2 Madge Ambassador ATM Adapter driver.
3 Copyright (C) 1995-1999 Madge Networks Ltd.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20 system and in the file COPYING in the Linux kernel source.
23 /* * dedicated to the memory of Graham Gordon 1971-1998 * */
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/pci.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/ioport.h>
31 #include <linux/atmdev.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/poison.h>
35 #include <linux/bitrev.h>
36 #include <linux/mutex.h>
38 #include <asm/atomic.h>
40 #include <asm/byteorder.h>
42 #include "ambassador.h"
44 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
45 #define description_string "Madge ATM Ambassador driver"
46 #define version_string "1.2.4"
48 static inline void __init show_version (void) {
49 printk ("%s version %s\n", description_string, version_string);
56 I Hardware, detection, initialisation and shutdown.
60 This driver is for the PCI ATMizer-based Ambassador card (except
61 very early versions). It is not suitable for the similar EISA "TR7"
62 card. Commercially, both cards are known as Collage Server ATM
65 The loader supports image transfer to the card, image start and few
66 other miscellaneous commands.
68 Only AAL5 is supported with vpi = 0 and vci in the range 0 to 1023.
70 The cards are big-endian.
74 Standard PCI stuff, the early cards are detected and rejected.
78 The cards are reset and the self-test results are checked. The
79 microcode image is then transferred and started. This waits for a
80 pointer to a descriptor containing details of the host-based queues
81 and buffers and various parameters etc. Once they are processed
82 normal operations may begin. The BIA is read using a microcode
87 This may be accomplished either by a card reset or via the microcode
88 shutdown command. Further investigation required.
92 The card reset does not affect PCI configuration (good) or the
93 contents of several other "shared run-time registers" (bad) which
94 include doorbell and interrupt control as well as EEPROM and PCI
95 control. The driver must be careful when modifying these registers
96 not to touch bits it does not use and to undo any changes at exit.
102 The adapter is quite intelligent (fast) and has a simple interface
103 (few features). VPI is always zero, 1024 VCIs are supported. There
104 is limited cell rate support. UBR channels can be capped and ABR
105 (explicit rate, but not EFCI) is supported. There is no CBR or VBR
108 1. Driver <-> Adapter Communication
110 Apart from the basic loader commands, the driver communicates
111 through three entities: the command queue (CQ), the transmit queue
112 pair (TXQ) and the receive queue pairs (RXQ). These three entities
113 are set up by the host and passed to the microcode just after it has
116 All queues are host-based circular queues. They are contiguous and
117 (due to hardware limitations) have some restrictions as to their
118 locations in (bus) memory. They are of the "full means the same as
119 empty so don't do that" variety since the adapter uses pointers
122 The queue pairs work as follows: one queue is for supply to the
123 adapter, items in it are pending and are owned by the adapter; the
124 other is the queue for return from the adapter, items in it have
125 been dealt with by the adapter. The host adds items to the supply
126 (TX descriptors and free RX buffer descriptors) and removes items
127 from the return (TX and RX completions). The adapter deals with out
128 of order completions.
130 Interrupts (card to host) and the doorbell (host to card) are used
135 This is to communicate "open VC", "close VC", "get stats" etc. to
136 the adapter. At most one command is retired every millisecond by the
137 card. There is no out of order completion or notification. The
138 driver needs to check the return code of the command, waiting as
143 TX supply items are of variable length (scatter gather support) and
144 so the queue items are (more or less) pointers to the real thing.
145 Each TX supply item contains a unique, host-supplied handle (the skb
146 bus address seems most sensible as this works for Alphas as well,
147 there is no need to do any endian conversions on the handles).
149 TX return items consist of just the handles above.
151 3. RXQ (up to 4 of these with different lengths and buffer sizes)
153 RX supply items consist of a unique, host-supplied handle (the skb
154 bus address again) and a pointer to the buffer data area.
156 RX return items consist of the handle above, the VC, length and a
157 status word. This just screams "oh so easy" doesn't it?
159 Note on RX pool sizes:
161 Each pool should have enough buffers to handle a back-to-back stream
162 of minimum sized frames on a single VC. For example:
164 frame spacing = 3us (about right)
166 delay = IRQ lat + RX handling + RX buffer replenish = 20 (us) (a guess)
168 min number of buffers for one VC = 1 + delay/spacing (buffers)
170 delay/spacing = latency = (20+2)/3 = 7 (buffers) (rounding up)
172 The 20us delay assumes that there is no need to sleep; if we need to
173 sleep to get buffers we are going to drop frames anyway.
175 In fact, each pool should have enough buffers to support the
176 simultaneous reassembly of a separate frame on each VC and cope with
177 the case in which frames complete in round robin cell fashion on
180 Only one frame can complete at each cell arrival, so if "n" VCs are
181 open, the worst case is to have them all complete frames together
182 followed by all starting new frames together.
184 desired number of buffers = n + delay/spacing
186 These are the extreme requirements, however, they are "n+k" for some
187 "k" so we have only the constant to choose. This is the argument
188 rx_lats which current defaults to 7.
190 Actually, "n ? n+k : 0" is better and this is what is implemented,
191 subject to the limit given by the pool size.
195 Simple spinlocks are used around the TX and RX queue mechanisms.
196 Anyone with a faster, working method is welcome to implement it.
198 The adapter command queue is protected with a spinlock. We always
199 wait for commands to complete.
201 A more complex form of locking is used around parts of the VC open
202 and close functions. There are three reasons for a lock: 1. we need
203 to do atomic rate reservation and release (not used yet), 2. Opening
204 sometimes involves two adapter commands which must not be separated
205 by another command on the same VC, 3. the changes to RX pool size
206 must be atomic. The lock needs to work over context switches, so we
209 III Hardware Features and Microcode Bugs
213 *%^"$&%^$*&^"$(%^$#&^%$(&#%$*(&^#%!"!"!*!
217 All structures that are not accessed using DMA must be 4-byte
218 aligned (not a problem) and must not cross 4MB boundaries.
220 There is a DMA memory hole at E0000000-E00000FF (groan).
222 TX fragments (DMA read) must not cross 4MB boundaries (would be 16MB
223 but for a hardware bug).
225 RX buffers (DMA write) must not cross 16MB boundaries and must
226 include spare trailing bytes up to the next 4-byte boundary; they
227 will be written with rubbish.
229 The PLX likes to prefetch; if reading up to 4 u32 past the end of
230 each TX fragment is not a problem, then TX can be made to go a
231 little faster by passing a flag at init that disables a prefetch
232 workaround. We do not pass this flag. (new microcode only)
235 . Note that alloc_skb rounds up size to a 16byte boundary.
236 . Ensure all areas do not traverse 4MB boundaries.
237 . Ensure all areas do not start at a E00000xx bus address.
238 (I cannot be certain, but this may always hold with Linux)
239 . Make all failures cause a loud message.
240 . Discard non-conforming SKBs (causes TX failure or RX fill delay).
241 . Discard non-conforming TX fragment descriptors (the TX fails).
242 In the future we could:
243 . Allow RX areas that traverse 4MB (but not 16MB) boundaries.
244 . Segment TX areas into some/more fragments, when necessary.
245 . Relax checks for non-DMA items (ignore hole).
246 . Give scatter-gather (iovec) requirements using ???. (?)
248 3. VC close is broken (only for new microcode)
250 The VC close adapter microcode command fails to do anything if any
251 frames have been received on the VC but none have been transmitted.
252 Frames continue to be reassembled and passed (with IRQ) to the
259 . Timer code may be broken.
261 . Deal with buggy VC close (somehow) in microcode 12.
263 . Handle interrupted and/or non-blocking writes - is this a job for
266 . Add code to break up TX fragments when they span 4MB boundaries.
268 . Add SUNI phy layer (need to know where SUNI lives on card).
270 . Implement a tx_alloc fn to (a) satisfy TX alignment etc. and (b)
271 leave extra headroom space for Ambassador TX descriptors.
273 . Understand these elements of struct atm_vcc: recvq (proto?),
274 sleep, callback, listenq, backlog_quota, reply and user_back.
276 . Adjust TX/RX skb allocation to favour IP with LANE/CLIP (configurable).
278 . Impose a TX-pending limit (2?) on each VC, help avoid TX q overflow.
280 . Decide whether RX buffer recycling is or can be made completely safe;
281 turn it back on. It looks like Werner is going to axe this.
283 . Implement QoS changes on open VCs (involves extracting parts of VC open
284 and close into separate functions and using them to make changes).
286 . Hack on command queue so that someone can issue multiple commands and wait
287 on the last one (OR only "no-op" or "wait" commands are waited for).
