2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30 #include <linux/hugetlb.h>
31 #include <linux/compiler.h>
34 #include <asm/cmpxchg.h>
38 * When setting this variable to true it enables Two-Dimensional-Paging
39 * where the hardware walks 2 page tables:
40 * 1. the guest-virtual to guest-physical
41 * 2. while doing 1. it walks guest-physical to host-physical
42 * If the hardware supports that we don't need to do shadow paging.
44 bool tdp_enabled = false;
51 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
53 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
58 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
59 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
63 #define pgprintk(x...) do { } while (0)
64 #define rmap_printk(x...) do { } while (0)
68 #if defined(MMU_DEBUG) || defined(AUDIT)
73 #define ASSERT(x) do { } while (0)
77 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
78 __FILE__, __LINE__, #x); \
82 #define PT64_PT_BITS 9
83 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
84 #define PT32_PT_BITS 10
85 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
87 #define PT_WRITABLE_SHIFT 1
89 #define PT_PRESENT_MASK (1ULL << 0)
90 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
91 #define PT_USER_MASK (1ULL << 2)
92 #define PT_PWT_MASK (1ULL << 3)
93 #define PT_PCD_MASK (1ULL << 4)
94 #define PT_ACCESSED_MASK (1ULL << 5)
95 #define PT_DIRTY_MASK (1ULL << 6)
96 #define PT_PAGE_SIZE_MASK (1ULL << 7)
97 #define PT_PAT_MASK (1ULL << 7)
98 #define PT_GLOBAL_MASK (1ULL << 8)
99 #define PT64_NX_SHIFT 63
100 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
102 #define PT_PAT_SHIFT 7
103 #define PT_DIR_PAT_SHIFT 12
104 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
106 #define PT32_DIR_PSE36_SIZE 4
107 #define PT32_DIR_PSE36_SHIFT 13
108 #define PT32_DIR_PSE36_MASK \
109 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
112 #define PT_FIRST_AVAIL_BITS_SHIFT 9
113 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
115 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
117 #define PT64_LEVEL_BITS 9
119 #define PT64_LEVEL_SHIFT(level) \
120 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
122 #define PT64_LEVEL_MASK(level) \
123 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
125 #define PT64_INDEX(address, level)\
126 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
129 #define PT32_LEVEL_BITS 10
131 #define PT32_LEVEL_SHIFT(level) \
132 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
134 #define PT32_LEVEL_MASK(level) \
135 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
137 #define PT32_INDEX(address, level)\
138 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
141 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
142 #define PT64_DIR_BASE_ADDR_MASK \
143 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
145 #define PT32_BASE_ADDR_MASK PAGE_MASK
146 #define PT32_DIR_BASE_ADDR_MASK \
147 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
149 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
152 #define PFERR_PRESENT_MASK (1U << 0)
153 #define PFERR_WRITE_MASK (1U << 1)
154 #define PFERR_USER_MASK (1U << 2)
155 #define PFERR_FETCH_MASK (1U << 4)
157 #define PT64_ROOT_LEVEL 4
158 #define PT32_ROOT_LEVEL 2
159 #define PT32E_ROOT_LEVEL 3
161 #define PT_DIRECTORY_LEVEL 2
162 #define PT_PAGE_TABLE_LEVEL 1
166 #define ACC_EXEC_MASK 1
167 #define ACC_WRITE_MASK PT_WRITABLE_MASK
168 #define ACC_USER_MASK PT_USER_MASK
169 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
171 struct kvm_pv_mmu_op_buffer {
175 char buf[512] __aligned(sizeof(long));
178 struct kvm_rmap_desc {
179 u64 *shadow_ptes[RMAP_EXT];
180 struct kvm_rmap_desc *more;
183 static struct kmem_cache *pte_chain_cache;
184 static struct kmem_cache *rmap_desc_cache;
185 static struct kmem_cache *mmu_page_header_cache;
187 static u64 __read_mostly shadow_trap_nonpresent_pte;
188 static u64 __read_mostly shadow_notrap_nonpresent_pte;
190 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
192 shadow_trap_nonpresent_pte = trap_pte;
193 shadow_notrap_nonpresent_pte = notrap_pte;
195 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
197 static int is_write_protection(struct kvm_vcpu *vcpu)
199 return vcpu->arch.cr0 & X86_CR0_WP;
202 static int is_cpuid_PSE36(void)
207 static int is_nx(struct kvm_vcpu *vcpu)
209 return vcpu->arch.shadow_efer & EFER_NX;
212 static int is_present_pte(unsigned long pte)
214 return pte & PT_PRESENT_MASK;
217 static int is_shadow_present_pte(u64 pte)
219 return pte != shadow_trap_nonpresent_pte
220 && pte != shadow_notrap_nonpresent_pte;
223 static int is_large_pte(u64 pte)
225 return pte & PT_PAGE_SIZE_MASK;
228 static int is_writeble_pte(unsigned long pte)
230 return pte & PT_WRITABLE_MASK;
233 static int is_dirty_pte(unsigned long pte)
235 return pte & PT_DIRTY_MASK;
238 static int is_rmap_pte(u64 pte)
240 return is_shadow_present_pte(pte);
243 static pfn_t spte_to_pfn(u64 pte)
245 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
248 static gfn_t pse36_gfn_delta(u32 gpte)
250 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
252 return (gpte & PT32_DIR_PSE36_MASK) << shift;
255 static void set_shadow_pte(u64 *sptep, u64 spte)
258 set_64bit((unsigned long *)sptep, spte);
260 set_64bit((unsigned long long *)sptep, spte);
264 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
265 struct kmem_cache *base_cache, int min)
269 if (cache->nobjs >= min)
271 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
272 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
275 cache->objects[cache->nobjs++] = obj;
280 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
283 kfree(mc->objects[--mc->nobjs]);
286 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
291 if (cache->nobjs >= min)
293 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
294 page = alloc_page(GFP_KERNEL);
297 set_page_private(page, 0);
298 cache->objects[cache->nobjs++] = page_address(page);
303 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
306 free_page((unsigned long)mc->objects[--mc->nobjs]);
309 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
313 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
317 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
321 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
324 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
325 mmu_page_header_cache, 4);
330 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
332 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
333 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
334 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
335 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
338 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
344 p = mc->objects[--mc->nobjs];
349 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
351 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
352 sizeof(struct kvm_pte_chain));
355 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
360 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
362 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
363 sizeof(struct kvm_rmap_desc));
366 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
372 * Return the pointer to the largepage write count for a given
373 * gfn, handling slots that are not large page aligned.
