]> err.no Git - linux-2.6/blob - arch/x86/mm/init_64.c
d5d4b04d48a447815282f5a5b8c419a24acf17ff
[linux-2.6] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
38 #include <asm/dma.h>
39 #include <asm/fixmap.h>
40 #include <asm/e820.h>
41 #include <asm/apic.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
45 #include <asm/smp.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
48 #include <asm/numa.h>
49 #include <asm/cacheflush.h>
50
51 /*
52  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
53  * The direct mapping extends to max_pfn_mapped, so that we can directly access
54  * apertures, ACPI and other tables without having to play with fixmaps.
55  */
56 unsigned long max_pfn_mapped;
57
58 static unsigned long dma_reserve __initdata;
59
60 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
61
62 int direct_gbpages __meminitdata
63 #ifdef CONFIG_DIRECT_GBPAGES
64                                 = 1
65 #endif
66 ;
67
68 static int __init parse_direct_gbpages_off(char *arg)
69 {
70         direct_gbpages = 0;
71         return 0;
72 }
73 early_param("nogbpages", parse_direct_gbpages_off);
74
75 static int __init parse_direct_gbpages_on(char *arg)
76 {
77         direct_gbpages = 1;
78         return 0;
79 }
80 early_param("gbpages", parse_direct_gbpages_on);
81
82 /*
83  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
84  * physical space so we can cache the place of the first one and move
85  * around without checking the pgd every time.
86  */
87
88 void show_mem(void)
89 {
90         long i, total = 0, reserved = 0;
91         long shared = 0, cached = 0;
92         struct page *page;
93         pg_data_t *pgdat;
94
95         printk(KERN_INFO "Mem-info:\n");
96         show_free_areas();
97         for_each_online_pgdat(pgdat) {
98                 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
99                         /*
100                          * This loop can take a while with 256 GB and
101                          * 4k pages so defer the NMI watchdog:
102                          */
103                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
104                                 touch_nmi_watchdog();
105
106                         if (!pfn_valid(pgdat->node_start_pfn + i))
107                                 continue;
108
109                         page = pfn_to_page(pgdat->node_start_pfn + i);
110                         total++;
111                         if (PageReserved(page))
112                                 reserved++;
113                         else if (PageSwapCache(page))
114                                 cached++;
115                         else if (page_count(page))
116                                 shared += page_count(page) - 1;
117                 }
118         }
119         printk(KERN_INFO "%lu pages of RAM\n",          total);
120         printk(KERN_INFO "%lu reserved pages\n",        reserved);
121         printk(KERN_INFO "%lu pages shared\n",          shared);
122         printk(KERN_INFO "%lu pages swap cached\n",     cached);
123 }
124
125 int after_bootmem;
126
127 static __init void *spp_getpage(void)
128 {
129         void *ptr;
130
131         if (after_bootmem)
132                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
133         else
134                 ptr = alloc_bootmem_pages(PAGE_SIZE);
135
136         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
137                 panic("set_pte_phys: cannot allocate page data %s\n",
138                         after_bootmem ? "after bootmem" : "");
139         }
140
141         pr_debug("spp_getpage %p\n", ptr);
142
143         return ptr;
144 }
145
146 void
147 set_pte_vaddr(unsigned long vaddr, pte_t new_pte)
148 {
149         pgd_t *pgd;
150         pud_t *pud;
151         pmd_t *pmd;
152         pte_t *pte;
153
154         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(new_pte));
155
156         pgd = pgd_offset_k(vaddr);
157         if (pgd_none(*pgd)) {
158                 printk(KERN_ERR
159                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
160                 return;
161         }
162         pud = pud_offset(pgd, vaddr);
163         if (pud_none(*pud)) {
164                 pmd = (pmd_t *) spp_getpage();
165                 pud_populate(&init_mm, pud, pmd);
166                 if (pmd != pmd_offset(pud, 0)) {
167                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
168                                 pmd, pmd_offset(pud, 0));
169                         return;
170                 }
171         }
172         pmd = pmd_offset(pud, vaddr);
173         if (pmd_none(*pmd)) {
174                 pte = (pte_t *) spp_getpage();
175                 pmd_populate_kernel(&init_mm, pmd, pte);
176                 if (pte != pte_offset_kernel(pmd, 0)) {
177                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
178                         return;
179                 }
180         }
181
182         pte = pte_offset_kernel(pmd, vaddr);
183         if (!pte_none(*pte) && pte_val(new_pte) &&
184             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
185                 pte_ERROR(*pte);
186         set_pte(pte, new_pte);
187
188         /*
189          * It's enough to flush this one mapping.