289 . Eliminate need for while-schedule around do_command.
293 /********** microcode **********/
295 #ifdef AMB_NEW_MICROCODE
296 #define UCODE(x) UCODE2(atmsar12.x)
298 #define UCODE(x) UCODE2(atmsar11.x)
302 static u32 __devinitdata ucode_start =
303 #include UCODE(start)
306 static region __devinitdata ucode_regions[] = {
307 #include UCODE(regions)
311 static u32 __devinitdata ucode_data[] = {
316 static void do_housekeeping (unsigned long arg);
317 /********** globals **********/
319 static unsigned short debug = 0;
320 static unsigned int cmds = 8;
321 static unsigned int txs = 32;
322 static unsigned int rxs[NUM_RX_POOLS] = { 64, 64, 64, 64 };
323 static unsigned int rxs_bs[NUM_RX_POOLS] = { 4080, 12240, 36720, 65535 };
324 static unsigned int rx_lats = 7;
325 static unsigned char pci_lat = 0;
327 static const unsigned long onegigmask = -1 << 30;
329 /********** access to adapter **********/
331 static inline void wr_plain (const amb_dev * dev, size_t addr, u32 data) {
332 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x", addr, data);
334 dev->membase[addr / sizeof(u32)] = data;
336 outl (data, dev->iobase + addr);
340 static inline u32 rd_plain (const amb_dev * dev, size_t addr) {
342 u32 data = dev->membase[addr / sizeof(u32)];
344 u32 data = inl (dev->iobase + addr);
346 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x", addr, data);
350 static inline void wr_mem (const amb_dev * dev, size_t addr, u32 data) {
351 __be32 be = cpu_to_be32 (data);
352 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x b[%08x]", addr, data, be);
354 dev->membase[addr / sizeof(u32)] = be;
356 outl (be, dev->iobase + addr);
360 static inline u32 rd_mem (const amb_dev * dev, size_t addr) {
362 __be32 be = dev->membase[addr / sizeof(u32)];
364 __be32 be = inl (dev->iobase + addr);
366 u32 data = be32_to_cpu (be);
367 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x b[%08x]", addr, data, be);
371 /********** dump routines **********/
373 static inline void dump_registers (const amb_dev * dev) {
374 #ifdef DEBUG_AMBASSADOR
375 if (debug & DBG_REGS) {
377 PRINTD (DBG_REGS, "reading PLX control: ");
378 for (i = 0x00; i < 0x30; i += sizeof(u32))
380 PRINTD (DBG_REGS, "reading mailboxes: ");
381 for (i = 0x40; i < 0x60; i += sizeof(u32))
383 PRINTD (DBG_REGS, "reading doorb irqev irqen reset:");
384 for (i = 0x60; i < 0x70; i += sizeof(u32))
393 static inline void dump_loader_block (volatile loader_block * lb) {
394 #ifdef DEBUG_AMBASSADOR
396 PRINTDB (DBG_LOAD, "lb @ %p; res: %d, cmd: %d, pay:",
397 lb, be32_to_cpu (lb->result), be32_to_cpu (lb->command));
398 for (i = 0; i < MAX_COMMAND_DATA; ++i)
399 PRINTDM (DBG_LOAD, " %08x", be32_to_cpu (lb->payload.data[i]));
400 PRINTDE (DBG_LOAD, ", vld: %08x", be32_to_cpu (lb->valid));
407 static inline void dump_command (command * cmd) {
408 #ifdef DEBUG_AMBASSADOR
410 PRINTDB (DBG_CMD, "cmd @ %p, req: %08x, pars:",
411 cmd, /*be32_to_cpu*/ (cmd->request));
412 for (i = 0; i < 3; ++i)
413 PRINTDM (DBG_CMD, " %08x", /*be32_to_cpu*/ (cmd->args.par[i]));
414 PRINTDE (DBG_CMD, "");
421 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
422 #ifdef DEBUG_AMBASSADOR
424 unsigned char * data = skb->data;
425 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
426 for (i=0; i<skb->len && i < 256;i++)
427 PRINTDM (DBG_DATA, "%02x ", data[i]);
428 PRINTDE (DBG_DATA,"");
437 /********** check memory areas for use by Ambassador **********/
439 /* see limitations under Hardware Features */
441 static int check_area (void * start, size_t length) {
442 // assumes length > 0
443 const u32 fourmegmask = -1 << 22;
444 const u32 twofivesixmask = -1 << 8;
445 const u32 starthole = 0xE0000000;
446 u32 startaddress = virt_to_bus (start);
447 u32 lastaddress = startaddress+length-1;
448 if ((startaddress ^ lastaddress) & fourmegmask ||
449 (startaddress & twofivesixmask) == starthole) {
450 PRINTK (KERN_ERR, "check_area failure: [%x,%x] - mail maintainer!",
451 startaddress, lastaddress);
458 /********** free an skb (as per ATM device driver documentation) **********/
460 static void amb_kfree_skb (struct sk_buff * skb) {
461 if (ATM_SKB(skb)->vcc->pop) {
462 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
464 dev_kfree_skb_any (skb);
468 /********** TX completion **********/
470 static void tx_complete (amb_dev * dev, tx_out * tx) {
471 tx_simple * tx_descr = bus_to_virt (tx->handle);
472 struct sk_buff * skb = tx_descr->skb;
474 PRINTD (DBG_FLOW|DBG_TX, "tx_complete %p %p", dev, tx);
477 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
479 // free the descriptor
489 /********** RX completion **********/
491 static void rx_complete (amb_dev * dev, rx_out * rx) {
492 struct sk_buff * skb = bus_to_virt (rx->handle);
493 u16 vc = be16_to_cpu (rx->vc);
494 // unused: u16 lec_id = be16_to_cpu (rx->lec_id);
495 u16 status = be16_to_cpu (rx->status);
496 u16 rx_len = be16_to_cpu (rx->length);
498 PRINTD (DBG_FLOW|DBG_RX, "rx_complete %p %p (len=%hu)", dev, rx, rx_len);
500 // XXX move this in and add to VC stats ???
502 struct atm_vcc * atm_vcc = dev->rxer[vc];
507 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
509 if (atm_charge (atm_vcc, skb->truesize)) {
511 // prepare socket buffer
512 ATM_SKB(skb)->vcc = atm_vcc;
513 skb_put (skb, rx_len);
515 dump_skb ("<<<", vc, skb);
518 atomic_inc(&atm_vcc->stats->rx);
519 __net_timestamp(skb);
520 // end of our responsability
521 atm_vcc->push (atm_vcc, skb);
525 // someone fix this (message), please!
526 PRINTD (DBG_INFO|DBG_RX, "dropped thanks to atm_charge (vc %hu, truesize %u)", vc, skb->truesize);
527 // drop stats incremented in atm_charge
531 PRINTK (KERN_INFO, "dropped over-size frame");
532 // should we count this?
533 atomic_inc(&atm_vcc->stats->rx_drop);
537 PRINTD (DBG_WARN|DBG_RX, "got frame but RX closed for channel %hu", vc);
538 // this is an adapter bug, only in new version of microcode
542 dev->stats.rx.error++;
543 if (status & CRC_ERR)
544 dev->stats.rx.badcrc++;
545 if (status & LEN_ERR)
546 dev->stats.rx.toolong++;
547 if (status & ABORT_ERR)
548 dev->stats.rx.aborted++;
549 if (status & UNUSED_ERR)
550 dev->stats.rx.unused++;
553 dev_kfree_skb_any (skb);
559 Note on queue handling.
561 Here "give" and "take" refer to queue entries and a queue (pair)
562 rather than frames to or from the host or adapter. Empty frame
563 buffers are given to the RX queue pair and returned unused or
564 containing RX frames. TX frames (well, pointers to TX fragment
565 lists) are given to the TX queue pair, completions are returned.
569 /********** command queue **********/
571 // I really don't like this, but it's the best I can do at the moment
573 // also, the callers are responsible for byte order as the microcode
574 // sometimes does 16-bit accesses (yuk yuk yuk)
576 static int command_do (amb_dev * dev, command * cmd) {
577 amb_cq * cq = &dev->cq;
578 volatile amb_cq_ptrs * ptrs = &cq->ptrs;
581 PRINTD (DBG_FLOW|DBG_CMD, "command_do %p", dev);
583 if (test_bit (dead, &dev->flags))
586 spin_lock (&cq->lock);
589 if (cq->pending < cq->maximum) {
590 // remember my slot for later
592 PRINTD (DBG_CMD, "command in slot %p", my_slot);
599 ptrs->in = NEXTQ (ptrs->in, ptrs->start, ptrs->limit);
602 wr_mem (dev, offsetof(amb_mem, mb.adapter.cmd_address), virt_to_bus (ptrs->in));
604 if (cq->pending > cq->high)
605 cq->high = cq->pending;
606 spin_unlock (&cq->lock);
608 // these comments were in a while-loop before, msleep removes the loop
610 // PRINTD (DBG_CMD, "wait: sleeping %lu for command", timeout);
613 // wait for my slot to be reached (all waiters are here or above, until...)
