2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30 #include <linux/hugetlb.h>
31 #include <linux/compiler.h>
34 #include <asm/cmpxchg.h>
38 * When setting this variable to true it enables Two-Dimensional-Paging
39 * where the hardware walks 2 page tables:
40 * 1. the guest-virtual to guest-physical
41 * 2. while doing 1. it walks guest-physical to host-physical
42 * If the hardware supports that we don't need to do shadow paging.
44 bool tdp_enabled = false;
51 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
53 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
58 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
59 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
63 #define pgprintk(x...) do { } while (0)
64 #define rmap_printk(x...) do { } while (0)
68 #if defined(MMU_DEBUG) || defined(AUDIT)
73 #define ASSERT(x) do { } while (0)
77 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
78 __FILE__, __LINE__, #x); \
82 #define PT_FIRST_AVAIL_BITS_SHIFT 9
83 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
85 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
87 #define PT64_LEVEL_BITS 9
89 #define PT64_LEVEL_SHIFT(level) \
90 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
92 #define PT64_LEVEL_MASK(level) \
93 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
95 #define PT64_INDEX(address, level)\
96 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
99 #define PT32_LEVEL_BITS 10
101 #define PT32_LEVEL_SHIFT(level) \
102 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
104 #define PT32_LEVEL_MASK(level) \
105 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
107 #define PT32_INDEX(address, level)\
108 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
111 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
112 #define PT64_DIR_BASE_ADDR_MASK \
113 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
122 #define PFERR_PRESENT_MASK (1U << 0)
123 #define PFERR_WRITE_MASK (1U << 1)
124 #define PFERR_USER_MASK (1U << 2)
125 #define PFERR_FETCH_MASK (1U << 4)
127 #define PT_DIRECTORY_LEVEL 2
128 #define PT_PAGE_TABLE_LEVEL 1
132 #define ACC_EXEC_MASK 1
133 #define ACC_WRITE_MASK PT_WRITABLE_MASK
134 #define ACC_USER_MASK PT_USER_MASK
135 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
137 struct kvm_pv_mmu_op_buffer {
141 char buf[512] __aligned(sizeof(long));
144 struct kvm_rmap_desc {
145 u64 *shadow_ptes[RMAP_EXT];
146 struct kvm_rmap_desc *more;
149 static struct kmem_cache *pte_chain_cache;
150 static struct kmem_cache *rmap_desc_cache;
151 static struct kmem_cache *mmu_page_header_cache;
153 static u64 __read_mostly shadow_trap_nonpresent_pte;
154 static u64 __read_mostly shadow_notrap_nonpresent_pte;
155 static u64 __read_mostly shadow_base_present_pte;
156 static u64 __read_mostly shadow_nx_mask;
157 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
158 static u64 __read_mostly shadow_user_mask;
159 static u64 __read_mostly shadow_accessed_mask;
160 static u64 __read_mostly shadow_dirty_mask;
162 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
164 shadow_trap_nonpresent_pte = trap_pte;
165 shadow_notrap_nonpresent_pte = notrap_pte;
167 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
169 void kvm_mmu_set_base_ptes(u64 base_pte)
171 shadow_base_present_pte = base_pte;
173 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
175 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
176 u64 dirty_mask, u64 nx_mask, u64 x_mask)
178 shadow_user_mask = user_mask;
179 shadow_accessed_mask = accessed_mask;
180 shadow_dirty_mask = dirty_mask;
181 shadow_nx_mask = nx_mask;
182 shadow_x_mask = x_mask;
184 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
186 static int is_write_protection(struct kvm_vcpu *vcpu)
188 return vcpu->arch.cr0 & X86_CR0_WP;
191 static int is_cpuid_PSE36(void)
196 static int is_nx(struct kvm_vcpu *vcpu)
198 return vcpu->arch.shadow_efer & EFER_NX;
201 static int is_present_pte(unsigned long pte)
203 return pte & PT_PRESENT_MASK;
206 static int is_shadow_present_pte(u64 pte)
208 return pte != shadow_trap_nonpresent_pte
209 && pte != shadow_notrap_nonpresent_pte;
212 static int is_large_pte(u64 pte)
214 return pte & PT_PAGE_SIZE_MASK;
217 static int is_writeble_pte(unsigned long pte)
219 return pte & PT_WRITABLE_MASK;
222 static int is_dirty_pte(unsigned long pte)
224 return pte & shadow_dirty_mask;
227 static int is_rmap_pte(u64 pte)
229 return is_shadow_present_pte(pte);
232 static pfn_t spte_to_pfn(u64 pte)
234 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
237 static gfn_t pse36_gfn_delta(u32 gpte)
239 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
241 return (gpte & PT32_DIR_PSE36_MASK) << shift;
244 static void set_shadow_pte(u64 *sptep, u64 spte)
247 set_64bit((unsigned long *)sptep, spte);
249 set_64bit((unsigned long long *)sptep, spte);
253 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
254 struct kmem_cache *base_cache, int min)
258 if (cache->nobjs >= min)
260 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
261 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
264 cache->objects[cache->nobjs++] = obj;
269 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
272 kfree(mc->objects[--mc->nobjs]);
275 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
280 if (cache->nobjs >= min)
282 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
283 page = alloc_page(GFP_KERNEL);
286 set_page_private(page, 0);
287 cache->objects[cache->nobjs++] = page_address(page);
292 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
295 free_page((unsigned long)mc->objects[--mc->nobjs]);
298 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
302 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
306 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
310 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
313 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
314 mmu_page_header_cache, 4);
319 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
321 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
322 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
323 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
324 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
327 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
333 p = mc->objects[--mc->nobjs];
338 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
340 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
341 sizeof(struct kvm_pte_chain));
344 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
349 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
351 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
352 sizeof(struct kvm_rmap_desc));
355 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
361 * Return the pointer to the largepage write count for a given
362 * gfn, handling slots that are not large page aligned.
