2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
23 #include <linux/clocksource.h>
24 #include <linux/kvm.h>
26 #include <linux/vmalloc.h>
27 #include <linux/module.h>
28 #include <linux/mman.h>
29 #include <linux/highmem.h>
31 #include <asm/uaccess.h>
35 #define MAX_IO_MSRS 256
36 #define CR0_RESERVED_BITS \
37 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
38 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
39 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
40 #define CR4_RESERVED_BITS \
41 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
42 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
43 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
44 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
46 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
48 * - enable syscall per default because its emulated by KVM
49 * - enable LME and LMA per default on 64 bit KVM
52 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
54 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
57 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
58 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
60 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
61 struct kvm_cpuid_entry2 __user *entries);
63 struct kvm_x86_ops *kvm_x86_ops;
65 struct kvm_stats_debugfs_item debugfs_entries[] = {
66 { "pf_fixed", VCPU_STAT(pf_fixed) },
67 { "pf_guest", VCPU_STAT(pf_guest) },
68 { "tlb_flush", VCPU_STAT(tlb_flush) },
69 { "invlpg", VCPU_STAT(invlpg) },
70 { "exits", VCPU_STAT(exits) },
71 { "io_exits", VCPU_STAT(io_exits) },
72 { "mmio_exits", VCPU_STAT(mmio_exits) },
73 { "signal_exits", VCPU_STAT(signal_exits) },
74 { "irq_window", VCPU_STAT(irq_window_exits) },
75 { "halt_exits", VCPU_STAT(halt_exits) },
76 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
77 { "hypercalls", VCPU_STAT(hypercalls) },
78 { "request_irq", VCPU_STAT(request_irq_exits) },
79 { "irq_exits", VCPU_STAT(irq_exits) },
80 { "host_state_reload", VCPU_STAT(host_state_reload) },
81 { "efer_reload", VCPU_STAT(efer_reload) },
82 { "fpu_reload", VCPU_STAT(fpu_reload) },
83 { "insn_emulation", VCPU_STAT(insn_emulation) },
84 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
85 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
86 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
87 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
88 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
89 { "mmu_flooded", VM_STAT(mmu_flooded) },
90 { "mmu_recycled", VM_STAT(mmu_recycled) },
91 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
92 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
93 { "largepages", VM_STAT(lpages) },
98 unsigned long segment_base(u16 selector)
100 struct descriptor_table gdt;
101 struct desc_struct *d;
102 unsigned long table_base;
108 asm("sgdt %0" : "=m"(gdt));
109 table_base = gdt.base;
111 if (selector & 4) { /* from ldt */
114 asm("sldt %0" : "=g"(ldt_selector));
115 table_base = segment_base(ldt_selector);
117 d = (struct desc_struct *)(table_base + (selector & ~7));
118 v = d->base0 | ((unsigned long)d->base1 << 16) |
119 ((unsigned long)d->base2 << 24);
121 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
122 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
126 EXPORT_SYMBOL_GPL(segment_base);
128 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
130 if (irqchip_in_kernel(vcpu->kvm))
131 return vcpu->arch.apic_base;
133 return vcpu->arch.apic_base;
135 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
137 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
139 /* TODO: reserve bits check */
140 if (irqchip_in_kernel(vcpu->kvm))
141 kvm_lapic_set_base(vcpu, data);
143 vcpu->arch.apic_base = data;
145 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
147 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
149 WARN_ON(vcpu->arch.exception.pending);
150 vcpu->arch.exception.pending = true;
151 vcpu->arch.exception.has_error_code = false;
152 vcpu->arch.exception.nr = nr;
154 EXPORT_SYMBOL_GPL(kvm_queue_exception);
156 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
159 ++vcpu->stat.pf_guest;
160 if (vcpu->arch.exception.pending) {
161 if (vcpu->arch.exception.nr == PF_VECTOR) {
162 printk(KERN_DEBUG "kvm: inject_page_fault:"
163 " double fault 0x%lx\n", addr);
164 vcpu->arch.exception.nr = DF_VECTOR;
165 vcpu->arch.exception.error_code = 0;
166 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
167 /* triple fault -> shutdown */
168 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
172 vcpu->arch.cr2 = addr;
173 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
176 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
178 WARN_ON(vcpu->arch.exception.pending);
179 vcpu->arch.exception.pending = true;
180 vcpu->arch.exception.has_error_code = true;
181 vcpu->arch.exception.nr = nr;
182 vcpu->arch.exception.error_code = error_code;
184 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
186 static void __queue_exception(struct kvm_vcpu *vcpu)
188 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
189 vcpu->arch.exception.has_error_code,
190 vcpu->arch.exception.error_code);
194 * Load the pae pdptrs. Return true is they are all valid.
196 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
198 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
199 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
202 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
204 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
205 offset * sizeof(u64), sizeof(pdpte));
210 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
211 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
218 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
223 EXPORT_SYMBOL_GPL(load_pdptrs);
225 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
227 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
231 if (is_long_mode(vcpu) || !is_pae(vcpu))
234 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
237 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
243 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
245 if (cr0 & CR0_RESERVED_BITS) {
246 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
247 cr0, vcpu->arch.cr0);
248 kvm_inject_gp(vcpu, 0);
252 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
253 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
254 kvm_inject_gp(vcpu, 0);
258 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
259 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
260 "and a clear PE flag\n");
261 kvm_inject_gp(vcpu, 0);
265 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
267 if ((vcpu->arch.shadow_efer & EFER_LME)) {
271 printk(KERN_DEBUG "set_cr0: #GP, start paging "
272 "in long mode while PAE is disabled\n");
273 kvm_inject_gp(vcpu, 0);
276 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
278 printk(KERN_DEBUG "set_cr0: #GP, start paging "
279 "in long mode while CS.L == 1\n");
280 kvm_inject_gp(vcpu, 0);
286 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
287 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
289 kvm_inject_gp(vcpu, 0);
295 kvm_x86_ops->set_cr0(vcpu, cr0);
296 vcpu->arch.cr0 = cr0;
298 kvm_mmu_reset_context(vcpu);
301 EXPORT_SYMBOL_GPL(kvm_set_cr0);
303 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
305 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
306 KVMTRACE_1D(LMSW, vcpu,
307 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
310 EXPORT_SYMBOL_GPL(kvm_lmsw);
312 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
314 if (cr4 & CR4_RESERVED_BITS) {
315 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
316 kvm_inject_gp(vcpu, 0);
320 if (is_long_mode(vcpu)) {
321 if (!(cr4 & X86_CR4_PAE)) {
322 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
324 kvm_inject_gp(vcpu, 0);
327 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
328 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
329 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
330 kvm_inject_gp(vcpu, 0);
334 if (cr4 & X86_CR4_VMXE) {
335 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
336 kvm_inject_gp(vcpu, 0);
339 kvm_x86_ops->set_cr4(vcpu, cr4);
340 vcpu->arch.cr4 = cr4;
341 kvm_mmu_reset_context(vcpu);
343 EXPORT_SYMBOL_GPL(kvm_set_cr4);
345 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
347 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
348 kvm_mmu_flush_tlb(vcpu);
352 if (is_long_mode(vcpu)) {
353 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
354 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
355 kvm_inject_gp(vcpu, 0);
360 if (cr3 & CR3_PAE_RESERVED_BITS) {
362 "set_cr3: #GP, reserved bits\n");
363 kvm_inject_gp(vcpu, 0);
366 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
367 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
369 kvm_inject_gp(vcpu, 0);
374 * We don't check reserved bits in nonpae mode, because
375 * this isn't enforced, and VMware depends on this.
380 * Does the new cr3 value map to physical memory? (Note, we
381 * catch an invalid cr3 even in real-mode, because it would
382 * cause trouble later on when we turn on paging anyway.)
384 * A real CPU would silently accept an invalid cr3 and would
385 * attempt to use it - with largely undefined (and often hard
386 * to debug) behavior on the guest side.
388 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
389 kvm_inject_gp(vcpu, 0);
391 vcpu->arch.cr3 = cr3;
392 vcpu->arch.mmu.new_cr3(vcpu);
395 EXPORT_SYMBOL_GPL(kvm_set_cr3);
397 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
399 if (cr8 & CR8_RESERVED_BITS) {
400 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
401 kvm_inject_gp(vcpu, 0);
404 if (irqchip_in_kernel(vcpu->kvm))
405 kvm_lapic_set_tpr(vcpu, cr8);
407 vcpu->arch.cr8 = cr8;
409 EXPORT_SYMBOL_GPL(kvm_set_cr8);
411 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
413 if (irqchip_in_kernel(vcpu->kvm))
414 return kvm_lapic_get_cr8(vcpu);
416 return vcpu->arch.cr8;
418 EXPORT_SYMBOL_GPL(kvm_get_cr8);
421 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
422 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
424 * This list is modified at module load time to reflect the
425 * capabilities of the host cpu.
427 static u32 msrs_to_save[] = {
428 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
431 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
433 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
434 MSR_IA32_PERF_STATUS,
437 static unsigned num_msrs_to_save;
439 static u32 emulated_msrs[] = {
440 MSR_IA32_MISC_ENABLE,
443 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
445 if (efer & efer_reserved_bits) {
446 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
448 kvm_inject_gp(vcpu, 0);
453 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
454 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
455 kvm_inject_gp(vcpu, 0);
459 kvm_x86_ops->set_efer(vcpu, efer);
462 efer |= vcpu->arch.shadow_efer & EFER_LMA;
464 vcpu->arch.shadow_efer = efer;
467 void kvm_enable_efer_bits(u64 mask)
469 efer_reserved_bits &= ~mask;
471 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
475 * Writes msr value into into the appropriate "register".
476 * Returns 0 on success, non-0 otherwise.
477 * Assumes vcpu_load() was already called.
