2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
11 #include <linux/interrupt.h>
14 #include <asm/processor.h>
15 #include <asm/tlbflush.h>
16 #include <asm/sections.h>
17 #include <asm/uaccess.h>
18 #include <asm/pgalloc.h>
19 #include <asm/proto.h>
22 * The current flushing context - we pass it instead of 5 arguments:
35 static inline unsigned long highmap_start_pfn(void)
37 return __pa(_text) >> PAGE_SHIFT;
40 static inline unsigned long highmap_end_pfn(void)
42 return __pa(round_up((unsigned long)_end, PMD_SIZE)) >> PAGE_SHIFT;
47 #ifdef CONFIG_DEBUG_PAGEALLOC
48 # define debug_pagealloc 1
50 # define debug_pagealloc 0
54 within(unsigned long addr, unsigned long start, unsigned long end)
56 return addr >= start && addr < end;
64 * clflush_cache_range - flush a cache range with clflush
65 * @addr: virtual start address
66 * @size: number of bytes to flush
68 * clflush is an unordered instruction which needs fencing with mfence
69 * to avoid ordering issues.
71 void clflush_cache_range(void *vaddr, unsigned int size)
73 void *vend = vaddr + size - 1;
77 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
80 * Flush any possible final partial cacheline:
87 static void __cpa_flush_all(void *arg)
89 unsigned long cache = (unsigned long)arg;
92 * Flush all to work around Errata in early athlons regarding
93 * large page flushing.
97 if (cache && boot_cpu_data.x86_model >= 4)
101 static void cpa_flush_all(unsigned long cache)
103 BUG_ON(irqs_disabled());
105 on_each_cpu(__cpa_flush_all, (void *) cache, 1, 1);
108 static void __cpa_flush_range(void *arg)
111 * We could optimize that further and do individual per page
112 * tlb invalidates for a low number of pages. Caveat: we must
113 * flush the high aliases on 64bit as well.
118 static void cpa_flush_range(unsigned long start, int numpages, int cache)
120 unsigned int i, level;
123 BUG_ON(irqs_disabled());
124 WARN_ON(PAGE_ALIGN(start) != start);
126 on_each_cpu(__cpa_flush_range, NULL, 1, 1);
132 * We only need to flush on one CPU,
133 * clflush is a MESI-coherent instruction that
134 * will cause all other CPUs to flush the same
137 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
138 pte_t *pte = lookup_address(addr, &level);
141 * Only flush present addresses:
143 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
144 clflush_cache_range((void *) addr, PAGE_SIZE);
149 * Certain areas of memory on x86 require very specific protection flags,
150 * for example the BIOS area or kernel text. Callers don't always get this
151 * right (again, ioremap() on BIOS memory is not uncommon) so this function
152 * checks and fixes these known static required protection bits.
154 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
157 pgprot_t forbidden = __pgprot(0);
160 * The BIOS area between 640k and 1Mb needs to be executable for
161 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
163 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
164 pgprot_val(forbidden) |= _PAGE_NX;
167 * The kernel text needs to be executable for obvious reasons
168 * Does not cover __inittext since that is gone later on. On
169 * 64bit we do not enforce !NX on the low mapping
171 if (within(address, (unsigned long)_text, (unsigned long)_etext))
172 pgprot_val(forbidden) |= _PAGE_NX;
175 * The .rodata section needs to be read-only. Using the pfn
176 * catches all aliases.
178 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
179 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
180 pgprot_val(forbidden) |= _PAGE_RW;
182 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
188 * Lookup the page table entry for a virtual address. Return a pointer
189 * to the entry and the level of the mapping.
191 * Note: We return pud and pmd either when the entry is marked large
192 * or when the present bit is not set. Otherwise we would return a
193 * pointer to a nonexisting mapping.
