizeof(struct ipmi_lan_addr);
611
612         return 0;
613 }
614
615 static void deliver_response(struct ipmi_recv_msg *msg)
616 {
617         if (!msg->user) {
618                 ipmi_smi_t    intf = msg->user_msg_data;
619                 unsigned long flags;
620
621                 /* Special handling for NULL users. */
622                 if (intf->null_user_handler) {
623                         intf->null_user_handler(intf, msg);
624                         spin_lock_irqsave(&intf->counter_lock, flags);
625                         intf->handled_local_responses++;
626                         spin_unlock_irqrestore(&intf->counter_lock, flags);
627                 } else {
628                         /* No handler, so give up. */
629                         spin_lock_irqsave(&intf->counter_lock, flags);
630                         intf->unhandled_local_responses++;
631                         spin_unlock_irqrestore(&intf->counter_lock, flags);
632                 }
633                 ipmi_free_recv_msg(msg);
634         } else {
635                 ipmi_user_t user = msg->user;
636                 user->handler->ipmi_recv_hndl(msg, user->handler_data);
637         }
638 }
639
640 static void
641 deliver_err_response(struct ipmi_recv_msg *msg, int err)
642 {
643         msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
644         msg->msg_data[0] = err;
645         msg->msg.netfn |= 1; /* Convert to a response. */
646         msg->msg.data_len = 1;
647         msg->msg.data = msg->msg_data;
648         deliver_response(msg);
649 }
650
651 /* Find the next sequence number not being used and add the given
652    message with the given timeout to the sequence table.  This must be
653    called with the interface's seq_lock held. */
654 static int intf_next_seq(ipmi_smi_t           intf,
655                          struct ipmi_recv_msg *recv_msg,
656                          unsigned long        timeout,
657                          int                  retries,
658                          int                  broadcast,
659                          unsigned char        *seq,
660                          long                 *seqid)
661 {
662         int          rv = 0;
663         unsigned int i;
664
665         for (i = intf->curr_seq;
666              (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
667              i = (i+1)%IPMI_IPMB_NUM_SEQ)
668         {
669                 if (!intf->seq_table[i].inuse)
670                         break;
671         }
672
673         if (!intf->seq_table[i].inuse) {
674                 intf->seq_table[i].recv_msg = recv_msg;
675
676                 /* Start with the maximum timeout, when the send response
677                    comes in we will start the real timer. */
678                 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
679                 intf->seq_table[i].orig_timeout = timeout;
680                 intf->seq_table[i].retries_left = retries;
681                 intf->seq_table[i].broadcast = broadcast;
682                 intf->seq_table[i].inuse = 1;
683                 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
684                 *seq = i;
685                 *seqid = intf->seq_table[i].seqid;
686                 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
687         } else {
688                 rv = -EAGAIN;
689         }
690         
691         return rv;
692 }
693
694 /* Return the receive message for the given sequence number and
695    release the sequence number so it can be reused.  Some other data
696    is passed in to be sure the message matches up correctly (to help
697    guard against message coming in after their timeout and the
698    sequence number being reused). */
699 static int intf_find_seq(ipmi_smi_t           intf,
700                          unsigned char        seq,
701                          short                channel,
702                          unsigned char        cmd,
703                          unsigned char        netfn,
704                          struct ipmi_addr     *addr,
705                          struct ipmi_recv_msg **recv_msg)
706 {
707         int           rv = -ENODEV;
708         unsigned long flags;
709
710         if (seq >= IPMI_IPMB_NUM_SEQ)
711                 return -EINVAL;
712
713         spin_lock_irqsave(&(intf->seq_lock), flags);
714         if (intf->seq_table[seq].inuse) {
715                 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
716
717                 if ((msg->addr.channel == channel)
718                     && (msg->msg.cmd == cmd)
719                     && (msg->msg.netfn == netfn)
720                     && (ipmi_addr_equal(addr, &(msg->addr))))
721                 {
722                         *recv_msg = msg;
723                         intf->seq_table[seq].inuse = 0;
724                         rv = 0;
725                 }
726         }
727         spin_unlock_irqrestore(&(intf->seq_lock), flags);
728
729         return rv;
730 }
731
732
733 /* Start the timer for a specific sequence table entry. */
734 static int intf_start_seq_timer(ipmi_smi_t intf,
735                                 long       msgid)
736 {
737         int           rv = -ENODEV;
738         unsigned long flags;
739         unsigned char seq;
740         unsigned long seqid;
741
742
743         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
744
745         spin_lock_irqsave(&(intf->seq_lock), flags);
746         /* We do this verification because the user can be deleted
747            while a message is outstanding. */
748         if ((intf->seq_table[seq].inuse)
749             && (intf->seq_table[seq].seqid == seqid))
750         {
751                 struct seq_table *ent = &(intf->seq_table[seq]);
752                 ent->timeout = ent->orig_timeout;
753                 rv = 0;
754         }
755         spin_unlock_irqrestore(&(intf->seq_lock), flags);
756
757         return rv;
758 }
759
760 /* Got an error for the send message for a specific sequence number. */
761 static int intf_err_seq(ipmi_smi_t   intf,
762                         long         msgid,
763                         unsigned int err)
764 {
765         int                  rv = -ENODEV;
766         unsigned long        flags;
767         unsigned char        seq;
768         unsigned long        seqid;
769         struct ipmi_recv_msg *msg = NULL;
770
771
772         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
773
774         spin_lock_irqsave(&(intf->seq_lock), flags);
775         /* We do this verification because the user can be deleted
776            while a message is outstanding. */
777         if ((intf->seq_table[seq].inuse)
778             && (intf->seq_table[seq].seqid == seqid))
779         {
780                 struct seq_table *ent = &(intf->seq_table[seq]);
781
782                 ent->inuse = 0;
783                 msg = ent->recv_msg;
784                 rv = 0;
785         }
786         spin_unlock_irqrestore(&(intf->seq_lock), flags);
787
788         if (msg)
789                 deliver_err_response(msg, err);
790
791         return rv;
792 }
793
794
795 int ipmi_create_user(unsigned int          if_num,
796                      struct ipmi_user_hndl *handler,
797                      void                  *handler_data,
798                      ipmi_user_t           *user)
799 {
800         unsigned long flags;
801         ipmi_user_t   new_user;
802         int           rv = 0;
803         ipmi_smi_t    intf;
804
805         /* There is no module usecount here, because it's not
806            required.  Since this can only be used by and called from
807            other modules, they will implicitly use this module, and
808            thus this can't be removed unless the other modules are
809            removed. */
810
811         if (handler == NULL)
812                 return -EINVAL;
813
814         /* Make sure the driver is actually initialized, this handles
815            problems with initialization order. */
816         if (!initialized) {
817                 rv = ipmi_init_msghandler();
818                 if (rv)
819                         return rv;
820
821                 /* The init code doesn't return an error if it was turned
822                    off, but it won't initialize.  Check that. */
823                 if (!initialized)
824                         return -ENODEV;
825         }
826
827         new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
828         if (!new_user)
829                 return -ENOMEM;
830
831         mutex_lock(&ipmi_interfaces_mutex);
832         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
833                 if (intf->intf_num == if_num)
834                         goto found;
835         }
836         /* Not found, return an error */
837         rv = -EINVAL;
838         goto out_kfree;
839
840  found:
841         /* Note that each existing user holds a refcount to the interface. */
842         kref_get(&intf->refcount);
843
844         kref_init(&new_user->refcount);
845         new_user->handler = handler;
846         new_user->handler_data = handler_data;
847         new_user->intf = intf;
848         new_user->gets_events = 0;
849
850         if (!try_module_get(intf->handlers->owner)) {
851                 rv = -ENODEV;
852                 goto out_kref;
853         }
854
855         if (intf->handlers->inc_usecount) {
856                 rv = intf->handlers->inc_usecount(intf->send_info);
857                 if (rv) {
858                         module_put(intf->handlers->owner);
859                         goto out_kref;
860                 }
861         }
862
863         /* Hold the lock so intf->handlers is guaranteed to be good
864          * until now */
865         mutex_unlock(&ipmi_interfaces_mutex);
866
867         new_user->valid = 1;
868         spin_lock_irqsave(&intf->seq_lock, flags);
869         list_add_rcu(&new_user->link, &intf->users);
870         spin_unlock_irqrestore(&intf->seq_lock, flags);
871         *user = new_user;
872         return 0;
873
874 out_kref:
875         kref_put(&intf->refcount, intf_free);
876 out_kfree:
877         mutex_unlock(&ipmi_interfaces_mutex);
878         kfree(new_user);
879         return rv;
880 }
881
882 static void free_user(struct kref *ref)
883 {
884         ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
885         kfree(user);
886 }
887
888 int ipmi_destroy_user(ipmi_user_t user)
889 {
890         ipmi_smi_t       intf = user->intf;
891         int              i;
892         unsigned long    flags;
893         struct cmd_rcvr  *rcvr;
894         struct cmd_rcvr  *rcvrs = NULL;
895
896         user->valid = 0;
897
898         /* Remove the user from the interface's sequence table. */
899         spin_lock_irqsave(&intf->seq_lock, flags);
900         list_del_rcu(&user->link);
901
902         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
903                 if (intf->seq_table[i].inuse
904                     && (intf->seq_table[i].recv_msg->user == user))
905                 {
906                         intf->seq_table[i].inuse = 0;
907                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
908                 }
909         }
910         spin_unlock_irqrestore(&intf->seq_lock, flags);
911
912         /*
913          * Remove the user from the command receiver's table.  First
914          * we build a list of everything (not using the standard link,
915          * since other things may be using it till we do
916          * synchronize_rcu()) then free everything in that list.
917          */
918         mutex_lock(&intf->cmd_rcvrs_mutex);
919         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
920                 if (rcvr->user == user) {
921                         list_del_rcu(&rcvr->link);
922                         rcvr->next = rcvrs;
923                         rcvrs = rcvr;
924                 }
925         }
926         mutex_unlock(&intf->cmd_rcvrs_mutex);
927         synchronize_rcu();
928         while (rcvrs) {
929                 rcvr = rcvrs;
930                 rcvrs = rcvr->next;
931                 kfree(rcvr);
932         }
933
934         mutex_lock(&ipmi_interfaces_mutex);
935         if (intf->handlers) {
936                 module_put(intf->handlers->owner);
937                 if (intf->handlers->dec_usecount)
938                         intf->handlers->dec_usecount(intf->send_info);
939         }
940         mutex_unlock(&ipmi_interfaces_mutex);
941
942         kref_put(&intf->refcount, intf_free);
943
944         kref_put(&user->refcount, free_user);
945
946         return 0;
947 }
948
949 void ipmi_get_version(ipmi_user_t   user,
950                       unsigned char *major,
951                       unsigned char *minor)
952 {
953         *major = user->intf->ipmi_version_major;
954         *minor = user->intf->ipmi_version_minor;
955 }
956
957 int ipmi_set_my_address(ipmi_user_t   user,
958                         unsigned int  channel,
959                         unsigned char address)
960 {
961         if (channel >= IPMI_MAX_CHANNELS)
962                 return -EINVAL;
963         user->intf->channels[channel].address = address;
964         return 0;
965 }
966
967 int ipmi_get_my_address(ipmi_user_t   user,
968                         unsigned int  channel,
969                         unsigned char *address)
970 {
971         if (channel >= IPMI_MAX_CHANNELS)
972                 return -EINVAL;
973         *address = user->intf->channels[channel].address;
974         return 0;
975 }
976
977 int ipmi_set_my_LUN(ipmi_user_t   user,
978                     unsigned int  channel,
979                     unsigned char LUN)
980 {
981         if (channel >= IPMI_MAX_CHANNELS)
982                 return -EINVAL;
983         user->intf->channels[channel].lun = LUN & 0x3;
984         return 0;
985 }
986
987 int ipmi_get_my_LUN(ipmi_user_t   user,
988                     unsigned int  channel,
989                     unsigned char *address)
990 {
991         if (channel >= IPMI_MAX_CHANNELS)
992                 return -EINVAL;
993         *address = user->intf->channels[channel].lun;
994         return 0;
995 }
996
997 int ipmi_get_maintenance_mode(ipmi_user_t user)
998 {
999         int           mode;
1000         unsigned long flags;
1001
1002         spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1003         mode = user->intf->maintenance_mode;
1004         spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1005
1006         return mode;
1007 }
1008 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1009
1010 static void maintenance_mode_update(ipmi_smi_t intf)
1011 {
1012         if (intf->handlers->set_maintenance_mode)
1013                 intf->handlers->set_maintenance_mode(
1014                         intf->send_info, intf->maintenance_mode_enable);
1015 }
1016
1017 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1018 {
1019         int           rv = 0;
1020         unsigned long flags;
1021         ipmi_smi_t    intf = user->intf;
1022
1023         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1024         if (intf->maintenance_mode != mode) {
1025                 switch (mode) {
1026                 case IPMI_MAINTENANCE_MODE_AUTO:
1027                         intf->maintenance_mode = mode;
1028                         intf->maintenance_mode_enable
1029                                 = (intf->auto_maintenance_timeout > 0);
1030                         break;
1031
1032                 case IPMI_MAINTENANCE_MODE_OFF:
1033                         intf->maintenance_mode = mode;
1034                         intf->maintenance_mode_enable = 0;
1035                         break;
1036
1037                 case IPMI_MAINTENANCE_MODE_ON:
1038                         intf->maintenance_mode = mode;
1039                         intf->maintenance_mode_enable = 1;
1040                         break;
1041
1042                 default:
1043                         rv = -EINVAL;
1044                         goto out_unlock;
1045                 }
1046
1047                 maintenance_mode_update(intf);
1048         }
1049  out_unlock:
1050         spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1051
1052         return rv;
1053 }
1054 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1055
1056 int ipmi_set_gets_events(ipmi_user_t user, int val)
1057 {
1058         unsigned long        flags;
1059         ipmi_smi_t           intf = user->intf;
1060         struct ipmi_recv_msg *msg, *msg2;
1061         struct list_head     msgs;
1062
1063         INIT_LIST_HEAD(&msgs);
1064
1065         spin_lock_irqsave(&intf->events_lock, flags);
1066         user->gets_events = val;
1067
1068         if (intf->delivering_events)
1069                 /*
1070                  * Another thread is delivering events for this, so
1071                  * let it handle any new events.
