]> err.no Git - linux-2.6/blob - arch/x86/mm/init_64.c
51f69b39b752686ddef0434d9a3fd776dec9c04d
[linux-2.6] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
38 #include <asm/dma.h>
39 #include <asm/fixmap.h>
40 #include <asm/e820.h>
41 #include <asm/apic.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
45 #include <asm/smp.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
48 #include <asm/numa.h>
49 #include <asm/cacheflush.h>
50
51 /*
52  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
53  * The direct mapping extends to max_pfn_mapped, so that we can directly access
54  * apertures, ACPI and other tables without having to play with fixmaps.
55  */
56 unsigned long max_pfn_mapped;
57
58 static unsigned long dma_reserve __initdata;
59
60 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
61
62 int direct_gbpages __meminitdata
63 #ifdef CONFIG_DIRECT_GBPAGES
64                                 = 1
65 #endif
66 ;
67
68 static int __init parse_direct_gbpages_off(char *arg)
69 {
70         direct_gbpages = 0;
71         return 0;
72 }
73 early_param("nogbpages", parse_direct_gbpages_off);
74
75 static int __init parse_direct_gbpages_on(char *arg)
76 {
77         direct_gbpages = 1;
78         return 0;
79 }
80 early_param("gbpages", parse_direct_gbpages_on);
81
82 /*
83  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
84  * physical space so we can cache the place of the first one and move
85  * around without checking the pgd every time.
86  */
87
88 void show_mem(void)
89 {
90         long i, total = 0, reserved = 0;
91         long shared = 0, cached = 0;
92         struct page *page;
93         pg_data_t *pgdat;
94
95         printk(KERN_INFO "Mem-info:\n");
96         show_free_areas();
97         for_each_online_pgdat(pgdat) {
98                 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
99                         /*
100                          * This loop can take a while with 256 GB and
101                          * 4k pages so defer the NMI watchdog:
102                          */
103                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
104                                 touch_nmi_watchdog();
105
106                         if (!pfn_valid(pgdat->node_start_pfn + i))
107                                 continue;
108
109                         page = pfn_to_page(pgdat->node_start_pfn + i);
110                         total++;
111                         if (PageReserved(page))
112                                 reserved++;
113                         else if (PageSwapCache(page))
114                                 cached++;
115                         else if (page_count(page))
116                                 shared += page_count(page) - 1;
117                 }
118         }
119         printk(KERN_INFO "%lu pages of RAM\n",          total);
120         printk(KERN_INFO "%lu reserved pages\n",        reserved);
121         printk(KERN_INFO "%lu pages shared\n",          shared);
122         printk(KERN_INFO "%lu pages swap cached\n",     cached);
123 }
124
125 int after_bootmem;
126
127 static __init void *spp_getpage(void)
128 {
129         void *ptr;
130
131         if (after_bootmem)
132                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
133         else
134                 ptr = alloc_bootmem_pages(PAGE_SIZE);
135
136         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
137                 panic("set_pte_phys: cannot allocate page data %s\n",
138                         after_bootmem ? "after bootmem" : "");
139         }
140
141         pr_debug("spp_getpage %p\n", ptr);
142
143         return ptr;
144 }
145
146 void
147 set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
148 {
149         pud_t *pud;
150         pmd_t *pmd;
151         pte_t *pte;
152
153         pud = pud_page + pud_index(vaddr);
154         if (pud_none(*pud)) {
155                 pmd = (pmd_t *) spp_getpage();
156                 pud_populate(&init_mm, pud, pmd);
157                 if (pmd != pmd_offset(pud, 0)) {
158                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
159                                 pmd, pmd_offset(pud, 0));
160                         return;
161                 }
162         }
163         pmd = pmd_offset(pud, vaddr);
164         if (pmd_none(*pmd)) {
165                 pte = (pte_t *) spp_getpage();
166                 pmd_populate_kernel(&init_mm, pmd, pte);
167                 if (pte != pte_offset_kernel(pmd, 0)) {
168                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
169                         return;
170                 }
171         }
172
173         pte = pte_offset_kernel(pmd, vaddr);
174         if (!pte_none(*pte) && pte_val(new_pte) &&
175             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
176                 pte_ERROR(*pte);
177         set_pte(pte, new_pte);
178
179         /*
180          * It's enough to flush this one mapping.