364 static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
368 idx = (gfn / KVM_PAGES_PER_HPAGE) -
369 (slot->base_gfn / KVM_PAGES_PER_HPAGE);
370 return &slot->lpage_info[idx].write_count;
373 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
377 write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
379 WARN_ON(*write_count > KVM_PAGES_PER_HPAGE);
382 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
386 write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
388 WARN_ON(*write_count < 0);
391 static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
393 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
397 largepage_idx = slot_largepage_idx(gfn, slot);
398 return *largepage_idx;
404 static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
406 struct vm_area_struct *vma;
409 addr = gfn_to_hva(kvm, gfn);
410 if (kvm_is_error_hva(addr))
413 vma = find_vma(current->mm, addr);
414 if (vma && is_vm_hugetlb_page(vma))
420 static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
422 struct kvm_memory_slot *slot;
424 if (has_wrprotected_page(vcpu->kvm, large_gfn))
427 if (!host_largepage_backed(vcpu->kvm, large_gfn))
430 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
431 if (slot && slot->dirty_bitmap)
438 * Take gfn and return the reverse mapping to it.
439 * Note: gfn must be unaliased before this function get called
442 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
444 struct kvm_memory_slot *slot;
447 slot = gfn_to_memslot(kvm, gfn);
449 return &slot->rmap[gfn - slot->base_gfn];
451 idx = (gfn / KVM_PAGES_PER_HPAGE) -
452 (slot->base_gfn / KVM_PAGES_PER_HPAGE);
454 return &slot->lpage_info[idx].rmap_pde;
458 * Reverse mapping data structures:
460 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
461 * that points to page_address(page).
463 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
464 * containing more mappings.
466 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
468 struct kvm_mmu_page *sp;
469 struct kvm_rmap_desc *desc;
470 unsigned long *rmapp;
473 if (!is_rmap_pte(*spte))
475 gfn = unalias_gfn(vcpu->kvm, gfn);
476 sp = page_header(__pa(spte));
477 sp->gfns[spte - sp->spt] = gfn;
478 rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
480 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
481 *rmapp = (unsigned long)spte;
482 } else if (!(*rmapp & 1)) {
483 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
484 desc = mmu_alloc_rmap_desc(vcpu);
485 desc->shadow_ptes[0] = (u64 *)*rmapp;
486 desc->shadow_ptes[1] = spte;
487 *rmapp = (unsigned long)desc | 1;
489 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
490 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
491 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
493 if (desc->shadow_ptes[RMAP_EXT-1]) {
494 desc->more = mmu_alloc_rmap_desc(vcpu);
497 for (i = 0; desc->shadow_ptes[i]; ++i)
499 desc->shadow_ptes[i] = spte;
503 static void rmap_desc_remove_entry(unsigned long *rmapp,
504 struct kvm_rmap_desc *desc,
506 struct kvm_rmap_desc *prev_desc)
510 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
512 desc->shadow_ptes[i] = desc->shadow_ptes[j];
513 desc->shadow_ptes[j] = NULL;
516 if (!prev_desc && !desc->more)
517 *rmapp = (unsigned long)desc->shadow_ptes[0];
520 prev_desc->more = desc->more;
522 *rmapp = (unsigned long)desc->more | 1;
523 mmu_free_rmap_desc(desc);
526 static void rmap_remove(struct kvm *kvm, u64 *spte)
528 struct kvm_rmap_desc *desc;
529 struct kvm_rmap_desc *prev_desc;
530 struct kvm_mmu_page *sp;
532 unsigned long *rmapp;
535 if (!is_rmap_pte(*spte))
537 sp = page_header(__pa(spte));
538 pfn = spte_to_pfn(*spte);
539 if (*spte & shadow_accessed_mask)
540 kvm_set_pfn_accessed(pfn);
541 if (is_writeble_pte(*spte))
542 kvm_release_pfn_dirty(pfn);
544 kvm_release_pfn_clean(pfn);
545 rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
547 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
549 } else if (!(*rmapp & 1)) {
550 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
551 if ((u64 *)*rmapp != spte) {
552 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
558 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
559 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
562 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
563 if (desc->shadow_ptes[i] == spte) {
564 rmap_desc_remove_entry(rmapp,
576 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
578 struct kvm_rmap_desc *desc;
579 struct kvm_rmap_desc *prev_desc;
585 else if (!(*rmapp & 1)) {
587 return (u64 *)*rmapp;
590 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
594 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
595 if (prev_spte == spte)
596 return desc->shadow_ptes[i];
597 prev_spte = desc->shadow_ptes[i];
604 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
