2 Copyright (C) 1996 Digi International.
4 For technical support please email digiLinux@dgii.com or
5 call Digi tech support at (612) 912-3456
7 ** This driver is no longer supported by Digi **
9 Much of this design and code came from epca.c which was
10 copyright (C) 1994, 1995 Troy De Jongh, and subsquently
11 modified by David Nugent, Christoph Lameter, Mike McLagan.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /* See README.epca for change history --DAT*/
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/serial.h>
34 #include <linux/delay.h>
35 #include <linux/ctype.h>
36 #include <linux/tty.h>
37 #include <linux/tty_flip.h>
38 #include <linux/slab.h>
39 #include <linux/ioport.h>
40 #include <linux/interrupt.h>
41 #include <asm/uaccess.h>
43 #include <linux/spinlock.h>
44 #include <linux/pci.h>
51 #include "epcaconfig.h"
53 #define VERSION "1.3.0.1-LK2.6"
55 /* This major needs to be submitted to Linux to join the majors list */
56 #define DIGIINFOMAJOR 35 /* For Digi specific ioctl */
60 #define epcaassert(x, msg) if (!(x)) epca_error(__LINE__, msg)
64 static int nbdevs, num_cards, liloconfig;
65 static int digi_poller_inhibited = 1 ;
67 static int setup_error_code;
68 static int invalid_lilo_config;
71 * The ISA boards do window flipping into the same spaces so its only sane with
72 * a single lock. It's still pretty efficient.
74 static DEFINE_SPINLOCK(epca_lock);
76 /* MAXBOARDS is typically 12, but ISA and EISA cards are restricted to 7 below. */
77 static struct board_info boards[MAXBOARDS];
79 static struct tty_driver *pc_driver;
80 static struct tty_driver *pc_info;
82 /* ------------------ Begin Digi specific structures -------------------- */
85 * digi_channels represents an array of structures that keep track of each
86 * channel of the Digi product. Information such as transmit and receive
87 * pointers, termio data, and signal definitions (DTR, CTS, etc ...) are stored
88 * here. This structure is NOT used to overlay the cards physical channel
91 static struct channel digi_channels[MAX_ALLOC];
94 * card_ptr is an array used to hold the address of the first channel structure
95 * of each card. This array will hold the addresses of various channels located
98 static struct channel *card_ptr[MAXCARDS];
100 static struct timer_list epca_timer;
103 * Begin generic memory functions. These functions will be alias (point at)
104 * more specific functions dependent on the board being configured.
106 static void memwinon(struct board_info *b, unsigned int win);
107 static void memwinoff(struct board_info *b, unsigned int win);
108 static void globalwinon(struct channel *ch);
109 static void rxwinon(struct channel *ch);
110 static void txwinon(struct channel *ch);
111 static void memoff(struct channel *ch);
112 static void assertgwinon(struct channel *ch);
113 static void assertmemoff(struct channel *ch);
115 /* ---- Begin more 'specific' memory functions for cx_like products --- */
117 static void pcxem_memwinon(struct board_info *b, unsigned int win);
118 static void pcxem_memwinoff(struct board_info *b, unsigned int win);
119 static void pcxem_globalwinon(struct channel *ch);
120 static void pcxem_rxwinon(struct channel *ch);
121 static void pcxem_txwinon(struct channel *ch);
122 static void pcxem_memoff(struct channel *ch);
124 /* ------ Begin more 'specific' memory functions for the pcxe ------- */
126 static void pcxe_memwinon(struct board_info *b, unsigned int win);
127 static void pcxe_memwinoff(struct board_info *b, unsigned int win);
128 static void pcxe_globalwinon(struct channel *ch);
129 static void pcxe_rxwinon(struct channel *ch);
130 static void pcxe_txwinon(struct channel *ch);
131 static void pcxe_memoff(struct channel *ch);
133 /* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */
134 /* Note : pc64xe and pcxi share the same windowing routines */
136 static void pcxi_memwinon(struct board_info *b, unsigned int win);
137 static void pcxi_memwinoff(struct board_info *b, unsigned int win);
138 static void pcxi_globalwinon(struct channel *ch);
139 static void pcxi_rxwinon(struct channel *ch);
140 static void pcxi_txwinon(struct channel *ch);
141 static void pcxi_memoff(struct channel *ch);
143 /* - Begin 'specific' do nothing memory functions needed for some cards - */
145 static void dummy_memwinon(struct board_info *b, unsigned int win);
146 static void dummy_memwinoff(struct board_info *b, unsigned int win);
147 static void dummy_globalwinon(struct channel *ch);
148 static void dummy_rxwinon(struct channel *ch);
149 static void dummy_txwinon(struct channel *ch);
150 static void dummy_memoff(struct channel *ch);
151 static void dummy_assertgwinon(struct channel *ch);
152 static void dummy_assertmemoff(struct channel *ch);
154 static struct channel *verifyChannel(struct tty_struct *);
155 static void pc_sched_event(struct channel *, int);
156 static void epca_error(int, char *);
157 static void pc_close(struct tty_struct *, struct file *);
158 static void shutdown(struct channel *);
159 static void pc_hangup(struct tty_struct *);
160 static void pc_put_char(struct tty_struct *, unsigned char);
161 static int pc_write_room(struct tty_struct *);
162 static int pc_chars_in_buffer(struct tty_struct *);
163 static void pc_flush_buffer(struct tty_struct *);
164 static void pc_flush_chars(struct tty_struct *);
165 static int block_til_ready(struct tty_struct *, struct file *,
167 static int pc_open(struct tty_struct *, struct file *);
168 static void post_fep_init(unsigned int crd);
169 static void epcapoll(unsigned long);
170 static void doevent(int);
171 static void fepcmd(struct channel *, int, int, int, int, int);
172 static unsigned termios2digi_h(struct channel *ch, unsigned);
173 static unsigned termios2digi_i(struct channel *ch, unsigned);
174 static unsigned termios2digi_c(struct channel *ch, unsigned);
175 static void epcaparam(struct tty_struct *, struct channel *);
176 static void receive_data(struct channel *);
177 static int pc_ioctl(struct tty_struct *, struct file *,
178 unsigned int, unsigned long);
179 static int info_ioctl(struct tty_struct *, struct file *,
180 unsigned int, unsigned long);
181 static void pc_set_termios(struct tty_struct *, struct ktermios *);
182 static void do_softint(struct work_struct *work);
183 static void pc_stop(struct tty_struct *);
184 static void pc_start(struct tty_struct *);
185 static void pc_throttle(struct tty_struct * tty);
186 static void pc_unthrottle(struct tty_struct *tty);
187 static void digi_send_break(struct channel *ch, int msec);
188 static void setup_empty_event(struct tty_struct *tty, struct channel *ch);
189 void epca_setup(char *, int *);
191 static int pc_write(struct tty_struct *, const unsigned char *, int);
192 static int pc_init(void);
193 static int init_PCI(void);
196 * Table of functions for each board to handle memory. Mantaining parallelism
197 * is a *very* good idea here. The idea is for the runtime code to blindly call
198 * these functions, not knowing/caring about the underlying hardware. This
199 * stuff should contain no conditionals; if more functionality is needed a
200 * different entry should be established. These calls are the interface calls
201 * and are the only functions that should be accessed. Anyone caught making
202 * direct calls deserves what they get.
204 static void memwinon(struct board_info *b, unsigned int win)
209 static void memwinoff(struct board_info *b, unsigned int win)
211 b->memwinoff(b, win);
214 static void globalwinon(struct channel *ch)
216 ch->board->globalwinon(ch);
219 static void rxwinon(struct channel *ch)
221 ch->board->rxwinon(ch);
224 static void txwinon(struct channel *ch)
226 ch->board->txwinon(ch);
229 static void memoff(struct channel *ch)
231 ch->board->memoff(ch);
233 static void assertgwinon(struct channel *ch)
235 ch->board->assertgwinon(ch);
238 static void assertmemoff(struct channel *ch)
240 ch->board->assertmemoff(ch);
243 /* PCXEM windowing is the same as that used in the PCXR and CX series cards. */
244 static void pcxem_memwinon(struct board_info *b, unsigned int win)
246 outb_p(FEPWIN|win, b->port + 1);
249 static void pcxem_memwinoff(struct board_info *b, unsigned int win)
251 outb_p(0, b->port + 1);
254 static void pcxem_globalwinon(struct channel *ch)
256 outb_p( FEPWIN, (int)ch->board->port + 1);
259 static void pcxem_rxwinon(struct channel *ch)
261 outb_p(ch->rxwin, (int)ch->board->port + 1);
264 static void pcxem_txwinon(struct channel *ch)
266 outb_p(ch->txwin, (int)ch->board->port + 1);
269 static void pcxem_memoff(struct channel *ch)
271 outb_p(0, (int)ch->board->port + 1);
274 /* ----------------- Begin pcxe memory window stuff ------------------ */
275 static void pcxe_memwinon(struct board_info *b, unsigned int win)
277 outb_p(FEPWIN | win, b->port + 1);
280 static void pcxe_memwinoff(struct board_info *b, unsigned int win)
282 outb_p(inb(b->port) & ~FEPMEM, b->port + 1);
283 outb_p(0, b->port + 1);
286 static void pcxe_globalwinon(struct channel *ch)
288 outb_p(FEPWIN, (int)ch->board->port + 1);
291 static void pcxe_rxwinon(struct channel *ch)
293 outb_p(ch->rxwin, (int)ch->board->port + 1);
296 static void pcxe_txwinon(struct channel *ch)
298 outb_p(ch->txwin, (int)ch->board->port + 1);
301 static void pcxe_memoff(struct channel *ch)
303 outb_p(0, (int)ch->board->port);
304 outb_p(0, (int)ch->board->port + 1);
307 /* ------------- Begin pc64xe and pcxi memory window stuff -------------- */
308 static void pcxi_memwinon(struct board_info *b, unsigned int win)
310 outb_p(inb(b->port) | FEPMEM, b->port);
313 static void pcxi_memwinoff(struct board_info *b, unsigned int win)
315 outb_p(inb(b->port) & ~FEPMEM, b->port);
318 static void pcxi_globalwinon(struct channel *ch)
320 outb_p(FEPMEM, ch->board->port);
323 static void pcxi_rxwinon(struct channel *ch)
325 outb_p(FEPMEM, ch->board->port);
328 static void pcxi_txwinon(struct channel *ch)
330 outb_p(FEPMEM, ch->board->port);
333 static void pcxi_memoff(struct channel *ch)
335 outb_p(0, ch->board->port);
338 static void pcxi_assertgwinon(struct channel *ch)
340 epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off");
343 static void pcxi_assertmemoff(struct channel *ch)
345 epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on");
349 * Not all of the cards need specific memory windowing routines. Some cards
350 * (Such as PCI) needs no windowing routines at all. We provide these do
351 * nothing routines so that the same code base can be used. The driver will
352 * ALWAYS call a windowing routine if it thinks it needs to; regardless of the
353 * card. However, dependent on the card the routine may or may not do anything.