181          * (PGE mappings get flushed as well)
182          */
183         __flush_tlb_one(vaddr);
184 }
185
186 void
187 set_pte_vaddr(unsigned long vaddr, pte_t pteval)
188 {
189         pgd_t *pgd;
190         pud_t *pud_page;
191
192         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
193
194         pgd = pgd_offset_k(vaddr);
195         if (pgd_none(*pgd)) {
196                 printk(KERN_ERR
197                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
198                 return;
199         }
200         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
201         set_pte_vaddr_pud(pud_page, vaddr, pteval);
202 }
203
204 /*
205  * Create large page table mappings for a range of physical addresses.
206  */
207 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
208                                                 pgprot_t prot)
209 {
210         pgd_t *pgd;
211         pud_t *pud;
212         pmd_t *pmd;
213
214         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
215         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
216                 pgd = pgd_offset_k((unsigned long)__va(phys));
217                 if (pgd_none(*pgd)) {
218                         pud = (pud_t *) spp_getpage();
219                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
220                                                 _PAGE_USER));
221                 }
222                 pud = pud_offset(pgd, (unsigned long)__va(phys));
223                 if (pud_none(*pud)) {
224                         pmd = (pmd_t *) spp_getpage();
225                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
226                                                 _PAGE_USER));
227                 }
228                 pmd = pmd_offset(pud, phys);
229                 BUG_ON(!pmd_none(*pmd));
230                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
231         }
232 }
233
234 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
235 {
236         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
237 }
238
239 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
240 {
241         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
242 }
243
244 /*
245  * The head.S code sets up the kernel high mapping:
246  *
247  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
248  *
249  * phys_addr holds the negative offset to the kernel, which is added
250  * to the compile time generated pmds. This results in invalid pmds up
251  * to the point where we hit the physaddr 0 mapping.
252  *
253  * We limit the mappings to the region from _text to _end.  _end is
254  * rounded up to the 2MB boundary. This catches the invalid pmds as
255  * well, as they are located before _text:
256  */
257 void __init cleanup_highmap(void)
258 {
259         unsigned long vaddr = __START_KERNEL_map;
260         unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
261         pmd_t *pmd = level2_kernel_pgt;
262         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
263
264         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
265                 if (pmd_none(*pmd))
266                         continue;
267                 if (vaddr < (unsigned long) _text || vaddr > end)
268                         set_pmd(pmd, __pmd(0));
269         }
270 }
271
272 static unsigned long __initdata table_start;
273 static unsigned long __meminitdata table_end;
274 static unsigned long __meminitdata table_top;
275
276 static __meminit void *alloc_low_page(unsigned long *phys)
277 {
278         unsigned long pfn = table_end++;
279         void *adr;
280
281         if (after_bootmem) {
282                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
283                 *phys = __pa(adr);
284
285                 return adr;
286         }
287
288         if (pfn >= table_top)
289                 panic("alloc_low_page: ran out of memory");
290
291         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
292         memset(adr, 0, PAGE_SIZE);
293         *phys  = pfn * PAGE_SIZE;
294         return adr;
295 }
296
297 static __meminit void unmap_low_page(void *adr)
298 {
299         if (after_bootmem)
300                 return;
301
302         early_iounmap(adr, PAGE_SIZE);
303 }
304
305 static void __meminit
306 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
307 {
308         unsigned pages = 0;
309         int i;
310         pte_t *pte = pte_page + pte_index(addr);
311
312         for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
313
314                 if (addr >= end) {
315                         if (!after_bootmem) {
316                                 for(; i < PTRS_PER_PTE; i++, pte++)
317                                         set_pte(pte, __pte(0));
318                         }
319                         break;
320                 }
321
322                 if (pte_val(*pte))
323                         continue;
324
325                 if (0)
326                         printk("   pte=%p addr=%lx pte=%016lx\n",
327                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
328                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
329                 pages++;
330         }
331         update_page_count(PG_LEVEL_4K, pages);
332 }
333
334 static void __meminit
335 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
336 {
337         pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
338
339         phys_pte_init(pte, address, end);
340 }
341
342 static unsigned long __meminit
343 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