479 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
481 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
485 * Adapt set_msr() to msr_io()'s calling convention
487 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
489 return kvm_set_msr(vcpu, index, *data);
492 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
495 struct kvm_wall_clock wc;
496 struct timespec wc_ts;
503 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
505 wc_ts = current_kernel_time();
506 wc.wc_sec = wc_ts.tv_sec;
507 wc.wc_nsec = wc_ts.tv_nsec;
508 wc.wc_version = version;
510 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
513 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
516 static void kvm_write_guest_time(struct kvm_vcpu *v)
520 struct kvm_vcpu_arch *vcpu = &v->arch;
523 if ((!vcpu->time_page))
526 /* Keep irq disabled to prevent changes to the clock */
527 local_irq_save(flags);
528 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
529 &vcpu->hv_clock.tsc_timestamp);
531 local_irq_restore(flags);
533 /* With all the info we got, fill in the values */
535 vcpu->hv_clock.system_time = ts.tv_nsec +
536 (NSEC_PER_SEC * (u64)ts.tv_sec);
538 * The interface expects us to write an even number signaling that the
539 * update is finished. Since the guest won't see the intermediate
540 * state, we just write "2" at the end
542 vcpu->hv_clock.version = 2;
544 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
546 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
547 sizeof(vcpu->hv_clock));
549 kunmap_atomic(shared_kaddr, KM_USER0);
551 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
555 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
559 set_efer(vcpu, data);
561 case MSR_IA32_MC0_STATUS:
562 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
565 case MSR_IA32_MCG_STATUS:
566 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
569 case MSR_IA32_MCG_CTL:
570 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
573 case MSR_IA32_UCODE_REV:
574 case MSR_IA32_UCODE_WRITE:
575 case 0x200 ... 0x2ff: /* MTRRs */
577 case MSR_IA32_APICBASE:
578 kvm_set_apic_base(vcpu, data);
580 case MSR_IA32_MISC_ENABLE:
581 vcpu->arch.ia32_misc_enable_msr = data;
583 case MSR_KVM_WALL_CLOCK:
584 vcpu->kvm->arch.wall_clock = data;
585 kvm_write_wall_clock(vcpu->kvm, data);
587 case MSR_KVM_SYSTEM_TIME: {
588 if (vcpu->arch.time_page) {
589 kvm_release_page_dirty(vcpu->arch.time_page);
590 vcpu->arch.time_page = NULL;
593 vcpu->arch.time = data;
595 /* we verify if the enable bit is set... */
599 /* ...but clean it before doing the actual write */
600 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
602 vcpu->arch.hv_clock.tsc_to_system_mul =
603 clocksource_khz2mult(tsc_khz, 22);
604 vcpu->arch.hv_clock.tsc_shift = 22;
606 down_read(¤t->mm->mmap_sem);
607 vcpu->arch.time_page =
608 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
609 up_read(¤t->mm->mmap_sem);
611 if (is_error_page(vcpu->arch.time_page)) {
612 kvm_release_page_clean(vcpu->arch.time_page);
613 vcpu->arch.time_page = NULL;
616 kvm_write_guest_time(vcpu);
620 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
625 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
629 * Reads an msr value (of 'msr_index') into 'pdata'.
630 * Returns 0 on success, non-0 otherwise.
631 * Assumes vcpu_load() was already called.
633 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
635 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
638 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
643 case 0xc0010010: /* SYSCFG */
644 case 0xc0010015: /* HWCR */
645 case MSR_IA32_PLATFORM_ID:
646 case MSR_IA32_P5_MC_ADDR:
647 case MSR_IA32_P5_MC_TYPE:
648 case MSR_IA32_MC0_CTL:
649 case MSR_IA32_MCG_STATUS:
650 case MSR_IA32_MCG_CAP:
651 case MSR_IA32_MCG_CTL:
652 case MSR_IA32_MC0_MISC:
653 case MSR_IA32_MC0_MISC+4:
654 case MSR_IA32_MC0_MISC+8:
655 case MSR_IA32_MC0_MISC+12:
656 case MSR_IA32_MC0_MISC+16:
657 case MSR_IA32_UCODE_REV:
658 case MSR_IA32_EBL_CR_POWERON:
661 case 0x200 ... 0x2ff:
664 case 0xcd: /* fsb frequency */
667 case MSR_IA32_APICBASE:
668 data = kvm_get_apic_base(vcpu);
670 case MSR_IA32_MISC_ENABLE:
671 data = vcpu->arch.ia32_misc_enable_msr;
673 case MSR_IA32_PERF_STATUS:
674 /* TSC increment by tick */
677 data |= (((uint64_t)4ULL) << 40);
680 data = vcpu->arch.shadow_efer;
682 case MSR_KVM_WALL_CLOCK:
683 data = vcpu->kvm->arch.wall_clock;
685 case MSR_KVM_SYSTEM_TIME:
686 data = vcpu->arch.time;
689 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
695 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
698 * Read or write a bunch of msrs. All parameters are kernel addresses.
700 * @return number of msrs set successfully.
702 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
703 struct kvm_msr_entry *entries,
704 int (*do_msr)(struct kvm_vcpu *vcpu,
705 unsigned index, u64 *data))
711 down_read(&vcpu->kvm->slots_lock);
712 for (i = 0; i < msrs->nmsrs; ++i)
713 if (do_msr(vcpu, entries[i].index, &entries[i].data))
715 up_read(&vcpu->kvm->slots_lock);
723 * Read or write a bunch of msrs. Parameters are user addresses.
725 * @return number of msrs set successfully.
727 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
728 int (*do_msr)(struct kvm_vcpu *vcpu,
729 unsigned index, u64 *data),
732 struct kvm_msrs msrs;
733 struct kvm_msr_entry *entries;
738 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
742 if (msrs.nmsrs >= MAX_IO_MSRS)
746 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
747 entries = vmalloc(size);
752 if (copy_from_user(entries, user_msrs->entries, size))
755 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
760 if (writeback && copy_to_user(user_msrs->entries, entries, size))
772 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
775 void decache_vcpus_on_cpu(int cpu)
778 struct kvm_vcpu *vcpu;
781 spin_lock(&kvm_lock);
782 list_for_each_entry(vm, &vm_list, vm_list)
783 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
788 * If the vcpu is locked, then it is running on some
789 * other cpu and therefore it is not cached on the
792 * If it's not locked, check the last cpu it executed
795 if (mutex_trylock(&vcpu->mutex)) {
796 if (vcpu->cpu == cpu) {
797 kvm_x86_ops->vcpu_decache(vcpu);
800 mutex_unlock(&vcpu->mutex);
803 spin_unlock(&kvm_lock);
806 int kvm_dev_ioctl_check_extension(long ext)
811 case KVM_CAP_IRQCHIP:
813 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
814 case KVM_CAP_USER_MEMORY:
815 case KVM_CAP_SET_TSS_ADDR:
816 case KVM_CAP_EXT_CPUID:
817 case KVM_CAP_CLOCKSOURCE:
819 case KVM_CAP_NOP_IO_DELAY:
820 case KVM_CAP_MP_STATE:
824 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
826 case KVM_CAP_NR_VCPUS:
829 case KVM_CAP_NR_MEMSLOTS:
830 r = KVM_MEMORY_SLOTS;
843 long kvm_arch_dev_ioctl(struct file *filp,
844 unsigned int ioctl, unsigned long arg)
846 void __user *argp = (void __user *)arg;
850 case KVM_GET_MSR_INDEX_LIST: {
851 struct kvm_msr_list __user *user_msr_list = argp;
852 struct kvm_msr_list msr_list;
856 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
859 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
860 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
863 if (n < num_msrs_to_save)
866 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
867 num_msrs_to_save * sizeof(u32)))
869 if (copy_to_user(user_msr_list->indices
870 + num_msrs_to_save * sizeof(u32),
872 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
877 case KVM_GET_SUPPORTED_CPUID: {
878 struct kvm_cpuid2 __user *cpuid_arg = argp;
879 struct kvm_cpuid2 cpuid;
882 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
884 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
890 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
902 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
904 kvm_x86_ops->vcpu_load(vcpu, cpu);
905 kvm_write_guest_time(vcpu);
908 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
910 kvm_x86_ops->vcpu_put(vcpu);
911 kvm_put_guest_fpu(vcpu);
914 static int is_efer_nx(void)
918 rdmsrl(MSR_EFER, efer);
919 return efer & EFER_NX;
922 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
925 struct kvm_cpuid_entry2 *e, *entry;
928 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
929 e = &vcpu->arch.cpuid_entries[i];
930 if (e->function == 0x80000001) {
935 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
936 entry->edx &= ~(1 << 20);
937 printk(KERN_INFO "kvm: guest NX capability removed\n");
941 /* when an old userspace process fills a new kernel module */
942 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
943 struct kvm_cpuid *cpuid,
944 struct kvm_cpuid_entry __user *entries)
947 struct kvm_cpuid_entry *cpuid_entries;
950 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
953 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
957 if (copy_from_user(cpuid_entries, entries,
958 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
960 for (i = 0; i < cpuid->nent; i++) {
961 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
962 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
963 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
964 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
965 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
966 vcpu->arch.cpuid_entries[i].index = 0;
967 vcpu->arch.cpuid_entries[i].flags = 0;
968 vcpu->arch.cpuid_entries[i].padding[0] = 0;
969 vcpu->arch.cpuid_entries[i].padding[1] = 0;
970 vcpu->arch.cpuid_entries[i].padding[2] = 0;
972 vcpu->arch.cpuid_nent = cpuid->nent;
973 cpuid_fix_nx_cap(vcpu);
977 vfree(cpuid_entries);
982 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
983 struct kvm_cpuid2 *cpuid,
984 struct kvm_cpuid_entry2 __user *entries)
989 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
992 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
993 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
995 vcpu->arch.cpuid_nent = cpuid->nent;
1002 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1003 struct kvm_cpuid2 *cpuid,
1004 struct kvm_cpuid_entry2 __user *entries)
1009 if (cpuid->nent < vcpu->arch.cpuid_nent)
1012 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1013 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1018 cpuid->nent = vcpu->arch.cpuid_nent;
1022 static inline u32 bit(int bitno)
1024 return 1 << (bitno & 31);