375 static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
379 idx = (gfn / KVM_PAGES_PER_HPAGE) -
380 (slot->base_gfn / KVM_PAGES_PER_HPAGE);
381 return &slot->lpage_info[idx].write_count;
384 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
388 write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
390 WARN_ON(*write_count > KVM_PAGES_PER_HPAGE);
393 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
397 write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
399 WARN_ON(*write_count < 0);
402 static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
404 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
408 largepage_idx = slot_largepage_idx(gfn, slot);
409 return *largepage_idx;
415 static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
417 struct vm_area_struct *vma;
420 addr = gfn_to_hva(kvm, gfn);
421 if (kvm_is_error_hva(addr))
424 vma = find_vma(current->mm, addr);
425 if (vma && is_vm_hugetlb_page(vma))
431 static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
433 struct kvm_memory_slot *slot;
435 if (has_wrprotected_page(vcpu->kvm, large_gfn))
438 if (!host_largepage_backed(vcpu->kvm, large_gfn))
441 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
442 if (slot && slot->dirty_bitmap)
449 * Take gfn and return the reverse mapping to it.
450 * Note: gfn must be unaliased before this function get called
453 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
455 struct kvm_memory_slot *slot;
458 slot = gfn_to_memslot(kvm, gfn);
460 return &slot->rmap[gfn - slot->base_gfn];
462 idx = (gfn / KVM_PAGES_PER_HPAGE) -
463 (slot->base_gfn / KVM_PAGES_PER_HPAGE);
465 return &slot->lpage_info[idx].rmap_pde;
469 * Reverse mapping data structures:
471 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
472 * that points to page_address(page).
474 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
475 * containing more mappings.
477 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
479 struct kvm_mmu_page *sp;
480 struct kvm_rmap_desc *desc;
481 unsigned long *rmapp;
484 if (!is_rmap_pte(*spte))
486 gfn = unalias_gfn(vcpu->kvm, gfn);
487 sp = page_header(__pa(spte));
488 sp->gfns[spte - sp->spt] = gfn;
489 rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
491 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
492 *rmapp = (unsigned long)spte;
493 } else if (!(*rmapp & 1)) {
494 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
495 desc = mmu_alloc_rmap_desc(vcpu);
496 desc->shadow_ptes[0] = (u64 *)*rmapp;
497 desc->shadow_ptes[1] = spte;
498 *rmapp = (unsigned long)desc | 1;
500 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
501 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
502 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
504 if (desc->shadow_ptes[RMAP_EXT-1]) {
505 desc->more = mmu_alloc_rmap_desc(vcpu);
508 for (i = 0; desc->shadow_ptes[i]; ++i)
510 desc->shadow_ptes[i] = spte;
514 static void rmap_desc_remove_entry(unsigned long *rmapp,
515 struct kvm_rmap_desc *desc,
517 struct kvm_rmap_desc *prev_desc)
521 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
523 desc->shadow_ptes[i] = desc->shadow_ptes[j];
524 desc->shadow_ptes[j] = NULL;
527 if (!prev_desc && !desc->more)
528 *rmapp = (unsigned long)desc->shadow_ptes[0];
531 prev_desc->more = desc->more;
533 *rmapp = (unsigned long)desc->more | 1;
534 mmu_free_rmap_desc(desc);
537 static void rmap_remove(struct kvm *kvm, u64 *spte)
539 struct kvm_rmap_desc *desc;
540 struct kvm_rmap_desc *prev_desc;
541 struct kvm_mmu_page *sp;
543 unsigned long *rmapp;
546 if (!is_rmap_pte(*spte))
548 sp = page_header(__pa(spte));
549 pfn = spte_to_pfn(*spte);
550 if (*spte & PT_ACCESSED_MASK)
551 kvm_set_pfn_accessed(pfn);
552 if (is_writeble_pte(*spte))
553 kvm_release_pfn_dirty(pfn);
555 kvm_release_pfn_clean(pfn);
556 rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
558 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
560 } else if (!(*rmapp & 1)) {
561 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
562 if ((u64 *)*rmapp != spte) {
563 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
569 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
570 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
573 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
574 if (desc->shadow_ptes[i] == spte) {
575 rmap_desc_remove_entry(rmapp,
587 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
589 struct kvm_rmap_desc *desc;
590 struct kvm_rmap_desc *prev_desc;
596 else if (!(*rmapp & 1)) {
598 return (u64 *)*rmapp;
601 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
605 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
606 if (prev_spte == spte)
607 return desc->shadow_ptes[i];
608 prev_spte = desc->shadow_ptes[i];
615 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
617 unsigned long *rmapp;
619 int write_protected = 0;
621 gfn = unalias_gfn(kvm, gfn);
622 rmapp = gfn_to_rmap(kvm, gfn, 0);
624 spte = rmap_next(kvm, rmapp, NULL);
627 BUG_ON(!(*spte & PT_PRESENT_MASK));
628 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
629 if (is_writeble_pte(*spte)) {
630 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
633 spte = rmap_next(kvm, rmapp, spte);
635 if (write_protected) {
638 spte = rmap_next(kvm, rmapp, NULL);
639 pfn = spte_to_pfn(*spte);
640 kvm_set_pfn_dirty(pfn);
643 /* check for huge page mappings */
644 rmapp = gfn_to_rmap(kvm, gfn, 1);
645 spte = rmap_next(kvm, rmapp, NULL);
648 BUG_ON(!(*spte & PT_PRESENT_MASK));
649 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
650 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
651 if (is_writeble_pte(*spte)) {
652 rmap_remove(kvm, spte);
654 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
657 spte = rmap_next(kvm, rmapp, spte);
661 kvm_flush_remote_tlbs(kvm);
663 account_shadowed(kvm, gfn);
667 static int is_empty_shadow_page(u64 *spt)
672 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
673 if (*pos != shadow_trap_nonpresent_pte) {
674 printk(KERN_ERR "%s: %p %llx\n", __func__,
682 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
684 ASSERT(is_empty_shadow_page(sp->spt));
686 __free_page(virt_to_page(sp->spt));