344                          unsigned long page_size_mask)
345 {
346         unsigned long pages = 0;
347
348         int i = pmd_index(address);
349
350         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
351                 unsigned long pte_phys;
352                 pmd_t *pmd = pmd_page + pmd_index(address);
353                 pte_t *pte;
354
355                 if (address >= end) {
356                         if (!after_bootmem) {
357                                 for (; i < PTRS_PER_PMD; i++, pmd++)
358                                         set_pmd(pmd, __pmd(0));
359                         }
360                         break;
361                 }
362
363                 if (pmd_val(*pmd)) {
364                         if (!pmd_large(*pmd))
365                                 phys_pte_update(pmd, address, end);
366                         continue;
367                 }
368
369                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
370                         pages++;
371                         set_pte((pte_t *)pmd,
372                                 pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
373                         continue;
374                 }
375
376                 pte = alloc_low_page(&pte_phys);
377                 phys_pte_init(pte, address, end);
378                 unmap_low_page(pte);
379
380                 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
381         }
382         update_page_count(PG_LEVEL_2M, pages);
383         return address;
384 }
385
386 static unsigned long __meminit
387 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
388                          unsigned long page_size_mask)
389 {
390         pmd_t *pmd = pmd_offset(pud, 0);
391         unsigned long last_map_addr;
392
393         spin_lock(&init_mm.page_table_lock);
394         last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask);
395         spin_unlock(&init_mm.page_table_lock);
396         __flush_tlb_all();
397         return last_map_addr;
398 }
399
400 static unsigned long __meminit
401 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
402                          unsigned long page_size_mask)
403 {
404         unsigned long pages = 0;
405         unsigned long last_map_addr = end;
406         int i = pud_index(addr);
407
408         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
409                 unsigned long pmd_phys;
410                 pud_t *pud = pud_page + pud_index(addr);
411                 pmd_t *pmd;
412
413                 if (addr >= end)
414                         break;
415
416                 if (!after_bootmem &&
417                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
418                         set_pud(pud, __pud(0));
419                         continue;
420                 }
421
422                 if (pud_val(*pud)) {
423                         if (!pud_large(*pud))
424                                 last_map_addr = phys_pmd_update(pud, addr, end,
425                                                          page_size_mask);
426                         continue;
427                 }
428
429                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
430                         pages++;
431                         set_pte((pte_t *)pud,
432                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
433                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
434                         continue;
435                 }
436
437                 pmd = alloc_low_page(&pmd_phys);
438
439                 spin_lock(&init_mm.page_table_lock);
440                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask);
441                 unmap_low_page(pmd);
442                 pud_populate(&init_mm, pud, __va(pmd_phys));
443                 spin_unlock(&init_mm.page_table_lock);
444
445         }
446         __flush_tlb_all();
447         update_page_count(PG_LEVEL_1G, pages);
448
449         return last_map_addr;
450 }
451
452 static unsigned long __meminit
453 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
454                  unsigned long page_size_mask)
455 {
456         pud_t *pud;
457
458         pud = (pud_t *)pgd_page_vaddr(*pgd);
459
460         return phys_pud_init(pud, addr, end, page_size_mask);
461 }
462
463 static void __init find_early_table_space(unsigned long end)
464 {
465         unsigned long puds, pmds, ptes, tables, start;
466
467         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
468         tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
469         if (direct_gbpages) {
470                 unsigned long extra;
471                 extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
472                 pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
473         } else
474                 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
475         tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
476
477         if (cpu_has_pse) {
478                 unsigned long extra;
479                 extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
480                 ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
481         } else
482                 ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
483         tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE);
484
485         /*
486          * RED-PEN putting page tables only on node 0 could
487          * cause a hotspot and fill up ZONE_DMA. The page tables
488          * need roughly 0.5KB per GB.