606 unsigned long *rmapp;
608 int write_protected = 0;
610 gfn = unalias_gfn(kvm, gfn);
611 rmapp = gfn_to_rmap(kvm, gfn, 0);
613 spte = rmap_next(kvm, rmapp, NULL);
616 BUG_ON(!(*spte & PT_PRESENT_MASK));
617 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
618 if (is_writeble_pte(*spte)) {
619 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
622 spte = rmap_next(kvm, rmapp, spte);
624 if (write_protected) {
627 spte = rmap_next(kvm, rmapp, NULL);
628 pfn = spte_to_pfn(*spte);
629 kvm_set_pfn_dirty(pfn);
632 /* check for huge page mappings */
633 rmapp = gfn_to_rmap(kvm, gfn, 1);
634 spte = rmap_next(kvm, rmapp, NULL);
637 BUG_ON(!(*spte & PT_PRESENT_MASK));
638 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
639 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
640 if (is_writeble_pte(*spte)) {
641 rmap_remove(kvm, spte);
643 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
646 spte = rmap_next(kvm, rmapp, spte);
650 kvm_flush_remote_tlbs(kvm);
652 account_shadowed(kvm, gfn);
656 static int is_empty_shadow_page(u64 *spt)
661 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
662 if (*pos != shadow_trap_nonpresent_pte) {
663 printk(KERN_ERR "%s: %p %llx\n", __func__,
671 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
673 ASSERT(is_empty_shadow_page(sp->spt));
675 __free_page(virt_to_page(sp->spt));
676 __free_page(virt_to_page(sp->gfns));
678 ++kvm->arch.n_free_mmu_pages;
681 static unsigned kvm_page_table_hashfn(gfn_t gfn)
683 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
686 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
689 struct kvm_mmu_page *sp;
691 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
692 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
693 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
694 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
695 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
696 ASSERT(is_empty_shadow_page(sp->spt));
699 sp->parent_pte = parent_pte;
700 --vcpu->kvm->arch.n_free_mmu_pages;
704 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
705 struct kvm_mmu_page *sp, u64 *parent_pte)
707 struct kvm_pte_chain *pte_chain;
708 struct hlist_node *node;
713 if (!sp->multimapped) {
714 u64 *old = sp->parent_pte;
717 sp->parent_pte = parent_pte;
721 pte_chain = mmu_alloc_pte_chain(vcpu);
722 INIT_HLIST_HEAD(&sp->parent_ptes);
723 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
724 pte_chain->parent_ptes[0] = old;
726 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
727 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
729 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
730 if (!pte_chain->parent_ptes[i]) {
731 pte_chain->parent_ptes[i] = parent_pte;
735 pte_chain = mmu_alloc_pte_chain(vcpu);
737 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
738 pte_chain->parent_ptes[0] = parent_pte;
741 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
744 struct kvm_pte_chain *pte_chain;
745 struct hlist_node *node;
748 if (!sp->multimapped) {
749 BUG_ON(sp->parent_pte != parent_pte);
750 sp->parent_pte = NULL;
753 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
754 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
755 if (!pte_chain->parent_ptes[i])
757 if (pte_chain->parent_ptes[i] != parent_pte)
759 while (i + 1 < NR_PTE_CHAIN_ENTRIES
760 && pte_chain->parent_ptes[i + 1]) {
761 pte_chain->parent_ptes[i]
762 = pte_chain->parent_ptes[i + 1];
765 pte_chain->parent_ptes[i] = NULL;
767 hlist_del(&pte_chain->link);
768 mmu_free_pte_chain(pte_chain);
769 if (hlist_empty(&sp->parent_ptes)) {
771 sp->parent_pte = NULL;
779 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
782 struct hlist_head *bucket;
783 struct kvm_mmu_page *sp;
784 struct hlist_node *node;
786 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
787 index = kvm_page_table_hashfn(gfn);
788 bucket = &kvm->arch.mmu_page_hash[index];
789 hlist_for_each_entry(sp, node, bucket, hash_link)
790 if (sp->gfn == gfn && !sp->role.metaphysical
791 && !sp->role.invalid) {
792 pgprintk("%s: found role %x\n",
793 __func__, sp->role.word);
799 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
807 union kvm_mmu_page_role role;
810 struct hlist_head *bucket;
811 struct kvm_mmu_page *sp;
812 struct hlist_node *node;
815 role.glevels = vcpu->arch.mmu.root_level;
817 role.metaphysical = metaphysical;
818 role.access = access;
819 if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
820 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
821 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
822 role.quadrant = quadrant;
824 pgprintk("%s: looking gfn %lx role %x\n", __func__,
826 index = kvm_page_table_hashfn(gfn);
827 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
828 hlist_for_each_entry(sp, node, bucket, hash_link)