190          * (PGE mappings get flushed as well)
191          */
192         __flush_tlb_one(vaddr);
193 }
194
195 /*
196  * The head.S code sets up the kernel high mapping:
197  *
198  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
199  *
200  * phys_addr holds the negative offset to the kernel, which is added
201  * to the compile time generated pmds. This results in invalid pmds up
202  * to the point where we hit the physaddr 0 mapping.
203  *
204  * We limit the mappings to the region from _text to _end.  _end is
205  * rounded up to the 2MB boundary. This catches the invalid pmds as
206  * well, as they are located before _text:
207  */
208 void __init cleanup_highmap(void)
209 {
210         unsigned long vaddr = __START_KERNEL_map;
211         unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
212         pmd_t *pmd = level2_kernel_pgt;
213         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
214
215         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
216                 if (pmd_none(*pmd))
217                         continue;
218                 if (vaddr < (unsigned long) _text || vaddr > end)
219                         set_pmd(pmd, __pmd(0));
220         }
221 }
222
223 static unsigned long __initdata table_start;
224 static unsigned long __meminitdata table_end;
225 static unsigned long __meminitdata table_top;
226
227 static __meminit void *alloc_low_page(unsigned long *phys)
228 {
229         unsigned long pfn = table_end++;
230         void *adr;
231
232         if (after_bootmem) {
233                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
234                 *phys = __pa(adr);
235
236                 return adr;
237         }
238
239         if (pfn >= table_top)
240                 panic("alloc_low_page: ran out of memory");
241
242         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
243         memset(adr, 0, PAGE_SIZE);
244         *phys  = pfn * PAGE_SIZE;
245         return adr;
246 }
247
248 static __meminit void unmap_low_page(void *adr)
249 {
250         if (after_bootmem)
251                 return;
252
253         early_iounmap(adr, PAGE_SIZE);
254 }
255
256 static unsigned long __meminit
257 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
258 {
259         unsigned long pages = 0;
260
261         int i = pmd_index(address);
262
263         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
264                 pmd_t *pmd = pmd_page + pmd_index(address);
265
266                 if (address >= end) {
267                         if (!after_bootmem) {
268                                 for (; i < PTRS_PER_PMD; i++, pmd++)
269                                         set_pmd(pmd, __pmd(0));
270                         }
271                         break;
272                 }
273
274                 if (pmd_val(*pmd))
275                         continue;
276
277                 pages++;
278                 set_pte((pte_t *)pmd,
279                         pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
280         }
281         update_page_count(PG_LEVEL_2M, pages);
282         return address;
283 }
284
285 static unsigned long __meminit
286 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
287 {
288         pmd_t *pmd = pmd_offset(pud, 0);
289         unsigned long last_map_addr;
290
291         spin_lock(&init_mm.page_table_lock);
292         last_map_addr = phys_pmd_init(pmd, address, end);
293         spin_unlock(&init_mm.page_table_lock);
294         __flush_tlb_all();
295         return last_map_addr;
296 }
297
298 static unsigned long __meminit
299 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
300 {
301         unsigned long pages = 0;
302         unsigned long last_map_addr = end;
303         int i = pud_index(addr);
304
305         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
306                 unsigned long pmd_phys;
307                 pud_t *pud = pud_page + pud_index(addr);
308                 pmd_t *pmd;
309
310                 if (addr >= end)
311                         break;
312
313                 if (!after_bootmem &&
314                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
315                         set_pud(pud, __pud(0));
316                         continue;
317                 }
318
319                 if (pud_val(*pud)) {
320                         if (!pud_large(*pud))
321                                 last_map_addr = phys_pmd_update(pud, addr, end);
322                         continue;
323                 }
324
325                 if (direct_gbpages) {
326                         pages++;
327                         set_pte((pte_t *)pud,
328                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
329                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
330                         continue;
331                 }
332
333                 pmd = alloc_low_page(&pmd_phys);
334
335                 spin_lock(&init_mm.page_table_lock);
336                 pud_populate(&init_mm, pud, __va(pmd_phys));
337                 last_map_addr = phys_pmd_init(pmd, addr, end);
338                 spin_unlock(&init_mm.page_table_lock);
339
340                 unmap_low_page(pmd);
341         }
342         __flush_tlb_all();
343         update_page_count(PG_LEVEL_1G, pages);
344
345         return last_map_addr;
346 }
347
348 static void __init find_early_table_space(unsigned long end)
349 {
350         unsigned long puds, pmds, tables, start;
351
352         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
353         tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
354         if (!direct_gbpages) {
355                 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
356                 tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
357         }
358
359         /*
360          * RED-PEN putting page tables only on node 0 could
361          * cause a hotspot and fill up ZONE_DMA. The page tables
362          * need roughly 0.5KB per GB.