489          */
490         start = 0x8000;
491         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
492         if (table_start == -1UL)
493                 panic("Cannot find space for the kernel page tables");
494
495         table_start >>= PAGE_SHIFT;
496         table_end = table_start;
497         table_top = table_start + (tables >> PAGE_SHIFT);
498
499         printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
500                 end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
501 }
502
503 static void __init init_gbpages(void)
504 {
505         if (direct_gbpages && cpu_has_gbpages)
506                 printk(KERN_INFO "Using GB pages for direct mapping\n");
507         else
508                 direct_gbpages = 0;
509 }
510
511 #ifdef CONFIG_MEMTEST
512
513 static void __init memtest(unsigned long start_phys, unsigned long size,
514                                  unsigned pattern)
515 {
516         unsigned long i;
517         unsigned long *start;
518         unsigned long start_bad;
519         unsigned long last_bad;
520         unsigned long val;
521         unsigned long start_phys_aligned;
522         unsigned long count;
523         unsigned long incr;
524
525         switch (pattern) {
526         case 0:
527                 val = 0UL;
528                 break;
529         case 1:
530                 val = -1UL;
531                 break;
532         case 2:
533                 val = 0x5555555555555555UL;
534                 break;
535         case 3:
536                 val = 0xaaaaaaaaaaaaaaaaUL;
537                 break;
538         default:
539                 return;
540         }
541
542         incr = sizeof(unsigned long);
543         start_phys_aligned = ALIGN(start_phys, incr);
544         count = (size - (start_phys_aligned - start_phys))/incr;
545         start = __va(start_phys_aligned);
546         start_bad = 0;
547         last_bad = 0;
548
549         for (i = 0; i < count; i++)
550                 start[i] = val;
551         for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
552                 if (*start != val) {
553                         if (start_phys_aligned == last_bad + incr) {
554                                 last_bad += incr;
555                         } else {
556                                 if (start_bad) {
557                                         printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
558                                                 val, start_bad, last_bad + incr);
559                                         reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
560                                 }
561                                 start_bad = last_bad = start_phys_aligned;
562                         }
563                 }
564         }
565         if (start_bad) {
566                 printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
567                         val, start_bad, last_bad + incr);
568                 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
569         }
570
571 }
572
573 /* default is disabled */
574 static int memtest_pattern __initdata;
575
576 static int __init parse_memtest(char *arg)
577 {
578         if (arg)
579                 memtest_pattern = simple_strtoul(arg, NULL, 0);
580         return 0;
581 }
582
583 early_param("memtest", parse_memtest);
584
585 static void __init early_memtest(unsigned long start, unsigned long end)
586 {
587         u64 t_start, t_size;
588         unsigned pattern;
589
590         if (!memtest_pattern)
591                 return;
592
593         printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
594         for (pattern = 0; pattern < memtest_pattern; pattern++) {
595                 t_start = start;
596                 t_size = 0;
597                 while (t_start < end) {
598                         t_start = find_e820_area_size(t_start, &t_size, 1);
599
600                         /* done ? */
601                         if (t_start >= end)
602                                 break;
603                         if (t_start + t_size > end)
604                                 t_size = end - t_start;
605
606                         printk(KERN_CONT "\n  %016llx - %016llx pattern %d",
607                                 (unsigned long long)t_start,
608                                 (unsigned long long)t_start + t_size, pattern);
609
610                         memtest(t_start, t_size, pattern);
611
612                         t_start += t_size;
613                 }
614         }
615         printk(KERN_CONT "\n");
616 }
617 #else
618 static void __init early_memtest(unsigned long start, unsigned long end)
619 {
620 }
621 #endif
622
623 static unsigned long __init kernel_physical_mapping_init(unsigned long start,
624                                                 unsigned long end,
625                                                 unsigned long page_size_mask)
626 {
627
628         unsigned long next, last_map_addr = end;
629
630         start = (unsigned long)__va(start);
631         end = (unsigned long)__va(end);
632
633         for (; start < end; start = next) {
634                 pgd_t *pgd = pgd_offset_k(start);
635                 unsigned long pud_phys;
636                 pud_t *pud;
637
638                 next = start + PGDIR_SIZE;
639                 if (next > end)
640                         next = end;
641
642                 if (pgd_val(*pgd)) {
643                         last_map_addr = phys_pud_update(pgd, __pa(start),
644                                                  __pa(end), page_size_mask);
645                         continue;
646                 }
647
648                 if (after_bootmem)
649                         pud = pud_offset(pgd, start & PGDIR_MASK);
650                 else
651                         pud = alloc_low_page(&pud_phys);
652
653                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
654                                                  page_size_mask);
655                 unmap_low_page(pud);
656                 pgd_populate(&init_mm, pgd_offset_k(start),
657                              __va(pud_phys));
658         }
659
660         return last_map_addr;
661 }
662 /*
663  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
664  * This runs before bootmem is initialized and gets pages directly from
665  * the physical memory. To access them they are temporarily mapped.