195 pte_t *lookup_address(unsigned long address, unsigned int *level)
197 pgd_t *pgd = pgd_offset_k(address);
201 *level = PG_LEVEL_NONE;
206 pud = pud_offset(pgd, address);
210 *level = PG_LEVEL_1G;
211 if (pud_large(*pud) || !pud_present(*pud))
214 pmd = pmd_offset(pud, address);
218 *level = PG_LEVEL_2M;
219 if (pmd_large(*pmd) || !pmd_present(*pmd))
222 *level = PG_LEVEL_4K;
224 return pte_offset_kernel(pmd, address);
228 * Set the new pmd in all the pgds we know about:
230 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
233 set_pte_atomic(kpte, pte);
235 if (!SHARED_KERNEL_PMD) {
238 list_for_each_entry(page, &pgd_list, lru) {
243 pgd = (pgd_t *)page_address(page) + pgd_index(address);
244 pud = pud_offset(pgd, address);
245 pmd = pmd_offset(pud, address);
246 set_pte_atomic((pte_t *)pmd, pte);
253 try_preserve_large_page(pte_t *kpte, unsigned long address,
254 struct cpa_data *cpa)
256 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
257 pte_t new_pte, old_pte, *tmp;
258 pgprot_t old_prot, new_prot;
262 spin_lock_irqsave(&pgd_lock, flags);
264 * Check for races, another CPU might have split this page
267 tmp = lookup_address(address, &level);
273 psize = PMD_PAGE_SIZE;
274 pmask = PMD_PAGE_MASK;
278 psize = PUD_PAGE_SIZE;
279 pmask = PUD_PAGE_MASK;
288 * Calculate the number of pages, which fit into this large
289 * page starting at address:
291 nextpage_addr = (address + psize) & pmask;
292 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
293 if (numpages < cpa->numpages)
294 cpa->numpages = numpages;
297 * We are safe now. Check whether the new pgprot is the same:
300 old_prot = new_prot = pte_pgprot(old_pte);
302 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
303 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
306 * old_pte points to the large page base address. So we need
307 * to add the offset of the virtual address:
309 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
312 new_prot = static_protections(new_prot, address, pfn);
315 * We need to check the full range, whether
316 * static_protection() requires a different pgprot for one of
317 * the pages in the range we try to preserve:
319 addr = address + PAGE_SIZE;
321 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
322 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
324 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
329 * If there are no changes, return. maxpages has been updated
332 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
338 * We need to change the attributes. Check, whether we can
339 * change the large page in one go. We request a split, when
340 * the address is not aligned and the number of pages is
341 * smaller than the number of pages in the large page. Note
342 * that we limited the number of possible pages already to
343 * the number of pages in the large page.
345 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
347 * The address is aligned and the number of pages
348 * covers the full page.
350 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
351 __set_pmd_pte(kpte, address, new_pte);
357 spin_unlock_irqrestore(&pgd_lock, flags);
362 static LIST_HEAD(page_pool);
363 static unsigned long pool_size, pool_pages, pool_low;
364 static unsigned long pool_used, pool_failed;
366 static void cpa_fill_pool(struct page **ret)
368 gfp_t gfp = GFP_KERNEL;
373 * Avoid recursion (on debug-pagealloc) and also signal
374 * our priority to get to these pagetables:
376 if (current->flags & PF_MEMALLOC)
378 current->flags |= PF_MEMALLOC;
381 * Allocate atomically from atomic contexts:
383 if (in_atomic() || irqs_disabled() || debug_pagealloc)
384 gfp = GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN;
386 while (pool_pages < pool_size || (ret && !*ret)) {
387 p = alloc_pages(gfp, 0);
393 * If the call site needs a page right now, provide it:
399 spin_lock_irqsave(&pgd_lock, flags);
400 list_add(&p->lru, &page_pool);
402 spin_unlock_irqrestore(&pgd_lock, flags);
405 current->flags &= ~PF_MEMALLOC;
408 #define SHIFT_MB (20 - PAGE_SHIFT)
409 #define ROUND_MB_GB ((1 << 10) - 1)
410 #define SHIFT_MB_GB 10
411 #define POOL_PAGES_PER_GB 16
413 void __init cpa_init(void)
420 * Calculate the number of pool pages:
422 * Convert totalram (nr of pages) to MiB and round to the next
423 * GiB. Shift MiB to Gib and multiply the result by
426 if (debug_pagealloc) {
427 gb = ((si.totalram >> SHIFT_MB) + ROUND_MB_GB) >> SHIFT_MB_GB;
428 pool_size = POOL_PAGES_PER_GB * gb;
432 pool_low = pool_size;
436 "CPA: page pool initialized %lu of %lu pages preallocated\n",
437 pool_pages, pool_size);
440 static int split_large_page(pte_t *kpte, unsigned long address)
442 unsigned long flags, pfn, pfninc = 1;
443 unsigned int i, level;
449 * Get a page from the pool. The pool list is protected by the
450 * pgd_lock, which we have to take anyway for the split
453 spin_lock_irqsave(&pgd_lock, flags);
454 if (list_empty(&page_pool)) {
455 spin_unlock_irqrestore(&pgd_lock, flags);
457 cpa_fill_pool(&base);
460 spin_lock_irqsave(&pgd_lock, flags);
462 base = list_first_entry(&page_pool, struct page, lru);
463 list_del(&base->lru);
466 if (pool_pages < pool_low)
467 pool_low = pool_pages;
471 * Check for races, another CPU might have split this page
474 tmp = lookup_address(address, &level);
478 pbase = (pte_t *)page_address(base);
480 paravirt_alloc_pt(&init_mm, page_to_pfn(base));
482 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
485 if (level == PG_LEVEL_1G) {
486 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
487 pgprot_val(ref_prot) |= _PAGE_PSE;
492 * Get the target pfn from the original entry:
494 pfn = pte_pfn(*kpte);
495 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
496 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
499 * Install the new, split up pagetable. Important details here:
501 * On Intel the NX bit of all levels must be cleared to make a
502 * page executable. See section 4.13.2 of Intel 64 and IA-32
503 * Architectures Software Developer's Manual).