829 if (sp->gfn == gfn && sp->role.word == role.word) {
830 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
831 pgprintk("%s: found\n", __func__);
834 ++vcpu->kvm->stat.mmu_cache_miss;
835 sp = kvm_mmu_alloc_page(vcpu, parent_pte);
838 pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
841 hlist_add_head(&sp->hash_link, bucket);
843 rmap_write_protect(vcpu->kvm, gfn);
844 vcpu->arch.mmu.prefetch_page(vcpu, sp);
848 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
849 struct kvm_mmu_page *sp)
857 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
858 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
859 if (is_shadow_present_pte(pt[i]))
860 rmap_remove(kvm, &pt[i]);
861 pt[i] = shadow_trap_nonpresent_pte;
863 kvm_flush_remote_tlbs(kvm);
867 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
870 if (is_shadow_present_pte(ent)) {
871 if (!is_large_pte(ent)) {
872 ent &= PT64_BASE_ADDR_MASK;
873 mmu_page_remove_parent_pte(page_header(ent),
877 rmap_remove(kvm, &pt[i]);
880 pt[i] = shadow_trap_nonpresent_pte;
882 kvm_flush_remote_tlbs(kvm);
885 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
887 mmu_page_remove_parent_pte(sp, parent_pte);
890 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
894 for (i = 0; i < KVM_MAX_VCPUS; ++i)
896 kvm->vcpus[i]->arch.last_pte_updated = NULL;
899 static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
903 ++kvm->stat.mmu_shadow_zapped;
904 while (sp->multimapped || sp->parent_pte) {
905 if (!sp->multimapped)
906 parent_pte = sp->parent_pte;
908 struct kvm_pte_chain *chain;
910 chain = container_of(sp->parent_ptes.first,
911 struct kvm_pte_chain, link);
912 parent_pte = chain->parent_ptes[0];
915 kvm_mmu_put_page(sp, parent_pte);
916 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
918 kvm_mmu_page_unlink_children(kvm, sp);
919 if (!sp->root_count) {
920 if (!sp->role.metaphysical)
921 unaccount_shadowed(kvm, sp->gfn);
922 hlist_del(&sp->hash_link);
923 kvm_mmu_free_page(kvm, sp);
925 list_move(&sp->link, &kvm->arch.active_mmu_pages);
926 sp->role.invalid = 1;
927 kvm_reload_remote_mmus(kvm);
929 kvm_mmu_reset_last_pte_updated(kvm);
933 * Changing the number of mmu pages allocated to the vm
934 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
936 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
939 * If we set the number of mmu pages to be smaller be than the
940 * number of actived pages , we must to free some mmu pages before we
944 if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
946 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
947 - kvm->arch.n_free_mmu_pages;
949 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
950 struct kvm_mmu_page *page;
952 page = container_of(kvm->arch.active_mmu_pages.prev,
953 struct kvm_mmu_page, link);
954 kvm_mmu_zap_page(kvm, page);
957 kvm->arch.n_free_mmu_pages = 0;
960 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
961 - kvm->arch.n_alloc_mmu_pages;
963 kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
966 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
969 struct hlist_head *bucket;
970 struct kvm_mmu_page *sp;
971 struct hlist_node *node, *n;
974 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
976 index = kvm_page_table_hashfn(gfn);
977 bucket = &kvm->arch.mmu_page_hash[index];
978 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
979 if (sp->gfn == gfn && !sp->role.metaphysical) {
980 pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
982 kvm_mmu_zap_page(kvm, sp);
988 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
990 struct kvm_mmu_page *sp;
992 while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
993 pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
994 kvm_mmu_zap_page(kvm, sp);
998 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1000 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
1001 struct kvm_mmu_page *sp = page_header(__pa(pte));
1003 __set_bit(slot, &sp->slot_bitmap);
1006 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
1010 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1012 if (gpa == UNMAPPED_GVA)
1015 down_read(¤t->mm->mmap_sem);
1016 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1017 up_read(¤t->mm->mmap_sem);
1022 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1023 unsigned pt_access, unsigned pte_access,
1024 int user_fault, int write_fault, int dirty,
1025 int *ptwrite, int largepage, gfn_t gfn,
1026 pfn_t pfn, bool speculative)
1029 int was_rmapped = 0;
1030 int was_writeble = is_writeble_pte(*shadow_pte);
1032 pgprintk("%s: spte %llx access %x write_fault %d"
1033 " user_fault %d gfn %lx\n",
1034 __func__, *shadow_pte, pt_access,
1035 write_fault, user_fault, gfn);
1037 if (is_rmap_pte(*shadow_pte)) {
1039 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1040 * the parent of the now unreachable PTE.