1027 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1030 entry->function = function;
1031 entry->index = index;
1032 cpuid_count(entry->function, entry->index,
1033 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1037 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1038 u32 index, int *nent, int maxnent)
1040 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1041 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1042 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1043 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1044 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1045 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1046 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1047 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1048 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1049 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1050 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1051 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1052 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1053 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1054 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1055 bit(X86_FEATURE_PGE) |
1056 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1057 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1058 bit(X86_FEATURE_SYSCALL) |
1059 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1060 #ifdef CONFIG_X86_64
1061 bit(X86_FEATURE_LM) |
1063 bit(X86_FEATURE_MMXEXT) |
1064 bit(X86_FEATURE_3DNOWEXT) |
1065 bit(X86_FEATURE_3DNOW);
1066 const u32 kvm_supported_word3_x86_features =
1067 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1068 const u32 kvm_supported_word6_x86_features =
1069 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1071 /* all func 2 cpuid_count() should be called on the same cpu */
1073 do_cpuid_1_ent(entry, function, index);
1078 entry->eax = min(entry->eax, (u32)0xb);
1081 entry->edx &= kvm_supported_word0_x86_features;
1082 entry->ecx &= kvm_supported_word3_x86_features;
1084 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1085 * may return different values. This forces us to get_cpu() before
1086 * issuing the first command, and also to emulate this annoying behavior
1087 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1089 int t, times = entry->eax & 0xff;
1091 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1092 for (t = 1; t < times && *nent < maxnent; ++t) {
1093 do_cpuid_1_ent(&entry[t], function, 0);
1094 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1099 /* function 4 and 0xb have additional index. */
1103 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1104 /* read more entries until cache_type is zero */
1105 for (i = 1; *nent < maxnent; ++i) {
1106 cache_type = entry[i - 1].eax & 0x1f;
1109 do_cpuid_1_ent(&entry[i], function, i);
1111 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1119 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1120 /* read more entries until level_type is zero */
1121 for (i = 1; *nent < maxnent; ++i) {
1122 level_type = entry[i - 1].ecx & 0xff;
1125 do_cpuid_1_ent(&entry[i], function, i);
1127 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1133 entry->eax = min(entry->eax, 0x8000001a);
1136 entry->edx &= kvm_supported_word1_x86_features;
1137 entry->ecx &= kvm_supported_word6_x86_features;
1143 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1144 struct kvm_cpuid_entry2 __user *entries)
1146 struct kvm_cpuid_entry2 *cpuid_entries;
1147 int limit, nent = 0, r = -E2BIG;
1150 if (cpuid->nent < 1)
1153 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1157 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1158 limit = cpuid_entries[0].eax;
1159 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1160 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1161 &nent, cpuid->nent);
1163 if (nent >= cpuid->nent)
1166 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1167 limit = cpuid_entries[nent - 1].eax;
1168 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1169 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1170 &nent, cpuid->nent);
1172 if (copy_to_user(entries, cpuid_entries,
1173 nent * sizeof(struct kvm_cpuid_entry2)))
1179 vfree(cpuid_entries);
1184 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1185 struct kvm_lapic_state *s)
1188 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1194 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1195 struct kvm_lapic_state *s)
1198 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1199 kvm_apic_post_state_restore(vcpu);
1205 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1206 struct kvm_interrupt *irq)
1208 if (irq->irq < 0 || irq->irq >= 256)
1210 if (irqchip_in_kernel(vcpu->kvm))
1214 set_bit(irq->irq, vcpu->arch.irq_pending);
1215 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1222 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1223 struct kvm_tpr_access_ctl *tac)
1227 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1231 long kvm_arch_vcpu_ioctl(struct file *filp,
1232 unsigned int ioctl, unsigned long arg)
1234 struct kvm_vcpu *vcpu = filp->private_data;
1235 void __user *argp = (void __user *)arg;
1239 case KVM_GET_LAPIC: {
1240 struct kvm_lapic_state lapic;
1242 memset(&lapic, 0, sizeof lapic);
1243 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
1247 if (copy_to_user(argp, &lapic, sizeof lapic))
1252 case KVM_SET_LAPIC: {
1253 struct kvm_lapic_state lapic;
1256 if (copy_from_user(&lapic, argp, sizeof lapic))
1258 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
1264 case KVM_INTERRUPT: {
1265 struct kvm_interrupt irq;
1268 if (copy_from_user(&irq, argp, sizeof irq))
1270 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1276 case KVM_SET_CPUID: {
1277 struct kvm_cpuid __user *cpuid_arg = argp;
1278 struct kvm_cpuid cpuid;
1281 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1283 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1288 case KVM_SET_CPUID2: {
1289 struct kvm_cpuid2 __user *cpuid_arg = argp;
1290 struct kvm_cpuid2 cpuid;
1293 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1295 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1296 cpuid_arg->entries);
1301 case KVM_GET_CPUID2: {
1302 struct kvm_cpuid2 __user *cpuid_arg = argp;
1303 struct kvm_cpuid2 cpuid;
1306 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1308 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1309 cpuid_arg->entries);
1313 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1319 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1322 r = msr_io(vcpu, argp, do_set_msr, 0);
1324 case KVM_TPR_ACCESS_REPORTING: {
1325 struct kvm_tpr_access_ctl tac;
1328 if (copy_from_user(&tac, argp, sizeof tac))
1330 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1334 if (copy_to_user(argp, &tac, sizeof tac))
1339 case KVM_SET_VAPIC_ADDR: {
1340 struct kvm_vapic_addr va;
1343 if (!irqchip_in_kernel(vcpu->kvm))
1346 if (copy_from_user(&va, argp, sizeof va))
1349 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1359 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1363 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1365 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1369 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1370 u32 kvm_nr_mmu_pages)
1372 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1375 down_write(&kvm->slots_lock);
1377 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1378 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1380 up_write(&kvm->slots_lock);
1384 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1386 return kvm->arch.n_alloc_mmu_pages;
1389 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1392 struct kvm_mem_alias *alias;
1394 for (i = 0; i < kvm->arch.naliases; ++i) {
1395 alias = &kvm->arch.aliases[i];
1396 if (gfn >= alias->base_gfn
1397 && gfn < alias->base_gfn + alias->npages)
1398 return alias->target_gfn + gfn - alias->base_gfn;
1404 * Set a new alias region. Aliases map a portion of physical memory into
1405 * another portion. This is useful for memory windows, for example the PC
1408 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1409 struct kvm_memory_alias *alias)
1412 struct kvm_mem_alias *p;
1415 /* General sanity checks */
1416 if (alias->memory_size & (PAGE_SIZE - 1))
1418 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1420 if (alias->slot >= KVM_ALIAS_SLOTS)
1422 if (alias->guest_phys_addr + alias->memory_size
1423 < alias->guest_phys_addr)
1425 if (alias->target_phys_addr + alias->memory_size
1426 < alias->target_phys_addr)
1429 down_write(&kvm->slots_lock);
1431 p = &kvm->arch.aliases[alias->slot];
1432 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1433 p->npages = alias->memory_size >> PAGE_SHIFT;
1434 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1436 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1437 if (kvm->arch.aliases[n - 1].npages)
1439 kvm->arch.naliases = n;
1441 kvm_mmu_zap_all(kvm);
1443 up_write(&kvm->slots_lock);
1451 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1456 switch (chip->chip_id) {
1457 case KVM_IRQCHIP_PIC_MASTER:
1458 memcpy(&chip->chip.pic,
1459 &pic_irqchip(kvm)->pics[0],
1460 sizeof(struct kvm_pic_state));
1462 case KVM_IRQCHIP_PIC_SLAVE:
1463 memcpy(&chip->chip.pic,
1464 &pic_irqchip(kvm)->pics[1],
1465 sizeof(struct kvm_pic_state));
1467 case KVM_IRQCHIP_IOAPIC:
1468 memcpy(&chip->chip.ioapic,
1469 ioapic_irqchip(kvm),
1470 sizeof(struct kvm_ioapic_state));
1479 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1484 switch (chip->chip_id) {
1485 case KVM_IRQCHIP_PIC_MASTER:
1486 memcpy(&pic_irqchip(kvm)->pics[0],
1488 sizeof(struct kvm_pic_state));
1490 case KVM_IRQCHIP_PIC_SLAVE:
1491 memcpy(&pic_irqchip(kvm)->pics[1],
1493 sizeof(struct kvm_pic_state));
1495 case KVM_IRQCHIP_IOAPIC:
1496 memcpy(ioapic_irqchip(kvm),
1498 sizeof(struct kvm_ioapic_state));
1504 kvm_pic_update_irq(pic_irqchip(kvm));
1508 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1512 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1516 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1520 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1521 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1526 * Get (and clear) the dirty memory log for a memory slot.