687 __free_page(virt_to_page(sp->gfns));
689 ++kvm->arch.n_free_mmu_pages;
692 static unsigned kvm_page_table_hashfn(gfn_t gfn)
694 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
697 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
700 struct kvm_mmu_page *sp;
702 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
703 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
704 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
705 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
706 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
707 ASSERT(is_empty_shadow_page(sp->spt));
710 sp->parent_pte = parent_pte;
711 --vcpu->kvm->arch.n_free_mmu_pages;
715 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
716 struct kvm_mmu_page *sp, u64 *parent_pte)
718 struct kvm_pte_chain *pte_chain;
719 struct hlist_node *node;
724 if (!sp->multimapped) {
725 u64 *old = sp->parent_pte;
728 sp->parent_pte = parent_pte;
732 pte_chain = mmu_alloc_pte_chain(vcpu);
733 INIT_HLIST_HEAD(&sp->parent_ptes);
734 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
735 pte_chain->parent_ptes[0] = old;
737 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
738 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
740 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
741 if (!pte_chain->parent_ptes[i]) {
742 pte_chain->parent_ptes[i] = parent_pte;
746 pte_chain = mmu_alloc_pte_chain(vcpu);
748 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
749 pte_chain->parent_ptes[0] = parent_pte;
752 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
755 struct kvm_pte_chain *pte_chain;
756 struct hlist_node *node;
759 if (!sp->multimapped) {
760 BUG_ON(sp->parent_pte != parent_pte);
761 sp->parent_pte = NULL;
764 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
765 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
766 if (!pte_chain->parent_ptes[i])
768 if (pte_chain->parent_ptes[i] != parent_pte)
770 while (i + 1 < NR_PTE_CHAIN_ENTRIES
771 && pte_chain->parent_ptes[i + 1]) {
772 pte_chain->parent_ptes[i]
773 = pte_chain->parent_ptes[i + 1];
776 pte_chain->parent_ptes[i] = NULL;
778 hlist_del(&pte_chain->link);
779 mmu_free_pte_chain(pte_chain);
780 if (hlist_empty(&sp->parent_ptes)) {
782 sp->parent_pte = NULL;
790 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
793 struct hlist_head *bucket;
794 struct kvm_mmu_page *sp;
795 struct hlist_node *node;
797 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
798 index = kvm_page_table_hashfn(gfn);
799 bucket = &kvm->arch.mmu_page_hash[index];
800 hlist_for_each_entry(sp, node, bucket, hash_link)
801 if (sp->gfn == gfn && !sp->role.metaphysical
802 && !sp->role.invalid) {
803 pgprintk("%s: found role %x\n",
804 __func__, sp->role.word);
810 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
818 union kvm_mmu_page_role role;
821 struct hlist_head *bucket;
822 struct kvm_mmu_page *sp;
823 struct hlist_node *node;
826 role.glevels = vcpu->arch.mmu.root_level;
828 role.metaphysical = metaphysical;
829 role.access = access;
830 if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
831 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
832 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
833 role.quadrant = quadrant;
835 pgprintk("%s: looking gfn %lx role %x\n", __func__,
837 index = kvm_page_table_hashfn(gfn);
838 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
839 hlist_for_each_entry(sp, node, bucket, hash_link)
840 if (sp->gfn == gfn && sp->role.word == role.word) {
841 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
842 pgprintk("%s: found\n", __func__);
845 ++vcpu->kvm->stat.mmu_cache_miss;
846 sp = kvm_mmu_alloc_page(vcpu, parent_pte);
849 pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
852 hlist_add_head(&sp->hash_link, bucket);
854 rmap_write_protect(vcpu->kvm, gfn);
855 vcpu->arch.mmu.prefetch_page(vcpu, sp);
859 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
860 struct kvm_mmu_page *sp)
868 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
869 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
870 if (is_shadow_present_pte(pt[i]))
871 rmap_remove(kvm, &pt[i]);
872 pt[i] = shadow_trap_nonpresent_pte;
874 kvm_flush_remote_tlbs(kvm);
878 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
881 if (is_shadow_present_pte(ent)) {
882 if (!is_large_pte(ent)) {
883 ent &= PT64_BASE_ADDR_MASK;
884 mmu_page_remove_parent_pte(page_header(ent),
888 rmap_remove(kvm, &pt[i]);
891 pt[i] = shadow_trap_nonpresent_pte;
893 kvm_flush_remote_tlbs(kvm);
896 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
898 mmu_page_remove_parent_pte(sp, parent_pte);
901 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
905 for (i = 0; i < KVM_MAX_VCPUS; ++i)
907 kvm->vcpus[i]->arch.last_pte_updated = NULL;
910 static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
914 ++kvm->stat.mmu_shadow_zapped;
915 while (sp->multimapped || sp->parent_pte) {
916 if (!sp->multimapped)
917 parent_pte = sp->parent_pte;
919 struct kvm_pte_chain *chain;
921 chain = container_of(sp->parent_ptes.first,
922 struct kvm_pte_chain, link);
923 parent_pte = chain->parent_ptes[0];
926 kvm_mmu_put_page(sp, parent_pte);
927 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
929 kvm_mmu_page_unlink_children(kvm, sp);
930 if (!sp->root_count) {
931 if (!sp->role.metaphysical)
932 unaccount_shadowed(kvm, sp->gfn);
933 hlist_del(&sp->hash_link);
934 kvm_mmu_free_page(kvm, sp);
936 list_move(&sp->link, &kvm->arch.active_mmu_pages);
937 sp->role.invalid = 1;
938 kvm_reload_remote_mmus(kvm);
940 kvm_mmu_reset_last_pte_updated(kvm);
944 * Changing the number of mmu pages allocated to the vm
945 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
947 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
950 * If we set the number of mmu pages to be smaller be than the
951 * number of actived pages , we must to free some mmu pages before we
955 if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
957 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
958 - kvm->arch.n_free_mmu_pages;
960 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
961 struct kvm_mmu_page *page;