363          */
364         start = 0x8000;
365         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
366         if (table_start == -1UL)
367                 panic("Cannot find space for the kernel page tables");
368
369         table_start >>= PAGE_SHIFT;
370         table_end = table_start;
371         table_top = table_start + (tables >> PAGE_SHIFT);
372
373         printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
374                 end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
375 }
376
377 static void __init init_gbpages(void)
378 {
379         if (direct_gbpages && cpu_has_gbpages)
380                 printk(KERN_INFO "Using GB pages for direct mapping\n");
381         else
382                 direct_gbpages = 0;
383 }
384
385 #ifdef CONFIG_MEMTEST
386
387 static void __init memtest(unsigned long start_phys, unsigned long size,
388                                  unsigned pattern)
389 {
390         unsigned long i;
391         unsigned long *start;
392         unsigned long start_bad;
393         unsigned long last_bad;
394         unsigned long val;
395         unsigned long start_phys_aligned;
396         unsigned long count;
397         unsigned long incr;
398
399         switch (pattern) {
400         case 0:
401                 val = 0UL;
402                 break;
403         case 1:
404                 val = -1UL;
405                 break;
406         case 2:
407                 val = 0x5555555555555555UL;
408                 break;
409         case 3:
410                 val = 0xaaaaaaaaaaaaaaaaUL;
411                 break;
412         default:
413                 return;
414         }
415
416         incr = sizeof(unsigned long);
417         start_phys_aligned = ALIGN(start_phys, incr);
418         count = (size - (start_phys_aligned - start_phys))/incr;
419         start = __va(start_phys_aligned);
420         start_bad = 0;
421         last_bad = 0;
422
423         for (i = 0; i < count; i++)
424                 start[i] = val;
425         for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
426                 if (*start != val) {
427                         if (start_phys_aligned == last_bad + incr) {
428                                 last_bad += incr;
429                         } else {
430                                 if (start_bad) {
431                                         printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
432                                                 val, start_bad, last_bad + incr);
433                                         reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
434                                 }
435                                 start_bad = last_bad = start_phys_aligned;
436                         }
437                 }
438         }
439         if (start_bad) {
440                 printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
441                         val, start_bad, last_bad + incr);
442                 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
443         }
444
445 }
446
447 /* default is disabled */
448 static int memtest_pattern __initdata;
449
450 static int __init parse_memtest(char *arg)
451 {
452         if (arg)
453                 memtest_pattern = simple_strtoul(arg, NULL, 0);
454         return 0;
455 }
456
457 early_param("memtest", parse_memtest);
458
459 static void __init early_memtest(unsigned long start, unsigned long end)
460 {
461         u64 t_start, t_size;
462         unsigned pattern;
463
464         if (!memtest_pattern)
465                 return;
466
467         printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
468         for (pattern = 0; pattern < memtest_pattern; pattern++) {
469                 t_start = start;
470                 t_size = 0;
471                 while (t_start < end) {
472                         t_start = find_e820_area_size(t_start, &t_size, 1);
473
474                         /* done ? */
475                         if (t_start >= end)
476                                 break;
477                         if (t_start + t_size > end)
478                                 t_size = end - t_start;
479
480                         printk(KERN_CONT "\n  %016llx - %016llx pattern %d",
481                                 (unsigned long long)t_start,
482                                 (unsigned long long)t_start + t_size, pattern);
483
484                         memtest(t_start, t_size, pattern);
485
486                         t_start += t_size;
487                 }
488         }
489         printk(KERN_CONT "\n");
490 }
491 #else
492 static void __init early_memtest(unsigned long start, unsigned long end)
493 {
494 }
495 #endif
496
497 /*
498  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
499  * This runs before bootmem is initialized and gets pages directly from
500  * the physical memory. To access them they are temporarily mapped.