1528 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1529 struct kvm_dirty_log *log)
1533 struct kvm_memory_slot *memslot;
1536 down_write(&kvm->slots_lock);
1538 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1542 /* If nothing is dirty, don't bother messing with page tables. */
1544 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1545 kvm_flush_remote_tlbs(kvm);
1546 memslot = &kvm->memslots[log->slot];
1547 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1548 memset(memslot->dirty_bitmap, 0, n);
1552 up_write(&kvm->slots_lock);
1556 long kvm_arch_vm_ioctl(struct file *filp,
1557 unsigned int ioctl, unsigned long arg)
1559 struct kvm *kvm = filp->private_data;
1560 void __user *argp = (void __user *)arg;
1564 case KVM_SET_TSS_ADDR:
1565 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1569 case KVM_SET_MEMORY_REGION: {
1570 struct kvm_memory_region kvm_mem;
1571 struct kvm_userspace_memory_region kvm_userspace_mem;
1574 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1576 kvm_userspace_mem.slot = kvm_mem.slot;
1577 kvm_userspace_mem.flags = kvm_mem.flags;
1578 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1579 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1580 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1585 case KVM_SET_NR_MMU_PAGES:
1586 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1590 case KVM_GET_NR_MMU_PAGES:
1591 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1593 case KVM_SET_MEMORY_ALIAS: {
1594 struct kvm_memory_alias alias;
1597 if (copy_from_user(&alias, argp, sizeof alias))
1599 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
1604 case KVM_CREATE_IRQCHIP:
1606 kvm->arch.vpic = kvm_create_pic(kvm);
1607 if (kvm->arch.vpic) {
1608 r = kvm_ioapic_init(kvm);
1610 kfree(kvm->arch.vpic);
1611 kvm->arch.vpic = NULL;
1617 case KVM_CREATE_PIT:
1619 kvm->arch.vpit = kvm_create_pit(kvm);
1623 case KVM_IRQ_LINE: {
1624 struct kvm_irq_level irq_event;
1627 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1629 if (irqchip_in_kernel(kvm)) {
1630 mutex_lock(&kvm->lock);
1631 if (irq_event.irq < 16)
1632 kvm_pic_set_irq(pic_irqchip(kvm),
1635 kvm_ioapic_set_irq(kvm->arch.vioapic,
1638 mutex_unlock(&kvm->lock);
1643 case KVM_GET_IRQCHIP: {
1644 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1645 struct kvm_irqchip chip;
1648 if (copy_from_user(&chip, argp, sizeof chip))
1651 if (!irqchip_in_kernel(kvm))
1653 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1657 if (copy_to_user(argp, &chip, sizeof chip))
1662 case KVM_SET_IRQCHIP: {
1663 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1664 struct kvm_irqchip chip;
1667 if (copy_from_user(&chip, argp, sizeof chip))
1670 if (!irqchip_in_kernel(kvm))
1672 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1679 struct kvm_pit_state ps;
1681 if (copy_from_user(&ps, argp, sizeof ps))
1684 if (!kvm->arch.vpit)
1686 r = kvm_vm_ioctl_get_pit(kvm, &ps);
1690 if (copy_to_user(argp, &ps, sizeof ps))
1696 struct kvm_pit_state ps;
1698 if (copy_from_user(&ps, argp, sizeof ps))
1701 if (!kvm->arch.vpit)
1703 r = kvm_vm_ioctl_set_pit(kvm, &ps);
1716 static void kvm_init_msr_list(void)
1721 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1722 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1725 msrs_to_save[j] = msrs_to_save[i];
1728 num_msrs_to_save = j;
1732 * Only apic need an MMIO device hook, so shortcut now..
1734 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1737 struct kvm_io_device *dev;
1739 if (vcpu->arch.apic) {
1740 dev = &vcpu->arch.apic->dev;
1741 if (dev->in_range(dev, addr))
1748 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1751 struct kvm_io_device *dev;
1753 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1755 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1759 int emulator_read_std(unsigned long addr,
1762 struct kvm_vcpu *vcpu)
1765 int r = X86EMUL_CONTINUE;
1768 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1769 unsigned offset = addr & (PAGE_SIZE-1);
1770 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1773 if (gpa == UNMAPPED_GVA) {
1774 r = X86EMUL_PROPAGATE_FAULT;
1777 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1779 r = X86EMUL_UNHANDLEABLE;
1790 EXPORT_SYMBOL_GPL(emulator_read_std);
1792 static int emulator_read_emulated(unsigned long addr,
1795 struct kvm_vcpu *vcpu)
1797 struct kvm_io_device *mmio_dev;
1800 if (vcpu->mmio_read_completed) {
1801 memcpy(val, vcpu->mmio_data, bytes);
1802 vcpu->mmio_read_completed = 0;
1803 return X86EMUL_CONTINUE;
1806 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1808 /* For APIC access vmexit */
1809 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1812 if (emulator_read_std(addr, val, bytes, vcpu)
1813 == X86EMUL_CONTINUE)
1814 return X86EMUL_CONTINUE;
1815 if (gpa == UNMAPPED_GVA)
1816 return X86EMUL_PROPAGATE_FAULT;
1820 * Is this MMIO handled locally?
1822 mutex_lock(&vcpu->kvm->lock);
1823 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1825 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1826 mutex_unlock(&vcpu->kvm->lock);
1827 return X86EMUL_CONTINUE;
1829 mutex_unlock(&vcpu->kvm->lock);
1831 vcpu->mmio_needed = 1;
1832 vcpu->mmio_phys_addr = gpa;
1833 vcpu->mmio_size = bytes;
1834 vcpu->mmio_is_write = 0;
1836 return X86EMUL_UNHANDLEABLE;
1839 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1840 const void *val, int bytes)
1844 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1847 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1851 static int emulator_write_emulated_onepage(unsigned long addr,
1854 struct kvm_vcpu *vcpu)
1856 struct kvm_io_device *mmio_dev;
1859 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1861 if (gpa == UNMAPPED_GVA) {
1862 kvm_inject_page_fault(vcpu, addr, 2);
1863 return X86EMUL_PROPAGATE_FAULT;
1866 /* For APIC access vmexit */
1867 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1870 if (emulator_write_phys(vcpu, gpa, val, bytes))
1871 return X86EMUL_CONTINUE;
1875 * Is this MMIO handled locally?
1877 mutex_lock(&vcpu->kvm->lock);
1878 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1880 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1881 mutex_unlock(&vcpu->kvm->lock);
1882 return X86EMUL_CONTINUE;
1884 mutex_unlock(&vcpu->kvm->lock);
1886 vcpu->mmio_needed = 1;
1887 vcpu->mmio_phys_addr = gpa;
1888 vcpu->mmio_size = bytes;
1889 vcpu->mmio_is_write = 1;
1890 memcpy(vcpu->mmio_data, val, bytes);
1892 return X86EMUL_CONTINUE;
1895 int emulator_write_emulated(unsigned long addr,
1898 struct kvm_vcpu *vcpu)
1900 /* Crossing a page boundary? */
1901 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1904 now = -addr & ~PAGE_MASK;
1905 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1906 if (rc != X86EMUL_CONTINUE)
1912 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1914 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1916 static int emulator_cmpxchg_emulated(unsigned long addr,
1920 struct kvm_vcpu *vcpu)
1922 static int reported;
1926 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1928 #ifndef CONFIG_X86_64
1929 /* guests cmpxchg8b have to be emulated atomically */
1936 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1938 if (gpa == UNMAPPED_GVA ||
1939 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1942 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
1947 down_read(¤t->mm->mmap_sem);
1948 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1949 up_read(¤t->mm->mmap_sem);
1951 kaddr = kmap_atomic(page, KM_USER0);
1952 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
1953 kunmap_atomic(kaddr, KM_USER0);
1954 kvm_release_page_dirty(page);
1959 return emulator_write_emulated(addr, new, bytes, vcpu);
1962 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1964 return kvm_x86_ops->get_segment_base(vcpu, seg);
1967 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1969 return X86EMUL_CONTINUE;
1972 int emulate_clts(struct kvm_vcpu *vcpu)
1974 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
1975 return X86EMUL_CONTINUE;
1978 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
1980 struct kvm_vcpu *vcpu = ctxt->vcpu;
1984 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1985 return X86EMUL_CONTINUE;
1987 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
1988 return X86EMUL_UNHANDLEABLE;
1992 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1994 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1997 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1999 /* FIXME: better handling */
2000 return X86EMUL_UNHANDLEABLE;
2002 return X86EMUL_CONTINUE;
2005 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2007 static int reported;
2009 unsigned long rip = vcpu->arch.rip;
2010 unsigned long rip_linear;
2012 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2017 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2019 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2020 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2023 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2025 static struct x86_emulate_ops emulate_ops = {
2026 .read_std = emulator_read_std,
2027 .read_emulated = emulator_read_emulated,
2028 .write_emulated = emulator_write_emulated,
2029 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2032 int emulate_instruction(struct kvm_vcpu *vcpu,
2033 struct kvm_run *run,
2039 struct decode_cache *c;
2041 vcpu->arch.mmio_fault_cr2 = cr2;
2042 kvm_x86_ops->cache_regs(vcpu);
2044 vcpu->mmio_is_write = 0;
2045 vcpu->arch.pio.string = 0;
2047 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2049 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2051 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2052 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2053 vcpu->arch.emulate_ctxt.mode =
2054 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2055 ? X86EMUL_MODE_REAL : cs_l
2056 ? X86EMUL_MODE_PROT64 : cs_db
2057 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2059 if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
2060 vcpu->arch.emulate_ctxt.cs_base = 0;
2061 vcpu->arch.emulate_ctxt.ds_base = 0;
2062 vcpu->arch.emulate_ctxt.es_base = 0;
2063 vcpu->arch.emulate_ctxt.ss_base = 0;
2065 vcpu->arch.emulate_ctxt.cs_base =
2066 get_segment_base(vcpu, VCPU_SREG_CS);
2067 vcpu->arch.emulate_ctxt.ds_base =
2068 get_segment_base(vcpu, VCPU_SREG_DS);
2069 vcpu->arch.emulate_ctxt.es_base =
2070 get_segment_base(vcpu, VCPU_SREG_ES);
2071 vcpu->arch.emulate_ctxt.ss_base =
2072 get_segment_base(vcpu, VCPU_SREG_SS);
2075 vcpu->arch.emulate_ctxt.gs_base =
2076 get_segment_base(vcpu, VCPU_SREG_GS);
2077 vcpu->arch.emulate_ctxt.fs_base =
2078 get_segment_base(vcpu, VCPU_SREG_FS);
2080 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2082 /* Reject the instructions other than VMCALL/VMMCALL when
2083 * try to emulate invalid opcode */
2084 c = &vcpu->arch.emulate_ctxt.decode;
2085 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2086 (!(c->twobyte && c->b == 0x01 &&
2087 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2088 c->modrm_mod == 3 && c->modrm_rm == 1)))
2089 return EMULATE_FAIL;
2091 ++vcpu->stat.insn_emulation;
2093 ++vcpu->stat.insn_emulation_fail;
2094 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2095 return EMULATE_DONE;
2096 return EMULATE_FAIL;
2100 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2102 if (vcpu->arch.pio.string)
2103 return EMULATE_DO_MMIO;
2105 if ((r || vcpu->mmio_is_write) && run) {
2106 run->exit_reason = KVM_EXIT_MMIO;
2107 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2108 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2109 run->mmio.len = vcpu->mmio_size;
2110 run->mmio.is_write = vcpu->mmio_is_write;
2114 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2115 return EMULATE_DONE;
2116 if (!vcpu->mmio_needed) {
2117 kvm_report_emulation_failure(vcpu, "mmio");
2118 return EMULATE_FAIL;
2120 return EMULATE_DO_MMIO;
2123 kvm_x86_ops->decache_regs(vcpu);
2124 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2126 if (vcpu->mmio_is_write) {
2127 vcpu->mmio_needed = 0;
2128 return EMULATE_DO_MMIO;
2131 return EMULATE_DONE;
2133 EXPORT_SYMBOL_GPL(emulate_instruction);
2135 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2139 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2140 if (vcpu->arch.pio.guest_pages[i]) {
2141 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2142 vcpu->arch.pio.guest_pages[i] = NULL;
2146 static int pio_copy_data(struct kvm_vcpu *vcpu)
2148 void *p = vcpu->arch.pio_data;
2151 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2153 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2156 free_pio_guest_pages(vcpu);
2159 q += vcpu->arch.pio.guest_page_offset;
2160 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2161 if (vcpu->arch.pio.in)
2162 memcpy(q, p, bytes);
2164 memcpy(p, q, bytes);
2165 q -= vcpu->arch.pio.guest_page_offset;
2167 free_pio_guest_pages(vcpu);
2171 int complete_pio(struct kvm_vcpu *vcpu)
2173 struct kvm_pio_request *io = &vcpu->arch.pio;
2177 kvm_x86_ops->cache_regs(vcpu);
2181 memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2185 r = pio_copy_data(vcpu);
2187 kvm_x86_ops->cache_regs(vcpu);
2194 delta *= io->cur_count;
2196 * The size of the register should really depend on
2197 * current address size.