1072                  */
1073                 goto out;
1074
1075         /* Deliver any queued events. */
1076         while (user->gets_events && !list_empty(&intf->waiting_events)) {
1077                 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1078                         list_move_tail(&msg->link, &msgs);
1079                 intf->waiting_events_count = 0;
1080
1081                 intf->delivering_events = 1;
1082                 spin_unlock_irqrestore(&intf->events_lock, flags);
1083
1084                 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1085                         msg->user = user;
1086                         kref_get(&user->refcount);
1087                         deliver_response(msg);
1088                 }
1089
1090                 spin_lock_irqsave(&intf->events_lock, flags);
1091                 intf->delivering_events = 0;
1092         }
1093
1094  out:
1095         spin_unlock_irqrestore(&intf->events_lock, flags);
1096
1097         return 0;
1098 }
1099
1100 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1101                                       unsigned char netfn,
1102                                       unsigned char cmd,
1103                                       unsigned char chan)
1104 {
1105         struct cmd_rcvr *rcvr;
1106
1107         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1108                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1109                                         && (rcvr->chans & (1 << chan)))
1110                         return rcvr;
1111         }
1112         return NULL;
1113 }
1114
1115 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1116                                  unsigned char netfn,
1117                                  unsigned char cmd,
1118                                  unsigned int  chans)
1119 {
1120         struct cmd_rcvr *rcvr;
1121
1122         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1123                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1124                                         && (rcvr->chans & chans))
1125                         return 0;
1126         }
1127         return 1;
1128 }
1129
1130 int ipmi_register_for_cmd(ipmi_user_t   user,
1131                           unsigned char netfn,
1132                           unsigned char cmd,
1133                           unsigned int  chans)
1134 {
1135         ipmi_smi_t      intf = user->intf;
1136         struct cmd_rcvr *rcvr;
1137         int             rv = 0;
1138
1139
1140         rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1141         if (!rcvr)
1142                 return -ENOMEM;
1143         rcvr->cmd = cmd;
1144         rcvr->netfn = netfn;
1145         rcvr->chans = chans;
1146         rcvr->user = user;
1147
1148         mutex_lock(&intf->cmd_rcvrs_mutex);
1149         /* Make sure the command/netfn is not already registered. */
1150         if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1151                 rv = -EBUSY;
1152                 goto out_unlock;
1153         }
1154
1155         list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1156
1157  out_unlock:
1158         mutex_unlock(&intf->cmd_rcvrs_mutex);
1159         if (rv)
1160                 kfree(rcvr);
1161
1162         return rv;
1163 }
1164
1165 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1166                             unsigned char netfn,
1167                             unsigned char cmd,
1168                             unsigned int  chans)
1169 {
1170         ipmi_smi_t      intf = user->intf;
1171         struct cmd_rcvr *rcvr;
1172         struct cmd_rcvr *rcvrs = NULL;
1173         int i, rv = -ENOENT;
1174
1175         mutex_lock(&intf->cmd_rcvrs_mutex);
1176         for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1177                 if (((1 << i) & chans) == 0)
1178                         continue;
1179                 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1180                 if (rcvr == NULL)
1181                         continue;
1182                 if (rcvr->user == user) {
1183                         rv = 0;
1184                         rcvr->chans &= ~chans;
1185                         if (rcvr->chans == 0) {
1186                                 list_del_rcu(&rcvr->link);
1187                                 rcvr->next = rcvrs;
1188                                 rcvrs = rcvr;
1189                         }
1190                 }
1191         }
1192         mutex_unlock(&intf->cmd_rcvrs_mutex);
1193         synchronize_rcu();
1194         while (rcvrs) {
1195                 rcvr = rcvrs;
1196                 rcvrs = rcvr->next;
1197                 kfree(rcvr);
1198         }
1199         return rv;
1200 }
1201
1202 void ipmi_user_set_run_to_completion(ipmi_user_t user, int val)
1203 {
1204         ipmi_smi_t intf = user->intf;
1205         if (intf->handlers)
1206                 intf->handlers->set_run_to_completion(intf->send_info, val);
1207 }
1208
1209 static unsigned char
1210 ipmb_checksum(unsigned char *data, int size)
1211 {
1212         unsigned char csum = 0;
1213         
1214         for (; size > 0; size--, data++)
1215                 csum += *data;
1216
1217         return -csum;
1218 }
1219
1220 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1221                                    struct kernel_ipmi_msg *msg,
1222                                    struct ipmi_ipmb_addr *ipmb_addr,
1223                                    long                  msgid,
1224                                    unsigned char         ipmb_seq,
1225                                    int                   broadcast,
1226                                    unsigned char         source_address,
1227                                    unsigned char         source_lun)
1228 {
1229         int i = broadcast;
1230
1231         /* Format the IPMB header data. */
1232         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1233         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1234         smi_msg->data[2] = ipmb_addr->channel;
1235         if (broadcast)
1236                 smi_msg->data[3] = 0;
1237         smi_msg->data[i+3] = ipmb_addr->slave_addr;
1238         smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1239         smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1240         smi_msg->data[i+6] = source_address;
1241         smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1242         smi_msg->data[i+8] = msg->cmd;
1243
1244         /* Now tack on the data to the message. */
1245         if (msg->data_len > 0)
1246                 memcpy(&(smi_msg->data[i+9]), msg->data,
1247                        msg->data_len);
1248         smi_msg->data_size = msg->data_len + 9;
1249
1250         /* Now calculate the checksum and tack it on. */
1251         smi_msg->data[i+smi_msg->data_size]
1252                 = ipmb_checksum(&(smi_msg->data[i+6]),
1253                                 smi_msg->data_size-6);
1254
1255         /* Add on the checksum size and the offset from the
1256            broadcast. */
1257         smi_msg->data_size += 1 + i;
1258
1259         smi_msg->msgid = msgid;
1260 }
1261
1262 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1263                                   struct kernel_ipmi_msg *msg,
1264                                   struct ipmi_lan_addr  *lan_addr,
1265                                   long                  msgid,
1266                                   unsigned char         ipmb_seq,
1267                                   unsigned char         source_lun)
1268 {
1269         /* Format the IPMB header data. */
1270         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1271         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1272         smi_msg->data[2] = lan_addr->channel;
1273         smi_msg->data[3] = lan_addr->session_handle;
1274         smi_msg->data[4] = lan_addr->remote_SWID;
1275         smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1276         smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1277         smi_msg->data[7] = lan_addr->local_SWID;
1278         smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1279         smi_msg->data[9] = msg->cmd;
1280
1281         /* Now tack on the data to the message. */
1282         if (msg->data_len > 0)
1283                 memcpy(&(smi_msg->data[10]), msg->data,
1284                        msg->data_len);
1285         smi_msg->data_size = msg->data_len + 10;
1286
1287         /* Now calculate the checksum and tack it on. */
1288         smi_msg->data[smi_msg->data_size]
1289                 = ipmb_checksum(&(smi_msg->data[7]),
1290                                 smi_msg->data_size-7);
1291
1292         /* Add on the checksum size and the offset from the
1293            broadcast. */
1294         smi_msg->data_size += 1;
1295
1296         smi_msg->msgid = msgid;
1297 }
1298
1299 /* Separate from ipmi_request so that the user does not have to be
1300    supplied in certain circumstances (mainly at panic time).  If
1301    messages are supplied, they will be freed, even if an error
1302    occurs. */
1303 static int i_ipmi_request(ipmi_user_t          user,
1304                           ipmi_smi_t           intf,
1305                           struct ipmi_addr     *addr,
1306                           long                 msgid,
1307                           struct kernel_ipmi_msg *msg,
1308                           void                 *user_msg_data,
1309                           void                 *supplied_smi,
1310                           struct ipmi_recv_msg *supplied_recv,
1311                           int                  priority,
1312                           unsigned char        source_address,
1313                           unsigned char        source_lun,
1314                           int                  retries,
1315                           unsigned int         retry_time_ms)
1316 {
1317         int                      rv = 0;
1318         struct ipmi_smi_msg      *smi_msg;
1319         struct ipmi_recv_msg     *recv_msg;
1320         unsigned long            flags;
1321         struct ipmi_smi_handlers *handlers;
1322
1323
1324         if (supplied_recv) {
1325                 recv_msg = supplied_recv;
1326         } else {
1327                 recv_msg = ipmi_alloc_recv_msg();
1328                 if (recv_msg == NULL) {
1329                         return -ENOMEM;
1330                 }
1331         }
1332         recv_msg->user_msg_data = user_msg_data;
1333
1334         if (supplied_smi) {
1335                 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1336         } else {
1337                 smi_msg = ipmi_alloc_smi_msg();
1338                 if (smi_msg == NULL) {
1339                         ipmi_free_recv_msg(recv_msg);
1340                         return -ENOMEM;
1341                 }
1342         }
1343
1344         rcu_read_lock();
1345         handlers = intf->handlers;
1346         if (!handlers) {
1347                 rv = -ENODEV;
1348                 goto out_err;
1349         }
1350
1351         recv_msg->user = user;
1352         if (user)
1353                 kref_get(&user->refcount);
1354         recv_msg->msgid = msgid;
1355         /* Store the message to send in the receive message so timeout
1356            responses can get the proper response data. */
1357         recv_msg->msg = *msg;
1358
1359         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1360                 struct ipmi_system_interface_addr *smi_addr;
1361
1362                 if (msg->netfn & 1) {
1363                         /* Responses are not allowed to the SMI. */
1364                         rv = -EINVAL;
1365                         goto out_err;
1366                 }
1367
1368                 smi_addr = (struct ipmi_system_interface_addr *) addr;
1369                 if (smi_addr->lun > 3) {
1370                         spin_lock_irqsave(&intf->counter_lock, flags);
1371                         intf->sent_invalid_commands++;
1372                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1373                         rv = -EINVAL;
1374                         goto out_err;
1375                 }
1376
1377                 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1378
1379                 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1380                     && ((msg->cmd == IPMI_SEND_MSG_CMD)
1381                         || (msg->cmd == IPMI_GET_MSG_CMD)
1382                         || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD)))
1383                 {
1384                         /* We don't let the user do these, since we manage
1385                            the sequence numbers. */
1386                         spin_lock_irqsave(&intf->counter_lock, flags);
1387                         intf->sent_invalid_commands++;
1388                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1389                         rv = -EINVAL;
1390                         goto out_err;
1391                 }
1392
1393                 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1394                       && ((msg->cmd == IPMI_COLD_RESET_CMD)
1395                           || (msg->cmd == IPMI_WARM_RESET_CMD)))
1396                      || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST))
1397                 {
1398                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1399                         intf->auto_maintenance_timeout
1400                                 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1401                         if (!intf->maintenance_mode
1402                             && !intf->maintenance_mode_enable)
1403                         {
1404                                 intf->maintenance_mode_enable = 1;
1405                                 maintenance_mode_update(intf);
1406                         }
1407                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1408                                                flags);
1409                 }
1410
1411                 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1412                         spin_lock_irqsave(&intf->counter_lock, flags);
1413                         intf->sent_invalid_commands++;
1414                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1415                         rv = -EMSGSIZE;
1416                         goto out_err;
1417                 }
1418
1419                 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1420                 smi_msg->data[1] = msg->cmd;
1421                 smi_msg->msgid = msgid;
1422                 smi_msg->user_data = recv_msg;
1423                 if (msg->data_len > 0)
1424                         memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1425                 smi_msg->data_size = msg->data_len + 2;
1426                 spin_lock_irqsave(&intf->counter_lock, flags);
1427                 intf->sent_local_commands++;
1428                 spin_unlock_irqrestore(&intf->counter_lock, flags);
1429         } else if ((addr->addr_type == IPMI_IPMB_ADDR_TYPE)
1430                    || (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
1431         {
1432                 struct ipmi_ipmb_addr *ipmb_addr;
1433                 unsigned char         ipmb_seq;
1434                 long                  seqid;
1435                 int                   broadcast = 0;
1436
1437                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1438                         spin_lock_irqsave(&intf->counter_lock, flags);
1439                         intf->sent_invalid_commands++;
1440                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1441                         rv = -EINVAL;
1442                         goto out_err;
1443                 }
1444
1445                 if (intf->channels[addr->channel].medium
1446                     != IPMI_CHANNEL_MEDIUM_IPMB)
1447                 {
1448                         spin_lock_irqsave(&intf->counter_lock, flags);
1449                         intf->sent_invalid_commands++;
1450                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1451                         rv = -EINVAL;
1452                         goto out_err;
1453                 }
1454
1455                 if (retries < 0) {
1456                     if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1457                         retries = 0; /* Don't retry broadcasts. */
1458                     else
1459                         retries = 4;
1460                 }
1461                 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1462                     /* Broadcasts add a zero at the beginning of the
1463                        message, but otherwise is the same as an IPMB
1464                        address. */
1465                     addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1466                     broadcast = 1;
1467                 }
1468
1469
1470                 /* Default to 1 second retries. */
1471                 if (retry_time_ms == 0)
1472                     retry_time_ms = 1000;
1473
1474                 /* 9 for the header and 1 for the checksum, plus
1475                    possibly one for the broadcast. */
1476                 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1477                         spin_lock_irqsave(&intf->counter_lock, flags);
1478                         intf->sent_invalid_commands++;
1479                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1480                         rv = -EMSGSIZE;
1481                         goto out_err;
1482                 }
1483
1484                 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1485                 if (ipmb_addr->lun > 3) {
1486                         spin_lock_irqsave(&intf->counter_lock, flags);
1487                         intf->sent_invalid_commands++;
1488                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1489                         rv = -EINVAL;
1490                         goto out_err;
1491                 }
1492
1493                 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1494
1495                 if (recv_msg->msg.netfn & 0x1) {
1496                         /* It's a response, so use the user's sequence
1497                            from msgid. */
1498                         spin_lock_irqsave(&intf->counter_lock, flags);
1499                         intf->sent_ipmb_responses++;
1500                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1501                         format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1502                                         msgid, broadcast,
1503                                         source_address, source_lun);
1504
1505                         /* Save the receive message so we can use it
1506                            to deliver the response. */
1507                         smi_msg->user_data = recv_msg;
1508                 } else {
1509                         /* It's a command, so get a sequence for it. */
1510
1511                         spin_lock_irqsave(&(intf->seq_lock), flags);
1512
1513                         spin_lock(&intf->counter_lock);
1514                         intf->sent_ipmb_commands++;
1515                         spin_unlock(&intf->counter_lock);
1516
1517                         /* Create a sequence number with a 1 second
1518                            timeout and 4 retries. */
1519                         rv = intf_next_seq(intf,
1520                                            recv_msg,
1521                                            retry_time_ms,
1522                                            retries,
1523                                            broadcast,
1524                                            &ipmb_seq,
1525                                            &seqid);
1526                         if (rv) {
1527                                 /* We have used up all the sequence numbers,
1528                                    probably, so abort. */
1529                                 spin_unlock_irqrestore(&(intf->seq_lock),
1530                                                        flags);
1531                                 goto out_err;
1532                         }
1533
1534                         /* Store the sequence number in the message,
1535                            so that when the send message response
1536                            comes back we can start the timer. */
1537                         format_ipmb_msg(smi_msg, msg, ipmb_addr,
1538                                         STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1539                                         ipmb_seq, broadcast,
1540                                         source_address, source_lun);
1541
1542                         /* Copy the message into the recv message data, so we
1543                            can retransmit it later if necessary. */
1544                         memcpy(recv_msg->msg_data, smi_msg->data,
1545                                smi_msg->data_size);
1546                         recv_msg->msg.data = recv_msg->msg_data;
1547                         recv_msg->msg.data_len = smi_msg->data_size;
1548
1549                         /* We don't unlock until here, because we need
1550                            to copy the completed message into the
1551                            recv_msg before we release the lock.