963 page = container_of(kvm->arch.active_mmu_pages.prev,
964 struct kvm_mmu_page, link);
965 kvm_mmu_zap_page(kvm, page);
968 kvm->arch.n_free_mmu_pages = 0;
971 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
972 - kvm->arch.n_alloc_mmu_pages;
974 kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
977 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
980 struct hlist_head *bucket;
981 struct kvm_mmu_page *sp;
982 struct hlist_node *node, *n;
985 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
987 index = kvm_page_table_hashfn(gfn);
988 bucket = &kvm->arch.mmu_page_hash[index];
989 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
990 if (sp->gfn == gfn && !sp->role.metaphysical) {
991 pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
993 kvm_mmu_zap_page(kvm, sp);
999 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1001 struct kvm_mmu_page *sp;
1003 while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
1004 pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
1005 kvm_mmu_zap_page(kvm, sp);
1009 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1011 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
1012 struct kvm_mmu_page *sp = page_header(__pa(pte));
1014 __set_bit(slot, &sp->slot_bitmap);
1017 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
1021 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1023 if (gpa == UNMAPPED_GVA)
1026 down_read(¤t->mm->mmap_sem);
1027 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1028 up_read(¤t->mm->mmap_sem);
1033 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1034 unsigned pt_access, unsigned pte_access,
1035 int user_fault, int write_fault, int dirty,
1036 int *ptwrite, int largepage, gfn_t gfn,
1037 pfn_t pfn, bool speculative)
1040 int was_rmapped = 0;
1041 int was_writeble = is_writeble_pte(*shadow_pte);
1043 pgprintk("%s: spte %llx access %x write_fault %d"
1044 " user_fault %d gfn %lx\n",
1045 __func__, *shadow_pte, pt_access,
1046 write_fault, user_fault, gfn);
1048 if (is_rmap_pte(*shadow_pte)) {
1050 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1051 * the parent of the now unreachable PTE.
1053 if (largepage && !is_large_pte(*shadow_pte)) {
1054 struct kvm_mmu_page *child;
1055 u64 pte = *shadow_pte;
1057 child = page_header(pte & PT64_BASE_ADDR_MASK);
1058 mmu_page_remove_parent_pte(child, shadow_pte);
1059 } else if (pfn != spte_to_pfn(*shadow_pte)) {
1060 pgprintk("hfn old %lx new %lx\n",
1061 spte_to_pfn(*shadow_pte), pfn);
1062 rmap_remove(vcpu->kvm, shadow_pte);
1065 was_rmapped = is_large_pte(*shadow_pte);
1072 * We don't set the accessed bit, since we sometimes want to see
1073 * whether the guest actually used the pte (in order to detect
1076 spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
1078 pte_access |= PT_ACCESSED_MASK;
1080 pte_access &= ~ACC_WRITE_MASK;
1081 if (!(pte_access & ACC_EXEC_MASK))
1082 spte |= PT64_NX_MASK;
1084 spte |= PT_PRESENT_MASK;
1085 if (pte_access & ACC_USER_MASK)
1086 spte |= PT_USER_MASK;
1088 spte |= PT_PAGE_SIZE_MASK;
1090 spte |= (u64)pfn << PAGE_SHIFT;
1092 if ((pte_access & ACC_WRITE_MASK)
1093 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
1094 struct kvm_mmu_page *shadow;
1096 spte |= PT_WRITABLE_MASK;
1098 mmu_unshadow(vcpu->kvm, gfn);
1102 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
1104 (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
1105 pgprintk("%s: found shadow page for %lx, marking ro\n",
1107 pte_access &= ~ACC_WRITE_MASK;
1108 if (is_writeble_pte(spte)) {
1109 spte &= ~PT_WRITABLE_MASK;
1110 kvm_x86_ops->tlb_flush(vcpu);
1119 if (pte_access & ACC_WRITE_MASK)
1120 mark_page_dirty(vcpu->kvm, gfn);
1122 pgprintk("%s: setting spte %llx\n", __func__, spte);
1123 pgprintk("instantiating %s PTE (%s) at %d (%llx) addr %llx\n",
1124 (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
1125 (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
1126 set_shadow_pte(shadow_pte, spte);
1127 if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
1128 && (spte & PT_PRESENT_MASK))
1129 ++vcpu->kvm->stat.lpages;
1131 page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
1133 rmap_add(vcpu, shadow_pte, gfn, largepage);
1134 if (!is_rmap_pte(*shadow_pte))
1135 kvm_release_pfn_clean(pfn);
1138 kvm_release_pfn_dirty(pfn);
1140 kvm_release_pfn_clean(pfn);
1142 if (!ptwrite || !*ptwrite)
1143 vcpu->arch.last_pte_updated = shadow_pte;
1146 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1150 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1151 int largepage, gfn_t gfn, pfn_t pfn,
1154 hpa_t table_addr = vcpu->arch.mmu.root_hpa;
1158 u32 index = PT64_INDEX(v, level);
1161 ASSERT(VALID_PAGE(table_addr));
1162 table = __va(table_addr);
1165 mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
1166 0, write, 1, &pt_write, 0, gfn, pfn, false);
1170 if (largepage && level == 2) {
1171 mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
1172 0, write, 1, &pt_write, 1, gfn, pfn, false);
1176 if (table[index] == shadow_trap_nonpresent_pte) {
1177 struct kvm_mmu_page *new_table;
1180 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
1182 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
1184 1, ACC_ALL, &table[index]);
1186 pgprintk("nonpaging_map: ENOMEM\n");
1187 kvm_release_pfn_clean(pfn);
1191 table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
1192 | PT_WRITABLE_MASK | PT_USER_MASK;
1194 table_addr = table[index] & PT64_BASE_ADDR_MASK;
1198 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1204 down_read(¤t->mm->mmap_sem);
1205 if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1206 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1210 pfn = gfn_to_pfn(vcpu->kvm, gfn);
1211 up_read(¤t->mm->mmap_sem);
1214 if (is_error_pfn(pfn)) {
1215 kvm_release_pfn_clean(pfn);
1219 spin_lock(&vcpu->kvm->mmu_lock);
1220 kvm_mmu_free_some_pages(vcpu);
1221 r = __direct_map(vcpu, v, write, largepage, gfn, pfn,
1223 spin_unlock(&vcpu->kvm->mmu_lock);
1230 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1231 struct kvm_mmu_page *sp)
1235 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1236 sp->spt[i] = shadow_trap_nonpresent_pte;