355 static void dummy_memwinon(struct board_info *b, unsigned int win)
359 static void dummy_memwinoff(struct board_info *b, unsigned int win)
363 static void dummy_globalwinon(struct channel *ch)
367 static void dummy_rxwinon(struct channel *ch)
371 static void dummy_txwinon(struct channel *ch)
375 static void dummy_memoff(struct channel *ch)
379 static void dummy_assertgwinon(struct channel *ch)
383 static void dummy_assertmemoff(struct channel *ch)
387 static struct channel *verifyChannel(struct tty_struct *tty)
390 * This routine basically provides a sanity check. It insures that the
391 * channel returned is within the proper range of addresses as well as
392 * properly initialized. If some bogus info gets passed in
393 * through tty->driver_data this should catch it.
396 struct channel *ch = (struct channel *)tty->driver_data;
397 if ((ch >= &digi_channels[0]) && (ch < &digi_channels[nbdevs])) {
398 if (ch->magic == EPCA_MAGIC)
405 static void pc_sched_event(struct channel *ch, int event)
408 * We call this to schedule interrupt processing on some event. The
409 * kernel sees our request and calls the related routine in OUR driver.
411 ch->event |= 1 << event;
412 schedule_work(&ch->tqueue);
415 static void epca_error(int line, char *msg)
417 printk(KERN_ERR "epca_error (Digi): line = %d %s\n",line,msg);
420 static void pc_close(struct tty_struct *tty, struct file *filp)
425 * verifyChannel returns the channel from the tty struct if it is
426 * valid. This serves as a sanity check.
428 if ((ch = verifyChannel(tty)) != NULL) {
429 spin_lock_irqsave(&epca_lock, flags);
430 if (tty_hung_up_p(filp)) {
431 spin_unlock_irqrestore(&epca_lock, flags);
434 if (ch->count-- > 1) {
435 /* Begin channel is open more than once */
437 * Return without doing anything. Someone might still
438 * be using the channel.
440 spin_unlock_irqrestore(&epca_lock, flags);
444 /* Port open only once go ahead with shutdown & reset */
445 BUG_ON(ch->count < 0);
448 * Let the rest of the driver know the channel is being closed.
449 * This becomes important if an open is attempted before close
452 ch->asyncflags |= ASYNC_CLOSING;
455 spin_unlock_irqrestore(&epca_lock, flags);
457 if (ch->asyncflags & ASYNC_INITIALIZED) {
458 /* Setup an event to indicate when the transmit buffer empties */
459 setup_empty_event(tty, ch);
460 tty_wait_until_sent(tty, 3000); /* 30 seconds timeout */
462 if (tty->driver->flush_buffer)
463 tty->driver->flush_buffer(tty);
465 tty_ldisc_flush(tty);
468 spin_lock_irqsave(&epca_lock, flags);
472 spin_unlock_irqrestore(&epca_lock, flags);
474 if (ch->blocked_open) {
476 msleep_interruptible(jiffies_to_msecs(ch->close_delay));
477 wake_up_interruptible(&ch->open_wait);
479 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED |
481 wake_up_interruptible(&ch->close_wait);
485 static void shutdown(struct channel *ch)
488 struct tty_struct *tty;
489 struct board_chan __iomem *bc;
491 if (!(ch->asyncflags & ASYNC_INITIALIZED))
494 spin_lock_irqsave(&epca_lock, flags);
500 * In order for an event to be generated on the receipt of data the
501 * idata flag must be set. Since we are shutting down, this is not
502 * necessary clear this flag.
505 writeb(0, &bc->idata);
508 /* If we're a modem control device and HUPCL is on, drop RTS & DTR. */
509 if (tty->termios->c_cflag & HUPCL) {
510 ch->omodem &= ~(ch->m_rts | ch->m_dtr);
511 fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1);
516 * The channel has officialy been closed. The next time it is opened it
517 * will have to reinitialized. Set a flag to indicate this.
519 /* Prevent future Digi programmed interrupts from coming active */
520 ch->asyncflags &= ~ASYNC_INITIALIZED;
521 spin_unlock_irqrestore(&epca_lock, flags);
524 static void pc_hangup(struct tty_struct *tty)
529 * verifyChannel returns the channel from the tty struct if it is
530 * valid. This serves as a sanity check.
532 if ((ch = verifyChannel(tty)) != NULL) {
535 if (tty->driver->flush_buffer)
536 tty->driver->flush_buffer(tty);
537 tty_ldisc_flush(tty);
540 spin_lock_irqsave(&epca_lock, flags);
544 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED);
545 spin_unlock_irqrestore(&epca_lock, flags);
546 wake_up_interruptible(&ch->open_wait);
550 static int pc_write(struct tty_struct *tty,
551 const unsigned char *buf, int bytesAvailable)
553 unsigned int head, tail;
560 struct board_chan __iomem *bc;
563 * pc_write is primarily called directly by the kernel routine
564 * tty_write (Though it can also be called by put_char) found in
565 * tty_io.c. pc_write is passed a line discipline buffer where the data
566 * to be written out is stored. The line discipline implementation
567 * itself is done at the kernel level and is not brought into the
572 * verifyChannel returns the channel from the tty struct if it is
573 * valid. This serves as a sanity check.
575 if ((ch = verifyChannel(tty)) == NULL)
578 /* Make a pointer to the channel data structure found on the board. */
580 size = ch->txbufsize;
583 spin_lock_irqsave(&epca_lock, flags);
586 head = readw(&bc->tin) & (size - 1);
587 tail = readw(&bc->tout);
589 if (tail != readw(&bc->tout))
590 tail = readw(&bc->tout);
594 /* head has not wrapped */
596 * remain (much like dataLen above) represents the total amount
597 * of space available on the card for data. Here dataLen
598 * represents the space existing between the head pointer and
599 * the end of buffer. This is important because a memcpy cannot
600 * be told to automatically wrap around when it hits the buffer
603 dataLen = size - head;
604 remain = size - (head - tail) - 1;
606 /* head has wrapped around */
607 remain = tail - head - 1;
611 * Check the space on the card. If we have more data than space; reduce
612 * the amount of data to fit the space.
614 bytesAvailable = min(remain, bytesAvailable);
616 while (bytesAvailable > 0) {
617 /* there is data to copy onto card */
620 * If head is not wrapped, the below will make sure the first
621 * data copy fills to the end of card buffer.
623 dataLen = min(bytesAvailable, dataLen);
624 memcpy_toio(ch->txptr + head, buf, dataLen);
627 amountCopied += dataLen;
628 bytesAvailable -= dataLen;
635 ch->statusflags |= TXBUSY;
637 writew(head, &bc->tin);
639 if ((ch->statusflags & LOWWAIT) == 0) {
640 ch->statusflags |= LOWWAIT;
641 writeb(1, &bc->ilow);
644 spin_unlock_irqrestore(&epca_lock, flags);
648 static void pc_put_char(struct tty_struct *tty, unsigned char c)
650 pc_write(tty, &c, 1);
653 static int pc_write_room(struct tty_struct *tty)
658 unsigned int head, tail;
659 struct board_chan __iomem *bc;
664 * verifyChannel returns the channel from the tty struct if it is
665 * valid. This serves as a sanity check.
667 if ((ch = verifyChannel(tty)) != NULL) {
668 spin_lock_irqsave(&epca_lock, flags);
672 head = readw(&bc->tin) & (ch->txbufsize - 1);
673 tail = readw(&bc->tout);
675 if (tail != readw(&bc->tout))
676 tail = readw(&bc->tout);
677 /* Wrap tail if necessary */
678 tail &= (ch->txbufsize - 1);
680 if ((remain = tail - head - 1) < 0 )
681 remain += ch->txbufsize;
683 if (remain && (ch->statusflags & LOWWAIT) == 0) {
684 ch->statusflags |= LOWWAIT;
685 writeb(1, &bc->ilow);
688 spin_unlock_irqrestore(&epca_lock, flags);
690 /* Return how much room is left on card */
694 static int pc_chars_in_buffer(struct tty_struct *tty)
697 unsigned int ctail, head, tail;
701 struct board_chan __iomem *bc;
704 * verifyChannel returns the channel from the tty struct if it is
705 * valid. This serves as a sanity check.
707 if ((ch = verifyChannel(tty)) == NULL)
710 spin_lock_irqsave(&epca_lock, flags);
714 tail = readw(&bc->tout);
715 head = readw(&bc->tin);
716 ctail = readw(&ch->mailbox->cout);
718 if (tail == head && readw(&ch->mailbox->cin) == ctail && readb(&bc->tbusy) == 0)
720 else { /* Begin if some space on the card has been used */
721 head = readw(&bc->tin) & (ch->txbufsize - 1);
722 tail &= (ch->txbufsize - 1);
724 * The logic here is basically opposite of the above
725 * pc_write_room here we are finding the amount of bytes in the
726 * buffer filled. Not the amount of bytes empty.