666  */
667 unsigned long __init_refok init_memory_mapping(unsigned long start,
668                                                unsigned long end)
669 {
670         unsigned long last_map_addr = end;
671         unsigned long page_size_mask = 0;
672         unsigned long start_pfn, end_pfn;
673
674         printk(KERN_INFO "init_memory_mapping\n");
675
676         /*
677          * Find space for the kernel direct mapping tables.
678          *
679          * Later we should allocate these tables in the local node of the
680          * memory mapped. Unfortunately this is done currently before the
681          * nodes are discovered.
682          */
683         if (!after_bootmem) {
684                 init_gbpages();
685                 find_early_table_space(end);
686         }
687
688         if (direct_gbpages)
689                 page_size_mask |= 1 << PG_LEVEL_1G;
690         if (cpu_has_pse)
691                 page_size_mask |= 1 << PG_LEVEL_2M;
692
693         /* head if not big page aligment ?*/
694         start_pfn = start >> PAGE_SHIFT;
695         end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
696                         << (PMD_SHIFT - PAGE_SHIFT);
697         if (start_pfn < end_pfn)
698                 last_map_addr = kernel_physical_mapping_init(
699                                         start_pfn<<PAGE_SHIFT,
700                                         end_pfn<<PAGE_SHIFT, 0);
701
702         /* big page (2M) range*/
703         start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
704                          << (PMD_SHIFT - PAGE_SHIFT);
705         end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
706                          << (PUD_SHIFT - PAGE_SHIFT);
707         if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
708                 end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
709         if (start_pfn < end_pfn)
710                 last_map_addr = kernel_physical_mapping_init(
711                                              start_pfn<<PAGE_SHIFT,
712                                              end_pfn<<PAGE_SHIFT,
713                                              page_size_mask & (1<<PG_LEVEL_2M));
714
715         /* big page (1G) range */
716         start_pfn = end_pfn;
717         end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
718         if (start_pfn < end_pfn)
719                 last_map_addr = kernel_physical_mapping_init(
720                                              start_pfn<<PAGE_SHIFT,
721                                              end_pfn<<PAGE_SHIFT,
722                                              page_size_mask & ((1<<PG_LEVEL_2M)
723                                                          | (1<<PG_LEVEL_1G)));
724
725         /* tail is not big page (1G) alignment */
726         start_pfn = end_pfn;
727         end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
728         if (start_pfn < end_pfn)
729                 last_map_addr = kernel_physical_mapping_init(
730                                              start_pfn<<PAGE_SHIFT,
731                                              end_pfn<<PAGE_SHIFT,
732                                              page_size_mask & (1<<PG_LEVEL_2M));
733         /* tail is not big page (2M) alignment */
734         start_pfn = end_pfn;
735         end_pfn = end>>PAGE_SHIFT;
736         if (start_pfn < end_pfn)
737                 last_map_addr = kernel_physical_mapping_init(
738                                              start_pfn<<PAGE_SHIFT,
739                                              end_pfn<<PAGE_SHIFT, 0);
740
741         if (!after_bootmem)
742                 mmu_cr4_features = read_cr4();
743         __flush_tlb_all();
744
745         if (!after_bootmem && table_end > table_start)
746                 reserve_early(table_start << PAGE_SHIFT,
747                                  table_end << PAGE_SHIFT, "PGTABLE");
748
749         printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
750                          last_map_addr, end);
751
752         if (!after_bootmem)
753                 early_memtest(start, end);
754
755         return last_map_addr >> PAGE_SHIFT;
756 }
757
758 #ifndef CONFIG_NUMA
759 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
760 {
761         unsigned long bootmap_size, bootmap;
762
763         bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
764         bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
765                                  PAGE_SIZE);
766         if (bootmap == -1L)
767                 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
768         /* don't touch min_low_pfn */
769         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
770                                          0, end_pfn);
771         e820_register_active_regions(0, start_pfn, end_pfn);
772         free_bootmem_with_active_regions(0, end_pfn);
773         early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
774         reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
775 }
776
777 void __init paging_init(void)
778 {
779         unsigned long max_zone_pfns[MAX_NR_ZONES];
780
781         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
782         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
783         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
784         max_zone_pfns[ZONE_NORMAL] = max_pfn;
785
786         memory_present(0, 0, max_pfn);
787         sparse_init();
788         free_area_init_nodes(max_zone_pfns);
789 }
790 #endif
791
792 /*
793  * Memory hotplug specific functions
794  */
795 #ifdef CONFIG_MEMORY_HOTPLUG
796 /*
797  * Memory is added always to NORMAL zone. This means you will never get
798  * additional DMA/DMA32 memory.
