2 #include <asm/pgalloc.h>
3 #include <asm/pgtable.h>
5 #include <asm/fixmap.h>
7 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
9 return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
12 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
17 pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
19 pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
22 pgtable_page_ctor(pte);
26 void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
28 pgtable_page_dtor(pte);
29 paravirt_release_pte(page_to_pfn(pte));
30 tlb_remove_page(tlb, pte);
33 #if PAGETABLE_LEVELS > 2
34 void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
36 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
37 tlb_remove_page(tlb, virt_to_page(pmd));
40 #if PAGETABLE_LEVELS > 3
41 void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
43 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
44 tlb_remove_page(tlb, virt_to_page(pud));
46 #endif /* PAGETABLE_LEVELS > 3 */
47 #endif /* PAGETABLE_LEVELS > 2 */
49 static inline void pgd_list_add(pgd_t *pgd)
51 struct page *page = virt_to_page(pgd);
53 list_add(&page->lru, &pgd_list);
56 static inline void pgd_list_del(pgd_t *pgd)
58 struct page *page = virt_to_page(pgd);
63 #define UNSHARED_PTRS_PER_PGD \
64 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
66 static void pgd_ctor(void *p)
70 /* If the pgd points to a shared pagetable level (either the
71 ptes in non-PAE, or shared PMD in PAE), then just copy the
72 references from swapper_pg_dir. */
73 if (PAGETABLE_LEVELS == 2 ||
74 (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
75 PAGETABLE_LEVELS == 4) {
76 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
77 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
79 paravirt_alloc_pmd_clone(__pa(pgd) >> PAGE_SHIFT,
80 __pa(swapper_pg_dir) >> PAGE_SHIFT,
85 /* list required to sync kernel mapping updates */
86 if (!SHARED_KERNEL_PMD)
90 static void pgd_dtor(void *pgd)
92 unsigned long flags; /* can be called from interrupt context */
94 if (SHARED_KERNEL_PMD)
97 spin_lock_irqsave(&pgd_lock, flags);
99 spin_unlock_irqrestore(&pgd_lock, flags);
103 * List of all pgd's needed for non-PAE so it can invalidate entries
104 * in both cached and uncached pgd's; not needed for PAE since the
105 * kernel pmd is shared. If PAE were not to share the pmd a similar
106 * tactic would be needed. This is essentially codepath-based locking
107 * against pageattr.c; it is the unique case in which a valid change
108 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
109 * vmalloc faults work because attached pagetables are never freed.
113 #ifdef CONFIG_X86_PAE
115 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
116 * updating the top-level pagetable entries to guarantee the
117 * processor notices the update. Since this is expensive, and
118 * all 4 top-level entries are used almost immediately in a
119 * new process's life, we just pre-populate them here.
121 * Also, if we're in a paravirt environment where the kernel pmd is
122 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
123 * and initialize the kernel pmds here.
125 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
127 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
129 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
131 /* Note: almost everything apart from _PAGE_PRESENT is
132 reserved at the pmd (PDPT) level. */
133 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
136 * According to Intel App note "TLBs, Paging-Structure Caches,
137 * and Their Invalidation", April 2007, document 317080-001,
138 * section 8.1: in PAE mode we explicitly have to flush the
139 * TLB via cr3 if the top-level pgd is changed...
141 if (mm == current->active_mm)
142 write_cr3(read_cr3());
144 #else /* !CONFIG_X86_PAE */
146 /* No need to prepopulate any pagetable entries in non-PAE modes. */
147 #define PREALLOCATED_PMDS 0
149 #endif /* CONFIG_X86_PAE */
151 static void free_pmds(pmd_t *pmds[])
155 for(i = 0; i < PREALLOCATED_PMDS; i++)
157 free_page((unsigned long)pmds[i]);
160 static int preallocate_pmds(pmd_t *pmds[])
165 for(i = 0; i < PREALLOCATED_PMDS; i++) {
166 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL|__GFP_REPEAT);
181 * Mop up any pmd pages which may still be attached to the pgd.
182 * Normally they will be freed by munmap/exit_mmap, but any pmd we
183 * preallocate which never got a corresponding vma will need to be
186 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
190 for(i = 0; i < PREALLOCATED_PMDS; i++) {
193 if (pgd_val(pgd) != 0) {
194 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
196 pgdp[i] = native_make_pgd(0);
198 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
204 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
210 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
213 pud = pud_offset(pgd, 0);
215 for (addr = i = 0; i < PREALLOCATED_PMDS;
216 i++, pud++, addr += PUD_SIZE) {
217 pmd_t *pmd = pmds[i];
219 if (i >= KERNEL_PGD_BOUNDARY)
220 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
221 sizeof(pmd_t) * PTRS_PER_PMD);
223 pud_populate(mm, pud, pmd);
227 pgd_t *pgd_alloc(struct mm_struct *mm)
230 pmd_t *pmds[PREALLOCATED_PMDS];
233 pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
240 if (preallocate_pmds(pmds) != 0)
243 if (paravirt_pgd_alloc(mm) != 0)
247 * Make sure that pre-populating the pmds is atomic with
248 * respect to anything walking the pgd_list, so that they
249 * never see a partially populated pgd.
251 spin_lock_irqsave(&pgd_lock, flags);
254 pgd_prepopulate_pmd(mm, pgd, pmds);
256 spin_unlock_irqrestore(&pgd_lock, flags);
263 free_page((unsigned long)pgd);
268 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
270 pgd_mop_up_pmds(mm, pgd);
272 paravirt_pgd_free(mm, pgd);
273 free_page((unsigned long)pgd);
276 int ptep_set_access_flags(struct vm_area_struct *vma,
277 unsigned long address, pte_t *ptep,
278 pte_t entry, int dirty)
280 int changed = !pte_same(*ptep, entry);
282 if (changed && dirty) {
284 pte_update_defer(vma->vm_mm, address, ptep);
285 flush_tlb_page(vma, address);
291 int ptep_test_and_clear_young(struct vm_area_struct *vma,
292 unsigned long addr, pte_t *ptep)
296 if (pte_young(*ptep))
297 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
298 (unsigned long *) &ptep->pte);
301 pte_update(vma->vm_mm, addr, ptep);
306 int ptep_clear_flush_young(struct vm_area_struct *vma,
307 unsigned long address, pte_t *ptep)
311 young = ptep_test_and_clear_young(vma, address, ptep);
313 flush_tlb_page(vma, address);
320 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
322 unsigned long address = __fix_to_virt(idx);
324 if (idx >= __end_of_fixed_addresses) {
328 set_pte_vaddr(address, pte);
332 void native_set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
334 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));