1239 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1242 struct kvm_mmu_page *sp;
1244 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1246 spin_lock(&vcpu->kvm->mmu_lock);
1247 #ifdef CONFIG_X86_64
1248 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1249 hpa_t root = vcpu->arch.mmu.root_hpa;
1251 sp = page_header(root);
1253 if (!sp->root_count && sp->role.invalid)
1254 kvm_mmu_zap_page(vcpu->kvm, sp);
1255 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1256 spin_unlock(&vcpu->kvm->mmu_lock);
1260 for (i = 0; i < 4; ++i) {
1261 hpa_t root = vcpu->arch.mmu.pae_root[i];
1264 root &= PT64_BASE_ADDR_MASK;
1265 sp = page_header(root);
1267 if (!sp->root_count && sp->role.invalid)
1268 kvm_mmu_zap_page(vcpu->kvm, sp);
1270 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1272 spin_unlock(&vcpu->kvm->mmu_lock);
1273 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1276 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1280 struct kvm_mmu_page *sp;
1281 int metaphysical = 0;
1283 root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1285 #ifdef CONFIG_X86_64
1286 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1287 hpa_t root = vcpu->arch.mmu.root_hpa;
1289 ASSERT(!VALID_PAGE(root));
1292 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1293 PT64_ROOT_LEVEL, metaphysical,
1295 root = __pa(sp->spt);
1297 vcpu->arch.mmu.root_hpa = root;
1301 metaphysical = !is_paging(vcpu);
1304 for (i = 0; i < 4; ++i) {
1305 hpa_t root = vcpu->arch.mmu.pae_root[i];
1307 ASSERT(!VALID_PAGE(root));
1308 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1309 if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1310 vcpu->arch.mmu.pae_root[i] = 0;
1313 root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1314 } else if (vcpu->arch.mmu.root_level == 0)
1316 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1317 PT32_ROOT_LEVEL, metaphysical,
1319 root = __pa(sp->spt);
1321 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
1323 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
1326 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
1331 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1337 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
1338 r = mmu_topup_memory_caches(vcpu);
1343 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1345 gfn = gva >> PAGE_SHIFT;
1347 return nonpaging_map(vcpu, gva & PAGE_MASK,
1348 error_code & PFERR_WRITE_MASK, gfn);
1351 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
1357 gfn_t gfn = gpa >> PAGE_SHIFT;
1360 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1362 r = mmu_topup_memory_caches(vcpu);
1366 down_read(¤t->mm->mmap_sem);
1367 if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1368 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1371 pfn = gfn_to_pfn(vcpu->kvm, gfn);
1372 up_read(¤t->mm->mmap_sem);
1373 if (is_error_pfn(pfn)) {
1374 kvm_release_pfn_clean(pfn);
1377 spin_lock(&vcpu->kvm->mmu_lock);
1378 kvm_mmu_free_some_pages(vcpu);
1379 r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
1380 largepage, gfn, pfn, TDP_ROOT_LEVEL);
1381 spin_unlock(&vcpu->kvm->mmu_lock);
1386 static void nonpaging_free(struct kvm_vcpu *vcpu)
1388 mmu_free_roots(vcpu);
1391 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1393 struct kvm_mmu *context = &vcpu->arch.mmu;
1395 context->new_cr3 = nonpaging_new_cr3;
1396 context->page_fault = nonpaging_page_fault;
1397 context->gva_to_gpa = nonpaging_gva_to_gpa;
1398 context->free = nonpaging_free;
1399 context->prefetch_page = nonpaging_prefetch_page;
1400 context->root_level = 0;
1401 context->shadow_root_level = PT32E_ROOT_LEVEL;
1402 context->root_hpa = INVALID_PAGE;
1406 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1408 ++vcpu->stat.tlb_flush;
1409 kvm_x86_ops->tlb_flush(vcpu);
1412 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1414 pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
1415 mmu_free_roots(vcpu);
1418 static void inject_page_fault(struct kvm_vcpu *vcpu,
1422 kvm_inject_page_fault(vcpu, addr, err_code);
1425 static void paging_free(struct kvm_vcpu *vcpu)
1427 nonpaging_free(vcpu);
1431 #include "paging_tmpl.h"
1435 #include "paging_tmpl.h"
1438 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1440 struct kvm_mmu *context = &vcpu->arch.mmu;
1442 ASSERT(is_pae(vcpu));
1443 context->new_cr3 = paging_new_cr3;
1444 context->page_fault = paging64_page_fault;
1445 context->gva_to_gpa = paging64_gva_to_gpa;
1446 context->prefetch_page = paging64_prefetch_page;
1447 context->free = paging_free;
1448 context->root_level = level;
1449 context->shadow_root_level = level;
1450 context->root_hpa = INVALID_PAGE;
1454 static int paging64_init_context(struct kvm_vcpu *vcpu)
1456 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1459 static int paging32_init_context(struct kvm_vcpu *vcpu)
1461 struct kvm_mmu *context = &vcpu->arch.mmu;
1463 context->new_cr3 = paging_new_cr3;
1464 context->page_fault = paging32_page_fault;
1465 context->gva_to_gpa = paging32_gva_to_gpa;
1466 context->free = paging_free;
1467 context->prefetch_page = paging32_prefetch_page;
1468 context->root_level = PT32_ROOT_LEVEL;
1469 context->shadow_root_level = PT32E_ROOT_LEVEL;
1470 context->root_hpa = INVALID_PAGE;
1474 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1476 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1479 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
1481 struct kvm_mmu *context = &vcpu->arch.mmu;
1483 context->new_cr3 = nonpaging_new_cr3;
1484 context->page_fault = tdp_page_fault;
1485 context->free = nonpaging_free;
1486 context->prefetch_page = nonpaging_prefetch_page;
1487 context->shadow_root_level = TDP_ROOT_LEVEL;
1488 context->root_hpa = INVALID_PAGE;
1490 if (!is_paging(vcpu)) {
1491 context->gva_to_gpa = nonpaging_gva_to_gpa;
1492 context->root_level = 0;
1493 } else if (is_long_mode(vcpu)) {
1494 context->gva_to_gpa = paging64_gva_to_gpa;
1495 context->root_level = PT64_ROOT_LEVEL;
1496 } else if (is_pae(vcpu)) {
1497 context->gva_to_gpa = paging64_gva_to_gpa;
1498 context->root_level = PT32E_ROOT_LEVEL;
1500 context->gva_to_gpa = paging32_gva_to_gpa;