1042 if (largepage && !is_large_pte(*shadow_pte)) {
1043 struct kvm_mmu_page *child;
1044 u64 pte = *shadow_pte;
1046 child = page_header(pte & PT64_BASE_ADDR_MASK);
1047 mmu_page_remove_parent_pte(child, shadow_pte);
1048 } else if (pfn != spte_to_pfn(*shadow_pte)) {
1049 pgprintk("hfn old %lx new %lx\n",
1050 spte_to_pfn(*shadow_pte), pfn);
1051 rmap_remove(vcpu->kvm, shadow_pte);
1054 was_rmapped = is_large_pte(*shadow_pte);
1061 * We don't set the accessed bit, since we sometimes want to see
1062 * whether the guest actually used the pte (in order to detect
1065 spte = shadow_base_present_pte | shadow_dirty_mask;
1067 pte_access |= PT_ACCESSED_MASK;
1069 pte_access &= ~ACC_WRITE_MASK;
1070 if (pte_access & ACC_EXEC_MASK)
1071 spte |= shadow_x_mask;
1073 spte |= shadow_nx_mask;
1074 if (pte_access & ACC_USER_MASK)
1075 spte |= shadow_user_mask;
1077 spte |= PT_PAGE_SIZE_MASK;
1079 spte |= (u64)pfn << PAGE_SHIFT;
1081 if ((pte_access & ACC_WRITE_MASK)
1082 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
1083 struct kvm_mmu_page *shadow;
1085 spte |= PT_WRITABLE_MASK;
1087 mmu_unshadow(vcpu->kvm, gfn);
1091 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
1093 (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
1094 pgprintk("%s: found shadow page for %lx, marking ro\n",
1096 pte_access &= ~ACC_WRITE_MASK;
1097 if (is_writeble_pte(spte)) {
1098 spte &= ~PT_WRITABLE_MASK;
1099 kvm_x86_ops->tlb_flush(vcpu);
1108 if (pte_access & ACC_WRITE_MASK)
1109 mark_page_dirty(vcpu->kvm, gfn);
1111 pgprintk("%s: setting spte %llx\n", __func__, spte);
1112 pgprintk("instantiating %s PTE (%s) at %d (%llx) addr %llx\n",
1113 (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
1114 (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
1115 set_shadow_pte(shadow_pte, spte);
1116 if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
1117 && (spte & PT_PRESENT_MASK))
1118 ++vcpu->kvm->stat.lpages;
1120 page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
1122 rmap_add(vcpu, shadow_pte, gfn, largepage);
1123 if (!is_rmap_pte(*shadow_pte))
1124 kvm_release_pfn_clean(pfn);
1127 kvm_release_pfn_dirty(pfn);
1129 kvm_release_pfn_clean(pfn);
1131 if (!ptwrite || !*ptwrite)
1132 vcpu->arch.last_pte_updated = shadow_pte;
1135 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1139 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1140 int largepage, gfn_t gfn, pfn_t pfn,
1143 hpa_t table_addr = vcpu->arch.mmu.root_hpa;
1147 u32 index = PT64_INDEX(v, level);
1150 ASSERT(VALID_PAGE(table_addr));
1151 table = __va(table_addr);
1154 mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
1155 0, write, 1, &pt_write, 0, gfn, pfn, false);
1159 if (largepage && level == 2) {
1160 mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
1161 0, write, 1, &pt_write, 1, gfn, pfn, false);
1165 if (table[index] == shadow_trap_nonpresent_pte) {
1166 struct kvm_mmu_page *new_table;
1169 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
1171 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
1173 1, ACC_ALL, &table[index]);
1175 pgprintk("nonpaging_map: ENOMEM\n");
1176 kvm_release_pfn_clean(pfn);
1180 table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
1181 | PT_WRITABLE_MASK | shadow_user_mask;
1183 table_addr = table[index] & PT64_BASE_ADDR_MASK;
1187 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1193 down_read(¤t->mm->mmap_sem);
1194 if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1195 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1199 pfn = gfn_to_pfn(vcpu->kvm, gfn);
1200 up_read(¤t->mm->mmap_sem);
1203 if (is_error_pfn(pfn)) {
1204 kvm_release_pfn_clean(pfn);
1208 spin_lock(&vcpu->kvm->mmu_lock);
1209 kvm_mmu_free_some_pages(vcpu);
1210 r = __direct_map(vcpu, v, write, largepage, gfn, pfn,
1212 spin_unlock(&vcpu->kvm->mmu_lock);
1219 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1220 struct kvm_mmu_page *sp)
1224 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1225 sp->spt[i] = shadow_trap_nonpresent_pte;
1228 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1231 struct kvm_mmu_page *sp;
1233 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1235 spin_lock(&vcpu->kvm->mmu_lock);
1236 #ifdef CONFIG_X86_64
1237 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1238 hpa_t root = vcpu->arch.mmu.root_hpa;
1240 sp = page_header(root);
1242 if (!sp->root_count && sp->role.invalid)
1243 kvm_mmu_zap_page(vcpu->kvm, sp);
1244 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1245 spin_unlock(&vcpu->kvm->mmu_lock);
1249 for (i = 0; i < 4; ++i) {
1250 hpa_t root = vcpu->arch.mmu.pae_root[i];
1253 root &= PT64_BASE_ADDR_MASK;
1254 sp = page_header(root);
1256 if (!sp->root_count && sp->role.invalid)
1257 kvm_mmu_zap_page(vcpu->kvm, sp);
1259 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1261 spin_unlock(&vcpu->kvm->mmu_lock);
1262 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1265 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1269 struct kvm_mmu_page *sp;
1270 int metaphysical = 0;