614 while (ptrs->out != my_slot) {
615 PRINTD (DBG_CMD, "wait: command slot (now at %p)", ptrs->out);
616 set_current_state(TASK_UNINTERRUPTIBLE);
620 // wait on my slot (... one gets to its slot, and... )
621 while (ptrs->out->request != cpu_to_be32 (SRB_COMPLETE)) {
622 PRINTD (DBG_CMD, "wait: command slot completion");
623 set_current_state(TASK_UNINTERRUPTIBLE);
627 PRINTD (DBG_CMD, "command complete");
628 // update queue (... moves the queue along to the next slot)
629 spin_lock (&cq->lock);
633 ptrs->out = NEXTQ (ptrs->out, ptrs->start, ptrs->limit);
634 spin_unlock (&cq->lock);
639 spin_unlock (&cq->lock);
645 /********** TX queue pair **********/
647 static int tx_give (amb_dev * dev, tx_in * tx) {
648 amb_txq * txq = &dev->txq;
651 PRINTD (DBG_FLOW|DBG_TX, "tx_give %p", dev);
653 if (test_bit (dead, &dev->flags))
656 spin_lock_irqsave (&txq->lock, flags);
658 if (txq->pending < txq->maximum) {
659 PRINTD (DBG_TX, "TX in slot %p", txq->in.ptr);
663 txq->in.ptr = NEXTQ (txq->in.ptr, txq->in.start, txq->in.limit);
664 // hand over the TX and ring the bell
665 wr_mem (dev, offsetof(amb_mem, mb.adapter.tx_address), virt_to_bus (txq->in.ptr));
666 wr_mem (dev, offsetof(amb_mem, doorbell), TX_FRAME);
668 if (txq->pending > txq->high)
669 txq->high = txq->pending;
670 spin_unlock_irqrestore (&txq->lock, flags);
674 spin_unlock_irqrestore (&txq->lock, flags);
679 static int tx_take (amb_dev * dev) {
680 amb_txq * txq = &dev->txq;
683 PRINTD (DBG_FLOW|DBG_TX, "tx_take %p", dev);
685 spin_lock_irqsave (&txq->lock, flags);
687 if (txq->pending && txq->out.ptr->handle) {
688 // deal with TX completion
689 tx_complete (dev, txq->out.ptr);
691 txq->out.ptr->handle = 0;
694 txq->out.ptr = NEXTQ (txq->out.ptr, txq->out.start, txq->out.limit);
696 spin_unlock_irqrestore (&txq->lock, flags);
700 spin_unlock_irqrestore (&txq->lock, flags);
705 /********** RX queue pairs **********/
707 static int rx_give (amb_dev * dev, rx_in * rx, unsigned char pool) {
708 amb_rxq * rxq = &dev->rxq[pool];
711 PRINTD (DBG_FLOW|DBG_RX, "rx_give %p[%hu]", dev, pool);
713 spin_lock_irqsave (&rxq->lock, flags);
715 if (rxq->pending < rxq->maximum) {
716 PRINTD (DBG_RX, "RX in slot %p", rxq->in.ptr);
720 rxq->in.ptr = NEXTQ (rxq->in.ptr, rxq->in.start, rxq->in.limit);
721 // hand over the RX buffer
722 wr_mem (dev, offsetof(amb_mem, mb.adapter.rx_address[pool]), virt_to_bus (rxq->in.ptr));
724 spin_unlock_irqrestore (&rxq->lock, flags);
727 spin_unlock_irqrestore (&rxq->lock, flags);
732 static int rx_take (amb_dev * dev, unsigned char pool) {
733 amb_rxq * rxq = &dev->rxq[pool];
736 PRINTD (DBG_FLOW|DBG_RX, "rx_take %p[%hu]", dev, pool);
738 spin_lock_irqsave (&rxq->lock, flags);
740 if (rxq->pending && (rxq->out.ptr->status || rxq->out.ptr->length)) {
741 // deal with RX completion
742 rx_complete (dev, rxq->out.ptr);
744 rxq->out.ptr->status = 0;
745 rxq->out.ptr->length = 0;
748 rxq->out.ptr = NEXTQ (rxq->out.ptr, rxq->out.start, rxq->out.limit);
750 if (rxq->pending < rxq->low)
751 rxq->low = rxq->pending;
752 spin_unlock_irqrestore (&rxq->lock, flags);
755 if (!rxq->pending && rxq->buffers_wanted)
757 spin_unlock_irqrestore (&rxq->lock, flags);
762 /********** RX Pool handling **********/
764 /* pre: buffers_wanted = 0, post: pending = 0 */
765 static void drain_rx_pool (amb_dev * dev, unsigned char pool) {
766 amb_rxq * rxq = &dev->rxq[pool];
768 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pool %p %hu", dev, pool);
770 if (test_bit (dead, &dev->flags))
773 /* we are not quite like the fill pool routines as we cannot just
774 remove one buffer, we have to remove all of them, but we might as
776 if (rxq->pending > rxq->buffers_wanted) {
778 cmd.request = cpu_to_be32 (SRB_FLUSH_BUFFER_Q);
779 cmd.args.flush.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
780 while (command_do (dev, &cmd))
782 /* the pool may also be emptied via the interrupt handler */
783 while (rxq->pending > rxq->buffers_wanted)
784 if (rx_take (dev, pool))
791 static void drain_rx_pools (amb_dev * dev) {
794 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pools %p", dev);
796 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
797 drain_rx_pool (dev, pool);
800 static void fill_rx_pool (amb_dev * dev, unsigned char pool,
806 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pool %p %hu %x", dev, pool, priority);
808 if (test_bit (dead, &dev->flags))
811 rxq = &dev->rxq[pool];
812 while (rxq->pending < rxq->maximum && rxq->pending < rxq->buffers_wanted) {
814 struct sk_buff * skb = alloc_skb (rxq->buffer_size, priority);
816 PRINTD (DBG_SKB|DBG_POOL, "failed to allocate skb for RX pool %hu", pool);
819 if (check_area (skb->data, skb->truesize)) {
820 dev_kfree_skb_any (skb);
823 // cast needed as there is no %? for pointer differences
824 PRINTD (DBG_SKB, "allocated skb at %p, head %p, area %li",
825 skb, skb->head, (long) (skb_end_pointer(skb) - skb->head));
826 rx.handle = virt_to_bus (skb);
827 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
828 if (rx_give (dev, &rx, pool))
829 dev_kfree_skb_any (skb);
836 // top up all RX pools (can also be called as a bottom half)
837 static void fill_rx_pools (amb_dev * dev) {
840 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pools %p", dev);
842 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
843 fill_rx_pool (dev, pool, GFP_ATOMIC);
848 /********** enable host interrupts **********/
850 static void interrupts_on (amb_dev * dev) {
851 wr_plain (dev, offsetof(amb_mem, interrupt_control),
852 rd_plain (dev, offsetof(amb_mem, interrupt_control))
853 | AMB_INTERRUPT_BITS);
856 /********** disable host interrupts **********/
858 static void interrupts_off (amb_dev * dev) {
859 wr_plain (dev, offsetof(amb_mem, interrupt_control),
860 rd_plain (dev, offsetof(amb_mem, interrupt_control))
861 &~ AMB_INTERRUPT_BITS);
864 /********** interrupt handling **********/
866 static irqreturn_t interrupt_handler(int irq, void *dev_id) {
867 amb_dev * dev = dev_id;
869 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler: %p", dev_id);
872 u32 interrupt = rd_plain (dev, offsetof(amb_mem, interrupt));
874 // for us or someone else sharing the same interrupt
876 PRINTD (DBG_IRQ, "irq not for me: %d", irq);
881 PRINTD (DBG_IRQ, "FYI: interrupt was %08x", interrupt);
882 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
886 unsigned int irq_work = 0;
888 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
889 while (!rx_take (dev, pool))
891 while (!tx_take (dev))
895 #ifdef FILL_RX_POOLS_IN_BH
896 schedule_work (&dev->bh);
901 PRINTD (DBG_IRQ, "work done: %u", irq_work);
903 PRINTD (DBG_IRQ|DBG_WARN, "no work done");
907 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
911 /********** make rate (not quite as much fun as Horizon) **********/
913 static int make_rate (unsigned int rate, rounding r,
914 u16 * bits, unsigned int * actual) {
915 unsigned char exp = -1; // hush gcc
916 unsigned int man = -1; // hush gcc
918 PRINTD (DBG_FLOW|DBG_QOS, "make_rate %u", rate);
920 // rates in cells per second, ITU format (nasty 16-bit floating-point)
921 // given 5-bit e and 9-bit m:
922 // rate = EITHER (1+m/2^9)*2^e OR 0
923 // bits = EITHER 1<<14 | e<<9 | m OR 0
924 // (bit 15 is "reserved", bit 14 "non-zero")
925 // smallest rate is 0 (special representation)
926 // largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
927 // smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
929 // find position of top bit, this gives e
930 // remove top bit and shift (rounding if feeling clever) by 9-e
932 // ucode bug: please don't set bit 14! so 0 rate not representable
934 if (rate > 0xffc00000U) {
935 // larger than largest representable rate
945 // representable rate
950 // invariant: rate = man*2^(exp-31)
951 while (!(man & (1<<31))) {
956 // man has top bit set
957 // rate = (2^31+(man-2^31))*2^(exp-31)
958 // rate = (1+(man-2^31)/2^31)*2^exp
960 man &= 0xffffffffU; // a nop on 32-bit systems
961 // rate = (1+man/2^32)*2^exp
963 // exp is in the range 0 to 31, man is in the range 0 to 2^32-1
964 // time to lose significance... we want m in the range 0 to 2^9-1
965 // rounding presents a minor problem... we first decide which way
966 // we are rounding (based on given rounding direction and possibly
967 // the bits of the mantissa that are to be discarded).