728 if ((remain = tail - head - 1) < 0 )
729 remain += ch->txbufsize;
730 chars = (int)(ch->txbufsize - remain);
732 * Make it possible to wakeup anything waiting for output in
735 * If not already set. Setup an event to indicate when the
736 * transmit buffer empties.
738 if (!(ch->statusflags & EMPTYWAIT))
739 setup_empty_event(tty,ch);
740 } /* End if some space on the card has been used */
742 spin_unlock_irqrestore(&epca_lock, flags);
743 /* Return number of characters residing on card. */
747 static void pc_flush_buffer(struct tty_struct *tty)
752 struct board_chan __iomem *bc;
754 * verifyChannel returns the channel from the tty struct if it is
755 * valid. This serves as a sanity check.
757 if ((ch = verifyChannel(tty)) == NULL)
760 spin_lock_irqsave(&epca_lock, flags);
763 tail = readw(&bc->tout);
764 /* Have FEP move tout pointer; effectively flushing transmit buffer */
765 fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0);
767 spin_unlock_irqrestore(&epca_lock, flags);
771 static void pc_flush_chars(struct tty_struct *tty)
775 * verifyChannel returns the channel from the tty struct if it is
776 * valid. This serves as a sanity check.
778 if ((ch = verifyChannel(tty)) != NULL) {
780 spin_lock_irqsave(&epca_lock, flags);
782 * If not already set and the transmitter is busy setup an
783 * event to indicate when the transmit empties.
785 if ((ch->statusflags & TXBUSY) && !(ch->statusflags & EMPTYWAIT))
786 setup_empty_event(tty,ch);
787 spin_unlock_irqrestore(&epca_lock, flags);
791 static int block_til_ready(struct tty_struct *tty,
792 struct file *filp, struct channel *ch)
794 DECLARE_WAITQUEUE(wait,current);
795 int retval, do_clocal = 0;
798 if (tty_hung_up_p(filp)) {
799 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
802 retval = -ERESTARTSYS;
807 * If the device is in the middle of being closed, then block until
808 * it's done, and then try again.
810 if (ch->asyncflags & ASYNC_CLOSING) {
811 interruptible_sleep_on(&ch->close_wait);
813 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
819 if (filp->f_flags & O_NONBLOCK) {
821 * If non-blocking mode is set, then make the check up front
824 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
827 if (tty->termios->c_cflag & CLOCAL)
829 /* Block waiting for the carrier detect and the line to become free */
832 add_wait_queue(&ch->open_wait, &wait);
834 spin_lock_irqsave(&epca_lock, flags);
835 /* We dec count so that pc_close will know when to free things */
836 if (!tty_hung_up_p(filp))
840 set_current_state(TASK_INTERRUPTIBLE);
841 if (tty_hung_up_p(filp) ||
842 !(ch->asyncflags & ASYNC_INITIALIZED))
844 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
847 retval = -ERESTARTSYS;
850 if (!(ch->asyncflags & ASYNC_CLOSING) &&
851 (do_clocal || (ch->imodem & ch->dcd)))
853 if (signal_pending(current)) {
854 retval = -ERESTARTSYS;
857 spin_unlock_irqrestore(&epca_lock, flags);
859 * Allow someone else to be scheduled. We will occasionally go
860 * through this loop until one of the above conditions change.
861 * The below schedule call will allow other processes to enter
862 * and prevent this loop from hogging the cpu.
865 spin_lock_irqsave(&epca_lock, flags);
868 __set_current_state(TASK_RUNNING);
869 remove_wait_queue(&ch->open_wait, &wait);
870 if (!tty_hung_up_p(filp))
874 spin_unlock_irqrestore(&epca_lock, flags);
879 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
883 static int pc_open(struct tty_struct *tty, struct file * filp)
887 int line, retval, boardnum;
888 struct board_chan __iomem *bc;
892 if (line < 0 || line >= nbdevs)
895 ch = &digi_channels[line];
896 boardnum = ch->boardnum;
898 /* Check status of board configured in system. */
901 * I check to see if the epca_setup routine detected an user error. It
902 * might be better to put this in pc_init, but for the moment it goes
905 if (invalid_lilo_config) {
906 if (setup_error_code & INVALID_BOARD_TYPE)
907 printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n");
908 if (setup_error_code & INVALID_NUM_PORTS)
909 printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n");
910 if (setup_error_code & INVALID_MEM_BASE)
911 printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n");
912 if (setup_error_code & INVALID_PORT_BASE)
913 printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n");
914 if (setup_error_code & INVALID_BOARD_STATUS)
915 printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n");
916 if (setup_error_code & INVALID_ALTPIN)
917 printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n");
918 tty->driver_data = NULL; /* Mark this device as 'down' */
921 if (boardnum >= num_cards || boards[boardnum].status == DISABLED) {
922 tty->driver_data = NULL; /* Mark this device as 'down' */
926 if ((bc = ch->brdchan) == 0) {
927 tty->driver_data = NULL;
931 spin_lock_irqsave(&epca_lock, flags);
933 * Every time a channel is opened, increment a counter. This is
934 * necessary because we do not wish to flush and shutdown the channel
935 * until the last app holding the channel open, closes it.
939 * Set a kernel structures pointer to our local channel structure. This
940 * way we can get to it when passed only a tty struct.
942 tty->driver_data = ch;
944 * If this is the first time the channel has been opened, initialize
945 * the tty->termios struct otherwise let pc_close handle it.
950 /* Save boards current modem status */
951 ch->imodem = readb(&bc->mstat);
954 * Set receive head and tail ptrs to each other. This indicates no data
957 head = readw(&bc->rin);
958 writew(head, &bc->rout);
960 /* Set the channels associated tty structure */
964 * The below routine generally sets up parity, baud, flow control
965 * issues, etc.... It effect both control flags and input flags.
968 ch->asyncflags |= ASYNC_INITIALIZED;
970 spin_unlock_irqrestore(&epca_lock, flags);
972 retval = block_til_ready(tty, filp, ch);
976 * Set this again in case a hangup set it to zero while this open() was
977 * waiting for the line...
979 spin_lock_irqsave(&epca_lock, flags);
982 /* Enable Digi Data events */
983 writeb(1, &bc->idata);
985 spin_unlock_irqrestore(&epca_lock, flags);
989 static int __init epca_module_init(void)
993 module_init(epca_module_init);
995 static struct pci_driver epca_driver;
997 static void __exit epca_module_exit(void)
1000 struct board_info *bd;
1003 del_timer_sync(&epca_timer);
1005 if (tty_unregister_driver(pc_driver) || tty_unregister_driver(pc_info))
1007 printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n");
1010 put_tty_driver(pc_driver);
1011 put_tty_driver(pc_info);
1013 for (crd = 0; crd < num_cards; crd++) {
1015 if (!bd) { /* sanity check */
1016 printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n");
1020 for (count = 0; count < bd->numports; count++, ch++) {
1022 tty_hangup(ch->tty);
1025 pci_unregister_driver(&epca_driver);
1027 module_exit(epca_module_exit);
1029 static const struct tty_operations pc_ops = {
1033 .write_room = pc_write_room,
1034 .flush_buffer = pc_flush_buffer,
1035 .chars_in_buffer = pc_chars_in_buffer,
1036 .flush_chars = pc_flush_chars,
1037 .put_char = pc_put_char,
1039 .set_termios = pc_set_termios,
1042 .throttle = pc_throttle,
1043 .unthrottle = pc_unthrottle,
1044 .hangup = pc_hangup,
1047 static int info_open(struct tty_struct *tty, struct file * filp)
1052 static struct tty_operations info_ops = {
1054 .ioctl = info_ioctl,
1057 static int __init pc_init(void)
1060 struct board_info *bd;
1061 unsigned char board_id = 0;
1064 int pci_boards_found, pci_count;
1068 pc_driver = alloc_tty_driver(MAX_ALLOC);
1072 pc_info = alloc_tty_driver(MAX_ALLOC);
1077 * If epca_setup has not been ran by LILO set num_cards to defaults;
1078 * copy board structure defined by digiConfig into drivers board
1079 * structure. Note : If LILO has ran epca_setup then epca_setup will
1080 * handle defining num_cards as well as copying the data into the board
1084 /* driver has been configured via. epcaconfig */
1086 num_cards = NUMCARDS;
1087 memcpy(&boards, &static_boards,
1088 sizeof(struct board_info) * NUMCARDS);
1092 * Note : If lilo was used to configure the driver and the ignore
1093 * epcaconfig option was choosen (digiepca=2) then nbdevs and num_cards
1094 * will equal 0 at this point. This is okay; PCI cards will still be
1095 * picked up if detected.
1099 * Set up interrupt, we will worry about memory allocation in
1102 printk(KERN_INFO "DIGI epca driver version %s loaded.\n",VERSION);
1105 * NOTE : This code assumes that the number of ports found in the
1106 * boards array is correct. This could be wrong if the card in question
1107 * is PCI (And therefore has no ports entry in the boards structure.)
1108 * The rest of the information will be valid for PCI because the
1109 * beginning of pc_init scans for PCI and determines i/o and base
1110 * memory addresses. I am not sure if it is possible to read the number
1111 * of ports supported by the card prior to it being booted (Since that
1112 * is the state it is in when pc_init is run). Because it is not
1113 * possible to query the number of supported ports until after the card
1114 * has booted; we are required to calculate the card_ptrs as the card
1115 * is initialized (Inside post_fep_init). The negative thing about this
1116 * approach is that digiDload's call to GET_INFO will have a bad port
1117 * value. (Since this is called prior to post_fep_init.)