505 * Mark the entry present. The current mapping might be
506 * set to not present, which we preserved above.
508 ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
509 pgprot_val(ref_prot) |= _PAGE_PRESENT;
510 __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
515 * If we dropped out via the lookup_address check under
516 * pgd_lock then stick the page back into the pool:
519 list_add(&base->lru, &page_pool);
523 spin_unlock_irqrestore(&pgd_lock, flags);
528 static int __change_page_attr(struct cpa_data *cpa, int primary)
530 unsigned long address = cpa->vaddr;
533 pte_t *kpte, old_pte;
536 kpte = lookup_address(address, &level);
538 return primary ? -EINVAL : 0;
541 if (!pte_val(old_pte)) {
544 printk(KERN_WARNING "CPA: called for zero pte. "
545 "vaddr = %lx cpa->vaddr = %lx\n", address,
551 if (level == PG_LEVEL_4K) {
553 pgprot_t new_prot = pte_pgprot(old_pte);
554 unsigned long pfn = pte_pfn(old_pte);
556 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
557 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
559 new_prot = static_protections(new_prot, address, pfn);
562 * We need to keep the pfn from the existing PTE,
563 * after all we're only going to change it's attributes
564 * not the memory it points to
566 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
569 * Do we really change anything ?
571 if (pte_val(old_pte) != pte_val(new_pte)) {
572 set_pte_atomic(kpte, new_pte);
580 * Check, whether we can keep the large page intact
581 * and just change the pte:
583 do_split = try_preserve_large_page(kpte, address, cpa);
585 * When the range fits into the existing large page,
586 * return. cp->numpages and cpa->tlbflush have been updated in
593 * We have to split the large page:
595 err = split_large_page(kpte, address);
604 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
606 static int cpa_process_alias(struct cpa_data *cpa)
608 struct cpa_data alias_cpa;
611 if (cpa->pfn > max_pfn_mapped)
615 * No need to redo, when the primary call touched the direct
618 if (!within(cpa->vaddr, PAGE_OFFSET,
619 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
622 alias_cpa.vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
624 ret = __change_page_attr_set_clr(&alias_cpa, 0);
631 * No need to redo, when the primary call touched the high
634 if (within(cpa->vaddr, (unsigned long) _text, (unsigned long) _end))
638 * If the physical address is inside the kernel map, we need
639 * to touch the high mapped kernel as well:
641 if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
646 (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
649 * The high mapping range is imprecise, so ignore the return value.
651 __change_page_attr_set_clr(&alias_cpa, 0);
656 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
658 int ret, numpages = cpa->numpages;
662 * Store the remaining nr of pages for the large page
663 * preservation check.
665 cpa->numpages = numpages;
667 ret = __change_page_attr(cpa, checkalias);
672 ret = cpa_process_alias(cpa);
678 * Adjust the number of pages with the result of the
679 * CPA operation. Either a large page has been
680 * preserved or a single page update happened.