976 // check all bits that we are discarding
977 if (man & (~0U>>9)) {
978 man = (man>>(32-9)) + 1;
980 // no need to check for round up outside of range
989 case round_nearest: {
990 // check msb that we are discarding
991 if (man & (1<<(32-9-1))) {
992 man = (man>>(32-9)) + 1;
994 // no need to check for round up outside of range
1006 // zero rate - not representable
1008 if (r == round_down) {
1017 PRINTD (DBG_QOS, "rate: man=%u, exp=%hu", man, exp);
1020 *bits = /* (1<<14) | */ (exp<<9) | man;
1023 *actual = (exp >= 9)
1024 ? (1 << exp) + (man << (exp-9))
1025 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
1030 /********** Linux ATM Operations **********/
1032 // some are not yet implemented while others do not make sense for
1035 /********** Open a VC **********/
1037 static int amb_open (struct atm_vcc * atm_vcc)
1041 struct atm_qos * qos;
1042 struct atm_trafprm * txtp;
1043 struct atm_trafprm * rxtp;
1044 u16 tx_rate_bits = -1; // hush gcc
1045 u16 tx_vc_bits = -1; // hush gcc
1046 u16 tx_frame_bits = -1; // hush gcc
1048 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1050 unsigned char pool = -1; // hush gcc
1051 short vpi = atm_vcc->vpi;
1052 int vci = atm_vcc->vci;
1054 PRINTD (DBG_FLOW|DBG_VCC, "amb_open %x %x", vpi, vci);
1056 #ifdef ATM_VPI_UNSPEC
1057 // UNSPEC is deprecated, remove this code eventually
1058 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
1059 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
1064 if (!(0 <= vpi && vpi < (1<<NUM_VPI_BITS) &&
1065 0 <= vci && vci < (1<<NUM_VCI_BITS))) {
1066 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
1070 qos = &atm_vcc->qos;
1072 if (qos->aal != ATM_AAL5) {
1073 PRINTD (DBG_QOS, "AAL not supported");
1077 // traffic parameters
1079 PRINTD (DBG_QOS, "TX:");
1081 if (txtp->traffic_class != ATM_NONE) {
1082 switch (txtp->traffic_class) {
1084 // we take "the PCR" as a rate-cap
1085 int pcr = atm_pcr_goal (txtp);
1089 tx_vc_bits = TX_UBR;
1090 tx_frame_bits = TX_FRAME_NOTCAP;
1099 error = make_rate (pcr, r, &tx_rate_bits, NULL);
1102 tx_vc_bits = TX_UBR_CAPPED;
1103 tx_frame_bits = TX_FRAME_CAPPED;
1109 pcr = atm_pcr_goal (txtp);
1110 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1115 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1116 PRINTD (DBG_QOS, "request for non-UBR denied");
1120 PRINTD (DBG_QOS, "tx_rate_bits=%hx, tx_vc_bits=%hx",
1121 tx_rate_bits, tx_vc_bits);
1124 PRINTD (DBG_QOS, "RX:");
1126 if (rxtp->traffic_class == ATM_NONE) {
1129 // choose an RX pool (arranged in increasing size)
1130 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1131 if ((unsigned int) rxtp->max_sdu <= dev->rxq[pool].buffer_size) {
1132 PRINTD (DBG_VCC|DBG_QOS|DBG_POOL, "chose pool %hu (max_sdu %u <= %u)",
1133 pool, rxtp->max_sdu, dev->rxq[pool].buffer_size);
1136 if (pool == NUM_RX_POOLS) {
1137 PRINTD (DBG_WARN|DBG_VCC|DBG_QOS|DBG_POOL,
1138 "no pool suitable for VC (RX max_sdu %d is too large)",
1143 switch (rxtp->traffic_class) {
1149 pcr = atm_pcr_goal (rxtp);
1150 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1155 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1156 PRINTD (DBG_QOS, "request for non-UBR denied");
1162 // get space for our vcc stuff
1163 vcc = kmalloc (sizeof(amb_vcc), GFP_KERNEL);
1165 PRINTK (KERN_ERR, "out of memory!");
1168 atm_vcc->dev_data = (void *) vcc;
1170 // no failures beyond this point
1172 // we are not really "immediately before allocating the connection
1173 // identifier in hardware", but it will just have to do!
1174 set_bit(ATM_VF_ADDR,&atm_vcc->flags);
1176 if (txtp->traffic_class != ATM_NONE) {
1179 vcc->tx_frame_bits = tx_frame_bits;
1181 mutex_lock(&dev->vcc_sf);
1182 if (dev->rxer[vci]) {
1183 // RXer on the channel already, just modify rate...