501  */
502 unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
503 {
504         unsigned long next, last_map_addr = end;
505         unsigned long start_phys = start, end_phys = end;
506
507         printk(KERN_INFO "init_memory_mapping\n");
508
509         /*
510          * Find space for the kernel direct mapping tables.
511          *
512          * Later we should allocate these tables in the local node of the
513          * memory mapped. Unfortunately this is done currently before the
514          * nodes are discovered.
515          */
516         if (!after_bootmem) {
517                 init_gbpages();
518                 find_early_table_space(end);
519         }
520
521         start = (unsigned long)__va(start);
522         end = (unsigned long)__va(end);
523
524         for (; start < end; start = next) {
525                 pgd_t *pgd = pgd_offset_k(start);
526                 unsigned long pud_phys;
527                 pud_t *pud;
528
529                 if (after_bootmem)
530                         pud = pud_offset(pgd, start & PGDIR_MASK);
531                 else
532                         pud = alloc_low_page(&pud_phys);
533
534                 next = start + PGDIR_SIZE;
535                 if (next > end)
536                         next = end;
537                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
538                 if (!after_bootmem)
539                         pgd_populate(&init_mm, pgd_offset_k(start),
540                                      __va(pud_phys));
541                 unmap_low_page(pud);
542         }
543
544         if (!after_bootmem)
545                 mmu_cr4_features = read_cr4();
546         __flush_tlb_all();
547
548         if (!after_bootmem)
549                 reserve_early(table_start << PAGE_SHIFT,
550                                  table_end << PAGE_SHIFT, "PGTABLE");
551
552         if (!after_bootmem)
553                 early_memtest(start_phys, end_phys);
554
555         return last_map_addr >> PAGE_SHIFT;
556 }
557
558 #ifndef CONFIG_NUMA
559 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
560 {
561         unsigned long bootmap_size, bootmap;
562
563         bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
564         bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
565                                  PAGE_SIZE);
566         if (bootmap == -1L)
567                 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
568         /* don't touch min_low_pfn */
569         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
570                                          0, end_pfn);
571         e820_register_active_regions(0, start_pfn, end_pfn);
572         free_bootmem_with_active_regions(0, end_pfn);
573         early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
574         reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
575 }
576
577 void __init paging_init(void)
578 {
579         unsigned long max_zone_pfns[MAX_NR_ZONES];
580
581         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
582         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
583         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
584         max_zone_pfns[ZONE_NORMAL] = max_pfn;
585
586         memory_present(0, 0, max_pfn);
587         sparse_init();
588         free_area_init_nodes(max_zone_pfns);
589 }
590 #endif
591
592 /*
593  * Memory hotplug specific functions
594  */
595 #ifdef CONFIG_MEMORY_HOTPLUG
596 /*
597  * Memory is added always to NORMAL zone. This means you will never get
598  * additional DMA/DMA32 memory.
599  */
600 int arch_add_memory(int nid, u64 start, u64 size)
601 {
602         struct pglist_data *pgdat = NODE_DATA(nid);
603         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
604         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
605         unsigned long nr_pages = size >> PAGE_SHIFT;
606         int ret;
607
608         last_mapped_pfn = init_memory_mapping(start, start + size-1);
609         if (last_mapped_pfn > max_pfn_mapped)
610                 max_pfn_mapped = last_mapped_pfn;
611
612         ret = __add_pages(zone, start_pfn, nr_pages);
613         WARN_ON(1);
614
615         return ret;
616 }
617 EXPORT_SYMBOL_GPL(arch_add_memory);
618
619 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
620 int memory_add_physaddr_to_nid(u64 start)
621 {
622         return 0;
623 }
624 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
625 #endif
626
627 #endif /* CONFIG_MEMORY_HOTPLUG */
628
629 /*
630  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
631  * is valid. The argument is a physical page number.
632  *
633  *
634  * On x86, access has to be given to the first megabyte of ram because that area
635  * contains bios code and data regions used by X and dosemu and similar apps.
636  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
637  * mmio resources as well as potential bios/acpi data regions.