1119 pci_boards_found = 0;
1120 if (num_cards < MAXBOARDS)
1121 pci_boards_found += init_PCI();
1122 num_cards += pci_boards_found;
1124 pc_driver->owner = THIS_MODULE;
1125 pc_driver->name = "ttyD";
1126 pc_driver->major = DIGI_MAJOR;
1127 pc_driver->minor_start = 0;
1128 pc_driver->type = TTY_DRIVER_TYPE_SERIAL;
1129 pc_driver->subtype = SERIAL_TYPE_NORMAL;
1130 pc_driver->init_termios = tty_std_termios;
1131 pc_driver->init_termios.c_iflag = 0;
1132 pc_driver->init_termios.c_oflag = 0;
1133 pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL;
1134 pc_driver->init_termios.c_lflag = 0;
1135 pc_driver->init_termios.c_ispeed = 9600;
1136 pc_driver->init_termios.c_ospeed = 9600;
1137 pc_driver->flags = TTY_DRIVER_REAL_RAW;
1138 tty_set_operations(pc_driver, &pc_ops);
1140 pc_info->owner = THIS_MODULE;
1141 pc_info->name = "digi_ctl";
1142 pc_info->major = DIGIINFOMAJOR;
1143 pc_info->minor_start = 0;
1144 pc_info->type = TTY_DRIVER_TYPE_SERIAL;
1145 pc_info->subtype = SERIAL_TYPE_INFO;
1146 pc_info->init_termios = tty_std_termios;
1147 pc_info->init_termios.c_iflag = 0;
1148 pc_info->init_termios.c_oflag = 0;
1149 pc_info->init_termios.c_lflag = 0;
1150 pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL;
1151 pc_info->init_termios.c_ispeed = 9600;
1152 pc_info->init_termios.c_ospeed = 9600;
1153 pc_info->flags = TTY_DRIVER_REAL_RAW;
1154 tty_set_operations(pc_info, &info_ops);
1157 for (crd = 0; crd < num_cards; crd++) {
1159 * This is where the appropriate memory handlers for the
1160 * hardware is set. Everything at runtime blindly jumps through
1164 /* defined in epcaconfig.h */
1170 bd->memwinon = pcxem_memwinon;
1171 bd->memwinoff = pcxem_memwinoff;
1172 bd->globalwinon = pcxem_globalwinon;
1173 bd->txwinon = pcxem_txwinon;
1174 bd->rxwinon = pcxem_rxwinon;
1175 bd->memoff = pcxem_memoff;
1176 bd->assertgwinon = dummy_assertgwinon;
1177 bd->assertmemoff = dummy_assertmemoff;
1183 bd->memwinon = dummy_memwinon;
1184 bd->memwinoff = dummy_memwinoff;
1185 bd->globalwinon = dummy_globalwinon;
1186 bd->txwinon = dummy_txwinon;
1187 bd->rxwinon = dummy_rxwinon;
1188 bd->memoff = dummy_memoff;
1189 bd->assertgwinon = dummy_assertgwinon;
1190 bd->assertmemoff = dummy_assertmemoff;
1195 bd->memwinon = pcxe_memwinon;
1196 bd->memwinoff = pcxe_memwinoff;
1197 bd->globalwinon = pcxe_globalwinon;
1198 bd->txwinon = pcxe_txwinon;
1199 bd->rxwinon = pcxe_rxwinon;
1200 bd->memoff = pcxe_memoff;
1201 bd->assertgwinon = dummy_assertgwinon;
1202 bd->assertmemoff = dummy_assertmemoff;
1207 bd->memwinon = pcxi_memwinon;
1208 bd->memwinoff = pcxi_memwinoff;
1209 bd->globalwinon = pcxi_globalwinon;
1210 bd->txwinon = pcxi_txwinon;
1211 bd->rxwinon = pcxi_rxwinon;
1212 bd->memoff = pcxi_memoff;
1213 bd->assertgwinon = pcxi_assertgwinon;
1214 bd->assertmemoff = pcxi_assertmemoff;
1222 * Some cards need a memory segment to be defined for use in
1223 * transmit and receive windowing operations. These boards are
1224 * listed in the below switch. In the case of the XI the amount
1225 * of memory on the board is variable so the memory_seg is also
1226 * variable. This code determines what they segment should be.
1232 bd->memory_seg = 0xf000;
1236 board_id = inb((int)bd->port);
1237 if ((board_id & 0x1) == 0x1) {
1238 /* it's an XI card */
1239 /* Is it a 64K board */
1240 if ((board_id & 0x30) == 0)
1241 bd->memory_seg = 0xf000;
1243 /* Is it a 128K board */
1244 if ((board_id & 0x30) == 0x10)
1245 bd->memory_seg = 0xe000;
1247 /* Is is a 256K board */
1248 if ((board_id & 0x30) == 0x20)
1249 bd->memory_seg = 0xc000;
1251 /* Is it a 512K board */
1252 if ((board_id & 0x30) == 0x30)
1253 bd->memory_seg = 0x8000;
1255 printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n",(int)bd->port);
1260 err = tty_register_driver(pc_driver);
1262 printk(KERN_ERR "Couldn't register Digi PC/ driver");
1266 err = tty_register_driver(pc_info);
1268 printk(KERN_ERR "Couldn't register Digi PC/ info ");
1272 /* Start up the poller to check for events on all enabled boards */
1273 init_timer(&epca_timer);
1274 epca_timer.function = epcapoll;
1275 mod_timer(&epca_timer, jiffies + HZ/25);
1279 tty_unregister_driver(pc_driver);
1281 put_tty_driver(pc_info);
1283 put_tty_driver(pc_driver);
1288 static void post_fep_init(unsigned int crd)
1291 void __iomem *memaddr;
1292 struct global_data __iomem *gd;
1293 struct board_info *bd;
1294 struct board_chan __iomem *bc;
1296 int shrinkmem = 0, lowwater;
1299 * This call is made by the user via. the ioctl call DIGI_INIT. It is
1300 * responsible for setting up all the card specific stuff.
1305 * If this is a PCI board, get the port info. Remember PCI cards do not
1306 * have entries into the epcaconfig.h file, so we can't get the number
1307 * of ports from it. Unfortunetly, this means that anyone doing a
1308 * DIGI_GETINFO before the board has booted will get an invalid number
1309 * of ports returned (It should return 0). Calls to DIGI_GETINFO after
1310 * DIGI_INIT has been called will return the proper values.
1312 if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */
1314 * Below we use XEMPORTS as a memory offset regardless of which
1315 * PCI card it is. This is because all of the supported PCI
1316 * cards have the same memory offset for the channel data. This
1317 * will have to be changed if we ever develop a PCI/XE card.
1318 * NOTE : The FEP manual states that the port offset is 0xC22
1319 * as opposed to 0xC02. This is only true for PC/XE, and PC/XI
1320 * cards; not for the XEM, or CX series. On the PCI cards the
1321 * number of ports is determined by reading a ID PROM located
1322 * in the box attached to the card. The card can then determine
1323 * the index the id to determine the number of ports available.
1324 * (FYI - The id should be located at 0x1ac (And may use up to
1325 * 4 bytes if the box in question is a XEM or CX)).
1327 /* PCI cards are already remapped at this point ISA are not */
1328 bd->numports = readw(bd->re_map_membase + XEMPORTS);
1329 epcaassert(bd->numports <= 64,"PCI returned a invalid number of ports");
1330 nbdevs += (bd->numports);
1332 /* Fix up the mappings for ISA/EISA etc */
1333 /* FIXME: 64K - can we be smarter ? */
1334 bd->re_map_membase = ioremap(bd->membase, 0x10000);
1338 card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports;
1340 card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */
1343 epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range");
1345 memaddr = bd->re_map_membase;
1348 * The below assignment will set bc to point at the BEGINING of the
1349 * cards channel structures. For 1 card there will be between 8 and 64
1350 * of these structures.
1352 bc = memaddr + CHANSTRUCT;
1355 * The below assignment will set gd to point at the BEGINING of global
1356 * memory address 0xc00. The first data in that global memory actually
1357 * starts at address 0xc1a. The command in pointer begins at 0xd10.
1359 gd = memaddr + GLOBAL;
1362 * XEPORTS (address 0xc22) points at the number of channels the card
1363 * supports. (For 64XE, XI, XEM, and XR use 0xc02)
1365 if ((bd->type == PCXEVE || bd->type == PCXE) && (readw(memaddr + XEPORTS) < 3))
1367 if (bd->type < PCIXEM)
1368 if (!request_region((int)bd->port, 4, board_desc[bd->type]))
1373 * Remember ch is the main drivers channels structure, while bc is the
1374 * cards channel structure.