1184 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1185 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1186 cmd.args.modify_rate.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1187 while (command_do (dev, &cmd))
1189 // ... and TX flags, preserving the RX pool
1190 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1191 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1192 cmd.args.modify_flags.flags = cpu_to_be32
1193 ( (AMB_VCC(dev->rxer[vci])->rx_info.pool << SRB_POOL_SHIFT)
1194 | (tx_vc_bits << SRB_FLAGS_SHIFT) );
1195 while (command_do (dev, &cmd))
1198 // no RXer on the channel, just open (with pool zero)
1199 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1200 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1201 cmd.args.open.flags = cpu_to_be32 (tx_vc_bits << SRB_FLAGS_SHIFT);
1202 cmd.args.open.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1203 while (command_do (dev, &cmd))
1206 dev->txer[vci].tx_present = 1;
1207 mutex_unlock(&dev->vcc_sf);
1210 if (rxtp->traffic_class != ATM_NONE) {
1213 vcc->rx_info.pool = pool;
1215 mutex_lock(&dev->vcc_sf);
1216 /* grow RX buffer pool */
1217 if (!dev->rxq[pool].buffers_wanted)
1218 dev->rxq[pool].buffers_wanted = rx_lats;
1219 dev->rxq[pool].buffers_wanted += 1;
1220 fill_rx_pool (dev, pool, GFP_KERNEL);
1222 if (dev->txer[vci].tx_present) {
1223 // TXer on the channel already
1224 // switch (from pool zero) to this pool, preserving the TX bits
1225 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1226 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1227 cmd.args.modify_flags.flags = cpu_to_be32
1228 ( (pool << SRB_POOL_SHIFT)
1229 | (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT) );
1231 // no TXer on the channel, open the VC (with no rate info)
1232 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1233 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1234 cmd.args.open.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
1235 cmd.args.open.rate = cpu_to_be32 (0);
1237 while (command_do (dev, &cmd))
1239 // this link allows RX frames through
1240 dev->rxer[vci] = atm_vcc;
1241 mutex_unlock(&dev->vcc_sf);
1244 // indicate readiness
1245 set_bit(ATM_VF_READY,&atm_vcc->flags);
1250 /********** Close a VC **********/
1252 static void amb_close (struct atm_vcc * atm_vcc) {
1253 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1254 amb_vcc * vcc = AMB_VCC (atm_vcc);
1255 u16 vci = atm_vcc->vci;
1257 PRINTD (DBG_VCC|DBG_FLOW, "amb_close");
1259 // indicate unreadiness
1260 clear_bit(ATM_VF_READY,&atm_vcc->flags);
1263 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
1266 mutex_lock(&dev->vcc_sf);
1267 if (dev->rxer[vci]) {
1268 // RXer still on the channel, just modify rate... XXX not really needed
1269 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1270 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1271 cmd.args.modify_rate.rate = cpu_to_be32 (0);
1272 // ... and clear TX rate flags (XXX to stop RM cell output?), preserving RX pool
1274 // no RXer on the channel, close channel
1275 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1276 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1278 dev->txer[vci].tx_present = 0;
1279 while (command_do (dev, &cmd))
1281 mutex_unlock(&dev->vcc_sf);
1285 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1288 // this is (the?) one reason why we need the amb_vcc struct
1289 unsigned char pool = vcc->rx_info.pool;
1291 mutex_lock(&dev->vcc_sf);
1292 if (dev->txer[vci].tx_present) {
1293 // TXer still on the channel, just go to pool zero XXX not really needed
1294 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1295 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1296 cmd.args.modify_flags.flags = cpu_to_be32
1297 (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT);
1299 // no TXer on the channel, close the VC
1300 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1301 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1303 // forget the rxer - no more skbs will be pushed
1304 if (atm_vcc != dev->rxer[vci])
1305 PRINTK (KERN_ERR, "%s vcc=%p rxer[vci]=%p",
1306 "arghhh! we're going to die!",
1307 vcc, dev->rxer[vci]);
1308 dev->rxer[vci] = NULL;
1309 while (command_do (dev, &cmd))
1312 /* shrink RX buffer pool */
1313 dev->rxq[pool].buffers_wanted -= 1;
1314 if (dev->rxq[pool].buffers_wanted == rx_lats) {
1315 dev->rxq[pool].buffers_wanted = 0;
1316 drain_rx_pool (dev, pool);
1318 mutex_unlock(&dev->vcc_sf);
1321 // free our structure
1324 // say the VPI/VCI is free again
1325 clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
1330 /********** Set socket options for a VC **********/
1332 // int amb_getsockopt (struct atm_vcc * atm_vcc, int level, int optname, void * optval, int optlen);
1334 /********** Set socket options for a VC **********/
1336 // int amb_setsockopt (struct atm_vcc * atm_vcc, int level, int optname, void * optval, int optlen);
1338 /********** Send **********/
1340 static int amb_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1341 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1342 amb_vcc * vcc = AMB_VCC(atm_vcc);
1343 u16 vc = atm_vcc->vci;
1344 unsigned int tx_len = skb->len;
1345 unsigned char * tx_data = skb->data;
1346 tx_simple * tx_descr;
1349 if (test_bit (dead, &dev->flags))
1352 PRINTD (DBG_FLOW|DBG_TX, "amb_send vc %x data %p len %u",
1353 vc, tx_data, tx_len);
1355 dump_skb (">>>", vc, skb);
1357 if (!dev->txer[vc].tx_present) {
1358 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", vc);
1362 // this is a driver private field so we have to set it ourselves,
1363 // despite the fact that we are _required_ to use it to check for a
1365 ATM_SKB(skb)->vcc = atm_vcc;
1367 if (skb->len > (size_t) atm_vcc->qos.txtp.max_sdu) {
1368 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1372 if (check_area (skb->data, skb->len)) {
1373 atomic_inc(&atm_vcc->stats->tx_err);
1374 return -ENOMEM; // ?
1377 // allocate memory for fragments
1378 tx_descr = kmalloc (sizeof(tx_simple), GFP_KERNEL);
1380 PRINTK (KERN_ERR, "could not allocate TX descriptor");
1383 if (check_area (tx_descr, sizeof(tx_simple))) {
1387 PRINTD (DBG_TX, "fragment list allocated at %p", tx_descr);
1389 tx_descr->skb = skb;
1391 tx_descr->tx_frag.bytes = cpu_to_be32 (tx_len);
1392 tx_descr->tx_frag.address = cpu_to_be32 (virt_to_bus (tx_data));
1394 tx_descr->tx_frag_end.handle = virt_to_bus (tx_descr);
1395 tx_descr->tx_frag_end.vc = 0;
1396 tx_descr->tx_frag_end.next_descriptor_length = 0;
1397 tx_descr->tx_frag_end.next_descriptor = 0;
1398 #ifdef AMB_NEW_MICROCODE
1399 tx_descr->tx_frag_end.cpcs_uu = 0;
1400 tx_descr->tx_frag_end.cpi = 0;
1401 tx_descr->tx_frag_end.pad = 0;
1404 tx.vc = cpu_to_be16 (vcc->tx_frame_bits | vc);
1405 tx.tx_descr_length = cpu_to_be16 (sizeof(tx_frag)+sizeof(tx_frag_end));
1406 tx.tx_descr_addr = cpu_to_be32 (virt_to_bus (&tx_descr->tx_frag));
1408 while (tx_give (dev, &tx))
1413 /********** Change QoS on a VC **********/
1415 // int amb_change_qos (struct atm_vcc * atm_vcc, struct atm_qos * qos, int flags);
1417 /********** Free RX Socket Buffer **********/
1420 static void amb_free_rx_skb (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1421 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1422 amb_vcc * vcc = AMB_VCC (atm_vcc);
1423 unsigned char pool = vcc->rx_info.pool;
1426 // This may be unsafe for various reasons that I cannot really guess
1427 // at. However, I note that the ATM layer calls kfree_skb rather
1428 // than dev_kfree_skb at this point so we are least covered as far
1429 // as buffer locking goes. There may be bugs if pcap clones RX skbs.