638  */
639 int devmem_is_allowed(unsigned long pagenr)
640 {
641         if (pagenr <= 256)
642                 return 1;
643         if (!page_is_ram(pagenr))
644                 return 1;
645         return 0;
646 }
647
648
649 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
650                          kcore_modules, kcore_vsyscall;
651
652 void __init mem_init(void)
653 {
654         long codesize, reservedpages, datasize, initsize;
655
656         pci_iommu_alloc();
657
658         /* clear_bss() already clear the empty_zero_page */
659
660         reservedpages = 0;
661
662         /* this will put all low memory onto the freelists */
663 #ifdef CONFIG_NUMA
664         totalram_pages = numa_free_all_bootmem();
665 #else
666         totalram_pages = free_all_bootmem();
667 #endif
668         reservedpages = max_pfn - totalram_pages -
669                                         absent_pages_in_range(0, max_pfn);
670         after_bootmem = 1;
671
672         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
673         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
674         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
675
676         /* Register memory areas for /proc/kcore */
677         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
678         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
679                    VMALLOC_END-VMALLOC_START);
680         kclist_add(&kcore_kernel, &_stext, _end - _stext);
681         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
682         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
683                                  VSYSCALL_END - VSYSCALL_START);
684
685         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
686                                 "%ldk reserved, %ldk data, %ldk init)\n",
687                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
688                 max_pfn << (PAGE_SHIFT-10),
689                 codesize >> 10,
690                 reservedpages << (PAGE_SHIFT-10),
691                 datasize >> 10,
692                 initsize >> 10);
693
694         cpa_init();
695 }
696
697 void free_init_pages(char *what, unsigned long begin, unsigned long end)
698 {
699         unsigned long addr = begin;
700
701         if (addr >= end)
702                 return;
703
704         /*
705          * If debugging page accesses then do not free this memory but
706          * mark them not present - any buggy init-section access will
707          * create a kernel page fault:
708          */
709 #ifdef CONFIG_DEBUG_PAGEALLOC
710         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
711                 begin, PAGE_ALIGN(end));
712         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
713 #else
714         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
715
716         for (; addr < end; addr += PAGE_SIZE) {
717                 ClearPageReserved(virt_to_page(addr));
718                 init_page_count(virt_to_page(addr));
719                 memset((void *)(addr & ~(PAGE_SIZE-1)),
720                         POISON_FREE_INITMEM, PAGE_SIZE);
721                 free_page(addr);
722                 totalram_pages++;
723         }
724 #endif
725 }
726
727 void free_initmem(void)
728 {
729         free_init_pages("unused kernel memory",
730                         (unsigned long)(&__init_begin),
731                         (unsigned long)(&__init_end));
732 }
733
734 #ifdef CONFIG_DEBUG_RODATA
735 const int rodata_test_data = 0xC3;
736 EXPORT_SYMBOL_GPL(rodata_test_data);
737
738 void mark_rodata_ro(void)
739 {
740         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
741
742         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
743                (end - start) >> 10);
744         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
745
746         /*
747          * The rodata section (but not the kernel text!) should also be
748          * not-executable.
749          */
750         start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
751         set_memory_nx(start, (end - start) >> PAGE_SHIFT);
752
753         rodata_test();
754
755 #ifdef CONFIG_CPA_DEBUG
756         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
757         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
758
759         printk(KERN_INFO "Testing CPA: again\n");
760         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
761 #endif
762 }
763
764 #endif
765
766 #ifdef CONFIG_BLK_DEV_INITRD
767 void free_initrd_mem(unsigned long start, unsigned long end)
768 {
769         free_init_pages("initrd memory", start, end);
770 }
771 #endif
772
773 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
774                                    int flags)
775 {
776 #ifdef CONFIG_NUMA
777         int nid, next_nid;
778         int ret;
779 #endif
780         unsigned long pfn = phys >> PAGE_SHIFT;
781
782         if (pfn >= max_pfn) {
783                 /*
784                  * This can happen with kdump kernels when accessing
785                  * firmware tables:
786                  */
787                 if (pfn < max_pfn_mapped)
788                         return -EFAULT;
789
790                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
791                                 phys, len);
792                 return -EFAULT;
793         }
794
795         /* Should check here against the e820 map to avoid double free */
796 #ifdef CONFIG_NUMA
797         nid = phys_to_nid(phys);
798         next_nid = phys_to_nid(phys + len - 1);
799         if (nid == next_nid)
800                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