1552                            Otherwise, race conditions may bite us.  I
1553                            know that's pretty paranoid, but I prefer
1554                            to be correct. */
1555                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1556                 }
1557         } else if (addr->addr_type == IPMI_LAN_ADDR_TYPE) {
1558                 struct ipmi_lan_addr  *lan_addr;
1559                 unsigned char         ipmb_seq;
1560                 long                  seqid;
1561
1562                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1563                         spin_lock_irqsave(&intf->counter_lock, flags);
1564                         intf->sent_invalid_commands++;
1565                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1566                         rv = -EINVAL;
1567                         goto out_err;
1568                 }
1569
1570                 if ((intf->channels[addr->channel].medium
1571                     != IPMI_CHANNEL_MEDIUM_8023LAN)
1572                     && (intf->channels[addr->channel].medium
1573                         != IPMI_CHANNEL_MEDIUM_ASYNC))
1574                 {
1575                         spin_lock_irqsave(&intf->counter_lock, flags);
1576                         intf->sent_invalid_commands++;
1577                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1578                         rv = -EINVAL;
1579                         goto out_err;
1580                 }
1581
1582                 retries = 4;
1583
1584                 /* Default to 1 second retries. */
1585                 if (retry_time_ms == 0)
1586                     retry_time_ms = 1000;
1587
1588                 /* 11 for the header and 1 for the checksum. */
1589                 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1590                         spin_lock_irqsave(&intf->counter_lock, flags);
1591                         intf->sent_invalid_commands++;
1592                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1593                         rv = -EMSGSIZE;
1594                         goto out_err;
1595                 }
1596
1597                 lan_addr = (struct ipmi_lan_addr *) addr;
1598                 if (lan_addr->lun > 3) {
1599                         spin_lock_irqsave(&intf->counter_lock, flags);
1600                         intf->sent_invalid_commands++;
1601                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1602                         rv = -EINVAL;
1603                         goto out_err;
1604                 }
1605
1606                 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1607
1608                 if (recv_msg->msg.netfn & 0x1) {
1609                         /* It's a response, so use the user's sequence
1610                            from msgid. */
1611                         spin_lock_irqsave(&intf->counter_lock, flags);
1612                         intf->sent_lan_responses++;
1613                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1614                         format_lan_msg(smi_msg, msg, lan_addr, msgid,
1615                                        msgid, source_lun);
1616
1617                         /* Save the receive message so we can use it
1618                            to deliver the response. */
1619                         smi_msg->user_data = recv_msg;
1620                 } else {
1621                         /* It's a command, so get a sequence for it. */
1622
1623                         spin_lock_irqsave(&(intf->seq_lock), flags);
1624
1625                         spin_lock(&intf->counter_lock);
1626                         intf->sent_lan_commands++;
1627                         spin_unlock(&intf->counter_lock);
1628
1629                         /* Create a sequence number with a 1 second
1630                            timeout and 4 retries. */
1631                         rv = intf_next_seq(intf,
1632                                            recv_msg,
1633                                            retry_time_ms,
1634                                            retries,
1635                                            0,
1636                                            &ipmb_seq,
1637                                            &seqid);
1638                         if (rv) {
1639                                 /* We have used up all the sequence numbers,
1640                                    probably, so abort. */
1641                                 spin_unlock_irqrestore(&(intf->seq_lock),
1642                                                        flags);
1643                                 goto out_err;
1644                         }
1645
1646                         /* Store the sequence number in the message,
1647                            so that when the send message response
1648                            comes back we can start the timer. */
1649                         format_lan_msg(smi_msg, msg, lan_addr,
1650                                        STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1651                                        ipmb_seq, source_lun);
1652
1653                         /* Copy the message into the recv message data, so we
1654                            can retransmit it later if necessary. */
1655                         memcpy(recv_msg->msg_data, smi_msg->data,
1656                                smi_msg->data_size);
1657                         recv_msg->msg.data = recv_msg->msg_data;
1658                         recv_msg->msg.data_len = smi_msg->data_size;
1659
1660                         /* We don't unlock until here, because we need
1661                            to copy the completed message into the
1662                            recv_msg before we release the lock.
1663                            Otherwise, race conditions may bite us.  I
1664                            know that's pretty paranoid, but I prefer
1665                            to be correct. */
1666                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1667                 }
1668         } else {
1669             /* Unknown address type. */
1670                 spin_lock_irqsave(&intf->counter_lock, flags);
1671                 intf->sent_invalid_commands++;
1672                 spin_unlock_irqrestore(&intf->counter_lock, flags);
1673                 rv = -EINVAL;
1674                 goto out_err;
1675         }
1676
1677 #ifdef DEBUG_MSGING
1678         {
1679                 int m;
1680                 for (m = 0; m < smi_msg->data_size; m++)
1681                         printk(" %2.2x", smi_msg->data[m]);
1682                 printk("\n");
1683         }
1684 #endif
1685
1686         handlers->sender(intf->send_info, smi_msg, priority);
1687         rcu_read_unlock();
1688
1689         return 0;
1690
1691  out_err:
1692         rcu_read_unlock();
1693         ipmi_free_smi_msg(smi_msg);
1694         ipmi_free_recv_msg(recv_msg);
1695         return rv;
1696 }
1697
1698 static int check_addr(ipmi_smi_t       intf,
1699                       struct ipmi_addr *addr,
1700                       unsigned char    *saddr,
1701                       unsigned char    *lun)
1702 {
1703         if (addr->channel >= IPMI_MAX_CHANNELS)
1704                 return -EINVAL;
1705         *lun = intf->channels[addr->channel].lun;
1706         *saddr = intf->channels[addr->channel].address;
1707         return 0;
1708 }
1709
1710 int ipmi_request_settime(ipmi_user_t      user,
1711                          struct ipmi_addr *addr,
1712                          long             msgid,
1713                          struct kernel_ipmi_msg  *msg,
1714                          void             *user_msg_data,
1715                          int              priority,
1716                          int              retries,
1717                          unsigned int     retry_time_ms)
1718 {
1719         unsigned char saddr, lun;
1720         int           rv;
1721
1722         if (!user)
1723                 return -EINVAL;
1724         rv = check_addr(user->intf, addr, &saddr, &lun);
1725         if (rv)
1726                 return rv;
1727         return i_ipmi_request(user,
1728                               user->intf,
1729                               addr,
1730                               msgid,
1731                               msg,
1732                               user_msg_data,
1733                               NULL, NULL,
1734                               priority,
1735                               saddr,
1736                               lun,
1737                               retries,
1738                               retry_time_ms);
1739 }
1740
1741 int ipmi_request_supply_msgs(ipmi_user_t          user,
1742                              struct ipmi_addr     *addr,
1743                              long                 msgid,
1744                              struct kernel_ipmi_msg *msg,
1745                              void                 *user_msg_data,
1746                              void                 *supplied_smi,
1747                              struct ipmi_recv_msg *supplied_recv,
1748                              int                  priority)
1749 {
1750         unsigned char saddr, lun;
1751         int           rv;
1752
1753         if (!user)
1754                 return -EINVAL;
1755         rv = check_addr(user->intf, addr, &saddr, &lun);
1756         if (rv)
1757                 return rv;
1758         return i_ipmi_request(user,
1759                               user->intf,
1760                               addr,
1761                               msgid,
1762                               msg,
1763                               user_msg_data,
1764                               supplied_smi,
1765                               supplied_recv,
1766                               priority,
1767                               saddr,
1768                               lun,
1769                               -1, 0);
1770 }
1771
1772 #ifdef CONFIG_PROC_FS
1773 static int ipmb_file_read_proc(char *page, char **start, off_t off,
1774                                int count, int *eof, void *data)
1775 {
1776         char       *out = (char *) page;
1777         ipmi_smi_t intf = data;
1778         int        i;
1779         int        rv = 0;
1780
1781         for (i = 0; i < IPMI_MAX_CHANNELS; i++)
1782                 rv += sprintf(out+rv, "%x ", intf->channels[i].address);
1783         out[rv-1] = '\n'; /* Replace the final space with a newline */
1784         out[rv] = '\0';
1785         rv++;
1786         return rv;
1787 }
1788
1789 static int version_file_read_proc(char *page, char **start, off_t off,
1790                                   int count, int *eof, void *data)
1791 {
1792         char       *out = (char *) page;
1793         ipmi_smi_t intf = data;
1794
1795         return sprintf(out, "%d.%d\n",
1796                        ipmi_version_major(&intf->bmc->id),
1797                        ipmi_version_minor(&intf->bmc->id));
1798 }
1799
1800 static int stat_file_read_proc(char *page, char **start, off_t off,
1801                                int count, int *eof, void *data)
1802 {
1803         char       *out = (char *) page;
1804         ipmi_smi_t intf = data;
1805
1806         out += sprintf(out, "sent_invalid_commands:       %d\n",
1807                        intf->sent_invalid_commands);
1808         out += sprintf(out, "sent_local_commands:         %d\n",
1809                        intf->sent_local_commands);
1810         out += sprintf(out, "handled_local_responses:     %d\n",
1811                        intf->handled_local_responses);
1812         out += sprintf(out, "unhandled_local_responses:   %d\n",
1813                        intf->unhandled_local_responses);
1814         out += sprintf(out, "sent_ipmb_commands:          %d\n",
1815                        intf->sent_ipmb_commands);
1816         out += sprintf(out, "sent_ipmb_command_errs:      %d\n",
1817                        intf->sent_ipmb_command_errs);
1818         out += sprintf(out, "retransmitted_ipmb_commands: %d\n",
1819                        intf->retransmitted_ipmb_commands);
1820         out += sprintf(out, "timed_out_ipmb_commands:     %d\n",
1821                        intf->timed_out_ipmb_commands);
1822         out += sprintf(out, "timed_out_ipmb_broadcasts:   %d\n",
1823                        intf->timed_out_ipmb_broadcasts);
1824         out += sprintf(out, "sent_ipmb_responses:         %d\n",
1825                        intf->sent_ipmb_responses);
1826         out += sprintf(out, "handled_ipmb_responses:      %d\n",
1827                        intf->handled_ipmb_responses);
1828         out += sprintf(out, "invalid_ipmb_responses:      %d\n",
1829                        intf->invalid_ipmb_responses);
1830         out += sprintf(out, "unhandled_ipmb_responses:    %d\n",
1831                        intf->unhandled_ipmb_responses);
1832         out += sprintf(out, "sent_lan_commands:           %d\n",
1833                        intf->sent_lan_commands);
1834         out += sprintf(out, "sent_lan_command_errs:       %d\n",
1835                        intf->sent_lan_command_errs);
1836         out += sprintf(out, "retransmitted_lan_commands:  %d\n",
1837                        intf->retransmitted_lan_commands);
1838         out += sprintf(out, "timed_out_lan_commands:      %d\n",
1839                        intf->timed_out_lan_commands);
1840         out += sprintf(out, "sent_lan_responses:          %d\n",
1841                        intf->sent_lan_responses);
1842         out += sprintf(out, "handled_lan_responses:       %d\n",
1843                        intf->handled_lan_responses);
1844         out += sprintf(out, "invalid_lan_responses:       %d\n",
1845                        intf->invalid_lan_responses);
1846         out += sprintf(out, "unhandled_lan_responses:     %d\n",
1847                        intf->unhandled_lan_responses);
1848         out += sprintf(out, "handled_commands:            %d\n",
1849                        intf->handled_commands);
1850         out += sprintf(out, "invalid_commands:            %d\n",
1851                        intf->invalid_commands);
1852         out += sprintf(out, "unhandled_commands:          %d\n",
1853                        intf->unhandled_commands);
1854         out += sprintf(out, "invalid_events:              %d\n",
1855                        intf->invalid_events);
1856         out += sprintf(out, "events:                      %d\n",
1857                        intf->events);
1858
1859         return (out - ((char *) page));
1860 }
1861 #endif /* CONFIG_PROC_FS */
1862
1863 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
1864                             read_proc_t *read_proc, write_proc_t *write_proc,
1865                             void *data, struct module *owner)
1866 {
1867         int                    rv = 0;
1868 #ifdef CONFIG_PROC_FS
1869         struct proc_dir_entry  *file;
1870         struct ipmi_proc_entry *entry;
1871
1872         /* Create a list element. */
1873         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1874         if (!entry)
1875                 return -ENOMEM;
1876         entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
1877         if (!entry->name) {
1878                 kfree(entry);
1879                 return -ENOMEM;
1880         }
1881         strcpy(entry->name, name);
1882
1883         file = create_proc_entry(name, 0, smi->proc_dir);
1884         if (!file) {
1885                 kfree(entry->name);
1886                 kfree(entry);
1887                 rv = -ENOMEM;
1888         } else {
1889                 file->data = data;
1890                 file->read_proc = read_proc;
1891                 file->write_proc = write_proc;
1892                 file->owner = owner;
1893
1894                 spin_lock(&smi->proc_entry_lock);
1895                 /* Stick it on the list. */
1896                 entry->next = smi->proc_entries;
1897                 smi->proc_entries = entry;
1898                 spin_unlock(&smi->proc_entry_lock);
1899         }
1900 #endif /* CONFIG_PROC_FS */
1901
1902         return rv;
1903 }
1904
1905 static int add_proc_entries(ipmi_smi_t smi, int num)
1906 {
1907         int rv = 0;
1908
1909 #ifdef CONFIG_PROC_FS
1910         sprintf(smi->proc_dir_name, "%d", num);
1911         smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
1912         if (!smi->proc_dir)
1913                 rv = -ENOMEM;
1914         else {
1915                 smi->proc_dir->owner = THIS_MODULE;
1916         }
1917
1918         if (rv == 0)
1919                 rv = ipmi_smi_add_proc_entry(smi, "stats",
1920                                              stat_file_read_proc, NULL,
1921                                              smi, THIS_MODULE);
1922
1923         if (rv == 0)
1924                 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
1925                                              ipmb_file_read_proc, NULL,
1926                                              smi, THIS_MODULE);
1927
1928         if (rv == 0)
1929                 rv = ipmi_smi_add_proc_entry(smi, "version",
1930                                              version_file_read_proc, NULL,
1931                                              smi, THIS_MODULE);
1932 #endif /* CONFIG_PROC_FS */
1933
1934         return rv;
1935 }
1936
1937 static void remove_proc_entries(ipmi_smi_t smi)
1938 {
1939 #ifdef CONFIG_PROC_FS
1940         struct ipmi_proc_entry *entry;
1941
1942         spin_lock(&smi->proc_entry_lock);
1943         while (smi->proc_entries) {
1944                 entry = smi->proc_entries;
1945                 smi->proc_entries = entry->next;
1946
1947                 remove_proc_entry(entry->name, smi->proc_dir);
1948                 kfree(entry->name);
1949                 kfree(entry);
1950         }
1951         spin_unlock(&smi->proc_entry_lock);
1952         remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