1272 root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1274 #ifdef CONFIG_X86_64
1275 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1276 hpa_t root = vcpu->arch.mmu.root_hpa;
1278 ASSERT(!VALID_PAGE(root));
1281 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1282 PT64_ROOT_LEVEL, metaphysical,
1284 root = __pa(sp->spt);
1286 vcpu->arch.mmu.root_hpa = root;
1290 metaphysical = !is_paging(vcpu);
1293 for (i = 0; i < 4; ++i) {
1294 hpa_t root = vcpu->arch.mmu.pae_root[i];
1296 ASSERT(!VALID_PAGE(root));
1297 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1298 if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1299 vcpu->arch.mmu.pae_root[i] = 0;
1302 root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1303 } else if (vcpu->arch.mmu.root_level == 0)
1305 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1306 PT32_ROOT_LEVEL, metaphysical,
1308 root = __pa(sp->spt);
1310 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
1312 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
1315 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
1320 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1326 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
1327 r = mmu_topup_memory_caches(vcpu);
1332 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1334 gfn = gva >> PAGE_SHIFT;
1336 return nonpaging_map(vcpu, gva & PAGE_MASK,
1337 error_code & PFERR_WRITE_MASK, gfn);
1340 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
1346 gfn_t gfn = gpa >> PAGE_SHIFT;
1349 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1351 r = mmu_topup_memory_caches(vcpu);
1355 down_read(¤t->mm->mmap_sem);
1356 if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1357 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1360 pfn = gfn_to_pfn(vcpu->kvm, gfn);
1361 up_read(¤t->mm->mmap_sem);
1362 if (is_error_pfn(pfn)) {
1363 kvm_release_pfn_clean(pfn);
1366 spin_lock(&vcpu->kvm->mmu_lock);
1367 kvm_mmu_free_some_pages(vcpu);
1368 r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
1369 largepage, gfn, pfn, kvm_x86_ops->get_tdp_level());
1370 spin_unlock(&vcpu->kvm->mmu_lock);
1375 static void nonpaging_free(struct kvm_vcpu *vcpu)
1377 mmu_free_roots(vcpu);
1380 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1382 struct kvm_mmu *context = &vcpu->arch.mmu;
1384 context->new_cr3 = nonpaging_new_cr3;
1385 context->page_fault = nonpaging_page_fault;
1386 context->gva_to_gpa = nonpaging_gva_to_gpa;
1387 context->free = nonpaging_free;
1388 context->prefetch_page = nonpaging_prefetch_page;
1389 context->root_level = 0;
1390 context->shadow_root_level = PT32E_ROOT_LEVEL;
1391 context->root_hpa = INVALID_PAGE;
1395 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1397 ++vcpu->stat.tlb_flush;
1398 kvm_x86_ops->tlb_flush(vcpu);
1401 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1403 pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
1404 mmu_free_roots(vcpu);
1407 static void inject_page_fault(struct kvm_vcpu *vcpu,
1411 kvm_inject_page_fault(vcpu, addr, err_code);
1414 static void paging_free(struct kvm_vcpu *vcpu)
1416 nonpaging_free(vcpu);
1420 #include "paging_tmpl.h"
1424 #include "paging_tmpl.h"
1427 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1429 struct kvm_mmu *context = &vcpu->arch.mmu;
1431 ASSERT(is_pae(vcpu));
1432 context->new_cr3 = paging_new_cr3;
1433 context->page_fault = paging64_page_fault;
1434 context->gva_to_gpa = paging64_gva_to_gpa;
1435 context->prefetch_page = paging64_prefetch_page;
1436 context->free = paging_free;
1437 context->root_level = level;
1438 context->shadow_root_level = level;
1439 context->root_hpa = INVALID_PAGE;
1443 static int paging64_init_context(struct kvm_vcpu *vcpu)
1445 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1448 static int paging32_init_context(struct kvm_vcpu *vcpu)
1450 struct kvm_mmu *context = &vcpu->arch.mmu;
1452 context->new_cr3 = paging_new_cr3;
1453 context->page_fault = paging32_page_fault;
1454 context->gva_to_gpa = paging32_gva_to_gpa;
1455 context->free = paging_free;
1456 context->prefetch_page = paging32_prefetch_page;
1457 context->root_level = PT32_ROOT_LEVEL;
1458 context->shadow_root_level = PT32E_ROOT_LEVEL;
1459 context->root_hpa = INVALID_PAGE;
1463 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1465 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1468 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
1470 struct kvm_mmu *context = &vcpu->arch.mmu;
1472 context->new_cr3 = nonpaging_new_cr3;
1473 context->page_fault = tdp_page_fault;
1474 context->free = nonpaging_free;
1475 context->prefetch_page = nonpaging_prefetch_page;
1476 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
1477 context->root_hpa = INVALID_PAGE;
1479 if (!is_paging(vcpu)) {
1480 context->gva_to_gpa = nonpaging_gva_to_gpa;
1481 context->root_level = 0;
1482 } else if (is_long_mode(vcpu)) {
1483 context->gva_to_gpa = paging64_gva_to_gpa;
1484 context->root_level = PT64_ROOT_LEVEL;
1485 } else if (is_pae(vcpu)) {