2199 vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2205 vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2207 vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2210 kvm_x86_ops->decache_regs(vcpu);
2212 io->count -= io->cur_count;
2218 static void kernel_pio(struct kvm_io_device *pio_dev,
2219 struct kvm_vcpu *vcpu,
2222 /* TODO: String I/O for in kernel device */
2224 mutex_lock(&vcpu->kvm->lock);
2225 if (vcpu->arch.pio.in)
2226 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2227 vcpu->arch.pio.size,
2230 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2231 vcpu->arch.pio.size,
2233 mutex_unlock(&vcpu->kvm->lock);
2236 static void pio_string_write(struct kvm_io_device *pio_dev,
2237 struct kvm_vcpu *vcpu)
2239 struct kvm_pio_request *io = &vcpu->arch.pio;
2240 void *pd = vcpu->arch.pio_data;
2243 mutex_lock(&vcpu->kvm->lock);
2244 for (i = 0; i < io->cur_count; i++) {
2245 kvm_iodevice_write(pio_dev, io->port,
2250 mutex_unlock(&vcpu->kvm->lock);
2253 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2256 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
2259 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2260 int size, unsigned port)
2262 struct kvm_io_device *pio_dev;
2264 vcpu->run->exit_reason = KVM_EXIT_IO;
2265 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2266 vcpu->run->io.size = vcpu->arch.pio.size = size;
2267 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2268 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2269 vcpu->run->io.port = vcpu->arch.pio.port = port;
2270 vcpu->arch.pio.in = in;
2271 vcpu->arch.pio.string = 0;
2272 vcpu->arch.pio.down = 0;
2273 vcpu->arch.pio.guest_page_offset = 0;
2274 vcpu->arch.pio.rep = 0;
2276 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2277 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2280 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2283 kvm_x86_ops->cache_regs(vcpu);
2284 memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2285 kvm_x86_ops->decache_regs(vcpu);
2287 kvm_x86_ops->skip_emulated_instruction(vcpu);
2289 pio_dev = vcpu_find_pio_dev(vcpu, port);
2291 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2297 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2299 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2300 int size, unsigned long count, int down,
2301 gva_t address, int rep, unsigned port)
2303 unsigned now, in_page;
2307 struct kvm_io_device *pio_dev;
2309 vcpu->run->exit_reason = KVM_EXIT_IO;
2310 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2311 vcpu->run->io.size = vcpu->arch.pio.size = size;
2312 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2313 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2314 vcpu->run->io.port = vcpu->arch.pio.port = port;
2315 vcpu->arch.pio.in = in;
2316 vcpu->arch.pio.string = 1;
2317 vcpu->arch.pio.down = down;
2318 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2319 vcpu->arch.pio.rep = rep;
2321 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2322 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2325 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2329 kvm_x86_ops->skip_emulated_instruction(vcpu);
2334 in_page = PAGE_SIZE - offset_in_page(address);
2336 in_page = offset_in_page(address) + size;
2337 now = min(count, (unsigned long)in_page / size);
2340 * String I/O straddles page boundary. Pin two guest pages
2341 * so that we satisfy atomicity constraints. Do just one
2342 * transaction to avoid complexity.
2349 * String I/O in reverse. Yuck. Kill the guest, fix later.
2351 pr_unimpl(vcpu, "guest string pio down\n");
2352 kvm_inject_gp(vcpu, 0);
2355 vcpu->run->io.count = now;
2356 vcpu->arch.pio.cur_count = now;
2358 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2359 kvm_x86_ops->skip_emulated_instruction(vcpu);
2361 for (i = 0; i < nr_pages; ++i) {
2362 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2363 vcpu->arch.pio.guest_pages[i] = page;
2365 kvm_inject_gp(vcpu, 0);
2366 free_pio_guest_pages(vcpu);
2371 pio_dev = vcpu_find_pio_dev(vcpu, port);
2372 if (!vcpu->arch.pio.in) {
2373 /* string PIO write */
2374 ret = pio_copy_data(vcpu);
2375 if (ret >= 0 && pio_dev) {
2376 pio_string_write(pio_dev, vcpu);
2378 if (vcpu->arch.pio.count == 0)
2382 pr_unimpl(vcpu, "no string pio read support yet, "
2383 "port %x size %d count %ld\n",
2388 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2390 int kvm_arch_init(void *opaque)
2393 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2396 printk(KERN_ERR "kvm: already loaded the other module\n");
2401 if (!ops->cpu_has_kvm_support()) {
2402 printk(KERN_ERR "kvm: no hardware support\n");
2406 if (ops->disabled_by_bios()) {
2407 printk(KERN_ERR "kvm: disabled by bios\n");
2412 r = kvm_mmu_module_init();
2416 kvm_init_msr_list();
2419 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2420 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2421 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2422 PT_DIRTY_MASK, PT64_NX_MASK, 0);
2429 void kvm_arch_exit(void)
2432 kvm_mmu_module_exit();
2435 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2437 ++vcpu->stat.halt_exits;
2438 KVMTRACE_0D(HLT, vcpu, handler);
2439 if (irqchip_in_kernel(vcpu->kvm)) {
2440 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2441 up_read(&vcpu->kvm->slots_lock);
2442 kvm_vcpu_block(vcpu);
2443 down_read(&vcpu->kvm->slots_lock);
2444 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
2448 vcpu->run->exit_reason = KVM_EXIT_HLT;
2452 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2454 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2457 if (is_long_mode(vcpu))
2460 return a0 | ((gpa_t)a1 << 32);
2463 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2465 unsigned long nr, a0, a1, a2, a3, ret;
2468 kvm_x86_ops->cache_regs(vcpu);
2470 nr = vcpu->arch.regs[VCPU_REGS_RAX];
2471 a0 = vcpu->arch.regs[VCPU_REGS_RBX];
2472 a1 = vcpu->arch.regs[VCPU_REGS_RCX];
2473 a2 = vcpu->arch.regs[VCPU_REGS_RDX];
2474 a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2476 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2478 if (!is_long_mode(vcpu)) {
2487 case KVM_HC_VAPIC_POLL_IRQ:
2491 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2497 vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2498 kvm_x86_ops->decache_regs(vcpu);
2499 ++vcpu->stat.hypercalls;
2502 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2504 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2506 char instruction[3];
2511 * Blow out the MMU to ensure that no other VCPU has an active mapping
2512 * to ensure that the updated hypercall appears atomically across all
2515 kvm_mmu_zap_all(vcpu->kvm);
2517 kvm_x86_ops->cache_regs(vcpu);
2518 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2519 if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2520 != X86EMUL_CONTINUE)
2526 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2528 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2531 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2533 struct descriptor_table dt = { limit, base };
2535 kvm_x86_ops->set_gdt(vcpu, &dt);
2538 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2540 struct descriptor_table dt = { limit, base };
2542 kvm_x86_ops->set_idt(vcpu, &dt);
2545 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2546 unsigned long *rflags)
2548 kvm_lmsw(vcpu, msw);
2549 *rflags = kvm_x86_ops->get_rflags(vcpu);
2552 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2554 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2557 return vcpu->arch.cr0;
2559 return vcpu->arch.cr2;
2561 return vcpu->arch.cr3;
2563 return vcpu->arch.cr4;
2565 return kvm_get_cr8(vcpu);
2567 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2572 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2573 unsigned long *rflags)
2577 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2578 *rflags = kvm_x86_ops->get_rflags(vcpu);
2581 vcpu->arch.cr2 = val;
2584 kvm_set_cr3(vcpu, val);
2587 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2590 kvm_set_cr8(vcpu, val & 0xfUL);
2593 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2597 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2599 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2600 int j, nent = vcpu->arch.cpuid_nent;
2602 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2603 /* when no next entry is found, the current entry[i] is reselected */
2604 for (j = i + 1; j == i; j = (j + 1) % nent) {
2605 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2606 if (ej->function == e->function) {
2607 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2611 return 0; /* silence gcc, even though control never reaches here */
2614 /* find an entry with matching function, matching index (if needed), and that
2615 * should be read next (if it's stateful) */
2616 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2617 u32 function, u32 index)
2619 if (e->function != function)
2621 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2623 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2624 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2629 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2632 u32 function, index;
2633 struct kvm_cpuid_entry2 *e, *best;
2635 kvm_x86_ops->cache_regs(vcpu);
2636 function = vcpu->arch.regs[VCPU_REGS_RAX];
2637 index = vcpu->arch.regs[VCPU_REGS_RCX];
2638 vcpu->arch.regs[VCPU_REGS_RAX] = 0;
2639 vcpu->arch.regs[VCPU_REGS_RBX] = 0;
2640 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2641 vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2643 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2644 e = &vcpu->arch.cpuid_entries[i];
2645 if (is_matching_cpuid_entry(e, function, index)) {
2646 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2647 move_to_next_stateful_cpuid_entry(vcpu, i);
2652 * Both basic or both extended?