1501 context->root_level = PT32_ROOT_LEVEL;
1507 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
1510 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1512 if (!is_paging(vcpu))
1513 return nonpaging_init_context(vcpu);
1514 else if (is_long_mode(vcpu))
1515 return paging64_init_context(vcpu);
1516 else if (is_pae(vcpu))
1517 return paging32E_init_context(vcpu);
1519 return paging32_init_context(vcpu);
1522 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1524 vcpu->arch.update_pte.pfn = bad_pfn;
1527 return init_kvm_tdp_mmu(vcpu);
1529 return init_kvm_softmmu(vcpu);
1532 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1535 if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
1536 vcpu->arch.mmu.free(vcpu);
1537 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1541 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1543 destroy_kvm_mmu(vcpu);
1544 return init_kvm_mmu(vcpu);
1546 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1548 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1552 r = mmu_topup_memory_caches(vcpu);
1555 spin_lock(&vcpu->kvm->mmu_lock);
1556 kvm_mmu_free_some_pages(vcpu);
1557 mmu_alloc_roots(vcpu);
1558 spin_unlock(&vcpu->kvm->mmu_lock);
1559 kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
1560 kvm_mmu_flush_tlb(vcpu);
1564 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1566 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1568 mmu_free_roots(vcpu);
1571 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1572 struct kvm_mmu_page *sp,
1576 struct kvm_mmu_page *child;
1579 if (is_shadow_present_pte(pte)) {
1580 if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
1582 rmap_remove(vcpu->kvm, spte);
1584 child = page_header(pte & PT64_BASE_ADDR_MASK);
1585 mmu_page_remove_parent_pte(child, spte);
1588 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1589 if (is_large_pte(pte))
1590 --vcpu->kvm->stat.lpages;
1593 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1594 struct kvm_mmu_page *sp,
1598 if ((sp->role.level != PT_PAGE_TABLE_LEVEL)
1599 && !vcpu->arch.update_pte.largepage) {
1600 ++vcpu->kvm->stat.mmu_pde_zapped;
1604 ++vcpu->kvm->stat.mmu_pte_updated;
1605 if (sp->role.glevels == PT32_ROOT_LEVEL)
1606 paging32_update_pte(vcpu, sp, spte, new);
1608 paging64_update_pte(vcpu, sp, spte, new);
1611 static bool need_remote_flush(u64 old, u64 new)
1613 if (!is_shadow_present_pte(old))
1615 if (!is_shadow_present_pte(new))
1617 if ((old ^ new) & PT64_BASE_ADDR_MASK)
1619 old ^= PT64_NX_MASK;
1620 new ^= PT64_NX_MASK;
1621 return (old & ~new & PT64_PERM_MASK) != 0;
1624 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
1626 if (need_remote_flush(old, new))
1627 kvm_flush_remote_tlbs(vcpu->kvm);
1629 kvm_mmu_flush_tlb(vcpu);
1632 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1634 u64 *spte = vcpu->arch.last_pte_updated;
1636 return !!(spte && (*spte & PT_ACCESSED_MASK));
1639 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1640 const u8 *new, int bytes)
1647 vcpu->arch.update_pte.largepage = 0;
1649 if (bytes != 4 && bytes != 8)
1653 * Assume that the pte write on a page table of the same type
1654 * as the current vcpu paging mode. This is nearly always true
1655 * (might be false while changing modes). Note it is verified later
1659 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
1660 if ((bytes == 4) && (gpa % 4 == 0)) {
1661 r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
1664 memcpy((void *)&gpte + (gpa % 8), new, 4);
1665 } else if ((bytes == 8) && (gpa % 8 == 0)) {
1666 memcpy((void *)&gpte, new, 8);
1669 if ((bytes == 4) && (gpa % 4 == 0))
1670 memcpy((void *)&gpte, new, 4);
1672 if (!is_present_pte(gpte))
1674 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
1676 down_read(¤t->mm->mmap_sem);
1677 if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
1678 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1679 vcpu->arch.update_pte.largepage = 1;
1681 pfn = gfn_to_pfn(vcpu->kvm, gfn);
1682 up_read(¤t->mm->mmap_sem);
1684 if (is_error_pfn(pfn)) {
1685 kvm_release_pfn_clean(pfn);
1688 vcpu->arch.update_pte.gfn = gfn;
1689 vcpu->arch.update_pte.pfn = pfn;
1692 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1693 const u8 *new, int bytes)
1695 gfn_t gfn = gpa >> PAGE_SHIFT;
1696 struct kvm_mmu_page *sp;
1697 struct hlist_node *node, *n;
1698 struct hlist_head *bucket;
1702 unsigned offset = offset_in_page(gpa);
1704 unsigned page_offset;
1705 unsigned misaligned;
1712 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
1713 mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
1714 spin_lock(&vcpu->kvm->mmu_lock);
1715 kvm_mmu_free_some_pages(vcpu);
1716 ++vcpu->kvm->stat.mmu_pte_write;
1717 kvm_mmu_audit(vcpu, "pre pte write");
1718 if (gfn == vcpu->arch.last_pt_write_gfn
1719 && !last_updated_pte_accessed(vcpu)) {
1720 ++vcpu->arch.last_pt_write_count;
1721 if (vcpu->arch.last_pt_write_count >= 3)
1724 vcpu->arch.last_pt_write_gfn = gfn;
1725 vcpu->arch.last_pt_write_count = 1;
1726 vcpu->arch.last_pte_updated = NULL;
1728 index = kvm_page_table_hashfn(gfn);
1729 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1730 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
1731 if (sp->gfn != gfn || sp->role.metaphysical)
1733 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1734 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1735 misaligned |= bytes < 4;
1736 if (misaligned || flooded) {
1738 * Misaligned accesses are too much trouble to fix
1739 * up; also, they usually indicate a page is not used
1742 * If we're seeing too many writes to a page,
1743 * it may no longer be a page table, or we may be
1744 * forking, in which case it is better to unmap the
1747 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1748 gpa, bytes, sp->role.word);
1749 kvm_mmu_zap_page(vcpu->kvm, sp);
1750 ++vcpu->kvm->stat.mmu_flooded;
1753 page_offset = offset;
1754 level = sp->role.level;
1756 if (sp->role.glevels == PT32_ROOT_LEVEL) {
1757 page_offset <<= 1; /* 32->64 */
1759 * A 32-bit pde maps 4MB while the shadow pdes map
1760 * only 2MB. So we need to double the offset again
1761 * and zap two pdes instead of one.