1953 #endif /* CONFIG_PROC_FS */
1954 }
1955
1956 static int __find_bmc_guid(struct device *dev, void *data)
1957 {
1958         unsigned char *id = data;
1959         struct bmc_device *bmc = dev_get_drvdata(dev);
1960         return memcmp(bmc->guid, id, 16) == 0;
1961 }
1962
1963 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
1964                                              unsigned char *guid)
1965 {
1966         struct device *dev;
1967
1968         dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
1969         if (dev)
1970                 return dev_get_drvdata(dev);
1971         else
1972                 return NULL;
1973 }
1974
1975 struct prod_dev_id {
1976         unsigned int  product_id;
1977         unsigned char device_id;
1978 };
1979
1980 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
1981 {
1982         struct prod_dev_id *id = data;
1983         struct bmc_device *bmc = dev_get_drvdata(dev);
1984
1985         return (bmc->id.product_id == id->product_id
1986                 && bmc->id.device_id == id->device_id);
1987 }
1988
1989 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
1990         struct device_driver *drv,
1991         unsigned int product_id, unsigned char device_id)
1992 {
1993         struct prod_dev_id id = {
1994                 .product_id = product_id,
1995                 .device_id = device_id,
1996         };
1997         struct device *dev;
1998
1999         dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2000         if (dev)
2001                 return dev_get_drvdata(dev);
2002         else
2003                 return NULL;
2004 }
2005
2006 static ssize_t device_id_show(struct device *dev,
2007                               struct device_attribute *attr,
2008                               char *buf)
2009 {
2010         struct bmc_device *bmc = dev_get_drvdata(dev);
2011
2012         return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2013 }
2014
2015 static ssize_t provides_dev_sdrs_show(struct device *dev,
2016                                       struct device_attribute *attr,
2017                                       char *buf)
2018 {
2019         struct bmc_device *bmc = dev_get_drvdata(dev);
2020
2021         return snprintf(buf, 10, "%u\n",
2022                         (bmc->id.device_revision & 0x80) >> 7);
2023 }
2024
2025 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2026                              char *buf)
2027 {
2028         struct bmc_device *bmc = dev_get_drvdata(dev);
2029
2030         return snprintf(buf, 20, "%u\n",
2031                         bmc->id.device_revision & 0x0F);
2032 }
2033
2034 static ssize_t firmware_rev_show(struct device *dev,
2035                                  struct device_attribute *attr,
2036                                  char *buf)
2037 {
2038         struct bmc_device *bmc = dev_get_drvdata(dev);
2039
2040         return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2041                         bmc->id.firmware_revision_2);
2042 }
2043
2044 static ssize_t ipmi_version_show(struct device *dev,
2045                                  struct device_attribute *attr,
2046                                  char *buf)
2047 {
2048         struct bmc_device *bmc = dev_get_drvdata(dev);
2049
2050         return snprintf(buf, 20, "%u.%u\n",
2051                         ipmi_version_major(&bmc->id),
2052                         ipmi_version_minor(&bmc->id));
2053 }
2054
2055 static ssize_t add_dev_support_show(struct device *dev,
2056                                     struct device_attribute *attr,
2057                                     char *buf)
2058 {
2059         struct bmc_device *bmc = dev_get_drvdata(dev);
2060
2061         return snprintf(buf, 10, "0x%02x\n",
2062                         bmc->id.additional_device_support);
2063 }
2064
2065 static ssize_t manufacturer_id_show(struct device *dev,
2066                                     struct device_attribute *attr,
2067                                     char *buf)
2068 {
2069         struct bmc_device *bmc = dev_get_drvdata(dev);
2070
2071         return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2072 }
2073
2074 static ssize_t product_id_show(struct device *dev,
2075                                struct device_attribute *attr,
2076                                char *buf)
2077 {
2078         struct bmc_device *bmc = dev_get_drvdata(dev);
2079
2080         return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2081 }
2082
2083 static ssize_t aux_firmware_rev_show(struct device *dev,
2084                                      struct device_attribute *attr,
2085                                      char *buf)
2086 {
2087         struct bmc_device *bmc = dev_get_drvdata(dev);
2088
2089         return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2090                         bmc->id.aux_firmware_revision[3],
2091                         bmc->id.aux_firmware_revision[2],
2092                         bmc->id.aux_firmware_revision[1],
2093                         bmc->id.aux_firmware_revision[0]);
2094 }
2095
2096 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2097                          char *buf)
2098 {
2099         struct bmc_device *bmc = dev_get_drvdata(dev);
2100
2101         return snprintf(buf, 100, "%Lx%Lx\n",
2102                         (long long) bmc->guid[0],
2103                         (long long) bmc->guid[8]);
2104 }
2105
2106 static void remove_files(struct bmc_device *bmc)
2107 {
2108         if (!bmc->dev)
2109                 return;
2110
2111         device_remove_file(&bmc->dev->dev,
2112                            &bmc->device_id_attr);
2113         device_remove_file(&bmc->dev->dev,
2114                            &bmc->provides_dev_sdrs_attr);
2115         device_remove_file(&bmc->dev->dev,
2116                            &bmc->revision_attr);
2117         device_remove_file(&bmc->dev->dev,
2118                            &bmc->firmware_rev_attr);
2119         device_remove_file(&bmc->dev->dev,
2120                            &bmc->version_attr);
2121         device_remove_file(&bmc->dev->dev,
2122                            &bmc->add_dev_support_attr);
2123         device_remove_file(&bmc->dev->dev,
2124                            &bmc->manufacturer_id_attr);
2125         device_remove_file(&bmc->dev->dev,
2126                            &bmc->product_id_attr);
2127
2128         if (bmc->id.aux_firmware_revision_set)
2129                 device_remove_file(&bmc->dev->dev,
2130                                    &bmc->aux_firmware_rev_attr);
2131         if (bmc->guid_set)
2132                 device_remove_file(&bmc->dev->dev,
2133                                    &bmc->guid_attr);
2134 }
2135
2136 static void
2137 cleanup_bmc_device(struct kref *ref)
2138 {
2139         struct bmc_device *bmc;
2140
2141         bmc = container_of(ref, struct bmc_device, refcount);
2142
2143         remove_files(bmc);
2144         platform_device_unregister(bmc->dev);
2145         kfree(bmc);
2146 }
2147
2148 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2149 {
2150         struct bmc_device *bmc = intf->bmc;
2151
2152         if (intf->sysfs_name) {
2153                 sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2154                 kfree(intf->sysfs_name);
2155                 intf->sysfs_name = NULL;
2156         }
2157         if (intf->my_dev_name) {
2158                 sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2159                 kfree(intf->my_dev_name);
2160                 intf->my_dev_name = NULL;
2161         }
2162
2163         mutex_lock(&ipmidriver_mutex);
2164         kref_put(&bmc->refcount, cleanup_bmc_device);
2165         intf->bmc = NULL;
2166         mutex_unlock(&ipmidriver_mutex);
2167 }
2168
2169 static int create_files(struct bmc_device *bmc)
2170 {
2171         int err;
2172
2173         bmc->device_id_attr.attr.name = "device_id";
2174         bmc->device_id_attr.attr.mode = S_IRUGO;
2175         bmc->device_id_attr.show = device_id_show;
2176
2177         bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2178         bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2179         bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2180
2181         bmc->revision_attr.attr.name = "revision";
2182         bmc->revision_attr.attr.mode = S_IRUGO;
2183         bmc->revision_attr.show = revision_show;
2184
2185         bmc->firmware_rev_attr.attr.name = "firmware_revision";
2186         bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2187         bmc->firmware_rev_attr.show = firmware_rev_show;
2188
2189         bmc->version_attr.attr.name = "ipmi_version";
2190         bmc->version_attr.attr.mode = S_IRUGO;
2191         bmc->version_attr.show = ipmi_version_show;
2192
2193         bmc->add_dev_support_attr.attr.name = "additional_device_support";
2194         bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2195         bmc->add_dev_support_attr.show = add_dev_support_show;
2196
2197         bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2198         bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2199         bmc->manufacturer_id_attr.show = manufacturer_id_show;
2200
2201         bmc->product_id_attr.attr.name = "product_id";
2202         bmc->product_id_attr.attr.mode = S_IRUGO;
2203         bmc->product_id_attr.show = product_id_show;
2204
2205         bmc->guid_attr.attr.name = "guid";
2206         bmc->guid_attr.attr.mode = S_IRUGO;
2207         bmc->guid_attr.show = guid_show;
2208
2209         bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2210         bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2211         bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2212
2213         err = device_create_file(&bmc->dev->dev,
2214                            &bmc->device_id_attr);
2215         if (err) goto out;
2216         err = device_create_file(&bmc->dev->dev,
2217                            &bmc->provides_dev_sdrs_attr);
2218         if (err) goto out_devid;
2219         err = device_create_file(&bmc->dev->dev,
2220                            &bmc->revision_attr);
2221         if (err) goto out_sdrs;
2222         err = device_create_file(&bmc->dev->dev,
2223                            &bmc->firmware_rev_attr);
2224         if (err) goto out_rev;
2225         err = device_create_file(&bmc->dev->dev,
2226                            &bmc->version_attr);
2227         if (err) goto out_firm;
2228         err = device_create_file(&bmc->dev->dev,
2229                            &bmc->add_dev_support_attr);
2230         if (err) goto out_version;
2231         err = device_create_file(&bmc->dev->dev,
2232                            &bmc->manufacturer_id_attr);
2233         if (err) goto out_add_dev;
2234         err = device_create_file(&bmc->dev->dev,
2235                            &bmc->product_id_attr);
2236         if (err) goto out_manu;
2237         if (bmc->id.aux_firmware_revision_set) {
2238                 err = device_create_file(&bmc->dev->dev,
2239                                    &bmc->aux_firmware_rev_attr);
2240                 if (err) goto out_prod_id;
2241         }
2242         if (bmc->guid_set) {
2243                 err = device_create_file(&bmc->dev->dev,
2244                                    &bmc->guid_attr);
2245                 if (err) goto out_aux_firm;
2246         }
2247
2248         return 0;
2249
2250 out_aux_firm:
2251         if (bmc->id.aux_firmware_revision_set)
2252                 device_remove_file(&bmc->dev->dev,
2253                                    &bmc->aux_firmware_rev_attr);
2254 out_prod_id:
2255         device_remove_file(&bmc->dev->dev,
2256                            &bmc->product_id_attr);
2257 out_manu:
2258         device_remove_file(&bmc->dev->dev,
2259                            &bmc->manufacturer_id_attr);
2260 out_add_dev:
2261         device_remove_file(&bmc->dev->dev,
2262                            &bmc->add_dev_support_attr);
2263 out_version:
2264         device_remove_file(&bmc->dev->dev,
2265                            &bmc->version_attr);
2266 out_firm:
2267         device_remove_file(&bmc->dev->dev,
2268                            &bmc->firmware_rev_attr);
2269 out_rev:
2270         device_remove_file(&bmc->dev->dev,
2271                            &bmc->revision_attr);
2272 out_sdrs:
2273         device_remove_file(&bmc->dev->dev,
2274                            &bmc->provides_dev_sdrs_attr);
2275 out_devid:
2276         device_remove_file(&bmc->dev->dev,
2277                            &bmc->device_id_attr);
2278 out:
2279         return err;
2280 }
2281
2282 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2283                              const char *sysfs_name)
2284 {
2285         int               rv;
2286         struct bmc_device *bmc = intf->bmc;
2287         struct bmc_device *old_bmc;
2288         int               size;
2289         char              dummy[1];
2290
2291         mutex_lock(&ipmidriver_mutex);
2292
2293         /*
2294          * Try to find if there is an bmc_device struct
2295          * representing the interfaced BMC already
2296          */
2297         if (bmc->guid_set)
2298                 old_bmc = ipmi_find_bmc_guid(&ipmidriver, bmc->guid);
2299         else
2300                 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver,
2301                                                     bmc->id.product_id,
2302                                                     bmc->id.device_id);
2303
2304         /*
2305          * If there is already an bmc_device, free the new one,
2306          * otherwise register the new BMC device
2307          */
2308         if (old_bmc) {
2309                 kfree(bmc);
2310                 intf->bmc = old_bmc;
2311                 bmc = old_bmc;
2312
2313                 kref_get(&bmc->refcount);
2314                 mutex_unlock(&ipmidriver_mutex);
2315
2316                 printk(KERN_INFO
2317                        "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2318                        " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2319                        bmc->id.manufacturer_id,
2320                        bmc->id.product_id,
2321                        bmc->id.device_id);
2322         } else {
2323                 char name[14];
2324                 unsigned char orig_dev_id = bmc->id.device_id;
2325                 int warn_printed = 0;
2326
2327                 snprintf(name, sizeof(name),
2328                          "ipmi_bmc.%4.4x", bmc->id.product_id);
2329
2330                 while (ipmi_find_bmc_prod_dev_id(&ipmidriver,
2331                                                  bmc->id.product_id,
2332                                                  bmc->id.device_id)) {
2333                         if (!warn_printed) {
2334                                 printk(KERN_WARNING PFX
2335                                        "This machine has two different BMCs"
2336                                        " with the same product id and device"
2337                                        " id.  This is an error in the"
2338                                        " firmware, but incrementing the"
2339                                        " device id to work around the problem."
2340                                        " Prod ID = 0x%x, Dev ID = 0x%x\n",
2341                                        bmc->id.product_id, bmc->id.device_id);
2342                                 warn_printed = 1;
2343                         }
2344                         bmc->id.device_id++; /* Wraps at 255 */
2345                         if (bmc->id.device_id == orig_dev_id) {
2346                                 printk(KERN_ERR PFX
2347                                        "Out of device ids!\n");
2348                                 break;
2349                         }
2350                 }
2351
2352                 bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2353                 if (!bmc->dev) {
2354                         mutex_unlock(&ipmidriver_mutex);
2355                         printk(KERN_ERR
2356                                "ipmi_msghandler:"
2357                                " Unable to allocate platform device\n");
2358                         return -ENOMEM;
2359                 }
2360                 bmc->dev->dev.driver = &ipmidriver;
2361                 dev_set_drvdata(&bmc->dev->dev, bmc);
2362                 kref_init(&bmc->refcount);
2363
2364                 rv = platform_device_add(bmc->dev);
2365                 mutex_unlock(&ipmidriver_mutex);
2366                 if (rv) {
2367                         platform_device_put(bmc->dev);
2368                         bmc->dev = NULL;
2369                         printk(KERN_ERR
2370                                "ipmi_msghandler:"
2371                                " Unable to register bmc device: %d\n",
2372                                rv);
2373                         /* Don't go to out_err, you can only do that if
2374                            the device is registered already. */
2375                         return rv;
2376                 }
2377
2378                 rv = create_files(bmc);
2379                 if (rv) {
2380                         mutex_lock(&ipmidriver_mutex);
2381                         platform_device_unregister(bmc->dev);
2382                         mutex_unlock(&ipmidriver_mutex);
2383
2384                         return rv;
2385                 }
2386
2387                 printk(KERN_INFO
2388                        "ipmi: Found new BMC (man_id: 0x%6.6x, "
2389                        " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2390                        bmc->id.manufacturer_id,
2391                        bmc->id.product_id,
2392                        bmc->id.device_id);
2393         }
2394
2395         /*
2396          * create symlink from system interface device to bmc device
2397          * and back.