1376 for (i = 0; i < bd->numports; i++, ch++, bc++) {
1377 unsigned long flags;
1382 INIT_WORK(&ch->tqueue, do_softint);
1383 ch->board = &boards[crd];
1385 spin_lock_irqsave(&epca_lock, flags);
1388 * Since some of the boards use different bitmaps for
1389 * their control signals we cannot hard code these
1390 * values and retain portability. We virtualize this
1419 if (boards[crd].altpin) {
1420 ch->dsr = ch->m_dcd;
1421 ch->dcd = ch->m_dsr;
1422 ch->digiext.digi_flags |= DIGI_ALTPIN;
1424 ch->dcd = ch->m_dcd;
1425 ch->dsr = ch->m_dsr;
1430 ch->magic = EPCA_MAGIC;
1434 fepcmd(ch, SETBUFFER, 32, 0, 0, 0);
1438 tseg = readw(&bc->tseg);
1439 rseg = readw(&bc->rseg);
1445 /* Cover all the 2MEG cards */
1446 ch->txptr = memaddr + ((tseg << 4) & 0x1fffff);
1447 ch->rxptr = memaddr + ((rseg << 4) & 0x1fffff);
1448 ch->txwin = FEPWIN | (tseg >> 11);
1449 ch->rxwin = FEPWIN | (rseg >> 11);
1454 /* Cover all the 32K windowed cards */
1455 /* Mask equal to window size - 1 */
1456 ch->txptr = memaddr + ((tseg << 4) & 0x7fff);
1457 ch->rxptr = memaddr + ((rseg << 4) & 0x7fff);
1458 ch->txwin = FEPWIN | (tseg >> 11);
1459 ch->rxwin = FEPWIN | (rseg >> 11);
1464 ch->txptr = memaddr + (((tseg - bd->memory_seg) << 4) & 0x1fff);
1465 ch->txwin = FEPWIN | ((tseg - bd->memory_seg) >> 9);
1466 ch->rxptr = memaddr + (((rseg - bd->memory_seg) << 4) & 0x1fff);
1467 ch->rxwin = FEPWIN | ((rseg - bd->memory_seg) >>9 );
1472 ch->txptr = memaddr + ((tseg - bd->memory_seg) << 4);
1473 ch->rxptr = memaddr + ((rseg - bd->memory_seg) << 4);
1474 ch->txwin = ch->rxwin = 0;
1479 ch->txbufsize = readw(&bc->tmax) + 1;
1482 ch->rxbufsize = readw(&bc->rmax) + 1;
1484 lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2);
1486 /* Set transmitter low water mark */
1487 fepcmd(ch, STXLWATER, lowwater, 0, 10, 0);
1489 /* Set receiver low water mark */
1490 fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0);
1492 /* Set receiver high water mark */
1493 fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0);
1495 writew(100, &bc->edelay);
1496 writeb(1, &bc->idata);
1498 ch->startc = readb(&bc->startc);
1499 ch->stopc = readb(&bc->stopc);
1500 ch->startca = readb(&bc->startca);
1501 ch->stopca = readb(&bc->stopca);
1511 ch->close_delay = 50;
1513 ch->blocked_open = 0;
1514 init_waitqueue_head(&ch->open_wait);
1515 init_waitqueue_head(&ch->close_wait);
1517 spin_unlock_irqrestore(&epca_lock, flags);
1521 "Digi PC/Xx Driver V%s: %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n",
1522 VERSION, board_desc[bd->type], (long)bd->port, (long)bd->membase, bd->numports);
1526 static void epcapoll(unsigned long ignored)
1528 unsigned long flags;
1530 volatile unsigned int head, tail;
1532 struct board_info *bd;
1535 * This routine is called upon every timer interrupt. Even though the
1536 * Digi series cards are capable of generating interrupts this method
1537 * of non-looping polling is more efficient. This routine checks for
1538 * card generated events (Such as receive data, are transmit buffer
1539 * empty) and acts on those events.
1541 for (crd = 0; crd < num_cards; crd++) {
1545 if ((bd->status == DISABLED) || digi_poller_inhibited)
1549 * assertmemoff is not needed here; indeed it is an empty
1550 * subroutine. It is being kept because future boards may need
1551 * this as well as some legacy boards.
1553 spin_lock_irqsave(&epca_lock, flags);
1560 * In this case head and tail actually refer to the event queue
1561 * not the transmit or receive queue.
1563 head = readw(&ch->mailbox->ein);
1564 tail = readw(&ch->mailbox->eout);
1566 /* If head isn't equal to tail we have an event */
1571 spin_unlock_irqrestore(&epca_lock, flags);
1572 } /* End for each card */
1573 mod_timer(&epca_timer, jiffies + (HZ / 25));
1576 static void doevent(int crd)
1578 void __iomem *eventbuf;
1579 struct channel *ch, *chan0;
1580 static struct tty_struct *tty;
1581 struct board_info *bd;
1582 struct board_chan __iomem *bc;
1583 unsigned int tail, head;
1588 * This subroutine is called by epcapoll when an event is detected
1589 * in the event queue. This routine responds to those events.
1593 chan0 = card_ptr[crd];
1594 epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range");
1595 assertgwinon(chan0);
1596 while ((tail = readw(&chan0->mailbox->eout)) != (head = readw(&chan0->mailbox->ein))) { /* Begin while something in event queue */
1597 assertgwinon(chan0);
1598 eventbuf = bd->re_map_membase + tail + ISTART;
1599 /* Get the channel the event occurred on */
1600 channel = readb(eventbuf);
1601 /* Get the actual event code that occurred */
1602 event = readb(eventbuf + 1);
1604 * The two assignments below get the current modem status
1605 * (mstat) and the previous modem status (lstat). These are
1606 * useful becuase an event could signal a change in modem
1609 mstat = readb(eventbuf + 2);
1610 lstat = readb(eventbuf + 3);
1612 ch = chan0 + channel;
1613 if ((unsigned)channel >= bd->numports || !ch) {
1614 if (channel >= bd->numports)
1620 if ((bc = ch->brdchan) == NULL)
1623 if (event & DATA_IND) { /* Begin DATA_IND */
1626 } /* End DATA_IND */
1627 /* else *//* Fix for DCD transition missed bug */
1628 if (event & MODEMCHG_IND) {
1629 /* A modem signal change has been indicated */
1631 if (ch->asyncflags & ASYNC_CHECK_CD) {
1632 if (mstat & ch->dcd) /* We are now receiving dcd */
1633 wake_up_interruptible(&ch->open_wait);
1635 pc_sched_event(ch, EPCA_EVENT_HANGUP); /* No dcd; hangup */
1640 if (event & BREAK_IND) {
1641 /* A break has been indicated */
1642 tty_insert_flip_char(tty, 0, TTY_BREAK);
1643 tty_schedule_flip(tty);
1644 } else if (event & LOWTX_IND) {
1645 if (ch->statusflags & LOWWAIT) {
1646 ch->statusflags &= ~LOWWAIT;
1649 } else if (event & EMPTYTX_IND) {
1650 /* This event is generated by setup_empty_event */
1651 ch->statusflags &= ~TXBUSY;
1652 if (ch->statusflags & EMPTYWAIT) {
1653 ch->statusflags &= ~EMPTYWAIT;
1661 writew(1, &bc->idata);
1662 writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout);
1664 } /* End while something in event queue */
1667 static void fepcmd(struct channel *ch, int cmd, int word_or_byte,
1668 int byte2, int ncmds, int bytecmd)
1670 unchar __iomem *memaddr;
1671 unsigned int head, cmdTail, cmdStart, cmdMax;
1675 /* This is the routine in which commands may be passed to the card. */
1677 if (ch->board->status == DISABLED)
1680 /* Remember head (As well as max) is just an offset not a base addr */
1681 head = readw(&ch->mailbox->cin);
1682 /* cmdStart is a base address */
1683 cmdStart = readw(&ch->mailbox->cstart);
1685 * We do the addition below because we do not want a max pointer
1686 * relative to cmdStart. We want a max pointer that points at the
1687 * physical end of the command queue.
1689 cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax));
1690 memaddr = ch->board->re_map_membase;
1692 if (head >= (cmdMax - cmdStart) || (head & 03)) {
1693 printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n", __LINE__, cmd, head);
1694 printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n", __LINE__, cmdMax, cmdStart);
1698 writeb(cmd, memaddr + head + cmdStart + 0);
1699 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1700 /* Below word_or_byte is bits to set */
1701 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1702 /* Below byte2 is bits to reset */
1703 writeb(byte2, memaddr + head + cmdStart + 3);
1705 writeb(cmd, memaddr + head + cmdStart + 0);
1706 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1707 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1709 head = (head + 4) & (cmdMax - cmdStart - 4);
1710 writew(head, &ch->mailbox->cin);
1716 printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n");
1719 head = readw(&ch->mailbox->cin);
1720 cmdTail = readw(&ch->mailbox->cout);
1721 n = (head - cmdTail) & (cmdMax - cmdStart - 4);
1723 * Basically this will break when the FEP acknowledges the
1724 * command by incrementing cmdTail (Making it equal to head).
1726 if (n <= ncmds * (sizeof(short) * 4))
1732 * Digi products use fields in their channels structures that are very similar
1733 * to the c_cflag and c_iflag fields typically found in UNIX termios
1734 * structures. The below three routines allow mappings between these hardware
1735 * "flags" and their respective Linux flags.
1737 static unsigned termios2digi_h(struct channel *ch, unsigned cflag)
1741 if (cflag & CRTSCTS) {
1742 ch->digiext.digi_flags |= (RTSPACE | CTSPACE);
1743 res |= ((ch->m_cts) | (ch->m_rts));
1746 if (ch->digiext.digi_flags & RTSPACE)
1749 if (ch->digiext.digi_flags & DTRPACE)
1752 if (ch->digiext.digi_flags & CTSPACE)
1755 if (ch->digiext.digi_flags & DSRPACE)
1758 if (ch->digiext.digi_flags & DCDPACE)
1761 if (res & (ch->m_rts))
1762 ch->digiext.digi_flags |= RTSPACE;
1764 if (res & (ch->m_cts))
1765 ch->digiext.digi_flags |= CTSPACE;
1770 static unsigned termios2digi_i(struct channel *ch, unsigned iflag)
1772 unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK |
1773 INPCK | ISTRIP|IXON|IXANY|IXOFF);
1774 if (ch->digiext.digi_flags & DIGI_AIXON)
1779 static unsigned termios2digi_c(struct channel *ch, unsigned cflag)
1782 if (cflag & CBAUDEX) {
1783 ch->digiext.digi_flags |= DIGI_FAST;
1785 * HUPCL bit is used by FEP to indicate fast baud table is to
1790 ch->digiext.digi_flags &= ~DIGI_FAST;
1792 * CBAUD has bit position 0x1000 set these days to indicate Linux
1793 * baud rate remap. Digi hardware can't handle the bit assignment.