1763 if (level == PT32_ROOT_LEVEL) {
1764 page_offset &= ~7; /* kill rounding error */
1768 quadrant = page_offset >> PAGE_SHIFT;
1769 page_offset &= ~PAGE_MASK;
1770 if (quadrant != sp->role.quadrant)
1773 spte = &sp->spt[page_offset / sizeof(*spte)];
1774 if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
1776 r = kvm_read_guest_atomic(vcpu->kvm,
1777 gpa & ~(u64)(pte_size - 1),
1779 new = (const void *)&gentry;
1785 mmu_pte_write_zap_pte(vcpu, sp, spte);
1787 mmu_pte_write_new_pte(vcpu, sp, spte, new);
1788 mmu_pte_write_flush_tlb(vcpu, entry, *spte);
1792 kvm_mmu_audit(vcpu, "post pte write");
1793 spin_unlock(&vcpu->kvm->mmu_lock);
1794 if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
1795 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
1796 vcpu->arch.update_pte.pfn = bad_pfn;
1800 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1805 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1807 spin_lock(&vcpu->kvm->mmu_lock);
1808 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1809 spin_unlock(&vcpu->kvm->mmu_lock);
1813 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1815 while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
1816 struct kvm_mmu_page *sp;
1818 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
1819 struct kvm_mmu_page, link);
1820 kvm_mmu_zap_page(vcpu->kvm, sp);
1821 ++vcpu->kvm->stat.mmu_recycled;
1825 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
1828 enum emulation_result er;
1830 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
1839 r = mmu_topup_memory_caches(vcpu);
1843 er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
1848 case EMULATE_DO_MMIO:
1849 ++vcpu->stat.mmio_exits;
1852 kvm_report_emulation_failure(vcpu, "pagetable");
1860 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
1862 void kvm_enable_tdp(void)
1866 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
1868 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1870 struct kvm_mmu_page *sp;
1872 while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
1873 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
1874 struct kvm_mmu_page, link);
1875 kvm_mmu_zap_page(vcpu->kvm, sp);
1877 free_page((unsigned long)vcpu->arch.mmu.pae_root);
1880 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1887 if (vcpu->kvm->arch.n_requested_mmu_pages)
1888 vcpu->kvm->arch.n_free_mmu_pages =
1889 vcpu->kvm->arch.n_requested_mmu_pages;
1891 vcpu->kvm->arch.n_free_mmu_pages =
1892 vcpu->kvm->arch.n_alloc_mmu_pages;
1894 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1895 * Therefore we need to allocate shadow page tables in the first
1896 * 4GB of memory, which happens to fit the DMA32 zone.
1898 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1901 vcpu->arch.mmu.pae_root = page_address(page);
1902 for (i = 0; i < 4; ++i)
1903 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1908 free_mmu_pages(vcpu);
1912 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1915 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1917 return alloc_mmu_pages(vcpu);
1920 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1923 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1925 return init_kvm_mmu(vcpu);
1928 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1932 destroy_kvm_mmu(vcpu);
1933 free_mmu_pages(vcpu);
1934 mmu_free_memory_caches(vcpu);
1937 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1939 struct kvm_mmu_page *sp;
1941 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
1945 if (!test_bit(slot, &sp->slot_bitmap))
1949 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1951 if (pt[i] & PT_WRITABLE_MASK)
1952 pt[i] &= ~PT_WRITABLE_MASK;
1956 void kvm_mmu_zap_all(struct kvm *kvm)
1958 struct kvm_mmu_page *sp, *node;
1960 spin_lock(&kvm->mmu_lock);
1961 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
1962 kvm_mmu_zap_page(kvm, sp);
1963 spin_unlock(&kvm->mmu_lock);
1965 kvm_flush_remote_tlbs(kvm);
1968 void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
1970 struct kvm_mmu_page *page;
1972 page = container_of(kvm->arch.active_mmu_pages.prev,
1973 struct kvm_mmu_page, link);
1974 kvm_mmu_zap_page(kvm, page);
1977 static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
1980 struct kvm *kvm_freed = NULL;
1981 int cache_count = 0;
1983 spin_lock(&kvm_lock);
1985 list_for_each_entry(kvm, &vm_list, vm_list) {
1988 spin_lock(&kvm->mmu_lock);
1989 npages = kvm->arch.n_alloc_mmu_pages -
1990 kvm->arch.n_free_mmu_pages;
1991 cache_count += npages;
1992 if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
1993 kvm_mmu_remove_one_alloc_mmu_page(kvm);
1999 spin_unlock(&kvm->mmu_lock);
2002 list_move_tail(&kvm_freed->vm_list, &vm_list);
2004 spin_unlock(&kvm_lock);
2009 static struct shrinker mmu_shrinker = {
2010 .shrink = mmu_shrink,
2011 .seeks = DEFAULT_SEEKS * 10,
2014 void mmu_destroy_caches(void)
2016 if (pte_chain_cache)
2017 kmem_cache_destroy(pte_chain_cache);
2018 if (rmap_desc_cache)
2019 kmem_cache_destroy(rmap_desc_cache);
2020 if (mmu_page_header_cache)
2021 kmem_cache_destroy(mmu_page_header_cache);
2024 void kvm_mmu_module_exit(void)
2026 mmu_destroy_caches();
2027 unregister_shrinker(&mmu_shrinker);
2030 int kvm_mmu_module_init(void)
2032 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
2033 sizeof(struct kvm_pte_chain),
2035 if (!pte_chain_cache)
2037 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
2038 sizeof(struct kvm_rmap_desc),
2040 if (!rmap_desc_cache)
2043 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
2044 sizeof(struct kvm_mmu_page),
2046 if (!mmu_page_header_cache)
2049 register_shrinker(&mmu_shrinker);
2054 mmu_destroy_caches();
2059 * Caculate mmu pages needed for kvm.