2398          */
2399         intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2400         if (!intf->sysfs_name) {
2401                 rv = -ENOMEM;
2402                 printk(KERN_ERR
2403                        "ipmi_msghandler: allocate link to BMC: %d\n",
2404                        rv);
2405                 goto out_err;
2406         }
2407
2408         rv = sysfs_create_link(&intf->si_dev->kobj,
2409                                &bmc->dev->dev.kobj, intf->sysfs_name);
2410         if (rv) {
2411                 kfree(intf->sysfs_name);
2412                 intf->sysfs_name = NULL;
2413                 printk(KERN_ERR
2414                        "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2415                        rv);
2416                 goto out_err;
2417         }
2418
2419         size = snprintf(dummy, 0, "ipmi%d", ifnum);
2420         intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2421         if (!intf->my_dev_name) {
2422                 kfree(intf->sysfs_name);
2423                 intf->sysfs_name = NULL;
2424                 rv = -ENOMEM;
2425                 printk(KERN_ERR
2426                        "ipmi_msghandler: allocate link from BMC: %d\n",
2427                        rv);
2428                 goto out_err;
2429         }
2430         snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2431
2432         rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2433                                intf->my_dev_name);
2434         if (rv) {
2435                 kfree(intf->sysfs_name);
2436                 intf->sysfs_name = NULL;
2437                 kfree(intf->my_dev_name);
2438                 intf->my_dev_name = NULL;
2439                 printk(KERN_ERR
2440                        "ipmi_msghandler:"
2441                        " Unable to create symlink to bmc: %d\n",
2442                        rv);
2443                 goto out_err;
2444         }
2445
2446         return 0;
2447
2448 out_err:
2449         ipmi_bmc_unregister(intf);
2450         return rv;
2451 }
2452
2453 static int
2454 send_guid_cmd(ipmi_smi_t intf, int chan)
2455 {
2456         struct kernel_ipmi_msg            msg;
2457         struct ipmi_system_interface_addr si;
2458
2459         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2460         si.channel = IPMI_BMC_CHANNEL;
2461         si.lun = 0;
2462
2463         msg.netfn = IPMI_NETFN_APP_REQUEST;
2464         msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2465         msg.data = NULL;
2466         msg.data_len = 0;
2467         return i_ipmi_request(NULL,
2468                               intf,
2469                               (struct ipmi_addr *) &si,
2470                               0,
2471                               &msg,
2472                               intf,
2473                               NULL,
2474                               NULL,
2475                               0,
2476                               intf->channels[0].address,
2477                               intf->channels[0].lun,
2478                               -1, 0);
2479 }
2480
2481 static void
2482 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2483 {
2484         if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2485             || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2486             || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2487                 /* Not for me */
2488                 return;
2489
2490         if (msg->msg.data[0] != 0) {
2491                 /* Error from getting the GUID, the BMC doesn't have one. */
2492                 intf->bmc->guid_set = 0;
2493                 goto out;
2494         }
2495
2496         if (msg->msg.data_len < 17) {
2497                 intf->bmc->guid_set = 0;
2498                 printk(KERN_WARNING PFX
2499                        "guid_handler: The GUID response from the BMC was too"
2500                        " short, it was %d but should have been 17.  Assuming"
2501                        " GUID is not available.\n",
2502                        msg->msg.data_len);
2503                 goto out;
2504         }
2505
2506         memcpy(intf->bmc->guid, msg->msg.data, 16);
2507         intf->bmc->guid_set = 1;
2508  out:
2509         wake_up(&intf->waitq);
2510 }
2511
2512 static void
2513 get_guid(ipmi_smi_t intf)
2514 {
2515         int rv;
2516
2517         intf->bmc->guid_set = 0x2;
2518         intf->null_user_handler = guid_handler;
2519         rv = send_guid_cmd(intf, 0);
2520         if (rv)
2521                 /* Send failed, no GUID available. */
2522                 intf->bmc->guid_set = 0;
2523         wait_event(intf->waitq, intf->bmc->guid_set != 2);
2524         intf->null_user_handler = NULL;
2525 }
2526
2527 static int
2528 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2529 {
2530         struct kernel_ipmi_msg            msg;
2531         unsigned char                     data[1];
2532         struct ipmi_system_interface_addr si;
2533
2534         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2535         si.channel = IPMI_BMC_CHANNEL;
2536         si.lun = 0;
2537
2538         msg.netfn = IPMI_NETFN_APP_REQUEST;
2539         msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2540         msg.data = data;
2541         msg.data_len = 1;
2542         data[0] = chan;
2543         return i_ipmi_request(NULL,
2544                               intf,
2545                               (struct ipmi_addr *) &si,
2546                               0,
2547                               &msg,
2548                               intf,
2549                               NULL,
2550                               NULL,
2551                               0,
2552                               intf->channels[0].address,
2553                               intf->channels[0].lun,
2554                               -1, 0);
2555 }
2556
2557 static void
2558 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2559 {
2560         int rv = 0;
2561         int chan;
2562
2563         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2564             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2565             && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD))
2566         {
2567                 /* It's the one we want */
2568                 if (msg->msg.data[0] != 0) {
2569                         /* Got an error from the channel, just go on. */
2570
2571                         if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2572                                 /* If the MC does not support this
2573                                    command, that is legal.  We just
2574                                    assume it has one IPMB at channel
2575                                    zero. */
2576                                 intf->channels[0].medium
2577                                         = IPMI_CHANNEL_MEDIUM_IPMB;
2578                                 intf->channels[0].protocol
2579                                         = IPMI_CHANNEL_PROTOCOL_IPMB;
2580                                 rv = -ENOSYS;
2581
2582                                 intf->curr_channel = IPMI_MAX_CHANNELS;
2583                                 wake_up(&intf->waitq);
2584                                 goto out;
2585                         }
2586                         goto next_channel;
2587                 }
2588                 if (msg->msg.data_len < 4) {
2589                         /* Message not big enough, just go on. */
2590                         goto next_channel;
2591                 }
2592                 chan = intf->curr_channel;
2593                 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2594                 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2595
2596         next_channel:
2597                 intf->curr_channel++;
2598                 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2599                         wake_up(&intf->waitq);
2600                 else
2601                         rv = send_channel_info_cmd(intf, intf->curr_channel);
2602
2603                 if (rv) {
2604                         /* Got an error somehow, just give up. */
2605                         intf->curr_channel = IPMI_MAX_CHANNELS;
2606                         wake_up(&intf->waitq);
2607
2608                         printk(KERN_WARNING PFX
2609                                "Error sending channel information: %d\n",
2610                                rv);
2611                 }
2612         }
2613  out:
2614         return;
2615 }
2616
2617 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2618                       void                     *send_info,
2619                       struct ipmi_device_id    *device_id,
2620                       struct device            *si_dev,
2621                       const char               *sysfs_name,
2622                       unsigned char            slave_addr)
2623 {
2624         int              i, j;
2625         int              rv;
2626         ipmi_smi_t       intf;
2627         ipmi_smi_t       tintf;
2628         struct list_head *link;
2629
2630         /* Make sure the driver is actually initialized, this handles
2631            problems with initialization order. */
2632         if (!initialized) {
2633                 rv = ipmi_init_msghandler();
2634                 if (rv)
2635                         return rv;
2636                 /* The init code doesn't return an error if it was turned
2637                    off, but it won't initialize.  Check that. */
2638                 if (!initialized)
2639                         return -ENODEV;
2640         }
2641
2642         intf = kmalloc(sizeof(*intf), GFP_KERNEL);
2643         if (!intf)
2644                 return -ENOMEM;
2645         memset(intf, 0, sizeof(*intf));
2646
2647         intf->ipmi_version_major = ipmi_version_major(device_id);
2648         intf->ipmi_version_minor = ipmi_version_minor(device_id);
2649
2650         intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2651         if (!intf->bmc) {
2652                 kfree(intf);
2653                 return -ENOMEM;
2654         }
2655         intf->intf_num = -1; /* Mark it invalid for now. */
2656         kref_init(&intf->refcount);
2657         intf->bmc->id = *device_id;
2658         intf->si_dev = si_dev;
2659         for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2660                 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2661                 intf->channels[j].lun = 2;
2662         }
2663         if (slave_addr != 0)
2664                 intf->channels[0].address = slave_addr;
2665         INIT_LIST_HEAD(&intf->users);
2666         intf->handlers = handlers;
2667         intf->send_info = send_info;
2668         spin_lock_init(&intf->seq_lock);
2669         for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2670                 intf->seq_table[j].inuse = 0;
2671                 intf->seq_table[j].seqid = 0;
2672         }
2673         intf->curr_seq = 0;
2674 #ifdef CONFIG_PROC_FS
2675         spin_lock_init(&intf->proc_entry_lock);
2676 #endif
2677         spin_lock_init(&intf->waiting_msgs_lock);
2678         INIT_LIST_HEAD(&intf->waiting_msgs);
2679         spin_lock_init(&intf->events_lock);
2680         INIT_LIST_HEAD(&intf->waiting_events);
2681         intf->waiting_events_count = 0;
2682         mutex_init(&intf->cmd_rcvrs_mutex);
2683         spin_lock_init(&intf->maintenance_mode_lock);
2684         INIT_LIST_HEAD(&intf->cmd_rcvrs);
2685         init_waitqueue_head(&intf->waitq);
2686
2687         spin_lock_init(&intf->counter_lock);
2688         intf->proc_dir = NULL;
2689
2690         mutex_lock(&smi_watchers_mutex);
2691         mutex_lock(&ipmi_interfaces_mutex);
2692         /* Look for a hole in the numbers. */
2693         i = 0;
2694         link = &ipmi_interfaces;
2695         list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2696                 if (tintf->intf_num != i) {
2697                         link = &tintf->link;
2698                         break;
2699                 }
2700                 i++;
2701         }
2702         /* Add the new interface in numeric order. */
2703         if (i == 0)
2704                 list_add_rcu(&intf->link, &ipmi_interfaces);
2705         else
2706                 list_add_tail_rcu(&intf->link, link);
2707
2708         rv = handlers->start_processing(send_info, intf);
2709         if (rv)
2710                 goto out;
2711
2712         get_guid(intf);
2713
2714         if ((intf->ipmi_version_major > 1)
2715             || ((intf->ipmi_version_major == 1)
2716                 && (intf->ipmi_version_minor >= 5)))
2717         {
2718                 /* Start scanning the channels to see what is
2719                    available. */
2720                 intf->null_user_handler = channel_handler;
2721                 intf->curr_channel = 0;
2722                 rv = send_channel_info_cmd(intf, 0);
2723                 if (rv)
2724                         goto out;
2725
2726                 /* Wait for the channel info to be read. */
2727                 wait_event(intf->waitq,
2728                            intf->curr_channel >= IPMI_MAX_CHANNELS);
2729                 intf->null_user_handler = NULL;
2730         } else {
2731                 /* Assume a single IPMB channel at zero. */
2732                 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2733                 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2734         }
2735
2736         if (rv == 0)
2737                 rv = add_proc_entries(intf, i);
2738
2739         rv = ipmi_bmc_register(intf, i, sysfs_name);
2740
2741  out:
2742         if (rv) {
2743                 if (intf->proc_dir)
2744                         remove_proc_entries(intf);
2745                 intf->handlers = NULL;
2746                 list_del_rcu(&intf->link);
2747                 mutex_unlock(&ipmi_interfaces_mutex);
2748                 mutex_unlock(&smi_watchers_mutex);
2749                 synchronize_rcu();
2750                 kref_put(&intf->refcount, intf_free);
2751         } else {
2752                 /*
2753                  * Keep memory order straight for RCU readers.  Make
2754                  * sure everything else is committed to memory before
2755                  * setting intf_num to mark the interface valid.