1794 * (We use a different bit assignment for high speed.). Clear this
1797 res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE);
1799 * This gets a little confusing. The Digi cards have their own
1800 * representation of c_cflags controlling baud rate. For the most part
1801 * this is identical to the Linux implementation. However; Digi
1802 * supports one rate (76800) that Linux doesn't. This means that the
1803 * c_cflag entry that would normally mean 76800 for Digi actually means
1804 * 115200 under Linux. Without the below mapping, a stty 115200 would
1805 * only drive the board at 76800. Since the rate 230400 is also found
1806 * after 76800, the same problem afflicts us when we choose a rate of
1807 * 230400. Without the below modificiation stty 230400 would actually
1810 * There are two additional differences. The Linux value for CLOCAL
1811 * (0x800; 0004000) has no meaning to the Digi hardware. Also in later
1812 * releases of Linux; the CBAUD define has CBAUDEX (0x1000; 0010000)
1813 * ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX should be
1814 * checked for a screened out prior to termios2digi_c returning. Since
1815 * CLOCAL isn't used by the board this can be ignored as long as the
1816 * returned value is used only by Digi hardware.
1818 if (cflag & CBAUDEX) {
1820 * The below code is trying to guarantee that only baud rates
1821 * 115200 and 230400 are remapped. We use exclusive or because
1822 * the various baud rates share common bit positions and
1823 * therefore can't be tested for easily.
1825 if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) ||
1826 (!((cflag & 0x7) ^ (B230400 & ~CBAUDEX))))
1832 /* Caller must hold the locks */
1833 static void epcaparam(struct tty_struct *tty, struct channel *ch)
1835 unsigned int cmdHead;
1836 struct ktermios *ts;
1837 struct board_chan __iomem *bc;
1838 unsigned mval, hflow, cflag, iflag;
1841 epcaassert(bc !=0, "bc out of range");
1845 if ((ts->c_cflag & CBAUD) == 0) { /* Begin CBAUD detected */
1846 cmdHead = readw(&bc->rin);
1847 writew(cmdHead, &bc->rout);
1848 cmdHead = readw(&bc->tin);
1849 /* Changing baud in mid-stream transmission can be wonderful */
1851 * Flush current transmit buffer by setting cmdTail pointer
1852 * (tout) to cmdHead pointer (tin). Hopefully the transmit
1855 fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0);
1857 } else { /* Begin CBAUD not detected */
1859 * c_cflags have changed but that change had nothing to do with
1860 * BAUD. Propagate the change to the card.
1862 cflag = termios2digi_c(ch, ts->c_cflag);
1863 if (cflag != ch->fepcflag) {
1864 ch->fepcflag = cflag;
1865 /* Set baud rate, char size, stop bits, parity */
1866 fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0);
1869 * If the user has not forced CLOCAL and if the device is not a
1870 * CALLOUT device (Which is always CLOCAL) we set flags such
1871 * that the driver will wait on carrier detect.
1873 if (ts->c_cflag & CLOCAL)
1874 ch->asyncflags &= ~ASYNC_CHECK_CD;
1876 ch->asyncflags |= ASYNC_CHECK_CD;
1877 mval = ch->m_dtr | ch->m_rts;
1878 } /* End CBAUD not detected */
1879 iflag = termios2digi_i(ch, ts->c_iflag);
1880 /* Check input mode flags */
1881 if (iflag != ch->fepiflag) {
1882 ch->fepiflag = iflag;
1884 * Command sets channels iflag structure on the board. Such
1885 * things as input soft flow control, handling of parity
1886 * errors, and break handling are all set here.
1888 /* break handling, parity handling, input stripping, flow control chars */
1889 fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0);
1892 * Set the board mint value for this channel. This will cause hardware
1893 * events to be generated each time the DCD signal (Described in mint)
1896 writeb(ch->dcd, &bc->mint);
1897 if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD))
1898 if (ch->digiext.digi_flags & DIGI_FORCEDCD)
1899 writeb(0, &bc->mint);
1900 ch->imodem = readb(&bc->mstat);
1901 hflow = termios2digi_h(ch, ts->c_cflag);
1902 if (hflow != ch->hflow) {
1905 * Hard flow control has been selected but the board is not
1906 * using it. Activate hard flow control now.
1908 fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1);
1910 mval ^= ch->modemfake & (mval ^ ch->modem);
1912 if (ch->omodem ^ mval) {
1915 * The below command sets the DTR and RTS mstat structure. If
1916 * hard flow control is NOT active these changes will drive the
1917 * output of the actual DTR and RTS lines. If hard flow control
1918 * is active, the changes will be saved in the mstat structure
1919 * and only asserted when hard flow control is turned off.
1922 /* First reset DTR & RTS; then set them */
1923 fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1);
1924 fepcmd(ch, SETMODEM, mval, 0, 0, 1);
1926 if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc) {
1927 ch->fepstartc = ch->startc;
1928 ch->fepstopc = ch->stopc;
1930 * The XON / XOFF characters have changed; propagate these
1931 * changes to the card.
1933 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
1935 if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca) {
1936 ch->fepstartca = ch->startca;
1937 ch->fepstopca = ch->stopca;
1939 * Similar to the above, this time the auxilarly XON / XOFF
1940 * characters have changed; propagate these changes to the card.
1942 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
1946 /* Caller holds lock */
1947 static void receive_data(struct channel *ch)
1950 struct ktermios *ts = NULL;
1951 struct tty_struct *tty;
1952 struct board_chan __iomem *bc;
1953 int dataToRead, wrapgap, bytesAvailable;
1954 unsigned int tail, head;
1955 unsigned int wrapmask;
1958 * This routine is called by doint when a receive data event has taken
1962 if (ch->statusflags & RXSTOPPED)
1969 wrapmask = ch->rxbufsize - 1;
1972 * Get the head and tail pointers to the receiver queue. Wrap the head
1973 * pointer if it has reached the end of the buffer.
1975 head = readw(&bc->rin);
1977 tail = readw(&bc->rout) & wrapmask;
1979 bytesAvailable = (head - tail) & wrapmask;
1980 if (bytesAvailable == 0)
1983 /* If CREAD bit is off or device not open, set TX tail to head */
1984 if (!tty || !ts || !(ts->c_cflag & CREAD)) {
1985 writew(head, &bc->rout);
1989 if (tty_buffer_request_room(tty, bytesAvailable + 1) == 0)
1992 if (readb(&bc->orun)) {
1993 writeb(0, &bc->orun);
1994 printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n",tty->name);
1995 tty_insert_flip_char(tty, 0, TTY_OVERRUN);
1998 while (bytesAvailable > 0) { /* Begin while there is data on the card */
1999 wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail;
2001 * Even if head has wrapped around only report the amount of
2002 * data to be equal to the size - tail. Remember memcpy can't
2003 * automaticly wrap around the receive buffer.
2005 dataToRead = (wrapgap < bytesAvailable) ? wrapgap : bytesAvailable;
2006 /* Make sure we don't overflow the buffer */
2007 dataToRead = tty_prepare_flip_string(tty, &rptr, dataToRead);
2008 if (dataToRead == 0)
2011 * Move data read from our card into the line disciplines
2012 * buffer for translation if necessary.
2014 memcpy_fromio(rptr, ch->rxptr + tail, dataToRead);
2015 tail = (tail + dataToRead) & wrapmask;
2016 bytesAvailable -= dataToRead;
2017 } /* End while there is data on the card */
2019 writew(tail, &bc->rout);
2020 /* Must be called with global data */
2021 tty_schedule_flip(ch->tty);
2024 static int info_ioctl(struct tty_struct *tty, struct file *file,
2025 unsigned int cmd, unsigned long arg)
2030 struct digi_info di;
2033 if (get_user(brd, (unsigned int __user *)arg))
2035 if (brd < 0 || brd >= num_cards || num_cards == 0)
2038 memset(&di, 0, sizeof(di));
2041 di.status = boards[brd].status;
2042 di.type = boards[brd].type ;
2043 di.numports = boards[brd].numports ;
2044 /* Legacy fixups - just move along nothing to see */
2045 di.port = (unsigned char *)boards[brd].port ;
2046 di.membase = (unsigned char *)boards[brd].membase ;
2048 if (copy_to_user((void __user *)arg, &di, sizeof(di)))
2056 int brd = arg & 0xff000000 >> 16;
2057 unsigned char state = arg & 0xff;
2059 if (brd < 0 || brd >= num_cards) {
2060 printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n");
2063 digi_poller_inhibited = state;
2070 * This call is made by the apps to complete the
2071 * initialization of the board(s). This routine is
2072 * responsible for setting the card to its initial
2073 * state and setting the drivers control fields to the
2074 * sutianle settings for the card in question.
2077 for (crd = 0; crd < num_cards; crd++)
2087 static int pc_tiocmget(struct tty_struct *tty, struct file *file)
2089 struct channel *ch = (struct channel *) tty->driver_data;
2090 struct board_chan __iomem *bc;
2091 unsigned int mstat, mflag = 0;
2092 unsigned long flags;
2099 spin_lock_irqsave(&epca_lock, flags);
2101 mstat = readb(&bc->mstat);
2103 spin_unlock_irqrestore(&epca_lock, flags);
2105 if (mstat & ch->m_dtr)
2107 if (mstat & ch->m_rts)
2109 if (mstat & ch->m_cts)
2111 if (mstat & ch->dsr)
2113 if (mstat & ch->m_ri)
2115 if (mstat & ch->dcd)
2120 static int pc_tiocmset(struct tty_struct *tty, struct file *file,
2121 unsigned int set, unsigned int clear)
2123 struct channel *ch = (struct channel *) tty->driver_data;
2124 unsigned long flags;
2129 spin_lock_irqsave(&epca_lock, flags);
2131 * I think this modemfake stuff is broken. It doesn't correctly reflect
2132 * the behaviour desired by the TIOCM* ioctls. Therefore this is
2135 if (set & TIOCM_RTS) {
2136 ch->modemfake |= ch->m_rts;
2137 ch->modem |= ch->m_rts;
2139 if (set & TIOCM_DTR) {
2140 ch->modemfake |= ch->m_dtr;
2141 ch->modem |= ch->m_dtr;
2143 if (clear & TIOCM_RTS) {
2144 ch->modemfake |= ch->m_rts;
2145 ch->modem &= ~ch->m_rts;
2147 if (clear & TIOCM_DTR) {
2148 ch->modemfake |= ch->m_dtr;
2149 ch->modem &= ~ch->m_dtr;
2153 * The below routine generally sets up parity, baud, flow control
2154 * issues, etc.... It effect both control flags and input flags.