1431 PRINTD (DBG_FLOW|DBG_SKB, "amb_rx_free skb %p (atm_vcc %p, vcc %p)",
1434 rx.handle = virt_to_bus (skb);
1435 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
1437 skb->data = skb->head;
1438 skb->tail = skb->head;
1441 if (!rx_give (dev, &rx, pool)) {
1443 PRINTD (DBG_SKB|DBG_POOL, "recycled skb for pool %hu", pool);
1447 // just do what the ATM layer would have done
1448 dev_kfree_skb_any (skb);
1454 /********** Proc File Output **********/
1456 static int amb_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
1457 amb_dev * dev = AMB_DEV (atm_dev);
1461 PRINTD (DBG_FLOW, "amb_proc_read");
1463 /* more diagnostics here? */
1466 amb_stats * s = &dev->stats;
1467 return sprintf (page,
1468 "frames: TX OK %lu, RX OK %lu, RX bad %lu "
1469 "(CRC %lu, long %lu, aborted %lu, unused %lu).\n",
1470 s->tx_ok, s->rx.ok, s->rx.error,
1471 s->rx.badcrc, s->rx.toolong,
1472 s->rx.aborted, s->rx.unused);
1476 amb_cq * c = &dev->cq;
1477 return sprintf (page, "cmd queue [cur/hi/max]: %u/%u/%u. ",
1478 c->pending, c->high, c->maximum);
1482 amb_txq * t = &dev->txq;
1483 return sprintf (page, "TX queue [cur/max high full]: %u/%u %u %u.\n",
1484 t->pending, t->maximum, t->high, t->filled);
1488 unsigned int count = sprintf (page, "RX queues [cur/max/req low empty]:");
1489 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1490 amb_rxq * r = &dev->rxq[pool];
1491 count += sprintf (page+count, " %u/%u/%u %u %u",
1492 r->pending, r->maximum, r->buffers_wanted, r->low, r->emptied);
1494 count += sprintf (page+count, ".\n");
1499 unsigned int count = sprintf (page, "RX buffer sizes:");
1500 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1501 amb_rxq * r = &dev->rxq[pool];
1502 count += sprintf (page+count, " %u", r->buffer_size);
1504 count += sprintf (page+count, ".\n");
1517 /********** Operation Structure **********/
1519 static const struct atmdev_ops amb_ops = {
1523 .proc_read = amb_proc_read,
1524 .owner = THIS_MODULE,
1527 /********** housekeeping **********/
1528 static void do_housekeeping (unsigned long arg) {
1529 amb_dev * dev = (amb_dev *) arg;
1531 // could collect device-specific (not driver/atm-linux) stats here
1533 // last resort refill once every ten seconds
1534 fill_rx_pools (dev);
1535 mod_timer(&dev->housekeeping, jiffies + 10*HZ);
1540 /********** creation of communication queues **********/
1542 static int __devinit create_queues (amb_dev * dev, unsigned int cmds,
1543 unsigned int txs, unsigned int * rxs,
1544 unsigned int * rx_buffer_sizes) {
1550 PRINTD (DBG_FLOW, "create_queues %p", dev);
1552 total += cmds * sizeof(command);
1554 total += txs * (sizeof(tx_in) + sizeof(tx_out));
1556 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1557 total += rxs[pool] * (sizeof(rx_in) + sizeof(rx_out));
1559 memory = kmalloc (total, GFP_KERNEL);
1561 PRINTK (KERN_ERR, "could not allocate queues");
1564 if (check_area (memory, total)) {
1565 PRINTK (KERN_ERR, "queues allocated in nasty area");
1570 limit = memory + total;
1571 PRINTD (DBG_INIT, "queues from %p to %p", memory, limit);
1573 PRINTD (DBG_CMD, "command queue at %p", memory);
1576 command * cmd = memory;
1577 amb_cq * cq = &dev->cq;
1581 cq->maximum = cmds - 1;
1583 cq->ptrs.start = cmd;
1586 cq->ptrs.limit = cmd + cmds;
1588 memory = cq->ptrs.limit;
1591 PRINTD (DBG_TX, "TX queue pair at %p", memory);
1594 tx_in * in = memory;
1596 amb_txq * txq = &dev->txq;
1601 txq->maximum = txs - 1;
1605 txq->in.limit = in + txs;
1607 memory = txq->in.limit;
1610 txq->out.start = out;
1612 txq->out.limit = out + txs;
1614 memory = txq->out.limit;
1617 PRINTD (DBG_RX, "RX queue pairs at %p", memory);
1619 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1620 rx_in * in = memory;
1622 amb_rxq * rxq = &dev->rxq[pool];
1624 rxq->buffer_size = rx_buffer_sizes[pool];
1625 rxq->buffers_wanted = 0;
1628 rxq->low = rxs[pool] - 1;
1630 rxq->maximum = rxs[pool] - 1;
1634 rxq->in.limit = in + rxs[pool];
1636 memory = rxq->in.limit;
1639 rxq->out.start = out;
1641 rxq->out.limit = out + rxs[pool];
1643 memory = rxq->out.limit;
1646 if (memory == limit) {
1649 PRINTK (KERN_ERR, "bad queue alloc %p != %p (tell maintainer)", memory, limit);
1650 kfree (limit - total);
1656 /********** destruction of communication queues **********/
1658 static void destroy_queues (amb_dev * dev) {
1659 // all queues assumed empty
1660 void * memory = dev->cq.ptrs.start;
1661 // includes txq.in, txq.out, rxq[].in and rxq[].out
1663 PRINTD (DBG_FLOW, "destroy_queues %p", dev);
1665 PRINTD (DBG_INIT, "freeing queues at %p", memory);
1671 /********** basic loader commands and error handling **********/
1672 // centisecond timeouts - guessing away here
1673 static unsigned int command_timeouts [] = {
1674 [host_memory_test] = 15,
1675 [read_adapter_memory] = 2,
1676 [write_adapter_memory] = 2,
1677 [adapter_start] = 50,
1678 [get_version_number] = 10,
1679 [interrupt_host] = 1,
1680 [flash_erase_sector] = 1,
1681 [adap_download_block] = 1,
1682 [adap_erase_flash] = 1,
1683 [adap_run_in_iram] = 1,
1684 [adap_end_download] = 1
1688 static unsigned int command_successes [] = {
1689 [host_memory_test] = COMMAND_PASSED_TEST,
1690 [read_adapter_memory] = COMMAND_READ_DATA_OK,
1691 [write_adapter_memory] = COMMAND_WRITE_DATA_OK,
1692 [adapter_start] = COMMAND_COMPLETE,
1693 [get_version_number] = COMMAND_COMPLETE,
1694 [interrupt_host] = COMMAND_COMPLETE,
1695 [flash_erase_sector] = COMMAND_COMPLETE,
1696 [adap_download_block] = COMMAND_COMPLETE,
1697 [adap_erase_flash] = COMMAND_COMPLETE,
1698 [adap_run_in_iram] = COMMAND_COMPLETE,
1699 [adap_end_download] = COMMAND_COMPLETE
1702 static int decode_loader_result (loader_command cmd, u32 result)
1707 if (result == command_successes[cmd])
1713 msg = "bad command";
1715 case COMMAND_IN_PROGRESS:
1717 msg = "command in progress";
1719 case COMMAND_PASSED_TEST:
1721 msg = "command passed test";
1723 case COMMAND_FAILED_TEST:
1725 msg = "command failed test";
1727 case COMMAND_READ_DATA_OK:
1729 msg = "command read data ok";
1731 case COMMAND_READ_BAD_ADDRESS:
1733 msg = "command read bad address";
1735 case COMMAND_WRITE_DATA_OK:
1737 msg = "command write data ok";
1739 case COMMAND_WRITE_BAD_ADDRESS:
1741 msg = "command write bad address";
1743 case COMMAND_WRITE_FLASH_FAILURE:
1745 msg = "command write flash failure";
1747 case COMMAND_COMPLETE:
1749 msg = "command complete";
1751 case COMMAND_FLASH_ERASE_FAILURE:
1753 msg = "command flash erase failure";
1755 case COMMAND_WRITE_BAD_DATA:
1757 msg = "command write bad data";
1761 msg = "unknown error";
1762 PRINTD (DBG_LOAD|DBG_ERR,
1763 "decode_loader_result got %d=%x !",
1768 PRINTK (KERN_ERR, "%s", msg);
1772 static int __devinit do_loader_command (volatile loader_block * lb,
1773 const amb_dev * dev, loader_command cmd) {
1775 unsigned long timeout;
1777 PRINTD (DBG_FLOW|DBG_LOAD, "do_loader_command");
1781 Set the return value to zero, set the command type and set the
1782 valid entry to the right magic value. The payload is already
1783 correctly byte-ordered so we leave it alone. Hit the doorbell
1784 with the bus address of this structure.
1789 lb->command = cpu_to_be32 (cmd);
1790 lb->valid = cpu_to_be32 (DMA_VALID);
1791 // dump_registers (dev);
1792 // dump_loader_block (lb);
1793 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (lb) & ~onegigmask);
1795 timeout = command_timeouts[cmd] * 10;
1797 while (!lb->result || lb->result == cpu_to_be32 (COMMAND_IN_PROGRESS))
1799 timeout = msleep_interruptible(timeout);
1801 PRINTD (DBG_LOAD|DBG_ERR, "command %d timed out", cmd);
1802 dump_registers (dev);
1803 dump_loader_block (lb);
1807 if (cmd == adapter_start) {
1808 // wait for start command to acknowledge...