2654 if (((e->function ^ function) & 0x80000000) == 0)
2655 if (!best || e->function > best->function)
2659 vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
2660 vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
2661 vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
2662 vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2664 kvm_x86_ops->decache_regs(vcpu);
2665 kvm_x86_ops->skip_emulated_instruction(vcpu);
2666 KVMTRACE_5D(CPUID, vcpu, function,
2667 (u32)vcpu->arch.regs[VCPU_REGS_RAX],
2668 (u32)vcpu->arch.regs[VCPU_REGS_RBX],
2669 (u32)vcpu->arch.regs[VCPU_REGS_RCX],
2670 (u32)vcpu->arch.regs[VCPU_REGS_RDX], handler);
2672 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2675 * Check if userspace requested an interrupt window, and that the
2676 * interrupt window is open.
2678 * No need to exit to userspace if we already have an interrupt queued.
2680 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2681 struct kvm_run *kvm_run)
2683 return (!vcpu->arch.irq_summary &&
2684 kvm_run->request_interrupt_window &&
2685 vcpu->arch.interrupt_window_open &&
2686 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2689 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2690 struct kvm_run *kvm_run)
2692 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2693 kvm_run->cr8 = kvm_get_cr8(vcpu);
2694 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2695 if (irqchip_in_kernel(vcpu->kvm))
2696 kvm_run->ready_for_interrupt_injection = 1;
2698 kvm_run->ready_for_interrupt_injection =
2699 (vcpu->arch.interrupt_window_open &&
2700 vcpu->arch.irq_summary == 0);
2703 static void vapic_enter(struct kvm_vcpu *vcpu)
2705 struct kvm_lapic *apic = vcpu->arch.apic;
2708 if (!apic || !apic->vapic_addr)
2711 down_read(¤t->mm->mmap_sem);
2712 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2713 up_read(¤t->mm->mmap_sem);
2715 vcpu->arch.apic->vapic_page = page;
2718 static void vapic_exit(struct kvm_vcpu *vcpu)
2720 struct kvm_lapic *apic = vcpu->arch.apic;
2722 if (!apic || !apic->vapic_addr)
2725 kvm_release_page_dirty(apic->vapic_page);
2726 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2729 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2733 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
2734 pr_debug("vcpu %d received sipi with vector # %x\n",
2735 vcpu->vcpu_id, vcpu->arch.sipi_vector);
2736 kvm_lapic_reset(vcpu);
2737 r = kvm_x86_ops->vcpu_reset(vcpu);
2740 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2743 down_read(&vcpu->kvm->slots_lock);
2747 if (vcpu->guest_debug.enabled)
2748 kvm_x86_ops->guest_debug_pre(vcpu);
2752 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2753 kvm_mmu_unload(vcpu);
2755 r = kvm_mmu_reload(vcpu);
2759 if (vcpu->requests) {
2760 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2761 __kvm_migrate_apic_timer(vcpu);
2762 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2764 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2768 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2769 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2775 kvm_inject_pending_timer_irqs(vcpu);
2779 kvm_x86_ops->prepare_guest_switch(vcpu);
2780 kvm_load_guest_fpu(vcpu);
2782 local_irq_disable();
2784 if (need_resched()) {
2792 if (test_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) {
2799 if (signal_pending(current)) {
2803 kvm_run->exit_reason = KVM_EXIT_INTR;
2804 ++vcpu->stat.signal_exits;
2808 vcpu->guest_mode = 1;
2810 * Make sure that guest_mode assignment won't happen after
2811 * testing the pending IRQ vector bitmap.
2815 if (vcpu->arch.exception.pending)
2816 __queue_exception(vcpu);
2817 else if (irqchip_in_kernel(vcpu->kvm))
2818 kvm_x86_ops->inject_pending_irq(vcpu);
2820 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2822 kvm_lapic_sync_to_vapic(vcpu);
2824 up_read(&vcpu->kvm->slots_lock);
2829 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2830 kvm_x86_ops->tlb_flush(vcpu);
2832 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
2833 kvm_x86_ops->run(vcpu, kvm_run);
2835 vcpu->guest_mode = 0;
2841 * We must have an instruction between local_irq_enable() and
2842 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2843 * the interrupt shadow. The stat.exits increment will do nicely.
2844 * But we need to prevent reordering, hence this barrier():
2852 down_read(&vcpu->kvm->slots_lock);
2855 * Profile KVM exit RIPs:
2857 if (unlikely(prof_on == KVM_PROFILING)) {
2858 kvm_x86_ops->cache_regs(vcpu);
2859 profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2862 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2863 vcpu->arch.exception.pending = false;
2865 kvm_lapic_sync_from_vapic(vcpu);
2867 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2870 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2872 kvm_run->exit_reason = KVM_EXIT_INTR;
2873 ++vcpu->stat.request_irq_exits;
2876 if (!need_resched())
2881 up_read(&vcpu->kvm->slots_lock);
2884 down_read(&vcpu->kvm->slots_lock);
2888 post_kvm_run_save(vcpu, kvm_run);
2890 down_read(&vcpu->kvm->slots_lock);
2892 up_read(&vcpu->kvm->slots_lock);
2897 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2904 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
2905 kvm_vcpu_block(vcpu);
2910 if (vcpu->sigset_active)
2911 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2913 /* re-sync apic's tpr */
2914 if (!irqchip_in_kernel(vcpu->kvm))
2915 kvm_set_cr8(vcpu, kvm_run->cr8);
2917 if (vcpu->arch.pio.cur_count) {
2918 r = complete_pio(vcpu);
2922 #if CONFIG_HAS_IOMEM
2923 if (vcpu->mmio_needed) {
2924 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2925 vcpu->mmio_read_completed = 1;
2926 vcpu->mmio_needed = 0;
2928 down_read(&vcpu->kvm->slots_lock);
2929 r = emulate_instruction(vcpu, kvm_run,
2930 vcpu->arch.mmio_fault_cr2, 0,
2931 EMULTYPE_NO_DECODE);
2932 up_read(&vcpu->kvm->slots_lock);
2933 if (r == EMULATE_DO_MMIO) {
2935 * Read-modify-write. Back to userspace.