2158 spin_unlock_irqrestore(&epca_lock, flags);
2162 static int pc_ioctl(struct tty_struct *tty, struct file * file,
2163 unsigned int cmd, unsigned long arg)
2167 unsigned long flags;
2168 unsigned int mflag, mstat;
2169 unsigned char startc, stopc;
2170 struct board_chan __iomem *bc;
2171 struct channel *ch = (struct channel *) tty->driver_data;
2172 void __user *argp = (void __user *)arg;
2180 * For POSIX compliance we need to add more ioctls. See tty_ioctl.c in
2181 * /usr/src/linux/drivers/char for a good example. In particular think
2182 * about adding TCSETAF, TCSETAW, TCSETA, TCSETSF, TCSETSW, TCSETS.
2185 case TCSBRK: /* SVID version: non-zero arg --> no break */
2186 retval = tty_check_change(tty);
2189 /* Setup an event to indicate when the transmit buffer empties */
2190 spin_lock_irqsave(&epca_lock, flags);
2191 setup_empty_event(tty,ch);
2192 spin_unlock_irqrestore(&epca_lock, flags);
2193 tty_wait_until_sent(tty, 0);
2195 digi_send_break(ch, HZ / 4); /* 1/4 second */
2197 case TCSBRKP: /* support for POSIX tcsendbreak() */
2198 retval = tty_check_change(tty);
2202 /* Setup an event to indicate when the transmit buffer empties */
2203 spin_lock_irqsave(&epca_lock, flags);
2204 setup_empty_event(tty,ch);
2205 spin_unlock_irqrestore(&epca_lock, flags);
2206 tty_wait_until_sent(tty, 0);
2207 digi_send_break(ch, arg ? arg*(HZ/10) : HZ/4);
2210 if (put_user(C_CLOCAL(tty)?1:0, (unsigned long __user *)arg))
2217 if (get_user(value, (unsigned __user *)argp))
2219 tty->termios->c_cflag =
2220 ((tty->termios->c_cflag & ~CLOCAL) |
2221 (value ? CLOCAL : 0));
2225 mflag = pc_tiocmget(tty, file);
2226 if (put_user(mflag, (unsigned long __user *)argp))
2230 if (get_user(mstat, (unsigned __user *)argp))
2232 return pc_tiocmset(tty, file, mstat, ~mstat);
2234 spin_lock_irqsave(&epca_lock, flags);
2235 ch->omodem |= ch->m_dtr;
2237 fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1);
2239 spin_unlock_irqrestore(&epca_lock, flags);
2243 spin_lock_irqsave(&epca_lock, flags);
2244 ch->omodem &= ~ch->m_dtr;
2246 fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1);
2248 spin_unlock_irqrestore(&epca_lock, flags);
2251 if (copy_to_user(argp, &ch->digiext, sizeof(digi_t)))
2256 if (cmd == DIGI_SETAW) {
2257 /* Setup an event to indicate when the transmit buffer empties */
2258 spin_lock_irqsave(&epca_lock, flags);
2259 setup_empty_event(tty,ch);
2260 spin_unlock_irqrestore(&epca_lock, flags);
2261 tty_wait_until_sent(tty, 0);
2263 /* ldisc lock already held in ioctl */
2264 if (tty->ldisc.flush_buffer)
2265 tty->ldisc.flush_buffer(tty);
2269 if (copy_from_user(&ch->digiext, argp, sizeof(digi_t)))
2272 if (ch->digiext.digi_flags & DIGI_ALTPIN) {
2273 ch->dcd = ch->m_dsr;
2274 ch->dsr = ch->m_dcd;
2276 ch->dcd = ch->m_dcd;
2277 ch->dsr = ch->m_dsr;
2280 spin_lock_irqsave(&epca_lock, flags);
2284 * The below routine generally sets up parity, baud, flow
2285 * control issues, etc.... It effect both control flags and
2290 spin_unlock_irqrestore(&epca_lock, flags);
2295 spin_lock_irqsave(&epca_lock, flags);
2297 if (cmd == DIGI_GETFLOW) {
2298 dflow.startc = readb(&bc->startc);
2299 dflow.stopc = readb(&bc->stopc);
2301 dflow.startc = readb(&bc->startca);
2302 dflow.stopc = readb(&bc->stopca);
2305 spin_unlock_irqrestore(&epca_lock, flags);
2307 if (copy_to_user(argp, &dflow, sizeof(dflow)))
2313 if (cmd == DIGI_SETFLOW) {
2314 startc = ch->startc;
2317 startc = ch->startca;
2321 if (copy_from_user(&dflow, argp, sizeof(dflow)))
2324 if (dflow.startc != startc || dflow.stopc != stopc) { /* Begin if setflow toggled */
2325 spin_lock_irqsave(&epca_lock, flags);
2328 if (cmd == DIGI_SETFLOW) {
2329 ch->fepstartc = ch->startc = dflow.startc;
2330 ch->fepstopc = ch->stopc = dflow.stopc;
2331 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2333 ch->fepstartca = ch->startca = dflow.startc;
2334 ch->fepstopca = ch->stopca = dflow.stopc;
2335 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2338 if (ch->statusflags & TXSTOPPED)
2342 spin_unlock_irqrestore(&epca_lock, flags);
2343 } /* End if setflow toggled */
2346 return -ENOIOCTLCMD;
2351 static void pc_set_termios(struct tty_struct *tty, struct ktermios *old_termios)
2354 unsigned long flags;
2356 * verifyChannel returns the channel from the tty struct if it is
2357 * valid. This serves as a sanity check.
2359 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2360 spin_lock_irqsave(&epca_lock, flags);
2364 spin_unlock_irqrestore(&epca_lock, flags);
2366 if ((old_termios->c_cflag & CRTSCTS) &&
2367 ((tty->termios->c_cflag & CRTSCTS) == 0))
2368 tty->hw_stopped = 0;
2370 if (!(old_termios->c_cflag & CLOCAL) &&
2371 (tty->termios->c_cflag & CLOCAL))
2372 wake_up_interruptible(&ch->open_wait);
2374 } /* End if channel valid */
2377 static void do_softint(struct work_struct *work)
2379 struct channel *ch = container_of(work, struct channel, tqueue);
2380 /* Called in response to a modem change event */
2381 if (ch && ch->magic == EPCA_MAGIC) {
2382 struct tty_struct *tty = ch->tty;
2384 if (tty && tty->driver_data) {
2385 if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) {
2386 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
2387 wake_up_interruptible(&ch->open_wait);
2388 ch->asyncflags &= ~ASYNC_NORMAL_ACTIVE;
2395 * pc_stop and pc_start provide software flow control to the routine and the
2398 static void pc_stop(struct tty_struct *tty)
2401 unsigned long flags;
2403 * verifyChannel returns the channel from the tty struct if it is
2404 * valid. This serves as a sanity check.
2406 if ((ch = verifyChannel(tty)) != NULL) {
2407 spin_lock_irqsave(&epca_lock, flags);
2408 if ((ch->statusflags & TXSTOPPED) == 0) { /* Begin if transmit stop requested */
2410 /* STOP transmitting now !! */
2411 fepcmd(ch, PAUSETX, 0, 0, 0, 0);
2412 ch->statusflags |= TXSTOPPED;
2414 } /* End if transmit stop requested */
2415 spin_unlock_irqrestore(&epca_lock, flags);
2419 static void pc_start(struct tty_struct *tty)
2423 * verifyChannel returns the channel from the tty struct if it is
2424 * valid. This serves as a sanity check.
2426 if ((ch = verifyChannel(tty)) != NULL) {
2427 unsigned long flags;
2428 spin_lock_irqsave(&epca_lock, flags);
2429 /* Just in case output was resumed because of a change in Digi-flow */
2430 if (ch->statusflags & TXSTOPPED) { /* Begin transmit resume requested */
2431 struct board_chan __iomem *bc;
2434 if (ch->statusflags & LOWWAIT)
2435 writeb(1, &bc->ilow);
2436 /* Okay, you can start transmitting again... */
2437 fepcmd(ch, RESUMETX, 0, 0, 0, 0);
2438 ch->statusflags &= ~TXSTOPPED;
2440 } /* End transmit resume requested */
2441 spin_unlock_irqrestore(&epca_lock, flags);
2446 * The below routines pc_throttle and pc_unthrottle are used to slow (And
2447 * resume) the receipt of data into the kernels receive buffers. The exact
2448 * occurrence of this depends on the size of the kernels receive buffer and
2449 * what the 'watermarks' are set to for that buffer. See the n_ttys.c file for
2452 static void pc_throttle(struct tty_struct *tty)
2455 unsigned long flags;
2457 * verifyChannel returns the channel from the tty struct if it is
2458 * valid. This serves as a sanity check.
2460 if ((ch = verifyChannel(tty)) != NULL) {
2461 spin_lock_irqsave(&epca_lock, flags);
2462 if ((ch->statusflags & RXSTOPPED) == 0) {
2464 fepcmd(ch, PAUSERX, 0, 0, 0, 0);
2465 ch->statusflags |= RXSTOPPED;
2468 spin_unlock_irqrestore(&epca_lock, flags);
2472 static void pc_unthrottle(struct tty_struct *tty)
2475 unsigned long flags;
2477 * verifyChannel returns the channel from the tty struct if it is
2478 * valid. This serves as a sanity check.