799  */
800 int arch_add_memory(int nid, u64 start, u64 size)
801 {
802         struct pglist_data *pgdat = NODE_DATA(nid);
803         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
804         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
805         unsigned long nr_pages = size >> PAGE_SHIFT;
806         int ret;
807
808         last_mapped_pfn = init_memory_mapping(start, start + size-1);
809         if (last_mapped_pfn > max_pfn_mapped)
810                 max_pfn_mapped = last_mapped_pfn;
811
812         ret = __add_pages(zone, start_pfn, nr_pages);
813         WARN_ON(1);
814
815         return ret;
816 }
817 EXPORT_SYMBOL_GPL(arch_add_memory);
818
819 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
820 int memory_add_physaddr_to_nid(u64 start)
821 {
822         return 0;
823 }
824 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
825 #endif
826
827 #endif /* CONFIG_MEMORY_HOTPLUG */
828
829 /*
830  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
831  * is valid. The argument is a physical page number.
832  *
833  *
834  * On x86, access has to be given to the first megabyte of ram because that area
835  * contains bios code and data regions used by X and dosemu and similar apps.
836  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
837  * mmio resources as well as potential bios/acpi data regions.
838  */
839 int devmem_is_allowed(unsigned long pagenr)
840 {
841         if (pagenr <= 256)
842                 return 1;
843         if (!page_is_ram(pagenr))
844                 return 1;
845         return 0;
846 }
847
848
849 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
850                          kcore_modules, kcore_vsyscall;
851
852 void __init mem_init(void)
853 {
854         long codesize, reservedpages, datasize, initsize;
855
856         pci_iommu_alloc();
857
858         /* clear_bss() already clear the empty_zero_page */
859
860         reservedpages = 0;
861
862         /* this will put all low memory onto the freelists */
863 #ifdef CONFIG_NUMA
864         totalram_pages = numa_free_all_bootmem();
865 #else
866         totalram_pages = free_all_bootmem();
867 #endif
868         reservedpages = max_pfn - totalram_pages -
869                                         absent_pages_in_range(0, max_pfn);
870         after_bootmem = 1;
871
872         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
873         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
874         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
875
876         /* Register memory areas for /proc/kcore */
877         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
878         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
879                    VMALLOC_END-VMALLOC_START);
880         kclist_add(&kcore_kernel, &_stext, _end - _stext);
881         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
882         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
883                                  VSYSCALL_END - VSYSCALL_START);
884
885         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
886                                 "%ldk reserved, %ldk data, %ldk init)\n",
887                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
888                 max_pfn << (PAGE_SHIFT-10),
889                 codesize >> 10,
890                 reservedpages << (PAGE_SHIFT-10),
891                 datasize >> 10,
892                 initsize >> 10);
893
894         cpa_init();
895 }
896
897 void free_init_pages(char *what, unsigned long begin, unsigned long end)
898 {
899         unsigned long addr = begin;
900
901         if (addr >= end)
902                 return;
903
904         /*
905          * If debugging page accesses then do not free this memory but
906          * mark them not present - any buggy init-section access will
907          * create a kernel page fault:
908          */
909 #ifdef CONFIG_DEBUG_PAGEALLOC
910         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
911                 begin, PAGE_ALIGN(end));
912         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
913 #else
914         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
915
916         for (; addr < end; addr += PAGE_SIZE) {
917                 ClearPageReserved(virt_to_page(addr));
918                 init_page_count(virt_to_page(addr));
919                 memset((void *)(addr & ~(PAGE_SIZE-1)),
920                         POISON_FREE_INITMEM, PAGE_SIZE);
921                 free_page(addr);