2942 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2943 kvm_x86_ops->cache_regs(vcpu);
2944 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2945 kvm_x86_ops->decache_regs(vcpu);
2948 r = __vcpu_run(vcpu, kvm_run);
2951 if (vcpu->sigset_active)
2952 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2958 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2962 kvm_x86_ops->cache_regs(vcpu);
2964 regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
2965 regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
2966 regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
2967 regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
2968 regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
2969 regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
2970 regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2971 regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
2972 #ifdef CONFIG_X86_64
2973 regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
2974 regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
2975 regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
2976 regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
2977 regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
2978 regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
2979 regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
2980 regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
2983 regs->rip = vcpu->arch.rip;
2984 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2987 * Don't leak debug flags in case they were set for guest debugging
2989 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2990 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2997 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3001 vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
3002 vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
3003 vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
3004 vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
3005 vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
3006 vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
3007 vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
3008 vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
3009 #ifdef CONFIG_X86_64
3010 vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
3011 vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
3012 vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
3013 vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
3014 vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
3015 vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
3016 vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
3017 vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
3020 vcpu->arch.rip = regs->rip;
3021 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3023 kvm_x86_ops->decache_regs(vcpu);
3030 static void get_segment(struct kvm_vcpu *vcpu,
3031 struct kvm_segment *var, int seg)
3033 kvm_x86_ops->get_segment(vcpu, var, seg);
3036 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3038 struct kvm_segment cs;
3040 get_segment(vcpu, &cs, VCPU_SREG_CS);
3044 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3046 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3047 struct kvm_sregs *sregs)
3049 struct descriptor_table dt;
3054 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3055 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3056 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3057 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3058 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3059 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3061 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3062 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3064 kvm_x86_ops->get_idt(vcpu, &dt);
3065 sregs->idt.limit = dt.limit;
3066 sregs->idt.base = dt.base;
3067 kvm_x86_ops->get_gdt(vcpu, &dt);
3068 sregs->gdt.limit = dt.limit;
3069 sregs->gdt.base = dt.base;
3071 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3072 sregs->cr0 = vcpu->arch.cr0;
3073 sregs->cr2 = vcpu->arch.cr2;
3074 sregs->cr3 = vcpu->arch.cr3;
3075 sregs->cr4 = vcpu->arch.cr4;
3076 sregs->cr8 = kvm_get_cr8(vcpu);
3077 sregs->efer = vcpu->arch.shadow_efer;
3078 sregs->apic_base = kvm_get_apic_base(vcpu);
3080 if (irqchip_in_kernel(vcpu->kvm)) {
3081 memset(sregs->interrupt_bitmap, 0,
3082 sizeof sregs->interrupt_bitmap);
3083 pending_vec = kvm_x86_ops->get_irq(vcpu);
3084 if (pending_vec >= 0)
3085 set_bit(pending_vec,
3086 (unsigned long *)sregs->interrupt_bitmap);
3088 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3089 sizeof sregs->interrupt_bitmap);
3096 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3097 struct kvm_mp_state *mp_state)
3100 mp_state->mp_state = vcpu->arch.mp_state;
3105 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3106 struct kvm_mp_state *mp_state)
3109 vcpu->arch.mp_state = mp_state->mp_state;
3114 static void set_segment(struct kvm_vcpu *vcpu,
3115 struct kvm_segment *var, int seg)
3117 kvm_x86_ops->set_segment(vcpu, var, seg);
3120 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3121 struct kvm_segment *kvm_desct)
3123 kvm_desct->base = seg_desc->base0;
3124 kvm_desct->base |= seg_desc->base1 << 16;
3125 kvm_desct->base |= seg_desc->base2 << 24;
3126 kvm_desct->limit = seg_desc->limit0;
3127 kvm_desct->limit |= seg_desc->limit << 16;
3128 kvm_desct->selector = selector;
3129 kvm_desct->type = seg_desc->type;
3130 kvm_desct->present = seg_desc->p;
3131 kvm_desct->dpl = seg_desc->dpl;
3132 kvm_desct->db = seg_desc->d;
3133 kvm_desct->s = seg_desc->s;
3134 kvm_desct->l = seg_desc->l;
3135 kvm_desct->g = seg_desc->g;
3136 kvm_desct->avl = seg_desc->avl;
3138 kvm_desct->unusable = 1;
3140 kvm_desct->unusable = 0;
3141 kvm_desct->padding = 0;
3144 static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
3146 struct descriptor_table *dtable)
3148 if (selector & 1 << 2) {
3149 struct kvm_segment kvm_seg;
3151 get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3153 if (kvm_seg.unusable)
3156 dtable->limit = kvm_seg.limit;
3157 dtable->base = kvm_seg.base;
3160 kvm_x86_ops->get_gdt(vcpu, dtable);
3163 /* allowed just for 8 bytes segments */
3164 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3165 struct desc_struct *seg_desc)
3167 struct descriptor_table dtable;
3168 u16 index = selector >> 3;
3170 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3172 if (dtable.limit < index * 8 + 7) {
3173 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3176 return kvm_read_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
3179 /* allowed just for 8 bytes segments */
3180 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3181 struct desc_struct *seg_desc)
3183 struct descriptor_table dtable;
3184 u16 index = selector >> 3;
3186 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3188 if (dtable.limit < index * 8 + 7)
3190 return kvm_write_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
3193 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3194 struct desc_struct *seg_desc)
3198 base_addr = seg_desc->base0;
3199 base_addr |= (seg_desc->base1 << 16);
3200 base_addr |= (seg_desc->base2 << 24);
3205 static int load_tss_segment32(struct kvm_vcpu *vcpu,
3206 struct desc_struct *seg_desc,
3207 struct tss_segment_32 *tss)
3211 base_addr = get_tss_base_addr(vcpu, seg_desc);
3213 return kvm_read_guest(vcpu->kvm, base_addr, tss,
3214 sizeof(struct tss_segment_32));
3217 static int save_tss_segment32(struct kvm_vcpu *vcpu,
3218 struct desc_struct *seg_desc,
3219 struct tss_segment_32 *tss)
3223 base_addr = get_tss_base_addr(vcpu, seg_desc);
3225 return kvm_write_guest(vcpu->kvm, base_addr, tss,
3226 sizeof(struct tss_segment_32));
3229 static int load_tss_segment16(struct kvm_vcpu *vcpu,
3230 struct desc_struct *seg_desc,
3231 struct tss_segment_16 *tss)
3235 base_addr = get_tss_base_addr(vcpu, seg_desc);
3237 return kvm_read_guest(vcpu->kvm, base_addr, tss,
3238 sizeof(struct tss_segment_16));
3241 static int save_tss_segment16(struct kvm_vcpu *vcpu,
3242 struct desc_struct *seg_desc,
3243 struct tss_segment_16 *tss)
3247 base_addr = get_tss_base_addr(vcpu, seg_desc);
3249 return kvm_write_guest(vcpu->kvm, base_addr, tss,
3250 sizeof(struct tss_segment_16));
3253 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3255 struct kvm_segment kvm_seg;
3257 get_segment(vcpu, &kvm_seg, seg);
3258 return kvm_seg.selector;
3261 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3263 struct kvm_segment *kvm_seg)
3265 struct desc_struct seg_desc;
3267 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3269 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3273 static int load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3274 int type_bits, int seg)
3276 struct kvm_segment kvm_seg;
3278 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3280 kvm_seg.type |= type_bits;
3282 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3283 seg != VCPU_SREG_LDTR)
3285 kvm_seg.unusable = 1;
3287 set_segment(vcpu, &kvm_seg, seg);
3291 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3292 struct tss_segment_32 *tss)
3294 tss->cr3 = vcpu->arch.cr3;
3295 tss->eip = vcpu->arch.rip;
3296 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3297 tss->eax = vcpu->arch.regs[VCPU_REGS_RAX];
3298 tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3299 tss->edx = vcpu->arch.regs[VCPU_REGS_RDX];
3300 tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX];
3301 tss->esp = vcpu->arch.regs[VCPU_REGS_RSP];
3302 tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP];
3303 tss->esi = vcpu->arch.regs[VCPU_REGS_RSI];
3304 tss->edi = vcpu->arch.regs[VCPU_REGS_RDI];
3306 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3307 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3308 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3309 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3310 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3311 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3312 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3313 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3316 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3317 struct tss_segment_32 *tss)
3319 kvm_set_cr3(vcpu, tss->cr3);
3321 vcpu->arch.rip = tss->eip;
3322 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3324 vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax;
3325 vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx;
3326 vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx;
3327 vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx;
3328 vcpu->arch.regs[VCPU_REGS_RSP] = tss->esp;
3329 vcpu->arch.regs[VCPU_REGS_RBP] = tss->ebp;
3330 vcpu->arch.regs[VCPU_REGS_RSI] = tss->esi;
3331 vcpu->arch.regs[VCPU_REGS_RDI] = tss->edi;
3333 if (load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3336 if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3339 if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3342 if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3345 if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3348 if (load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3351 if (load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3356 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3357 struct tss_segment_16 *tss)
3359 tss->ip = vcpu->arch.rip;
3360 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3361 tss->ax = vcpu->arch.regs[VCPU_REGS_RAX];
3362 tss->cx = vcpu->arch.regs[VCPU_REGS_RCX];
3363 tss->dx = vcpu->arch.regs[VCPU_REGS_RDX];
3364 tss->bx = vcpu->arch.regs[VCPU_REGS_RBX];
3365 tss->sp = vcpu->arch.regs[VCPU_REGS_RSP];
3366 tss->bp = vcpu->arch.regs[VCPU_REGS_RBP];
3367 tss->si = vcpu->arch.regs[VCPU_REGS_RSI];
3368 tss->di = vcpu->arch.regs[VCPU_REGS_RDI];
3370 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3371 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3372 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3373 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3374 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3375 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3378 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3379 struct tss_segment_16 *tss)
3381 vcpu->arch.rip = tss->ip;
3382 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3383 vcpu->arch.regs[VCPU_REGS_RAX] = tss->ax;
3384 vcpu->arch.regs[VCPU_REGS_RCX] = tss->cx;
3385 vcpu->arch.regs[VCPU_REGS_RDX] = tss->dx;
3386 vcpu->arch.regs[VCPU_REGS_RBX] = tss->bx;
3387 vcpu->arch.regs[VCPU_REGS_RSP] = tss->sp;
3388 vcpu->arch.regs[VCPU_REGS_RBP] = tss->bp;
3389 vcpu->arch.regs[VCPU_REGS_RSI] = tss->si;
3390 vcpu->arch.regs[VCPU_REGS_RDI] = tss->di;
3392 if (load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3395 if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3398 if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3401 if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3404 if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3409 int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3410 struct desc_struct *cseg_desc,
3411 struct desc_struct *nseg_desc)
3413 struct tss_segment_16 tss_segment_16;
3416 if (load_tss_segment16(vcpu, cseg_desc, &tss_segment_16))
3419 save_state_to_tss16(vcpu, &tss_segment_16);
3420 save_tss_segment16(vcpu, cseg_desc, &tss_segment_16);
3422 if (load_tss_segment16(vcpu, nseg_desc, &tss_segment_16))
3424 if (load_state_from_tss16(vcpu, &tss_segment_16))
3432 int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3433 struct desc_struct *cseg_desc,
3434 struct desc_struct *nseg_desc)
3436 struct tss_segment_32 tss_segment_32;
3439 if (load_tss_segment32(vcpu, cseg_desc, &tss_segment_32))
3442 save_state_to_tss32(vcpu, &tss_segment_32);
3443 save_tss_segment32(vcpu, cseg_desc, &tss_segment_32);
3445 if (load_tss_segment32(vcpu, nseg_desc, &tss_segment_32))
3447 if (load_state_from_tss32(vcpu, &tss_segment_32))
3455 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3457 struct kvm_segment tr_seg;
3458 struct desc_struct cseg_desc;
3459 struct desc_struct nseg_desc;
3462 get_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3464 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3467 if (load_guest_segment_descriptor(vcpu, tr_seg.selector, &cseg_desc))
3471 if (reason != TASK_SWITCH_IRET) {
3474 cpl = kvm_x86_ops->get_cpl(vcpu);
3475 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3476 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3481 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3482 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3486 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3487 cseg_desc.type &= ~(1 << 1); //clear the B flag
3488 save_guest_segment_descriptor(vcpu, tr_seg.selector,
3492 if (reason == TASK_SWITCH_IRET) {
3493 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3494 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3497 kvm_x86_ops->skip_emulated_instruction(vcpu);
3498 kvm_x86_ops->cache_regs(vcpu);
3500 if (nseg_desc.type & 8)
3501 ret = kvm_task_switch_32(vcpu, tss_selector, &cseg_desc,
3504 ret = kvm_task_switch_16(vcpu, tss_selector, &cseg_desc,
3507 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3508 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3509 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3512 if (reason != TASK_SWITCH_IRET) {
3513 nseg_desc.type |= (1 << 1);
3514 save_guest_segment_descriptor(vcpu, tss_selector,
3518 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3519 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3521 set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3523 kvm_x86_ops->decache_regs(vcpu);
3526 EXPORT_SYMBOL_GPL(kvm_task_switch);
3528 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3529 struct kvm_sregs *sregs)
3531 int mmu_reset_needed = 0;
3532 int i, pending_vec, max_bits;
3533 struct descriptor_table dt;
3537 dt.limit = sregs->idt.limit;
3538 dt.base = sregs->idt.base;
3539 kvm_x86_ops->set_idt(vcpu, &dt);
3540 dt.limit = sregs->gdt.limit;
3541 dt.base = sregs->gdt.base;
3542 kvm_x86_ops->set_gdt(vcpu, &dt);
3544 vcpu->arch.cr2 = sregs->cr2;
3545 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3546 vcpu->arch.cr3 = sregs->cr3;
3548 kvm_set_cr8(vcpu, sregs->cr8);
3550 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3551 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3552 kvm_set_apic_base(vcpu, sregs->apic_base);
3554 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3556 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3557 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3558 vcpu->arch.cr0 = sregs->cr0;
3560 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3561 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3562 if (!is_long_mode(vcpu) && is_pae(vcpu))
3563 load_pdptrs(vcpu, vcpu->arch.cr3);
3565 if (mmu_reset_needed)
3566 kvm_mmu_reset_context(vcpu);
3568 if (!irqchip_in_kernel(vcpu->kvm)) {
3569 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3570 sizeof vcpu->arch.irq_pending);
3571 vcpu->arch.irq_summary = 0;
3572 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3573 if (vcpu->arch.irq_pending[i])
3574 __set_bit(i, &vcpu->arch.irq_summary);
3576 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3577 pending_vec = find_first_bit(
3578 (const unsigned long *)sregs->interrupt_bitmap,
3580 /* Only pending external irq is handled here */
3581 if (pending_vec < max_bits) {
3582 kvm_x86_ops->set_irq(vcpu, pending_vec);
3583 pr_debug("Set back pending irq %d\n",
3588 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3589 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3590 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3591 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3592 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3593 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3595 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3596 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3603 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3604 struct kvm_debug_guest *dbg)
3610 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3618 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3619 * we have asm/x86/processor.h
3630 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3631 #ifdef CONFIG_X86_64
3632 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3634 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3639 * Translate a guest virtual address to a guest physical address.