1810 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
1812 timeout = msleep_interruptible(timeout);
1814 PRINTD (DBG_LOAD|DBG_ERR, "start command did not clear doorbell, res=%08x",
1815 be32_to_cpu (lb->result));
1816 dump_registers (dev);
1821 return decode_loader_result (cmd, be32_to_cpu (lb->result));
1826 /* loader: determine loader version */
1828 static int __devinit get_loader_version (loader_block * lb,
1829 const amb_dev * dev, u32 * version) {
1832 PRINTD (DBG_FLOW|DBG_LOAD, "get_loader_version");
1834 res = do_loader_command (lb, dev, get_version_number);
1838 *version = be32_to_cpu (lb->payload.version);
1842 /* loader: write memory data blocks */
1844 static int __devinit loader_write (loader_block * lb,
1845 const amb_dev * dev, const u32 * data,
1846 u32 address, unsigned int count) {
1848 transfer_block * tb = &lb->payload.transfer;
1850 PRINTD (DBG_FLOW|DBG_LOAD, "loader_write");
1852 if (count > MAX_TRANSFER_DATA)
1854 tb->address = cpu_to_be32 (address);
1855 tb->count = cpu_to_be32 (count);
1856 for (i = 0; i < count; ++i)
1857 tb->data[i] = cpu_to_be32 (data[i]);
1858 return do_loader_command (lb, dev, write_adapter_memory);
1861 /* loader: verify memory data blocks */
1863 static int __devinit loader_verify (loader_block * lb,
1864 const amb_dev * dev, const u32 * data,
1865 u32 address, unsigned int count) {
1867 transfer_block * tb = &lb->payload.transfer;
1870 PRINTD (DBG_FLOW|DBG_LOAD, "loader_verify");
1872 if (count > MAX_TRANSFER_DATA)
1874 tb->address = cpu_to_be32 (address);
1875 tb->count = cpu_to_be32 (count);
1876 res = do_loader_command (lb, dev, read_adapter_memory);
1878 for (i = 0; i < count; ++i)
1879 if (tb->data[i] != cpu_to_be32 (data[i])) {
1886 /* loader: start microcode */
1888 static int __devinit loader_start (loader_block * lb,
1889 const amb_dev * dev, u32 address) {
1890 PRINTD (DBG_FLOW|DBG_LOAD, "loader_start");
1892 lb->payload.start = cpu_to_be32 (address);
1893 return do_loader_command (lb, dev, adapter_start);
1896 /********** reset card **********/
1898 static inline void sf (const char * msg)
1900 PRINTK (KERN_ERR, "self-test failed: %s", msg);
1903 static int amb_reset (amb_dev * dev, int diags) {
1906 PRINTD (DBG_FLOW|DBG_LOAD, "amb_reset");
1908 word = rd_plain (dev, offsetof(amb_mem, reset_control));
1909 // put card into reset state
1910 wr_plain (dev, offsetof(amb_mem, reset_control), word | AMB_RESET_BITS);
1911 // wait a short while
1914 // put card into known good state
1915 wr_plain (dev, offsetof(amb_mem, interrupt_control), AMB_DOORBELL_BITS);
1916 // clear all interrupts just in case
1917 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
1919 // clear self-test done flag
1920 wr_plain (dev, offsetof(amb_mem, mb.loader.ready), 0);
1921 // take card out of reset state
1922 wr_plain (dev, offsetof(amb_mem, reset_control), word &~ AMB_RESET_BITS);
1925 unsigned long timeout;
1928 // half second time-out
1930 while (!rd_plain (dev, offsetof(amb_mem, mb.loader.ready)))
1932 timeout = msleep_interruptible(timeout);
1934 PRINTD (DBG_LOAD|DBG_ERR, "reset timed out");
1938 // get results of self-test
1939 // XXX double check byte-order
1940 word = rd_mem (dev, offsetof(amb_mem, mb.loader.result));
1941 if (word & SELF_TEST_FAILURE) {
1942 if (word & GPINT_TST_FAILURE)
1944 if (word & SUNI_DATA_PATTERN_FAILURE)
1945 sf ("SUNI data pattern");
1946 if (word & SUNI_DATA_BITS_FAILURE)
1947 sf ("SUNI data bits");
1948 if (word & SUNI_UTOPIA_FAILURE)
1949 sf ("SUNI UTOPIA interface");
1950 if (word & SUNI_FIFO_FAILURE)
1951 sf ("SUNI cell buffer FIFO");
1952 if (word & SRAM_FAILURE)
1954 // better return value?
1962 /********** transfer and start the microcode **********/
1964 static int __devinit ucode_init (loader_block * lb, amb_dev * dev) {
1966 unsigned int total = 0;
1967 const u32 * pointer = ucode_data;
1972 PRINTD (DBG_FLOW|DBG_LOAD, "ucode_init");
1974 while (address = ucode_regions[i].start,
1975 count = ucode_regions[i].count) {
1976 PRINTD (DBG_LOAD, "starting region (%x, %u)", address, count);
1979 if (count <= MAX_TRANSFER_DATA)
1982 words = MAX_TRANSFER_DATA;
1984 res = loader_write (lb, dev, pointer, address, words);
1987 res = loader_verify (lb, dev, pointer, address, words);
1991 address += sizeof(u32) * words;
1996 if (*pointer == ATM_POISON) {
1997 return loader_start (lb, dev, ucode_start);
1999 // cast needed as there is no %? for pointer differnces
2000 PRINTD (DBG_LOAD|DBG_ERR,
2001 "offset=%li, *pointer=%x, address=%x, total=%u",
2002 (long) (pointer - ucode_data), *pointer, address, total);
2003 PRINTK (KERN_ERR, "incorrect microcode data");
2008 /********** give adapter parameters **********/
2010 static inline __be32 bus_addr(void * addr) {
2011 return cpu_to_be32 (virt_to_bus (addr));
2014 static int __devinit amb_talk (amb_dev * dev) {
2017 unsigned long timeout;
2019 PRINTD (DBG_FLOW, "amb_talk %p", dev);
2021 a.command_start = bus_addr (dev->cq.ptrs.start);
2022 a.command_end = bus_addr (dev->cq.ptrs.limit);
2023 a.tx_start = bus_addr (dev->txq.in.start);
2024 a.tx_end = bus_addr (dev->txq.in.limit);
2025 a.txcom_start = bus_addr (dev->txq.out.start);
2026 a.txcom_end = bus_addr (dev->txq.out.limit);
2028 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
2029 // the other "a" items are set up by the adapter
2030 a.rec_struct[pool].buffer_start = bus_addr (dev->rxq[pool].in.start);
2031 a.rec_struct[pool].buffer_end = bus_addr (dev->rxq[pool].in.limit);
2032 a.rec_struct[pool].rx_start = bus_addr (dev->rxq[pool].out.start);
2033 a.rec_struct[pool].rx_end = bus_addr (dev->rxq[pool].out.limit);
2034 a.rec_struct[pool].buffer_size = cpu_to_be32 (dev->rxq[pool].buffer_size);
2037 #ifdef AMB_NEW_MICROCODE
2038 // disable fast PLX prefetching
2042 // pass the structure
2043 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (&a));
2045 // 2.2 second wait (must not touch doorbell during 2 second DMA test)
2047 // give the adapter another half second?
2049 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
2051 timeout = msleep_interruptible(timeout);
2053 PRINTD (DBG_INIT|DBG_ERR, "adapter init timed out");
2060 // get microcode version
2061 static void __devinit amb_ucode_version (amb_dev * dev) {
2065 cmd.request = cpu_to_be32 (SRB_GET_VERSION);
2066 while (command_do (dev, &cmd)) {
2067 set_current_state(TASK_UNINTERRUPTIBLE);
2070 major = be32_to_cpu (cmd.args.version.major);
2071 minor = be32_to_cpu (cmd.args.version.minor);
2072 PRINTK (KERN_INFO, "microcode version is %u.%u", major, minor);
2075 // get end station address
2076 static void __devinit amb_esi (amb_dev * dev, u8 * esi) {
2081 cmd.request = cpu_to_be32 (SRB_GET_BIA);
2082 while (command_do (dev, &cmd)) {
2083 set_current_state(TASK_UNINTERRUPTIBLE);
2086 lower4 = be32_to_cpu (cmd.args.bia.lower4);
2087 upper2 = be32_to_cpu (cmd.args.bia.upper2);
2088 PRINTD (DBG_LOAD, "BIA: lower4: %08x, upper2 %04x", lower4, upper2);
2093 PRINTDB (DBG_INIT, "ESI:");
2094 for (i = 0; i < ESI_LEN; ++i) {
2096 esi[i] = bitrev8(lower4>>(8*i));
2098 esi[i] = bitrev8(upper2>>(8*(i-4)));
2099 PRINTDM (DBG_INIT, " %02x", esi[i]);
2102 PRINTDE (DBG_INIT, "");
2108 static void fixup_plx_window (amb_dev *dev, loader_block *lb)
2110 // fix up the PLX-mapped window base address to match the block
2113 blb = virt_to_bus(lb);
2114 // the kernel stack had better not ever cross a 1Gb boundary!