2756                  */
2757                 smp_wmb();
2758                 intf->intf_num = i;
2759                 mutex_unlock(&ipmi_interfaces_mutex);
2760                 /* After this point the interface is legal to use. */
2761                 call_smi_watchers(i, intf->si_dev);
2762                 mutex_unlock(&smi_watchers_mutex);
2763         }
2764
2765         return rv;
2766 }
2767
2768 static void cleanup_smi_msgs(ipmi_smi_t intf)
2769 {
2770         int              i;
2771         struct seq_table *ent;
2772
2773         /* No need for locks, the interface is down. */
2774         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2775                 ent = &(intf->seq_table[i]);
2776                 if (!ent->inuse)
2777                         continue;
2778                 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2779         }
2780 }
2781
2782 int ipmi_unregister_smi(ipmi_smi_t intf)
2783 {
2784         struct ipmi_smi_watcher *w;
2785         int    intf_num = intf->intf_num;
2786
2787         ipmi_bmc_unregister(intf);
2788
2789         mutex_lock(&smi_watchers_mutex);
2790         mutex_lock(&ipmi_interfaces_mutex);
2791         intf->intf_num = -1;
2792         intf->handlers = NULL;
2793         list_del_rcu(&intf->link);
2794         mutex_unlock(&ipmi_interfaces_mutex);
2795         synchronize_rcu();
2796
2797         cleanup_smi_msgs(intf);
2798
2799         remove_proc_entries(intf);
2800
2801         /* Call all the watcher interfaces to tell them that
2802            an interface is gone. */
2803         list_for_each_entry(w, &smi_watchers, link)
2804                 w->smi_gone(intf_num);
2805         mutex_unlock(&smi_watchers_mutex);
2806
2807         kref_put(&intf->refcount, intf_free);
2808         return 0;
2809 }
2810
2811 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
2812                                    struct ipmi_smi_msg *msg)
2813 {
2814         struct ipmi_ipmb_addr ipmb_addr;
2815         struct ipmi_recv_msg  *recv_msg;
2816         unsigned long         flags;
2817
2818         
2819         /* This is 11, not 10, because the response must contain a
2820          * completion code. */
2821         if (msg->rsp_size < 11) {
2822                 /* Message not big enough, just ignore it. */
2823                 spin_lock_irqsave(&intf->counter_lock, flags);
2824                 intf->invalid_ipmb_responses++;
2825                 spin_unlock_irqrestore(&intf->counter_lock, flags);
2826                 return 0;
2827         }
2828
2829         if (msg->rsp[2] != 0) {
2830                 /* An error getting the response, just ignore it. */
2831                 return 0;
2832         }
2833
2834         ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
2835         ipmb_addr.slave_addr = msg->rsp[6];
2836         ipmb_addr.channel = msg->rsp[3] & 0x0f;
2837         ipmb_addr.lun = msg->rsp[7] & 3;
2838
2839         /* It's a response from a remote entity.  Look up the sequence
2840            number and handle the response. */
2841         if (intf_find_seq(intf,
2842                           msg->rsp[7] >> 2,
2843                           msg->rsp[3] & 0x0f,
2844                           msg->rsp[8],
2845                           (msg->rsp[4] >> 2) & (~1),
2846                           (struct ipmi_addr *) &(ipmb_addr),
2847                           &recv_msg))
2848         {
2849                 /* We were unable to find the sequence number,
2850                    so just nuke the message. */
2851                 spin_lock_irqsave(&intf->counter_lock, flags);
2852                 intf->unhandled_ipmb_responses++;
2853                 spin_unlock_irqrestore(&intf->counter_lock, flags);
2854                 return 0;
2855         }
2856
2857         memcpy(recv_msg->msg_data,
2858                &(msg->rsp[9]),
2859                msg->rsp_size - 9);
2860         /* THe other fields matched, so no need to set them, except
2861            for netfn, which needs to be the response that was
2862            returned, not the request value. */
2863         recv_msg->msg.netfn = msg->rsp[4] >> 2;
2864         recv_msg->msg.data = recv_msg->msg_data;
2865         recv_msg->msg.data_len = msg->rsp_size - 10;
2866         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
2867         spin_lock_irqsave(&intf->counter_lock, flags);
2868         intf->handled_ipmb_responses++;
2869         spin_unlock_irqrestore(&intf->counter_lock, flags);
2870         deliver_response(recv_msg);
2871
2872         return 0;
2873 }
2874
2875 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
2876                                    struct ipmi_smi_msg *msg)
2877 {
2878         struct cmd_rcvr          *rcvr;
2879         int                      rv = 0;
2880         unsigned char            netfn;
2881         unsigned char            cmd;
2882         unsigned char            chan;
2883         ipmi_user_t              user = NULL;
2884         struct ipmi_ipmb_addr    *ipmb_addr;
2885         struct ipmi_recv_msg     *recv_msg;
2886         unsigned long            flags;
2887         struct ipmi_smi_handlers *handlers;
2888
2889         if (msg->rsp_size < 10) {
2890                 /* Message not big enough, just ignore it. */
2891                 spin_lock_irqsave(&intf->counter_lock, flags);
2892                 intf->invalid_commands++;
2893                 spin_unlock_irqrestore(&intf->counter_lock, flags);
2894                 return 0;
2895         }
2896
2897         if (msg->rsp[2] != 0) {
2898                 /* An error getting the response, just ignore it. */
2899                 return 0;
2900         }
2901
2902         netfn = msg->rsp[4] >> 2;
2903         cmd = msg->rsp[8];
2904         chan = msg->rsp[3] & 0xf;
2905
2906         rcu_read_lock();
2907         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
2908         if (rcvr) {
2909                 user = rcvr->user;
2910                 kref_get(&user->refcount);
2911         } else
2912                 user = NULL;
2913         rcu_read_unlock();
2914
2915         if (user == NULL) {
2916                 /* We didn't find a user, deliver an error response. */
2917                 spin_lock_irqsave(&intf->counter_lock, flags);
2918                 intf->unhandled_commands++;
2919                 spin_unlock_irqrestore(&intf->counter_lock, flags);
2920
2921                 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
2922                 msg->data[1] = IPMI_SEND_MSG_CMD;
2923                 msg->data[2] = msg->rsp[3];
2924                 msg->data[3] = msg->rsp[6];
2925                 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
2926                 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
2927                 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
2928                 /* rqseq/lun */
2929                 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
2930                 msg->data[8] = msg->rsp[8]; /* cmd */
2931                 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
2932                 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
2933                 msg->data_size = 11;
2934
2935 #ifdef DEBUG_MSGING
2936         {
2937                 int m;
2938                 printk("Invalid command:");
2939                 for (m = 0; m < msg->data_size; m++)
2940                         printk(" %2.2x", msg->data[m]);
2941                 printk("\n");
2942         }
2943 #endif
2944                 rcu_read_lock();
2945                 handlers = intf->handlers;
2946                 if (handlers) {
2947                         handlers->sender(intf->send_info, msg, 0);
2948                         /* We used the message, so return the value
2949                            that causes it to not be freed or
2950                            queued. */
2951                         rv = -1;
2952                 }
2953                 rcu_read_unlock();
2954         } else {
2955                 /* Deliver the message to the user. */
2956                 spin_lock_irqsave(&intf->counter_lock, flags);
2957                 intf->handled_commands++;
2958                 spin_unlock_irqrestore(&intf->counter_lock, flags);
2959
2960                 recv_msg = ipmi_alloc_recv_msg();
2961                 if (!recv_msg) {
2962                         /* We couldn't allocate memory for the
2963                            message, so requeue it for handling
2964                            later. */
2965                         rv = 1;
2966                         kref_put(&user->refcount, free_user);
2967                 } else {
2968                         /* Extract the source address from the data. */
2969                         ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
2970                         ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
2971                         ipmb_addr->slave_addr = msg->rsp[6];
2972                         ipmb_addr->lun = msg->rsp[7] & 3;
2973                         ipmb_addr->channel = msg->rsp[3] & 0xf;
2974
2975                         /* Extract the rest of the message information
2976                            from the IPMB header.*/
2977                         recv_msg->user = user;
2978                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
2979                         recv_msg->msgid = msg->rsp[7] >> 2;
2980                         recv_msg->msg.netfn = msg->rsp[4] >> 2;
2981                         recv_msg->msg.cmd = msg->rsp[8];
2982                         recv_msg->msg.data = recv_msg->msg_data;
2983
2984                         /* We chop off 10, not 9 bytes because the checksum
2985                            at the end also needs to be removed. */
2986                         recv_msg->msg.data_len = msg->rsp_size - 10;
2987                         memcpy(recv_msg->msg_data,
2988                                &(msg->rsp[9]),
2989                                msg->rsp_size - 10);
2990                         deliver_response(recv_msg);
2991                 }
2992         }
2993
2994         return rv;
2995 }
2996
2997 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
2998                                   struct ipmi_smi_msg *msg)
2999 {
3000         struct ipmi_lan_addr  lan_addr;
3001         struct ipmi_recv_msg  *recv_msg;
3002         unsigned long         flags;
3003
3004
3005         /* This is 13, not 12, because the response must contain a
3006          * completion code. */
3007         if (msg->rsp_size < 13) {
3008                 /* Message not big enough, just ignore it. */
3009                 spin_lock_irqsave(&intf->counter_lock, flags);
3010                 intf->invalid_lan_responses++;
3011                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3012                 return 0;
3013         }
3014
3015         if (msg->rsp[2] != 0) {
3016                 /* An error getting the response, just ignore it. */
3017                 return 0;
3018         }
3019
3020         lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3021         lan_addr.session_handle = msg->rsp[4];
3022         lan_addr.remote_SWID = msg->rsp[8];
3023         lan_addr.local_SWID = msg->rsp[5];
3024         lan_addr.channel = msg->rsp[3] & 0x0f;
3025         lan_addr.privilege = msg->rsp[3] >> 4;
3026         lan_addr.lun = msg->rsp[9] & 3;
3027
3028         /* It's a response from a remote entity.  Look up the sequence
3029            number and handle the response. */
3030         if (intf_find_seq(intf,
3031                           msg->rsp[9] >> 2,
3032                           msg->rsp[3] & 0x0f,
3033                           msg->rsp[10],
3034                           (msg->rsp[6] >> 2) & (~1),
3035                           (struct ipmi_addr *) &(lan_addr),
3036                           &recv_msg))
3037         {
3038                 /* We were unable to find the sequence number,
3039                    so just nuke the message. */
3040                 spin_lock_irqsave(&intf->counter_lock, flags);
3041                 intf->unhandled_lan_responses++;
3042                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3043                 return 0;
3044         }
3045
3046         memcpy(recv_msg->msg_data,
3047                &(msg->rsp[11]),
3048                msg->rsp_size - 11);
3049         /* The other fields matched, so no need to set them, except
3050            for netfn, which needs to be the response that was
3051            returned, not the request value. */
3052         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3053         recv_msg->msg.data = recv_msg->msg_data;
3054         recv_msg->msg.data_len = msg->rsp_size - 12;
3055         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3056         spin_lock_irqsave(&intf->counter_lock, flags);
3057         intf->handled_lan_responses++;
3058         spin_unlock_irqrestore(&intf->counter_lock, flags);
3059         deliver_response(recv_msg);
3060
3061         return 0;
3062 }
3063
3064 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3065                                   struct ipmi_smi_msg *msg)
3066 {
3067         struct cmd_rcvr          *rcvr;
3068         int                      rv = 0;
3069         unsigned char            netfn;
3070         unsigned char            cmd;
3071         unsigned char            chan;
3072         ipmi_user_t              user = NULL;
3073         struct ipmi_lan_addr     *lan_addr;
3074         struct ipmi_recv_msg     *recv_msg;
3075         unsigned long            flags;
3076
3077         if (msg->rsp_size < 12) {
3078                 /* Message not big enough, just ignore it. */
3079                 spin_lock_irqsave(&intf->counter_lock, flags);
3080                 intf->invalid_commands++;
3081                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3082                 return 0;
3083         }
3084
3085         if (msg->rsp[2] != 0) {
3086                 /* An error getting the response, just ignore it. */
3087                 return 0;
3088         }
3089
3090         netfn = msg->rsp[6] >> 2;
3091         cmd = msg->rsp[10];
3092         chan = msg->rsp[3] & 0xf;
3093
3094         rcu_read_lock();
3095         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3096         if (rcvr) {
3097                 user = rcvr->user;
3098                 kref_get(&user->refcount);
3099         } else
3100                 user = NULL;
3101         rcu_read_unlock();
3102
3103         if (user == NULL) {
3104                 /* We didn't find a user, just give up. */
3105                 spin_lock_irqsave(&intf->counter_lock, flags);
3106                 intf->unhandled_commands++;
3107                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3108
3109                 rv = 0; /* Don't do anything with these messages, just
3110                            allow them to be freed. */
3111         } else {
3112                 /* Deliver the message to the user. */
3113                 spin_lock_irqsave(&intf->counter_lock, flags);
3114                 intf->handled_commands++;
3115                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3116
3117                 recv_msg = ipmi_alloc_recv_msg();
3118                 if (!recv_msg) {
3119                         /* We couldn't allocate memory for the
3120                            message, so requeue it for handling
3121                            later. */
3122                         rv = 1;
3123                         kref_put(&user->refcount, free_user);
3124                 } else {
3125                         /* Extract the source address from the data. */
3126                         lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3127                         lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3128                         lan_addr->session_handle = msg->rsp[4];
3129                         lan_addr->remote_SWID = msg->rsp[8];
3130                         lan_addr->local_SWID = msg->rsp[5];
3131                         lan_addr->lun = msg->rsp[9] & 3;
3132                         lan_addr->channel = msg->rsp[3] & 0xf;
3133                         lan_addr->privilege = msg->rsp[3] >> 4;
3134
3135                         /* Extract the rest of the message information
3136                            from the IPMB header.*/
3137                         recv_msg->user = user;
3138                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3139                         recv_msg->msgid = msg->rsp[9] >> 2;
3140                         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3141                         recv_msg->msg.cmd = msg->rsp[10];
3142                         recv_msg->msg.data = recv_msg->msg_data;
3143
3144                         /* We chop off 12, not 11 bytes because the checksum
3145                            at the end also needs to be removed. */
3146                         recv_msg->msg.data_len = msg->rsp_size - 12;
3147                         memcpy(recv_msg->msg_data,
3148                                &(msg->rsp[11]),
3149                                msg->rsp_size - 12);
3150                         deliver_response(recv_msg);
3151                 }
3152         }
3153
3154         return rv;
3155 }
3156
3157 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3158                                      struct ipmi_smi_msg  *msg)
3159 {
3160         struct ipmi_system_interface_addr *smi_addr;
3161         
3162         recv_msg->msgid = 0;
3163         smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3164         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3165         smi_addr->channel = IPMI_BMC_CHANNEL;
3166         smi_addr->lun = msg->rsp[0] & 3;
3167         recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3168         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3169         recv_msg->msg.cmd = msg->rsp[1];
3170         memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3171         recv_msg->msg.data = recv_msg->msg_data;
3172         recv_msg->msg.data_len = msg->rsp_size - 3;
3173 }
3174
3175 static int handle_read_event_rsp(ipmi_smi_t          intf,
3176                                  struct ipmi_smi_msg *msg)
3177 {
3178         struct ipmi_recv_msg *recv_msg, *recv_msg2;
3179         struct list_head     msgs;
3180         ipmi_user_t          user;
3181         int                  rv = 0;
3182         int                  deliver_count = 0;
3183         unsigned long        flags;
3184
3185         if (msg->rsp_size < 19) {
3186                 /* Message is too small to be an IPMB event. */
3187                 spin_lock_irqsave(&intf->counter_lock, flags);
3188                 intf->invalid_events++;
3189                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3190                 return 0;
3191         }
3192
3193         if (msg->rsp[2] != 0) {
3194                 /* An error getting the event, just ignore it. */
3195                 return 0;
3196         }
3197
3198         INIT_LIST_HEAD(&msgs);
3199
3200         spin_lock_irqsave(&intf->events_lock, flags);
3201
3202         spin_lock(&intf->counter_lock);
3203         intf->events++;
3204         spin_unlock(&intf->counter_lock);
3205
3206         /* Allocate and fill in one message for every user that is getting
3207            events. */
3208         rcu_read_lock();
3209         list_for_each_entry_rcu(user, &intf->users, link) {
3210                 if (!user->gets_events)
3211                         continue;
3212
3213                 recv_msg = ipmi_alloc_recv_msg();
3214                 if (!recv_msg) {
3215                         rcu_read_unlock();
3216                         list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3217                                                  link) {
3218                                 list_del(&recv_msg->link);
3219                                 ipmi_free_recv_msg(recv_msg);
3220                         }
3221                         /* We couldn't allocate memory for the
3222                            message, so requeue it for handling
3223                            later. */
3224                         rv = 1;
3225                         goto out;
3226                 }
3227
3228                 deliver_count++;
3229
3230                 copy_event_into_recv_msg(recv_msg, msg);
3231                 recv_msg->user = user;
3232                 kref_get(&user->refcount);
3233                 list_add_tail(&(recv_msg->link), &msgs);
3234         }
3235         rcu_read_unlock();