3641 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3642 struct kvm_translation *tr)
3644 unsigned long vaddr = tr->linear_address;
3648 down_read(&vcpu->kvm->slots_lock);
3649 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3650 up_read(&vcpu->kvm->slots_lock);
3651 tr->physical_address = gpa;
3652 tr->valid = gpa != UNMAPPED_GVA;
3660 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3662 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3666 memcpy(fpu->fpr, fxsave->st_space, 128);
3667 fpu->fcw = fxsave->cwd;
3668 fpu->fsw = fxsave->swd;
3669 fpu->ftwx = fxsave->twd;
3670 fpu->last_opcode = fxsave->fop;
3671 fpu->last_ip = fxsave->rip;
3672 fpu->last_dp = fxsave->rdp;
3673 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3680 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3682 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3686 memcpy(fxsave->st_space, fpu->fpr, 128);
3687 fxsave->cwd = fpu->fcw;
3688 fxsave->swd = fpu->fsw;
3689 fxsave->twd = fpu->ftwx;
3690 fxsave->fop = fpu->last_opcode;
3691 fxsave->rip = fpu->last_ip;
3692 fxsave->rdp = fpu->last_dp;
3693 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3700 void fx_init(struct kvm_vcpu *vcpu)
3702 unsigned after_mxcsr_mask;
3704 /* Initialize guest FPU by resetting ours and saving into guest's */
3706 fx_save(&vcpu->arch.host_fx_image);
3708 fx_save(&vcpu->arch.guest_fx_image);
3709 fx_restore(&vcpu->arch.host_fx_image);
3712 vcpu->arch.cr0 |= X86_CR0_ET;
3713 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3714 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3715 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3716 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3718 EXPORT_SYMBOL_GPL(fx_init);
3720 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3722 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3725 vcpu->guest_fpu_loaded = 1;
3726 fx_save(&vcpu->arch.host_fx_image);
3727 fx_restore(&vcpu->arch.guest_fx_image);
3729 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3731 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3733 if (!vcpu->guest_fpu_loaded)
3736 vcpu->guest_fpu_loaded = 0;
3737 fx_save(&vcpu->arch.guest_fx_image);
3738 fx_restore(&vcpu->arch.host_fx_image);
3739 ++vcpu->stat.fpu_reload;
3741 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3743 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3745 kvm_x86_ops->vcpu_free(vcpu);
3748 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3751 return kvm_x86_ops->vcpu_create(kvm, id);
3754 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3758 /* We do fxsave: this must be aligned. */
3759 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3762 r = kvm_arch_vcpu_reset(vcpu);
3764 r = kvm_mmu_setup(vcpu);
3771 kvm_x86_ops->vcpu_free(vcpu);
3775 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3778 kvm_mmu_unload(vcpu);
3781 kvm_x86_ops->vcpu_free(vcpu);
3784 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
3786 return kvm_x86_ops->vcpu_reset(vcpu);
3789 void kvm_arch_hardware_enable(void *garbage)
3791 kvm_x86_ops->hardware_enable(garbage);
3794 void kvm_arch_hardware_disable(void *garbage)
3796 kvm_x86_ops->hardware_disable(garbage);
3799 int kvm_arch_hardware_setup(void)
3801 return kvm_x86_ops->hardware_setup();
3804 void kvm_arch_hardware_unsetup(void)
3806 kvm_x86_ops->hardware_unsetup();
3809 void kvm_arch_check_processor_compat(void *rtn)
3811 kvm_x86_ops->check_processor_compatibility(rtn);
3814 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
3820 BUG_ON(vcpu->kvm == NULL);
3823 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3824 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3825 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3827 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
3829 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3834 vcpu->arch.pio_data = page_address(page);
3836 r = kvm_mmu_create(vcpu);
3838 goto fail_free_pio_data;
3840 if (irqchip_in_kernel(kvm)) {
3841 r = kvm_create_lapic(vcpu);
3843 goto fail_mmu_destroy;
3849 kvm_mmu_destroy(vcpu);
3851 free_page((unsigned long)vcpu->arch.pio_data);
3856 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
3858 kvm_free_lapic(vcpu);
3859 down_read(&vcpu->kvm->slots_lock);
3860 kvm_mmu_destroy(vcpu);
3861 up_read(&vcpu->kvm->slots_lock);
3862 free_page((unsigned long)vcpu->arch.pio_data);
3865 struct kvm *kvm_arch_create_vm(void)
3867 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
3870 return ERR_PTR(-ENOMEM);
3872 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3877 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
3880 kvm_mmu_unload(vcpu);
3884 static void kvm_free_vcpus(struct kvm *kvm)
3889 * Unpin any mmu pages first.
3891 for (i = 0; i < KVM_MAX_VCPUS; ++i)
3893 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
3894 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3895 if (kvm->vcpus[i]) {
3896 kvm_arch_vcpu_free(kvm->vcpus[i]);
3897 kvm->vcpus[i] = NULL;
3903 void kvm_arch_destroy_vm(struct kvm *kvm)
3906 kfree(kvm->arch.vpic);
3907 kfree(kvm->arch.vioapic);
3908 kvm_free_vcpus(kvm);
3909 kvm_free_physmem(kvm);
3910 if (kvm->arch.apic_access_page)
3911 put_page(kvm->arch.apic_access_page);
3912 if (kvm->arch.ept_identity_pagetable)
3913 put_page(kvm->arch.ept_identity_pagetable);
3917 int kvm_arch_set_memory_region(struct kvm *kvm,
3918 struct kvm_userspace_memory_region *mem,
3919 struct kvm_memory_slot old,
3922 int npages = mem->memory_size >> PAGE_SHIFT;
3923 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
3925 /*To keep backward compatibility with older userspace,
3926 *x86 needs to hanlde !user_alloc case.
3929 if (npages && !old.rmap) {
3930 down_write(¤t->mm->mmap_sem);
3931 memslot->userspace_addr = do_mmap(NULL, 0,
3933 PROT_READ | PROT_WRITE,
3934 MAP_SHARED | MAP_ANONYMOUS,
3936 up_write(¤t->mm->mmap_sem);
3938 if (IS_ERR((void *)memslot->userspace_addr))
3939 return PTR_ERR((void *)memslot->userspace_addr);
3941 if (!old.user_alloc && old.rmap) {
3944 down_write(¤t->mm->mmap_sem);
3945 ret = do_munmap(current->mm, old.userspace_addr,
3946 old.npages * PAGE_SIZE);
3947 up_write(¤t->mm->mmap_sem);
3950 "kvm_vm_ioctl_set_memory_region: "
3951 "failed to munmap memory\n");
3956 if (!kvm->arch.n_requested_mmu_pages) {
3957 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
3958 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
3961 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
3962 kvm_flush_remote_tlbs(kvm);
3967 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
3969 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
3970 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
3973 static void vcpu_kick_intr(void *info)
3976 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
3977 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
3981 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3983 int ipi_pcpu = vcpu->cpu;
3984 int cpu = get_cpu();
3986 if (waitqueue_active(&vcpu->wq)) {
3987 wake_up_interruptible(&vcpu->wq);
3988 ++vcpu->stat.halt_wakeup;
3991 * We may be called synchronously with irqs disabled in guest mode,
3992 * So need not to call smp_call_function_single() in that case.
3994 if (vcpu->guest_mode && vcpu->cpu != cpu)
3995 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);