2061 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
2064 unsigned int nr_mmu_pages;
2065 unsigned int nr_pages = 0;
2067 for (i = 0; i < kvm->nmemslots; i++)
2068 nr_pages += kvm->memslots[i].npages;
2070 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
2071 nr_mmu_pages = max(nr_mmu_pages,
2072 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
2074 return nr_mmu_pages;
2077 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2080 if (len > buffer->len)
2085 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2090 ret = pv_mmu_peek_buffer(buffer, len);
2095 buffer->processed += len;
2099 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
2100 gpa_t addr, gpa_t value)
2105 if (!is_long_mode(vcpu) && !is_pae(vcpu))
2108 r = mmu_topup_memory_caches(vcpu);
2112 if (!emulator_write_phys(vcpu, addr, &value, bytes))
2118 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2120 kvm_x86_ops->tlb_flush(vcpu);
2124 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
2126 spin_lock(&vcpu->kvm->mmu_lock);
2127 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
2128 spin_unlock(&vcpu->kvm->mmu_lock);
2132 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
2133 struct kvm_pv_mmu_op_buffer *buffer)
2135 struct kvm_mmu_op_header *header;
2137 header = pv_mmu_peek_buffer(buffer, sizeof *header);
2140 switch (header->op) {
2141 case KVM_MMU_OP_WRITE_PTE: {
2142 struct kvm_mmu_op_write_pte *wpte;
2144 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
2147 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
2150 case KVM_MMU_OP_FLUSH_TLB: {
2151 struct kvm_mmu_op_flush_tlb *ftlb;
2153 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
2156 return kvm_pv_mmu_flush_tlb(vcpu);
2158 case KVM_MMU_OP_RELEASE_PT: {
2159 struct kvm_mmu_op_release_pt *rpt;
2161 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
2164 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
2170 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
2171 gpa_t addr, unsigned long *ret)
2174 struct kvm_pv_mmu_op_buffer buffer;
2176 buffer.ptr = buffer.buf;
2177 buffer.len = min_t(unsigned long, bytes, sizeof buffer.buf);
2178 buffer.processed = 0;
2180 r = kvm_read_guest(vcpu->kvm, addr, buffer.buf, buffer.len);
2184 while (buffer.len) {
2185 r = kvm_pv_mmu_op_one(vcpu, &buffer);
2194 *ret = buffer.processed;
2200 static const char *audit_msg;
2202 static gva_t canonicalize(gva_t gva)
2204 #ifdef CONFIG_X86_64
2205 gva = (long long)(gva << 16) >> 16;
2210 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
2211 gva_t va, int level)
2213 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
2215 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
2217 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
2220 if (ent == shadow_trap_nonpresent_pte)
2223 va = canonicalize(va);
2225 if (ent == shadow_notrap_nonpresent_pte)
2226 printk(KERN_ERR "audit: (%s) nontrapping pte"
2227 " in nonleaf level: levels %d gva %lx"
2228 " level %d pte %llx\n", audit_msg,
2229 vcpu->arch.mmu.root_level, va, level, ent);
2231 audit_mappings_page(vcpu, ent, va, level - 1);
2233 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
2234 hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
2236 if (is_shadow_present_pte(ent)
2237 && (ent & PT64_BASE_ADDR_MASK) != hpa)
2238 printk(KERN_ERR "xx audit error: (%s) levels %d"
2239 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
2240 audit_msg, vcpu->arch.mmu.root_level,
2242 is_shadow_present_pte(ent));
2243 else if (ent == shadow_notrap_nonpresent_pte
2244 && !is_error_hpa(hpa))
2245 printk(KERN_ERR "audit: (%s) notrap shadow,"
2246 " valid guest gva %lx\n", audit_msg, va);
2247 kvm_release_pfn_clean(pfn);
2253 static void audit_mappings(struct kvm_vcpu *vcpu)
2257 if (vcpu->arch.mmu.root_level == 4)
2258 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
2260 for (i = 0; i < 4; ++i)
2261 if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
2262 audit_mappings_page(vcpu,
2263 vcpu->arch.mmu.pae_root[i],
2268 static int count_rmaps(struct kvm_vcpu *vcpu)
2273 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
2274 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
2275 struct kvm_rmap_desc *d;
2277 for (j = 0; j < m->npages; ++j) {
2278 unsigned long *rmapp = &m->rmap[j];
2282 if (!(*rmapp & 1)) {
2286 d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
2288 for (k = 0; k < RMAP_EXT; ++k)
2289 if (d->shadow_ptes[k])
2300 static int count_writable_mappings(struct kvm_vcpu *vcpu)
2303 struct kvm_mmu_page *sp;
2306 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2309 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
2312 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
2315 if (!(ent & PT_PRESENT_MASK))
2317 if (!(ent & PT_WRITABLE_MASK))
2325 static void audit_rmap(struct kvm_vcpu *vcpu)
2327 int n_rmap = count_rmaps(vcpu);
2328 int n_actual = count_writable_mappings(vcpu);
2330 if (n_rmap != n_actual)
2331 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
2332 __func__, audit_msg, n_rmap, n_actual);
2335 static void audit_write_protection(struct kvm_vcpu *vcpu)
2337 struct kvm_mmu_page *sp;
2338 struct kvm_memory_slot *slot;
2339 unsigned long *rmapp;
2342 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2343 if (sp->role.metaphysical)
2346 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
2347 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
2348 rmapp = &slot->rmap[gfn - slot->base_gfn];
2350 printk(KERN_ERR "%s: (%s) shadow page has writable"
2351 " mappings: gfn %lx role %x\n",
2352 __func__, audit_msg, sp->gfn,
2357 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
2364 audit_write_protection(vcpu);
2365 audit_mappings(vcpu);