2480 if ((ch = verifyChannel(tty)) != NULL) {
2481 /* Just in case output was resumed because of a change in Digi-flow */
2482 spin_lock_irqsave(&epca_lock, flags);
2483 if (ch->statusflags & RXSTOPPED) {
2485 fepcmd(ch, RESUMERX, 0, 0, 0, 0);
2486 ch->statusflags &= ~RXSTOPPED;
2489 spin_unlock_irqrestore(&epca_lock, flags);
2493 void digi_send_break(struct channel *ch, int msec)
2495 unsigned long flags;
2497 spin_lock_irqsave(&epca_lock, flags);
2500 * Maybe I should send an infinite break here, schedule() for msec
2501 * amount of time, and then stop the break. This way, the user can't
2502 * screw up the FEP by causing digi_send_break() to be called (i.e. via
2503 * an ioctl()) more than once in msec amount of time.
2504 * Try this for now...
2506 fepcmd(ch, SENDBREAK, msec, 0, 10, 0);
2508 spin_unlock_irqrestore(&epca_lock, flags);
2511 /* Caller MUST hold the lock */
2512 static void setup_empty_event(struct tty_struct *tty, struct channel *ch)
2514 struct board_chan __iomem *bc = ch->brdchan;
2517 ch->statusflags |= EMPTYWAIT;
2519 * When set the iempty flag request a event to be generated when the
2520 * transmit buffer is empty (If there is no BREAK in progress).
2522 writeb(1, &bc->iempty);
2526 void epca_setup(char *str, int *ints)
2528 struct board_info board;
2529 int index, loop, last;
2534 * If this routine looks a little strange it is because it is only
2535 * called if a LILO append command is given to boot the kernel with
2536 * parameters. In this way, we can provide the user a method of
2537 * changing his board configuration without rebuilding the kernel.
2542 memset(&board, 0, sizeof(board));
2544 /* Assume the data is int first, later we can change it */
2545 /* I think that array position 0 of ints holds the number of args */
2546 for (last = 0, index = 1; index <= ints[0]; index++)
2547 switch (index) { /* Begin parse switch */
2549 board.status = ints[index];
2551 * We check for 2 (As opposed to 1; because 2 is a flag
2552 * instructing the driver to ignore epcaconfig.) For
2553 * this reason we check for 2.
2555 if (board.status == 2) { /* Begin ignore epcaconfig as well as lilo cmd line */
2559 } /* End ignore epcaconfig as well as lilo cmd line */
2561 if (board.status > 2) {
2562 printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n", board.status);
2563 invalid_lilo_config = 1;
2564 setup_error_code |= INVALID_BOARD_STATUS;
2570 board.type = ints[index];
2571 if (board.type >= PCIXEM) {
2572 printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type);
2573 invalid_lilo_config = 1;
2574 setup_error_code |= INVALID_BOARD_TYPE;
2580 board.altpin = ints[index];
2581 if (board.altpin > 1) {
2582 printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin);
2583 invalid_lilo_config = 1;
2584 setup_error_code |= INVALID_ALTPIN;
2591 board.numports = ints[index];
2592 if (board.numports < 2 || board.numports > 256) {
2593 printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports);
2594 invalid_lilo_config = 1;
2595 setup_error_code |= INVALID_NUM_PORTS;
2598 nbdevs += board.numports;
2603 board.port = ints[index];
2604 if (ints[index] <= 0) {
2605 printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port);
2606 invalid_lilo_config = 1;
2607 setup_error_code |= INVALID_PORT_BASE;
2614 board.membase = ints[index];
2615 if (ints[index] <= 0) {
2616 printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n",(unsigned int)board.membase);
2617 invalid_lilo_config = 1;
2618 setup_error_code |= INVALID_MEM_BASE;
2625 printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n");
2628 } /* End parse switch */
2630 while (str && *str) { /* Begin while there is a string arg */
2631 /* find the next comma or terminator */
2633 /* While string is not null, and a comma hasn't been found */
2634 while (*temp && (*temp != ','))
2640 /* Set index to the number of args + 1 */
2646 if (strncmp("Disable", str, len) == 0)
2648 else if (strncmp("Enable", str, len) == 0)
2651 printk(KERN_ERR "epca_setup: Invalid status %s\n", str);
2652 invalid_lilo_config = 1;
2653 setup_error_code |= INVALID_BOARD_STATUS;
2660 for (loop = 0; loop < EPCA_NUM_TYPES; loop++)
2661 if (strcmp(board_desc[loop], str) == 0)
2664 * If the index incremented above refers to a
2665 * legitamate board type set it here.
2667 if (index < EPCA_NUM_TYPES)
2670 printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str);
2671 invalid_lilo_config = 1;
2672 setup_error_code |= INVALID_BOARD_TYPE;
2680 if (strncmp("Disable", str, len) == 0)
2682 else if (strncmp("Enable", str, len) == 0)
2685 printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str);
2686 invalid_lilo_config = 1;
2687 setup_error_code |= INVALID_ALTPIN;
2695 while (isdigit(*t2))
2699 printk(KERN_ERR "epca_setup: Invalid port count %s\n", str);
2700 invalid_lilo_config = 1;
2701 setup_error_code |= INVALID_NUM_PORTS;
2706 * There is not a man page for simple_strtoul but the
2707 * code can be found in vsprintf.c. The first argument
2708 * is the string to translate (To an unsigned long
2709 * obviously), the second argument can be the address
2710 * of any character variable or a NULL. If a variable
2711 * is given, the end pointer of the string will be
2712 * stored in that variable; if a NULL is given the end
2713 * pointer will not be returned. The last argument is
2714 * the base to use. If a 0 is indicated, the routine
2715 * will attempt to determine the proper base by looking
2716 * at the values prefix (A '0' for octal, a 'x' for
2717 * hex, etc ... If a value is given it will use that
2718 * value as the base.
2720 board.numports = simple_strtoul(str, NULL, 0);
2721 nbdevs += board.numports;
2727 while (isxdigit(*t2))
2731 printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str);
2732 invalid_lilo_config = 1;
2733 setup_error_code |= INVALID_PORT_BASE;
2737 board.port = simple_strtoul(str, NULL, 16);
2743 while (isxdigit(*t2))
2747 printk(KERN_ERR "epca_setup: Invalid memory base %s\n",str);
2748 invalid_lilo_config = 1;
2749 setup_error_code |= INVALID_MEM_BASE;
2752 board.membase = simple_strtoul(str, NULL, 16);
2756 printk(KERN_ERR "epca: Too many string parms\n");
2760 } /* End while there is a string arg */
2763 printk(KERN_ERR "epca: Insufficient parms specified\n");
2767 /* I should REALLY validate the stuff here */
2768 /* Copies our local copy of board into boards */
2769 memcpy((void *)&boards[num_cards],(void *)&board, sizeof(board));
2770 /* Does this get called once per lilo arg are what ? */
2771 printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n",
2772 num_cards, board_desc[board.type],
2773 board.numports, (int)board.port, (unsigned int) board.membase);
2777 enum epic_board_types {
2784 /* indexed directly by epic_board_types enum */
2786 unsigned char board_type;
2787 unsigned bar_idx; /* PCI base address region */
2788 } epca_info_tbl[] = {
2795 static int __devinit epca_init_one(struct pci_dev *pdev,
2796 const struct pci_device_id *ent)
2798 static int board_num = -1;
2799 int board_idx, info_idx = ent->driver_data;
2802 if (pci_enable_device(pdev))
2806 board_idx = board_num + num_cards;
2807 if (board_idx >= MAXBOARDS)
2810 addr = pci_resource_start (pdev, epca_info_tbl[info_idx].bar_idx);
2812 printk (KERN_ERR PFX "PCI region #%d not available (size 0)\n",
2813 epca_info_tbl[info_idx].bar_idx);
2817 boards[board_idx].status = ENABLED;
2818 boards[board_idx].type = epca_info_tbl[info_idx].board_type;
2819 boards[board_idx].numports = 0x0;
2820 boards[board_idx].port = addr + PCI_IO_OFFSET;
2821 boards[board_idx].membase = addr;
2823 if (!request_mem_region (addr + PCI_IO_OFFSET, 0x200000, "epca")) {
2824 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
2825 0x200000, addr + PCI_IO_OFFSET);
2829 boards[board_idx].re_map_port = ioremap(addr + PCI_IO_OFFSET, 0x200000);
2830 if (!boards[board_idx].re_map_port) {
2831 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
2832 0x200000, addr + PCI_IO_OFFSET);
2833 goto err_out_free_pciio;
2836 if (!request_mem_region (addr, 0x200000, "epca")) {
2837 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
2839 goto err_out_free_iounmap;
2842 boards[board_idx].re_map_membase = ioremap(addr, 0x200000);
2843 if (!boards[board_idx].re_map_membase) {
2844 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
2845 0x200000, addr + PCI_IO_OFFSET);
2846 goto err_out_free_memregion;
2850 * I don't know what the below does, but the hardware guys say its
2851 * required on everything except PLX (In this case XRJ).
2853 if (info_idx != brd_xrj) {
2854 pci_write_config_byte(pdev, 0x40, 0);
2855 pci_write_config_byte(pdev, 0x46, 0);
2860 err_out_free_memregion:
2861 release_mem_region (addr, 0x200000);
2862 err_out_free_iounmap:
2863 iounmap (boards[board_idx].re_map_port);
2865 release_mem_region (addr + PCI_IO_OFFSET, 0x200000);
2871 static struct pci_device_id epca_pci_tbl[] = {
2872 { PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr },
2873 { PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem },
2874 { PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx },
2875 { PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj },
2879 MODULE_DEVICE_TABLE(pci, epca_pci_tbl);
2881 int __init init_PCI (void)
2883 memset (&epca_driver, 0, sizeof (epca_driver));
2884 epca_driver.name = "epca";
2885 epca_driver.id_table = epca_pci_tbl;
2886 epca_driver.probe = epca_init_one;
2888 return pci_register_driver(&epca_driver);
2891 MODULE_LICENSE("GPL");