2115 mapreg = rd_plain (dev, offsetof(amb_mem, stuff[10]));
2116 mapreg &= ~onegigmask;
2117 mapreg |= blb & onegigmask;
2118 wr_plain (dev, offsetof(amb_mem, stuff[10]), mapreg);
2122 static int __devinit amb_init (amb_dev * dev)
2128 if (amb_reset (dev, 1)) {
2129 PRINTK (KERN_ERR, "card reset failed!");
2131 fixup_plx_window (dev, &lb);
2133 if (get_loader_version (&lb, dev, &version)) {
2134 PRINTK (KERN_INFO, "failed to get loader version");
2136 PRINTK (KERN_INFO, "loader version is %08x", version);
2138 if (ucode_init (&lb, dev)) {
2139 PRINTK (KERN_ERR, "microcode failure");
2140 } else if (create_queues (dev, cmds, txs, rxs, rxs_bs)) {
2141 PRINTK (KERN_ERR, "failed to get memory for queues");
2144 if (amb_talk (dev)) {
2145 PRINTK (KERN_ERR, "adapter did not accept queues");
2148 amb_ucode_version (dev);
2153 destroy_queues (dev);
2154 } /* create_queues, ucode_init */
2157 } /* get_loader_version */
2164 static void setup_dev(amb_dev *dev, struct pci_dev *pci_dev)
2168 // set up known dev items straight away
2169 dev->pci_dev = pci_dev;
2170 pci_set_drvdata(pci_dev, dev);
2172 dev->iobase = pci_resource_start (pci_dev, 1);
2173 dev->irq = pci_dev->irq;
2174 dev->membase = bus_to_virt(pci_resource_start(pci_dev, 0));
2176 // flags (currently only dead)
2179 // Allocate cell rates (fibre)
2180 // ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2181 // to be really pedantic, this should be ATM_OC3c_PCR
2182 dev->tx_avail = ATM_OC3_PCR;
2183 dev->rx_avail = ATM_OC3_PCR;
2185 #ifdef FILL_RX_POOLS_IN_BH
2186 // initialise bottom half
2187 INIT_WORK(&dev->bh, (void (*)(void *)) fill_rx_pools, dev);
2190 // semaphore for txer/rxer modifications - we cannot use a
2191 // spinlock as the critical region needs to switch processes
2192 mutex_init(&dev->vcc_sf);
2193 // queue manipulation spinlocks; we want atomic reads and
2194 // writes to the queue descriptors (handles IRQ and SMP)
2195 // consider replacing "int pending" -> "atomic_t available"
2196 // => problem related to who gets to move queue pointers
2197 spin_lock_init (&dev->cq.lock);
2198 spin_lock_init (&dev->txq.lock);
2199 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2200 spin_lock_init (&dev->rxq[pool].lock);
2203 static void setup_pci_dev(struct pci_dev *pci_dev)
2207 // enable bus master accesses
2208 pci_set_master(pci_dev);
2210 // frobnicate latency (upwards, usually)
2211 pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat);
2214 pci_lat = (lat < MIN_PCI_LATENCY) ? MIN_PCI_LATENCY : lat;
2216 if (lat != pci_lat) {
2217 PRINTK (KERN_INFO, "Changing PCI latency timer from %hu to %hu",
2219 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2223 static int __devinit amb_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2229 err = pci_enable_device(pci_dev);
2231 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2235 // read resources from PCI configuration space
2238 if (pci_dev->device == PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD) {
2239 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2244 PRINTD (DBG_INFO, "found Madge ATM adapter (amb) at"
2245 " IO %llx, IRQ %u, MEM %p",
2246 (unsigned long long)pci_resource_start(pci_dev, 1),
2247 irq, bus_to_virt(pci_resource_start(pci_dev, 0)));
2250 err = pci_request_region(pci_dev, 1, DEV_LABEL);
2252 PRINTK (KERN_ERR, "IO range already in use!");
2256 dev = kzalloc(sizeof(amb_dev), GFP_KERNEL);
2258 PRINTK (KERN_ERR, "out of memory!");
2263 setup_dev(dev, pci_dev);
2265 err = amb_init(dev);
2267 PRINTK (KERN_ERR, "adapter initialisation failure");
2271 setup_pci_dev(pci_dev);
2273 // grab (but share) IRQ and install handler
2274 err = request_irq(irq, interrupt_handler, IRQF_SHARED, DEV_LABEL, dev);
2276 PRINTK (KERN_ERR, "request IRQ failed!");
2280 dev->atm_dev = atm_dev_register (DEV_LABEL, &amb_ops, -1, NULL);
2281 if (!dev->atm_dev) {
2282 PRINTD (DBG_ERR, "failed to register Madge ATM adapter");
2287 PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2288 dev->atm_dev->number, dev, dev->atm_dev);
2289 dev->atm_dev->dev_data = (void *) dev;
2291 // register our address
2292 amb_esi (dev, dev->atm_dev->esi);
2294 // 0 bits for vpi, 10 bits for vci
2295 dev->atm_dev->ci_range.vpi_bits = NUM_VPI_BITS;
2296 dev->atm_dev->ci_range.vci_bits = NUM_VCI_BITS;
2298 init_timer(&dev->housekeeping);
2299 dev->housekeeping.function = do_housekeeping;
2300 dev->housekeeping.data = (unsigned long) dev;
2301 mod_timer(&dev->housekeeping, jiffies);
2303 // enable host interrupts
2304 interrupts_on (dev);
2316 pci_release_region(pci_dev, 1);
2318 pci_disable_device(pci_dev);
2323 static void __devexit amb_remove_one(struct pci_dev *pci_dev)
2325 struct amb_dev *dev;
2327 dev = pci_get_drvdata(pci_dev);
2329 PRINTD(DBG_INFO|DBG_INIT, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2330 del_timer_sync(&dev->housekeeping);
2331 // the drain should not be necessary
2332 drain_rx_pools(dev);
2333 interrupts_off(dev);
2335 free_irq(dev->irq, dev);
2336 pci_disable_device(pci_dev);
2337 destroy_queues(dev);
2338 atm_dev_deregister(dev->atm_dev);
2340 pci_release_region(pci_dev, 1);
2343 static void __init amb_check_args (void) {
2345 unsigned int max_rx_size;
2347 #ifdef DEBUG_AMBASSADOR
2348 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2351 PRINTK (KERN_NOTICE, "no debugging support");
2354 if (cmds < MIN_QUEUE_SIZE)
2355 PRINTK (KERN_NOTICE, "cmds has been raised to %u",
2356 cmds = MIN_QUEUE_SIZE);
2358 if (txs < MIN_QUEUE_SIZE)
2359 PRINTK (KERN_NOTICE, "txs has been raised to %u",
2360 txs = MIN_QUEUE_SIZE);
2362 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2363 if (rxs[pool] < MIN_QUEUE_SIZE)
2364 PRINTK (KERN_NOTICE, "rxs[%hu] has been raised to %u",
2365 pool, rxs[pool] = MIN_QUEUE_SIZE);
2367 // buffers sizes should be greater than zero and strictly increasing
2369 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2370 if (rxs_bs[pool] <= max_rx_size)
2371 PRINTK (KERN_NOTICE, "useless pool (rxs_bs[%hu] = %u)",
2372 pool, rxs_bs[pool]);
2374 max_rx_size = rxs_bs[pool];
2376 if (rx_lats < MIN_RX_BUFFERS)
2377 PRINTK (KERN_NOTICE, "rx_lats has been raised to %u",
2378 rx_lats = MIN_RX_BUFFERS);
2383 /********** module stuff **********/
2385 MODULE_AUTHOR(maintainer_string);
2386 MODULE_DESCRIPTION(description_string);
2387 MODULE_LICENSE("GPL");
2388 module_param(debug, ushort, 0644);
2389 module_param(cmds, uint, 0);
2390 module_param(txs, uint, 0);
2391 module_param_array(rxs, uint, NULL, 0);
2392 module_param_array(rxs_bs, uint, NULL, 0);
2393 module_param(rx_lats, uint, 0);
2394 module_param(pci_lat, byte, 0);
2395 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2396 MODULE_PARM_DESC(cmds, "number of command queue entries");
2397 MODULE_PARM_DESC(txs, "number of TX queue entries");
2398 MODULE_PARM_DESC(rxs, "number of RX queue entries [" __MODULE_STRING(NUM_RX_POOLS) "]");
2399 MODULE_PARM_DESC(rxs_bs, "size of RX buffers [" __MODULE_STRING(NUM_RX_POOLS) "]");
2400 MODULE_PARM_DESC(rx_lats, "number of extra buffers to cope with RX latencies");
2401 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2403 /********** module entry **********/
2405 static struct pci_device_id amb_pci_tbl[] = {
2406 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR, PCI_ANY_ID, PCI_ANY_ID,
2408 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD, PCI_ANY_ID, PCI_ANY_ID,
2413 MODULE_DEVICE_TABLE(pci, amb_pci_tbl);
2415 static struct pci_driver amb_driver = {
2418 .remove = __devexit_p(amb_remove_one),
2419 .id_table = amb_pci_tbl,
2422 static int __init amb_module_init (void)
2424 PRINTD (DBG_FLOW|DBG_INIT, "init_module");
2426 // sanity check - cast needed as printk does not support %Zu
2427 if (sizeof(amb_mem) != 4*16 + 4*12) {
2428 PRINTK (KERN_ERR, "Fix amb_mem (is %lu words).",
2429 (unsigned long) sizeof(amb_mem));
2438 return pci_register_driver(&amb_driver);
2441 /********** module exit **********/
2443 static void __exit amb_module_exit (void)
2445 PRINTD (DBG_FLOW|DBG_INIT, "cleanup_module");
2447 pci_unregister_driver(&amb_driver);
2450 module_init(amb_module_init);
2451 module_exit(amb_module_exit);