801         else
802                 ret = reserve_bootmem(phys, len, flags);
803
804         if (ret != 0)
805                 return ret;
806
807 #else
808         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
809 #endif
810
811         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
812                 dma_reserve += len / PAGE_SIZE;
813                 set_dma_reserve(dma_reserve);
814         }
815
816         return 0;
817 }
818
819 int kern_addr_valid(unsigned long addr)
820 {
821         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
822         pgd_t *pgd;
823         pud_t *pud;
824         pmd_t *pmd;
825         pte_t *pte;
826
827         if (above != 0 && above != -1UL)
828                 return 0;
829
830         pgd = pgd_offset_k(addr);
831         if (pgd_none(*pgd))
832                 return 0;
833
834         pud = pud_offset(pgd, addr);
835         if (pud_none(*pud))
836                 return 0;
837
838         pmd = pmd_offset(pud, addr);
839         if (pmd_none(*pmd))
840                 return 0;
841
842         if (pmd_large(*pmd))
843                 return pfn_valid(pmd_pfn(*pmd));
844
845         pte = pte_offset_kernel(pmd, addr);
846         if (pte_none(*pte))
847                 return 0;
848
849         return pfn_valid(pte_pfn(*pte));
850 }
851
852 /*
853  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
854  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
855  * not need special handling anymore:
856  */
857 static struct vm_area_struct gate_vma = {
858         .vm_start       = VSYSCALL_START,
859         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
860         .vm_page_prot   = PAGE_READONLY_EXEC,
861         .vm_flags       = VM_READ | VM_EXEC
862 };
863
864 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
865 {
866 #ifdef CONFIG_IA32_EMULATION
867         if (test_tsk_thread_flag(tsk, TIF_IA32))
868                 return NULL;
869 #endif
870         return &gate_vma;
871 }
872
873 int in_gate_area(struct task_struct *task, unsigned long addr)
874 {
875         struct vm_area_struct *vma = get_gate_vma(task);
876
877         if (!vma)
878                 return 0;
879
880         return (addr >= vma->vm_start) && (addr < vma->vm_end);
881 }
882
883 /*
884  * Use this when you have no reliable task/vma, typically from interrupt
885  * context. It is less reliable than using the task's vma and may give
886  * false positives:
887  */
888 int in_gate_area_no_task(unsigned long addr)
889 {
890         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
891 }
892
893 const char *arch_vma_name(struct vm_area_struct *vma)
894 {
895         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
896                 return "[vdso]";
897         if (vma == &gate_vma)
898                 return "[vsyscall]";
899         return NULL;
900 }
901
902 #ifdef CONFIG_SPARSEMEM_VMEMMAP
903 /*
904  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
905  */
906 static long __meminitdata addr_start, addr_end;
907 static void __meminitdata *p_start, *p_end;
908 static int __meminitdata node_start;
909
910 int __meminit
911 vmemmap_populate(struct page *start_page, unsigned long size, int node)
912 {
913         unsigned long addr = (unsigned long)start_page;
914         unsigned long end = (unsigned long)(start_page + size);
915         unsigned long next;
916         pgd_t *pgd;
917         pud_t *pud;
918         pmd_t *pmd;
919
920         for (; addr < end; addr = next) {
921                 next = pmd_addr_end(addr, end);
922
923                 pgd = vmemmap_pgd_populate(addr, node);
924                 if (!pgd)
925                         return -ENOMEM;
926
927                 pud = vmemmap_pud_populate(pgd, addr, node);
928                 if (!pud)
929                         return -ENOMEM;
930
931                 pmd = pmd_offset(pud, addr);
932                 if (pmd_none(*pmd)) {
933                         pte_t entry;
934                         void *p;
935
936                         p = vmemmap_alloc_block(PMD_SIZE, node);
937                         if (!p)
938                                 return -ENOMEM;
939
940                         entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
941                                                         PAGE_KERNEL_LARGE);
942                         set_pmd(pmd, __pmd(pte_val(entry)));
943
944                         /* check to see if we have contiguous blocks */
945                         if (p_end != p || node_start != node) {
946                                 if (p_start)
947                                         printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
948                                                 addr_start, addr_end-1, p_start, p_end-1, node_start);
949                                 addr_start = addr;
950                                 node_start = node;
951                                 p_start = p;
952                         }
953                         addr_end = addr + PMD_SIZE;
954                         p_end = p + PMD_SIZE;
955                 } else {
956                         vmemmap_verify((pte_t *)pmd, node, addr, next);
957                 }
958         }
959         return 0;
960 }
961
962 void __meminit vmemmap_populate_print_last(void)
963 {
964         if (p_start) {
965                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
966                         addr_start, addr_end-1, p_start, p_end-1, node_start);
967                 p_start = NULL;
968                 p_end = NULL;
969                 node_start = 0;
970         }
971 }
972 #endif