682 BUG_ON(cpa->numpages > numpages);
683 numpages -= cpa->numpages;
684 cpa->vaddr += cpa->numpages * PAGE_SIZE;
689 static inline int cache_attr(pgprot_t attr)
691 return pgprot_val(attr) &
692 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
695 static int change_page_attr_set_clr(unsigned long addr, int numpages,
696 pgprot_t mask_set, pgprot_t mask_clr)
699 int ret, cache, checkalias;
702 * Check, if we are requested to change a not supported
705 mask_set = canon_pgprot(mask_set);
706 mask_clr = canon_pgprot(mask_clr);
707 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr))
710 /* Ensure we are PAGE_SIZE aligned */
711 if (addr & ~PAGE_MASK) {
714 * People should not be passing in unaligned addresses:
720 cpa.numpages = numpages;
721 cpa.mask_set = mask_set;
722 cpa.mask_clr = mask_clr;
725 /* No alias checking for _NX bit modifications */
726 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
728 ret = __change_page_attr_set_clr(&cpa, checkalias);
731 * Check whether we really changed something:
737 * No need to flush, when we did not set any of the caching
740 cache = cache_attr(mask_set);
743 * On success we use clflush, when the CPU supports it to
744 * avoid the wbindv. If the CPU does not support it and in the
745 * error case we fall back to cpa_flush_all (which uses
748 if (!ret && cpu_has_clflush)
749 cpa_flush_range(addr, numpages, cache);
751 cpa_flush_all(cache);
759 static inline int change_page_attr_set(unsigned long addr, int numpages,
762 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0));
765 static inline int change_page_attr_clear(unsigned long addr, int numpages,
768 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask);
771 int set_memory_uc(unsigned long addr, int numpages)
773 return change_page_attr_set(addr, numpages,
774 __pgprot(_PAGE_PCD));
776 EXPORT_SYMBOL(set_memory_uc);
778 int set_memory_wb(unsigned long addr, int numpages)
780 return change_page_attr_clear(addr, numpages,
781 __pgprot(_PAGE_PCD | _PAGE_PWT));
783 EXPORT_SYMBOL(set_memory_wb);
785 int set_memory_x(unsigned long addr, int numpages)
787 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX));
789 EXPORT_SYMBOL(set_memory_x);
791 int set_memory_nx(unsigned long addr, int numpages)
793 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX));
795 EXPORT_SYMBOL(set_memory_nx);
797 int set_memory_ro(unsigned long addr, int numpages)
799 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW));
802 int set_memory_rw(unsigned long addr, int numpages)
804 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW));
807 int set_memory_np(unsigned long addr, int numpages)
809 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT));
812 int set_pages_uc(struct page *page, int numpages)
814 unsigned long addr = (unsigned long)page_address(page);
816 return set_memory_uc(addr, numpages);
818 EXPORT_SYMBOL(set_pages_uc);
820 int set_pages_wb(struct page *page, int numpages)
822 unsigned long addr = (unsigned long)page_address(page);
824 return set_memory_wb(addr, numpages);
826 EXPORT_SYMBOL(set_pages_wb);
828 int set_pages_x(struct page *page, int numpages)
830 unsigned long addr = (unsigned long)page_address(page);
832 return set_memory_x(addr, numpages);
834 EXPORT_SYMBOL(set_pages_x);
836 int set_pages_nx(struct page *page, int numpages)
838 unsigned long addr = (unsigned long)page_address(page);
840 return set_memory_nx(addr, numpages);
842 EXPORT_SYMBOL(set_pages_nx);
844 int set_pages_ro(struct page *page, int numpages)
846 unsigned long addr = (unsigned long)page_address(page);
848 return set_memory_ro(addr, numpages);
851 int set_pages_rw(struct page *page, int numpages)
853 unsigned long addr = (unsigned long)page_address(page);
855 return set_memory_rw(addr, numpages);
858 #ifdef CONFIG_DEBUG_PAGEALLOC
860 static int __set_pages_p(struct page *page, int numpages)
862 struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
863 .numpages = numpages,
864 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
865 .mask_clr = __pgprot(0)};
867 return __change_page_attr_set_clr(&cpa, 1);
870 static int __set_pages_np(struct page *page, int numpages)
872 struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
873 .numpages = numpages,
874 .mask_set = __pgprot(0),
875 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW)};
877 return __change_page_attr_set_clr(&cpa, 1);
880 void kernel_map_pages(struct page *page, int numpages, int enable)
882 if (PageHighMem(page))
885 debug_check_no_locks_freed(page_address(page),
886 numpages * PAGE_SIZE);
890 * If page allocator is not up yet then do not call c_p_a():
892 if (!debug_pagealloc_enabled)
896 * The return value is ignored as the calls cannot fail.
897 * Large pages are kept enabled at boot time, and are
898 * split up quickly with DEBUG_PAGEALLOC. If a splitup
899 * fails here (due to temporary memory shortage) no damage
900 * is done because we just keep the largepage intact up
901 * to the next attempt when it will likely be split up:
904 __set_pages_p(page, numpages);
906 __set_pages_np(page, numpages);
909 * We should perform an IPI and flush all tlbs,
910 * but that can deadlock->flush only current cpu:
915 * Try to refill the page pool here. We can do this only after
921 #ifdef CONFIG_HIBERNATION
923 bool kernel_page_present(struct page *page)
928 if (PageHighMem(page))
931 pte = lookup_address((unsigned long)page_address(page), &level);
932 return (pte_val(*pte) & _PAGE_PRESENT);
935 #endif /* CONFIG_HIBERNATION */
937 #endif /* CONFIG_DEBUG_PAGEALLOC */
940 * The testcases use internal knowledge of the implementation that shouldn't
941 * be exposed to the rest of the kernel. Include these directly here.
943 #ifdef CONFIG_CPA_DEBUG
944 #include "pageattr-test.c"