922                 totalram_pages++;
923         }
924 #endif
925 }
926
927 void free_initmem(void)
928 {
929         free_init_pages("unused kernel memory",
930                         (unsigned long)(&__init_begin),
931                         (unsigned long)(&__init_end));
932 }
933
934 #ifdef CONFIG_DEBUG_RODATA
935 const int rodata_test_data = 0xC3;
936 EXPORT_SYMBOL_GPL(rodata_test_data);
937
938 void mark_rodata_ro(void)
939 {
940         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
941
942         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
943                (end - start) >> 10);
944         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
945
946         /*
947          * The rodata section (but not the kernel text!) should also be
948          * not-executable.
949          */
950         start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
951         set_memory_nx(start, (end - start) >> PAGE_SHIFT);
952
953         rodata_test();
954
955 #ifdef CONFIG_CPA_DEBUG
956         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
957         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
958
959         printk(KERN_INFO "Testing CPA: again\n");
960         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
961 #endif
962 }
963
964 #endif
965
966 #ifdef CONFIG_BLK_DEV_INITRD
967 void free_initrd_mem(unsigned long start, unsigned long end)
968 {
969         free_init_pages("initrd memory", start, end);
970 }
971 #endif
972
973 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
974                                    int flags)
975 {
976 #ifdef CONFIG_NUMA
977         int nid, next_nid;
978         int ret;
979 #endif
980         unsigned long pfn = phys >> PAGE_SHIFT;
981
982         if (pfn >= max_pfn) {
983                 /*
984                  * This can happen with kdump kernels when accessing
985                  * firmware tables:
986                  */
987                 if (pfn < max_pfn_mapped)
988                         return -EFAULT;
989
990                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
991                                 phys, len);
992                 return -EFAULT;
993         }
994
995         /* Should check here against the e820 map to avoid double free */
996 #ifdef CONFIG_NUMA
997         nid = phys_to_nid(phys);
998         next_nid = phys_to_nid(phys + len - 1);
999         if (nid == next_nid)
1000                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
1001         else
1002                 ret = reserve_bootmem(phys, len, flags);
1003
1004         if (ret != 0)
1005                 return ret;
1006
1007 #else
1008         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
1009 #endif
1010
1011         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
1012                 dma_reserve += len / PAGE_SIZE;
1013                 set_dma_reserve(dma_reserve);
1014         }
1015
1016         return 0;
1017 }
1018
1019 int kern_addr_valid(unsigned long addr)
1020 {
1021         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1022         pgd_t *pgd;
1023         pud_t *pud;
1024         pmd_t *pmd;
1025         pte_t *pte;
1026
1027         if (above != 0 && above != -1UL)
1028                 return 0;
1029
1030         pgd = pgd_offset_k(addr);
1031         if (pgd_none(*pgd))
1032                 return 0;
1033
1034         pud = pud_offset(pgd, addr);
1035         if (pud_none(*pud))
1036                 return 0;
1037
1038         pmd = pmd_offset(pud, addr);
1039         if (pmd_none(*pmd))
1040                 return 0;
1041
1042         if (pmd_large(*pmd))
1043                 return pfn_valid(pmd_pfn(*pmd));
1044
1045         pte = pte_offset_kernel(pmd, addr);
1046         if (pte_none(*pte))
1047                 return 0;
1048
1049         return pfn_valid(pte_pfn(*pte));
1050 }
1051
1052 /*
1053  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
1054  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1055  * not need special handling anymore:
1056  */
1057 static struct vm_area_struct gate_vma = {
1058         .vm_start       = VSYSCALL_START,
1059         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
1060         .vm_page_prot   = PAGE_READONLY_EXEC,
1061         .vm_flags       = VM_READ | VM_EXEC
1062 };
1063
1064 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
1065 {
1066 #ifdef CONFIG_IA32_EMULATION
1067         if (test_tsk_thread_flag(tsk, TIF_IA32))