3236
3237         if (deliver_count) {
3238                 /* Now deliver all the messages. */
3239                 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3240                         list_del(&recv_msg->link);
3241                         deliver_response(recv_msg);
3242                 }
3243         } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3244                 /* No one to receive the message, put it in queue if there's
3245                    not already too many things in the queue. */
3246                 recv_msg = ipmi_alloc_recv_msg();
3247                 if (!recv_msg) {
3248                         /* We couldn't allocate memory for the
3249                            message, so requeue it for handling
3250                            later. */
3251                         rv = 1;
3252                         goto out;
3253                 }
3254
3255                 copy_event_into_recv_msg(recv_msg, msg);
3256                 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3257                 intf->waiting_events_count++;
3258         } else {
3259                 /* There's too many things in the queue, discard this
3260                    message. */
3261                 printk(KERN_WARNING PFX "Event queue full, discarding an"
3262                        " incoming event\n");
3263         }
3264
3265  out:
3266         spin_unlock_irqrestore(&(intf->events_lock), flags);
3267
3268         return rv;
3269 }
3270
3271 static int handle_bmc_rsp(ipmi_smi_t          intf,
3272                           struct ipmi_smi_msg *msg)
3273 {
3274         struct ipmi_recv_msg *recv_msg;
3275         unsigned long        flags;
3276         struct ipmi_user     *user;
3277
3278         recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3279         if (recv_msg == NULL)
3280         {
3281                 printk(KERN_WARNING"IPMI message received with no owner. This\n"
3282                         "could be because of a malformed message, or\n"
3283                         "because of a hardware error.  Contact your\n"
3284                         "hardware vender for assistance\n");
3285                 return 0;
3286         }
3287
3288         user = recv_msg->user;
3289         /* Make sure the user still exists. */
3290         if (user && !user->valid) {
3291                 /* The user for the message went away, so give up. */
3292                 spin_lock_irqsave(&intf->counter_lock, flags);
3293                 intf->unhandled_local_responses++;
3294                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3295                 ipmi_free_recv_msg(recv_msg);
3296         } else {
3297                 struct ipmi_system_interface_addr *smi_addr;
3298
3299                 spin_lock_irqsave(&intf->counter_lock, flags);
3300                 intf->handled_local_responses++;
3301                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3302                 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3303                 recv_msg->msgid = msg->msgid;
3304                 smi_addr = ((struct ipmi_system_interface_addr *)
3305                             &(recv_msg->addr));
3306                 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3307                 smi_addr->channel = IPMI_BMC_CHANNEL;
3308                 smi_addr->lun = msg->rsp[0] & 3;
3309                 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3310                 recv_msg->msg.cmd = msg->rsp[1];
3311                 memcpy(recv_msg->msg_data,
3312                        &(msg->rsp[2]),
3313                        msg->rsp_size - 2);
3314                 recv_msg->msg.data = recv_msg->msg_data;
3315                 recv_msg->msg.data_len = msg->rsp_size - 2;
3316                 deliver_response(recv_msg);
3317         }
3318
3319         return 0;
3320 }
3321
3322 /* Handle a new message.  Return 1 if the message should be requeued,
3323    0 if the message should be freed, or -1 if the message should not
3324    be freed or requeued. */
3325 static int handle_new_recv_msg(ipmi_smi_t          intf,
3326                                struct ipmi_smi_msg *msg)
3327 {
3328         int requeue;
3329         int chan;
3330
3331 #ifdef DEBUG_MSGING
3332         int m;
3333         printk("Recv:");
3334         for (m = 0; m < msg->rsp_size; m++)
3335                 printk(" %2.2x", msg->rsp[m]);
3336         printk("\n");
3337 #endif
3338         if (msg->rsp_size < 2) {
3339                 /* Message is too small to be correct. */
3340                 printk(KERN_WARNING PFX "BMC returned to small a message"
3341                        " for netfn %x cmd %x, got %d bytes\n",
3342                        (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3343
3344                 /* Generate an error response for the message. */
3345                 msg->rsp[0] = msg->data[0] | (1 << 2);
3346                 msg->rsp[1] = msg->data[1];
3347                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3348                 msg->rsp_size = 3;
3349         } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))/* Netfn */
3350                    || (msg->rsp[1] != msg->data[1]))              /* Command */
3351         {
3352                 /* The response is not even marginally correct. */
3353                 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3354                        " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3355                        (msg->data[0] >> 2) | 1, msg->data[1],
3356                        msg->rsp[0] >> 2, msg->rsp[1]);
3357
3358                 /* Generate an error response for the message. */
3359                 msg->rsp[0] = msg->data[0] | (1 << 2);
3360                 msg->rsp[1] = msg->data[1];
3361                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3362                 msg->rsp_size = 3;
3363         }
3364
3365         if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3366             && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3367             && (msg->user_data != NULL))
3368         {
3369                 /* It's a response to a response we sent.  For this we
3370                    deliver a send message response to the user. */
3371                 struct ipmi_recv_msg     *recv_msg = msg->user_data;
3372
3373                 requeue = 0;
3374                 if (msg->rsp_size < 2)
3375                         /* Message is too small to be correct. */
3376                         goto out;
3377
3378                 chan = msg->data[2] & 0x0f;
3379                 if (chan >= IPMI_MAX_CHANNELS)
3380                         /* Invalid channel number */
3381                         goto out;
3382
3383                 if (!recv_msg)
3384                         goto out;
3385
3386                 /* Make sure the user still exists. */
3387                 if (!recv_msg->user || !recv_msg->user->valid)
3388                         goto out;
3389
3390                 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3391                 recv_msg->msg.data = recv_msg->msg_data;
3392                 recv_msg->msg.data_len = 1;
3393                 recv_msg->msg_data[0] = msg->rsp[2];
3394                 deliver_response(recv_msg);
3395         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3396                    && (msg->rsp[1] == IPMI_GET_MSG_CMD))
3397         {
3398                 /* It's from the receive queue. */
3399                 chan = msg->rsp[3] & 0xf;
3400                 if (chan >= IPMI_MAX_CHANNELS) {
3401                         /* Invalid channel number */
3402                         requeue = 0;
3403                         goto out;
3404                 }
3405
3406                 switch (intf->channels[chan].medium) {
3407                 case IPMI_CHANNEL_MEDIUM_IPMB:
3408                         if (msg->rsp[4] & 0x04) {
3409                                 /* It's a response, so find the
3410                                    requesting message and send it up. */
3411                                 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3412                         } else {
3413                                 /* It's a command to the SMS from some other
3414                                    entity.  Handle that. */
3415                                 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3416                         }
3417                         break;
3418
3419                 case IPMI_CHANNEL_MEDIUM_8023LAN:
3420                 case IPMI_CHANNEL_MEDIUM_ASYNC:
3421                         if (msg->rsp[6] & 0x04) {
3422                                 /* It's a response, so find the
3423                                    requesting message and send it up. */
3424                                 requeue = handle_lan_get_msg_rsp(intf, msg);
3425                         } else {
3426                                 /* It's a command to the SMS from some other
3427                                    entity.  Handle that. */
3428                                 requeue = handle_lan_get_msg_cmd(intf, msg);
3429                         }
3430                         break;
3431
3432                 default:
3433                         /* We don't handle the channel type, so just
3434                          * free the message. */
3435                         requeue = 0;
3436                 }
3437
3438         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3439                    && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD))
3440         {
3441                 /* It's an asyncronous event. */
3442                 requeue = handle_read_event_rsp(intf, msg);
3443         } else {
3444                 /* It's a response from the local BMC. */
3445                 requeue = handle_bmc_rsp(intf, msg);
3446         }
3447
3448  out:
3449         return requeue;
3450 }
3451
3452 /* Handle a new message from the lower layer. */
3453 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3454                            struct ipmi_smi_msg *msg)
3455 {
3456         unsigned long flags;
3457         int           rv;
3458
3459
3460         if ((msg->data_size >= 2)
3461             && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3462             && (msg->data[1] == IPMI_SEND_MSG_CMD)
3463             && (msg->user_data == NULL))
3464         {
3465                 /* This is the local response to a command send, start
3466                    the timer for these.  The user_data will not be
3467                    NULL if this is a response send, and we will let
3468                    response sends just go through. */
3469
3470                 /* Check for errors, if we get certain errors (ones
3471                    that mean basically we can try again later), we
3472                    ignore them and start the timer.  Otherwise we
3473                    report the error immediately. */
3474                 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3475                     && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3476                     && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3477                     && (msg->rsp[2] != IPMI_BUS_ERR)
3478                     && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR))
3479                 {
3480                         int chan = msg->rsp[3] & 0xf;
3481
3482                         /* Got an error sending the message, handle it. */
3483                         spin_lock_irqsave(&intf->counter_lock, flags);
3484                         if (chan >= IPMI_MAX_CHANNELS)
3485                                 ; /* This shouldn't happen */
3486                         else if ((intf->channels[chan].medium
3487                                   == IPMI_CHANNEL_MEDIUM_8023LAN)
3488                                  || (intf->channels[chan].medium
3489                                      == IPMI_CHANNEL_MEDIUM_ASYNC))
3490                                 intf->sent_lan_command_errs++;
3491                         else
3492                                 intf->sent_ipmb_command_errs++;
3493                         spin_unlock_irqrestore(&intf->counter_lock, flags);
3494                         intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3495                 } else {
3496                         /* The message was sent, start the timer. */
3497                         intf_start_seq_timer(intf, msg->msgid);
3498                 }
3499
3500                 ipmi_free_smi_msg(msg);
3501                 goto out;
3502         }
3503
3504         /* To preserve message order, if the list is not empty, we
3505            tack this message onto the end of the list. */
3506         spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3507         if (!list_empty(&intf->waiting_msgs)) {
3508                 list_add_tail(&msg->link, &intf->waiting_msgs);
3509                 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3510                 goto out;
3511         }
3512         spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3513                 
3514         rv = handle_new_recv_msg(intf, msg);
3515         if (rv > 0) {
3516                 /* Could not handle the message now, just add it to a
3517                    list to handle later. */
3518                 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3519                 list_add_tail(&msg->link, &intf->waiting_msgs);
3520                 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3521         } else if (rv == 0) {
3522                 ipmi_free_smi_msg(msg);
3523         }
3524
3525  out:
3526         return;
3527 }
3528
3529 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3530 {
3531         ipmi_user_t user;
3532
3533         rcu_read_lock();
3534         list_for_each_entry_rcu(user, &intf->users, link) {
3535                 if (!user->handler->ipmi_watchdog_pretimeout)
3536                         continue;
3537
3538                 user->handler->ipmi_watchdog_pretimeout(user->handler_data);
3539         }
3540         rcu_read_unlock();
3541 }
3542
3543
3544 static struct ipmi_smi_msg *
3545 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3546                   unsigned char seq, long seqid)
3547 {
3548         struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3549         if (!smi_msg)
3550                 /* If we can't allocate the message, then just return, we
3551                    get 4 retries, so this should be ok. */
3552                 return NULL;
3553
3554         memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3555         smi_msg->data_size = recv_msg->msg.data_len;
3556         smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3557                 
3558 #ifdef DEBUG_MSGING
3559         {
3560                 int m;
3561                 printk("Resend: ");
3562                 for (m = 0; m < smi_msg->data_size; m++)
3563                         printk(" %2.2x", smi_msg->data[m]);
3564                 printk("\n");
3565         }
3566 #endif
3567         return smi_msg;
3568 }
3569
3570 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
3571                               struct list_head *timeouts, long timeout_period,
3572                               int slot, unsigned long *flags)
3573 {
3574         struct ipmi_recv_msg     *msg;
3575         struct ipmi_smi_handlers *handlers;
3576
3577         if (intf->intf_num == -1)
3578                 return;
3579
3580         if (!ent->inuse)
3581                 return;
3582
3583         ent->timeout -= timeout_period;
3584         if (ent->timeout > 0)
3585                 return;
3586
3587         if (ent->retries_left == 0) {
3588                 /* The message has used all its retries. */
3589                 ent->inuse = 0;
3590                 msg = ent->recv_msg;
3591                 list_add_tail(&msg->link, timeouts);
3592                 spin_lock(&intf->counter_lock);
3593                 if (ent->broadcast)
3594                         intf->timed_out_ipmb_broadcasts++;
3595                 else if (ent->recv_msg->addr.addr_type == IPMI_LAN_ADDR_TYPE)
3596                         intf->timed_out_lan_commands++;
3597                 else
3598                         intf->timed_out_ipmb_commands++;
3599                 spin_unlock(&intf->counter_lock);
3600         } else {
3601                 struct ipmi_smi_msg *smi_msg;
3602                 /* More retries, send again. */
3603
3604                 /* Start with the max timer, set to normal
3605                    timer after the message is sent. */
3606                 ent->timeout = MAX_MSG_TIMEOUT;
3607                 ent->retries_left--;
3608                 spin_lock(&intf->counter_lock);
3609                 if (ent->recv_msg->addr.addr_type == IPMI_LAN_ADDR_TYPE)
3610                         intf->retransmitted_lan_commands++;
3611                 else
3612                         intf->retransmitted_ipmb_commands++;
3613                 spin_unlock(&intf->counter_lock);
3614
3615                 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
3616                                             ent->seqid);
3617                 if (!smi_msg)
3618                         return;
3619
3620                 spin_unlock_irqrestore(&intf->seq_lock, *flags);
3621
3622                 /* Send the new message.  We send with a zero
3623                  * priority.  It timed out, I doubt time is
3624                  * that critical now, and high priority
3625                  * messages are really only for messages to the
3626                  * local MC, which don't get resent. */
3627                 handlers = intf->handlers;
3628                 if (handlers)
3629                         intf->handlers->sender(intf->send_info,
3630                                                smi_msg, 0);
3631                 else
3632                         ipmi_free_smi_msg(smi_msg);
3633
3634                 spin_lock_irqsave(&intf->seq_lock, *flags);
3635         }
3636 }
3637
3638 static void ipmi_timeout_handler(long timeout_period)
3639 {
3640         ipmi_smi_t           intf;
3641         struct list_head     timeouts;
3642         struct ipmi_recv_msg *msg, *msg2;
3643         struct ipmi_smi_msg  *smi_msg, *smi_msg2;
3644         unsigned long        flags;
3645         int                  i;
3646
3647         rcu_read_lock();
3648         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3649                 /* See if any waiting messages need to be processed. */
3650                 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3651                 list_for_each_entry_safe(smi_msg, smi_msg2,
3652                                          &intf->waiting_msgs, link) {
3653                         if (!handle_new_recv_msg(intf, smi_msg)) {
3654                                 list_del(&smi_msg->link);
3655                                 ipmi_free_smi_msg(smi_msg);
3656                         } else {
3657                                 /* To preserve message order, quit if we
3658                                    can't handle a message. */
3659                                 break;
3660                         }
3661                 }
3662                 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3663
3664                 /* Go through the seq table and find any messages that
3665                    have timed out, putting them in the timeouts
3666                    list. */
3667                 INIT_LIST_HEAD(&timeouts);
3668                 spin_lock_irqsave(&intf->seq_lock, flags);
3669                 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
3670                         check_msg_timeout(intf, &(intf->seq_table[i]),
3671                                           &timeouts, timeout_period, i,
3672                                           &flags);
3673                 spin_unlock_irqrestore(&intf->seq_lock, flags);
3674
3675                 list_for_each_entry_safe(msg, msg2, &timeouts, link)
3676                         deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
3677
3678                 /*
3679                  * Maintenance mode handling.  Check the timeout
3680                  * optimistically before we claim the lock.  It may
3681                  * mean a timeout gets missed occasionally, but that
3682                  * only means the timeout gets extended by one period
3683                  * in that case.  No big deal, and it avoids the lock
3684                  * most of the time.