1486 context->gva_to_gpa = paging64_gva_to_gpa;
1487 context->root_level = PT32E_ROOT_LEVEL;
1489 context->gva_to_gpa = paging32_gva_to_gpa;
1490 context->root_level = PT32_ROOT_LEVEL;
1496 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
1499 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1501 if (!is_paging(vcpu))
1502 return nonpaging_init_context(vcpu);
1503 else if (is_long_mode(vcpu))
1504 return paging64_init_context(vcpu);
1505 else if (is_pae(vcpu))
1506 return paging32E_init_context(vcpu);
1508 return paging32_init_context(vcpu);
1511 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1513 vcpu->arch.update_pte.pfn = bad_pfn;
1516 return init_kvm_tdp_mmu(vcpu);
1518 return init_kvm_softmmu(vcpu);
1521 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1524 if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
1525 vcpu->arch.mmu.free(vcpu);
1526 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1530 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1532 destroy_kvm_mmu(vcpu);
1533 return init_kvm_mmu(vcpu);
1535 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1537 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1541 r = mmu_topup_memory_caches(vcpu);
1544 spin_lock(&vcpu->kvm->mmu_lock);
1545 kvm_mmu_free_some_pages(vcpu);
1546 mmu_alloc_roots(vcpu);
1547 spin_unlock(&vcpu->kvm->mmu_lock);
1548 kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
1549 kvm_mmu_flush_tlb(vcpu);
1553 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1555 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1557 mmu_free_roots(vcpu);
1560 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1561 struct kvm_mmu_page *sp,
1565 struct kvm_mmu_page *child;
1568 if (is_shadow_present_pte(pte)) {
1569 if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
1571 rmap_remove(vcpu->kvm, spte);
1573 child = page_header(pte & PT64_BASE_ADDR_MASK);
1574 mmu_page_remove_parent_pte(child, spte);
1577 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1578 if (is_large_pte(pte))
1579 --vcpu->kvm->stat.lpages;
1582 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1583 struct kvm_mmu_page *sp,
1587 if ((sp->role.level != PT_PAGE_TABLE_LEVEL)
1588 && !vcpu->arch.update_pte.largepage) {
1589 ++vcpu->kvm->stat.mmu_pde_zapped;
1593 ++vcpu->kvm->stat.mmu_pte_updated;
1594 if (sp->role.glevels == PT32_ROOT_LEVEL)
1595 paging32_update_pte(vcpu, sp, spte, new);
1597 paging64_update_pte(vcpu, sp, spte, new);
1600 static bool need_remote_flush(u64 old, u64 new)
1602 if (!is_shadow_present_pte(old))
1604 if (!is_shadow_present_pte(new))
1606 if ((old ^ new) & PT64_BASE_ADDR_MASK)
1608 old ^= PT64_NX_MASK;
1609 new ^= PT64_NX_MASK;
1610 return (old & ~new & PT64_PERM_MASK) != 0;
1613 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
1615 if (need_remote_flush(old, new))
1616 kvm_flush_remote_tlbs(vcpu->kvm);
1618 kvm_mmu_flush_tlb(vcpu);
1621 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1623 u64 *spte = vcpu->arch.last_pte_updated;
1625 return !!(spte && (*spte & shadow_accessed_mask));
1628 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1629 const u8 *new, int bytes)
1636 vcpu->arch.update_pte.largepage = 0;
1638 if (bytes != 4 && bytes != 8)
1642 * Assume that the pte write on a page table of the same type
1643 * as the current vcpu paging mode. This is nearly always true
1644 * (might be false while changing modes). Note it is verified later
1648 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
1649 if ((bytes == 4) && (gpa % 4 == 0)) {
1650 r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
1653 memcpy((void *)&gpte + (gpa % 8), new, 4);
1654 } else if ((bytes == 8) && (gpa % 8 == 0)) {
1655 memcpy((void *)&gpte, new, 8);
1658 if ((bytes == 4) && (gpa % 4 == 0))
1659 memcpy((void *)&gpte, new, 4);
1661 if (!is_present_pte(gpte))
1663 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
1665 down_read(¤t->mm->mmap_sem);
1666 if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
1667 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1668 vcpu->arch.update_pte.largepage = 1;
1670 pfn = gfn_to_pfn(vcpu->kvm, gfn);
1671 up_read(¤t->mm->mmap_sem);
1673 if (is_error_pfn(pfn)) {
1674 kvm_release_pfn_clean(pfn);
1677 vcpu->arch.update_pte.gfn = gfn;
1678 vcpu->arch.update_pte.pfn = pfn;
1681 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1682 const u8 *new, int bytes)
1684 gfn_t gfn = gpa >> PAGE_SHIFT;
1685 struct kvm_mmu_page *sp;
1686 struct hlist_node *node, *n;
1687 struct hlist_head *bucket;
1691 unsigned offset = offset_in_page(gpa);
1693 unsigned page_offset;
1694 unsigned misaligned;
1701 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
1702 mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
1703 spin_lock(&vcpu->kvm->mmu_lock);
1704 kvm_mmu_free_some_pages(vcpu);
1705 ++vcpu->kvm->stat.mmu_pte_write;
1706 kvm_mmu_audit(vcpu, "pre pte write");
1707 if (gfn == vcpu->arch.last_pt_write_gfn
1708 && !last_updated_pte_accessed(vcpu)) {
1709 ++vcpu->arch.last_pt_write_count;