1068                 return NULL;
1069 #endif
1070         return &gate_vma;
1071 }
1072
1073 int in_gate_area(struct task_struct *task, unsigned long addr)
1074 {
1075         struct vm_area_struct *vma = get_gate_vma(task);
1076
1077         if (!vma)
1078                 return 0;
1079
1080         return (addr >= vma->vm_start) && (addr < vma->vm_end);
1081 }
1082
1083 /*
1084  * Use this when you have no reliable task/vma, typically from interrupt
1085  * context. It is less reliable than using the task's vma and may give
1086  * false positives:
1087  */
1088 int in_gate_area_no_task(unsigned long addr)
1089 {
1090         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1091 }
1092
1093 const char *arch_vma_name(struct vm_area_struct *vma)
1094 {
1095         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1096                 return "[vdso]";
1097         if (vma == &gate_vma)
1098                 return "[vsyscall]";
1099         return NULL;
1100 }
1101
1102 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1103 /*
1104  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1105  */
1106 static long __meminitdata addr_start, addr_end;
1107 static void __meminitdata *p_start, *p_end;
1108 static int __meminitdata node_start;
1109
1110 int __meminit
1111 vmemmap_populate(struct page *start_page, unsigned long size, int node)
1112 {
1113         unsigned long addr = (unsigned long)start_page;
1114         unsigned long end = (unsigned long)(start_page + size);
1115         unsigned long next;
1116         pgd_t *pgd;
1117         pud_t *pud;
1118         pmd_t *pmd;
1119
1120         for (; addr < end; addr = next) {
1121                 void *p = NULL;
1122
1123                 pgd = vmemmap_pgd_populate(addr, node);
1124                 if (!pgd)
1125                         return -ENOMEM;
1126
1127                 pud = vmemmap_pud_populate(pgd, addr, node);
1128                 if (!pud)
1129                         return -ENOMEM;
1130
1131                 if (!cpu_has_pse) {
1132                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1133                         pmd = vmemmap_pmd_populate(pud, addr, node);
1134
1135                         if (!pmd)
1136                                 return -ENOMEM;
1137
1138                         p = vmemmap_pte_populate(pmd, addr, node);
1139
1140                         if (!p)
1141                                 return -ENOMEM;
1142
1143                         addr_end = addr + PAGE_SIZE;
1144                         p_end = p + PAGE_SIZE;
1145                 } else {
1146                         next = pmd_addr_end(addr, end);
1147
1148                         pmd = pmd_offset(pud, addr);
1149                         if (pmd_none(*pmd)) {
1150                                 pte_t entry;
1151
1152                                 p = vmemmap_alloc_block(PMD_SIZE, node);
1153                                 if (!p)
1154                                         return -ENOMEM;
1155
1156                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1157                                                 PAGE_KERNEL_LARGE);
1158                                 set_pmd(pmd, __pmd(pte_val(entry)));
1159
1160                                 /* check to see if we have contiguous blocks */
1161                                 if (p_end != p || node_start != node) {
1162                                         if (p_start)
1163                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1164                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1165                                         addr_start = addr;
1166                                         node_start = node;
1167                                         p_start = p;
1168                                 }
1169
1170                                 addr_end = addr + PMD_SIZE;
1171                                 p_end = p + PMD_SIZE;
1172                         } else
1173                                 vmemmap_verify((pte_t *)pmd, node, addr, next);
1174                 }
1175
1176         }
1177         return 0;
1178 }
1179
1180 void __meminit vmemmap_populate_print_last(void)
1181 {
1182         if (p_start) {
1183                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1184                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1185                 p_start = NULL;
1186                 p_end = NULL;
1187                 node_start = 0;
1188         }
1189 }
1190 #endif