3685                  */
3686                 if (intf->auto_maintenance_timeout > 0) {
3687                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
3688                         if (intf->auto_maintenance_timeout > 0) {
3689                                 intf->auto_maintenance_timeout
3690                                         -= timeout_period;
3691                                 if (!intf->maintenance_mode
3692                                     && (intf->auto_maintenance_timeout <= 0))
3693                                 {
3694                                         intf->maintenance_mode_enable = 0;
3695                                         maintenance_mode_update(intf);
3696                                 }
3697                         }
3698                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
3699                                                flags);
3700                 }
3701         }
3702         rcu_read_unlock();
3703 }
3704
3705 static void ipmi_request_event(void)
3706 {
3707         ipmi_smi_t               intf;
3708         struct ipmi_smi_handlers *handlers;
3709
3710         rcu_read_lock();
3711         /* Called from the timer, no need to check if handlers is
3712          * valid. */
3713         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3714                 /* No event requests when in maintenance mode. */
3715                 if (intf->maintenance_mode_enable)
3716                         continue;
3717
3718                 handlers = intf->handlers;
3719                 if (handlers)
3720                         handlers->request_events(intf->send_info);
3721         }
3722         rcu_read_unlock();
3723 }
3724
3725 static struct timer_list ipmi_timer;
3726
3727 /* Call every ~100 ms. */
3728 #define IPMI_TIMEOUT_TIME       100
3729
3730 /* How many jiffies does it take to get to the timeout time. */
3731 #define IPMI_TIMEOUT_JIFFIES    ((IPMI_TIMEOUT_TIME * HZ) / 1000)
3732
3733 /* Request events from the queue every second (this is the number of
3734    IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
3735    future, IPMI will add a way to know immediately if an event is in
3736    the queue and this silliness can go away. */
3737 #define IPMI_REQUEST_EV_TIME    (1000 / (IPMI_TIMEOUT_TIME))
3738
3739 static atomic_t stop_operation;
3740 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3741
3742 static void ipmi_timeout(unsigned long data)
3743 {
3744         if (atomic_read(&stop_operation))
3745                 return;
3746
3747         ticks_to_req_ev--;
3748         if (ticks_to_req_ev == 0) {
3749                 ipmi_request_event();
3750                 ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3751         }
3752
3753         ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
3754
3755         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
3756 }
3757
3758
3759 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
3760 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
3761
3762 /* FIXME - convert these to slabs. */
3763 static void free_smi_msg(struct ipmi_smi_msg *msg)
3764 {
3765         atomic_dec(&smi_msg_inuse_count);
3766         kfree(msg);
3767 }
3768
3769 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
3770 {
3771         struct ipmi_smi_msg *rv;
3772         rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
3773         if (rv) {
3774                 rv->done = free_smi_msg;
3775                 rv->user_data = NULL;
3776                 atomic_inc(&smi_msg_inuse_count);
3777         }
3778         return rv;
3779 }
3780
3781 static void free_recv_msg(struct ipmi_recv_msg *msg)
3782 {
3783         atomic_dec(&recv_msg_inuse_count);
3784         kfree(msg);
3785 }
3786
3787 struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
3788 {
3789         struct ipmi_recv_msg *rv;
3790
3791         rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
3792         if (rv) {
3793                 rv->user = NULL;
3794                 rv->done = free_recv_msg;
3795                 atomic_inc(&recv_msg_inuse_count);
3796         }
3797         return rv;
3798 }
3799
3800 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
3801 {
3802         if (msg->user)
3803                 kref_put(&msg->user->refcount, free_user);
3804         msg->done(msg);
3805 }
3806
3807 #ifdef CONFIG_IPMI_PANIC_EVENT
3808
3809 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
3810 {
3811 }
3812
3813 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
3814 {
3815 }
3816
3817 #ifdef CONFIG_IPMI_PANIC_STRING
3818 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
3819 {
3820         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3821             && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
3822             && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
3823             && (msg->msg.data[0] == IPMI_CC_NO_ERROR))
3824         {
3825                 /* A get event receiver command, save it. */
3826                 intf->event_receiver = msg->msg.data[1];
3827                 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
3828         }
3829 }
3830
3831 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
3832 {
3833         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3834             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3835             && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
3836             && (msg->msg.data[0] == IPMI_CC_NO_ERROR))
3837         {
3838                 /* A get device id command, save if we are an event
3839                    receiver or generator. */
3840                 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
3841                 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
3842         }
3843 }
3844 #endif
3845
3846 static void send_panic_events(char *str)
3847 {
3848         struct kernel_ipmi_msg            msg;
3849         ipmi_smi_t                        intf;
3850         unsigned char                     data[16];
3851         struct ipmi_system_interface_addr *si;
3852         struct ipmi_addr                  addr;
3853         struct ipmi_smi_msg               smi_msg;
3854         struct ipmi_recv_msg              recv_msg;
3855
3856         si = (struct ipmi_system_interface_addr *) &addr;
3857         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3858         si->channel = IPMI_BMC_CHANNEL;
3859         si->lun = 0;
3860
3861         /* Fill in an event telling that we have failed. */
3862         msg.netfn = 0x04; /* Sensor or Event. */
3863         msg.cmd = 2; /* Platform event command. */
3864         msg.data = data;
3865         msg.data_len = 8;
3866         data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
3867         data[1] = 0x03; /* This is for IPMI 1.0. */
3868         data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
3869         data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
3870         data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
3871
3872         /* Put a few breadcrumbs in.  Hopefully later we can add more things
3873            to make the panic events more useful. */
3874         if (str) {
3875                 data[3] = str[0];
3876                 data[6] = str[1];
3877                 data[7] = str[2];
3878         }
3879
3880         smi_msg.done = dummy_smi_done_handler;
3881         recv_msg.done = dummy_recv_done_handler;
3882
3883         /* For every registered interface, send the event. */
3884         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3885                 if (!intf->handlers)
3886                         /* Interface is not ready. */
3887                         continue;
3888
3889                 /* Send the event announcing the panic. */
3890                 intf->handlers->set_run_to_completion(intf->send_info, 1);
3891                 i_ipmi_request(NULL,
3892                                intf,
3893                                &addr,
3894                                0,
3895                                &msg,
3896                                intf,
3897                                &smi_msg,
3898                                &recv_msg,
3899                                0,
3900                                intf->channels[0].address,
3901                                intf->channels[0].lun,
3902                                0, 1); /* Don't retry, and don't wait. */
3903         }
3904
3905 #ifdef CONFIG_IPMI_PANIC_STRING
3906         /* On every interface, dump a bunch of OEM event holding the
3907            string. */
3908         if (!str) 
3909                 return;
3910
3911         /* For every registered interface, send the event. */
3912         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3913                 char                  *p = str;
3914                 struct ipmi_ipmb_addr *ipmb;
3915                 int                   j;
3916
3917                 if (intf->intf_num == -1)
3918                         /* Interface was not ready yet. */
3919                         continue;
3920
3921                 /*
3922                  * intf_num is used as an marker to tell if the
3923                  * interface is valid.  Thus we need a read barrier to
3924                  * make sure data fetched before checking intf_num
3925                  * won't be used.
3926                  */
3927                 smp_rmb();
3928
3929                 /* First job here is to figure out where to send the
3930                    OEM events.  There's no way in IPMI to send OEM
3931                    events using an event send command, so we have to
3932                    find the SEL to put them in and stick them in
3933                    there. */
3934
3935                 /* Get capabilities from the get device id. */
3936                 intf->local_sel_device = 0;
3937                 intf->local_event_generator = 0;
3938                 intf->event_receiver = 0;
3939
3940                 /* Request the device info from the local MC. */
3941                 msg.netfn = IPMI_NETFN_APP_REQUEST;
3942                 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
3943                 msg.data = NULL;
3944                 msg.data_len = 0;
3945                 intf->null_user_handler = device_id_fetcher;
3946                 i_ipmi_request(NULL,
3947                                intf,
3948                                &addr,
3949                                0,
3950                                &msg,
3951                                intf,
3952                                &smi_msg,
3953                                &recv_msg,
3954                                0,
3955                                intf->channels[0].address,
3956                                intf->channels[0].lun,
3957                                0, 1); /* Don't retry, and don't wait. */
3958
3959                 if (intf->local_event_generator) {
3960                         /* Request the event receiver from the local MC. */
3961                         msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
3962                         msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
3963                         msg.data = NULL;
3964                         msg.data_len = 0;
3965                         intf->null_user_handler = event_receiver_fetcher;
3966                         i_ipmi_request(NULL,
3967                                        intf,
3968                                        &addr,
3969                                        0,
3970                                        &msg,
3971                                        intf,
3972                                        &smi_msg,
3973                                        &recv_msg,
3974                                        0,
3975                                        intf->channels[0].address,
3976                                        intf->channels[0].lun,
3977                                        0, 1); /* no retry, and no wait. */
3978                 }
3979                 intf->null_user_handler = NULL;
3980
3981                 /* Validate the event receiver.  The low bit must not
3982                    be 1 (it must be a valid IPMB address), it cannot
3983                    be zero, and it must not be my address. */
3984                 if (((intf->event_receiver & 1) == 0)
3985                     && (intf->event_receiver != 0)
3986                     && (intf->event_receiver != intf->channels[0].address))
3987                 {
3988                         /* The event receiver is valid, send an IPMB
3989                            message. */
3990                         ipmb = (struct ipmi_ipmb_addr *) &addr;
3991                         ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
3992                         ipmb->channel = 0; /* FIXME - is this right? */
3993                         ipmb->lun = intf->event_receiver_lun;
3994                         ipmb->slave_addr = intf->event_receiver;
3995                 } else if (intf->local_sel_device) {
3996                         /* The event receiver was not valid (or was
3997                            me), but I am an SEL device, just dump it
3998                            in my SEL. */
3999                         si = (struct ipmi_system_interface_addr *) &addr;
4000                         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4001                         si->channel = IPMI_BMC_CHANNEL;
4002                         si->lun = 0;
4003                 } else
4004                         continue; /* No where to send the event. */
4005
4006                 
4007                 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4008                 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4009                 msg.data = data;
4010                 msg.data_len = 16;
4011
4012                 j = 0;
4013                 while (*p) {
4014                         int size = strlen(p);
4015
4016                         if (size > 11)
4017                                 size = 11;
4018                         data[0] = 0;
4019                         data[1] = 0;
4020                         data[2] = 0xf0; /* OEM event without timestamp. */
4021                         data[3] = intf->channels[0].address;
4022                         data[4] = j++; /* sequence # */
4023                         /* Always give 11 bytes, so strncpy will fill
4024                            it with zeroes for me. */
4025                         strncpy(data+5, p, 11);
4026                         p += size;
4027
4028                         i_ipmi_request(NULL,
4029                                        intf,
4030                                        &addr,
4031                                        0,
4032                                        &msg,
4033                                        intf,
4034                                        &smi_msg,
4035                                        &recv_msg,
4036                                        0,
4037                                        intf->channels[0].address,
4038                                        intf->channels[0].lun,
4039                                        0, 1); /* no retry, and no wait. */
4040                 }
4041         }       
4042 #endif /* CONFIG_IPMI_PANIC_STRING */
4043 }
4044 #endif /* CONFIG_IPMI_PANIC_EVENT */
4045
4046 static int has_panicked;
4047
4048 static int panic_event(struct notifier_block *this,
4049                        unsigned long         event,
4050                        void                  *ptr)
4051 {
4052         ipmi_smi_t intf;
4053
4054         if (has_panicked)
4055                 return NOTIFY_DONE;
4056         has_panicked = 1;
4057
4058         /* For every registered interface, set it to run to completion. */
4059         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4060                 if (!intf->handlers)
4061                         /* Interface is not ready. */
4062                         continue;
4063
4064                 intf->handlers->set_run_to_completion(intf->send_info, 1);
4065         }
4066
4067 #ifdef CONFIG_IPMI_PANIC_EVENT
4068         send_panic_events(ptr);
4069 #endif
4070
4071         return NOTIFY_DONE;
4072 }
4073
4074 static struct notifier_block panic_block = {
4075         .notifier_call  = panic_event,
4076         .next           = NULL,
4077         .priority       = 200   /* priority: INT_MAX >= x >= 0 */
4078 };
4079
4080 static int ipmi_init_msghandler(void)
4081 {
4082         int rv;
4083
4084         if (initialized)
4085                 return 0;
4086
4087         rv = driver_register(&ipmidriver);
4088         if (rv) {
4089                 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4090                 return rv;
4091         }
4092
4093         printk(KERN_INFO "ipmi message handler version "
4094                IPMI_DRIVER_VERSION "\n");
4095
4096 #ifdef CONFIG_PROC_FS
4097         proc_ipmi_root = proc_mkdir("ipmi", NULL);
4098         if (!proc_ipmi_root) {
4099             printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4100             return -ENOMEM;
4101         }
4102
4103         proc_ipmi_root->owner = THIS_MODULE;
4104 #endif /* CONFIG_PROC_FS */
4105
4106         setup_timer(&ipmi_timer, ipmi_timeout, 0);
4107         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4108
4109         atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4110
4111         initialized = 1;
4112
4113         return 0;
4114 }
4115
4116 static __init int ipmi_init_msghandler_mod(void)
4117 {
4118         ipmi_init_msghandler();
4119         return 0;
4120 }
4121
4122 static __exit void cleanup_ipmi(void)
4123 {
4124         int count;
4125
4126         if (!initialized)
4127                 return;
4128
4129         atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4130
4131         /* This can't be called if any interfaces exist, so no worry about
4132            shutting down the interfaces. */
4133
4134         /* Tell the timer to stop, then wait for it to stop.  This avoids
4135            problems with race conditions removing the timer here. */
4136         atomic_inc(&stop_operation);
4137         del_timer_sync(&ipmi_timer);
4138
4139 #ifdef CONFIG_PROC_FS
4140         remove_proc_entry(proc_ipmi_root->name, &proc_root);
4141 #endif /* CONFIG_PROC_FS */
4142
4143         driver_unregister(&ipmidriver);
4144
4145         initialized = 0;
4146
4147         /* Check for buffer leaks. */
4148         count = atomic_read(&smi_msg_inuse_count);
4149         if (count != 0)
4150                 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4151                        count);
4152         count = atomic_read(&recv_msg_inuse_count);
4153         if (count != 0)
4154                 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4155                        count);
4156 }
4157 module_exit(cleanup_ipmi);
4158
4159 module_init(ipmi_init_msghandler_mod);
4160 MODULE_LICENSE("GPL");
4161 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4162 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface.");
4163 MODULE_VERSION(IPMI_DRIVER_VERSION);
4164
4165 EXPORT_SYMBOL(ipmi_create_user);
4166 EXPORT_SYMBOL(ipmi_destroy_user);
4167 EXPORT_SYMBOL(ipmi_get_version);
4168 EXPORT_SYMBOL(ipmi_request_settime);
4169 EXPORT_SYMBOL(ipmi_request_supply_msgs);
4170 EXPORT_SYMBOL(ipmi_register_smi);
4171 EXPORT_SYMBOL(ipmi_unregister_smi);
4172 EXPORT_SYMBOL(ipmi_register_for_cmd);
4173 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
4174 EXPORT_SYMBOL(ipmi_smi_msg_received);
4175 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4176 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4177 EXPORT_SYMBOL(ipmi_addr_length);
4178 EXPORT_SYMBOL(ipmi_validate_addr);
4179 EXPORT_SYMBOL(ipmi_set_gets_events);
4180 EXPORT_SYMBOL(ipmi_smi_watcher_register);
4181 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
4182 EXPORT_SYMBOL(ipmi_set_my_address);
4183 EXPORT_SYMBOL(ipmi_get_my_address);
4184 EXPORT_SYMBOL(ipmi_set_my_LUN);
4185 EXPORT_SYMBOL(ipmi_get_my_LUN);
4186 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
4187 EXPORT_SYMBOL(ipmi_user_set_run_to_completion);
4188 EXPORT_SYMBOL(ipmi_free_recv_msg);