1710 if (vcpu->arch.last_pt_write_count >= 3)
1713 vcpu->arch.last_pt_write_gfn = gfn;
1714 vcpu->arch.last_pt_write_count = 1;
1715 vcpu->arch.last_pte_updated = NULL;
1717 index = kvm_page_table_hashfn(gfn);
1718 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1719 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
1720 if (sp->gfn != gfn || sp->role.metaphysical)
1722 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1723 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1724 misaligned |= bytes < 4;
1725 if (misaligned || flooded) {
1727 * Misaligned accesses are too much trouble to fix
1728 * up; also, they usually indicate a page is not used
1731 * If we're seeing too many writes to a page,
1732 * it may no longer be a page table, or we may be
1733 * forking, in which case it is better to unmap the
1736 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1737 gpa, bytes, sp->role.word);
1738 kvm_mmu_zap_page(vcpu->kvm, sp);
1739 ++vcpu->kvm->stat.mmu_flooded;
1742 page_offset = offset;
1743 level = sp->role.level;
1745 if (sp->role.glevels == PT32_ROOT_LEVEL) {
1746 page_offset <<= 1; /* 32->64 */
1748 * A 32-bit pde maps 4MB while the shadow pdes map
1749 * only 2MB. So we need to double the offset again
1750 * and zap two pdes instead of one.
1752 if (level == PT32_ROOT_LEVEL) {
1753 page_offset &= ~7; /* kill rounding error */
1757 quadrant = page_offset >> PAGE_SHIFT;
1758 page_offset &= ~PAGE_MASK;
1759 if (quadrant != sp->role.quadrant)
1762 spte = &sp->spt[page_offset / sizeof(*spte)];
1763 if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
1765 r = kvm_read_guest_atomic(vcpu->kvm,
1766 gpa & ~(u64)(pte_size - 1),
1768 new = (const void *)&gentry;
1774 mmu_pte_write_zap_pte(vcpu, sp, spte);
1776 mmu_pte_write_new_pte(vcpu, sp, spte, new);
1777 mmu_pte_write_flush_tlb(vcpu, entry, *spte);
1781 kvm_mmu_audit(vcpu, "post pte write");
1782 spin_unlock(&vcpu->kvm->mmu_lock);
1783 if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
1784 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
1785 vcpu->arch.update_pte.pfn = bad_pfn;
1789 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1794 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1796 spin_lock(&vcpu->kvm->mmu_lock);
1797 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1798 spin_unlock(&vcpu->kvm->mmu_lock);
1802 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1804 while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
1805 struct kvm_mmu_page *sp;
1807 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
1808 struct kvm_mmu_page, link);
1809 kvm_mmu_zap_page(vcpu->kvm, sp);
1810 ++vcpu->kvm->stat.mmu_recycled;
1814 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
1817 enum emulation_result er;
1819 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
1828 r = mmu_topup_memory_caches(vcpu);
1832 er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
1837 case EMULATE_DO_MMIO:
1838 ++vcpu->stat.mmio_exits;
1841 kvm_report_emulation_failure(vcpu, "pagetable");
1849 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
1851 void kvm_enable_tdp(void)
1855 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
1857 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1859 struct kvm_mmu_page *sp;
1861 while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
1862 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
1863 struct kvm_mmu_page, link);
1864 kvm_mmu_zap_page(vcpu->kvm, sp);
1866 free_page((unsigned long)vcpu->arch.mmu.pae_root);
1869 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1876 if (vcpu->kvm->arch.n_requested_mmu_pages)
1877 vcpu->kvm->arch.n_free_mmu_pages =
1878 vcpu->kvm->arch.n_requested_mmu_pages;
1880 vcpu->kvm->arch.n_free_mmu_pages =
1881 vcpu->kvm->arch.n_alloc_mmu_pages;
1883 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1884 * Therefore we need to allocate shadow page tables in the first
1885 * 4GB of memory, which happens to fit the DMA32 zone.
1887 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1890 vcpu->arch.mmu.pae_root = page_address(page);
1891 for (i = 0; i < 4; ++i)
1892 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1897 free_mmu_pages(vcpu);
1901 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1904 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1906 return alloc_mmu_pages(vcpu);
1909 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1912 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1914 return init_kvm_mmu(vcpu);
1917 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1921 destroy_kvm_mmu(vcpu);
1922 free_mmu_pages(vcpu);
1923 mmu_free_memory_caches(vcpu);
1926 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1928 struct kvm_mmu_page *sp;
1930 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
1934 if (!test_bit(slot, &sp->slot_bitmap))
1938 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1940 if (pt[i] & PT_WRITABLE_MASK)
1941 pt[i] &= ~PT_WRITABLE_MASK;
1945 void kvm_mmu_zap_all(struct kvm *kvm)
1947 struct kvm_mmu_page *sp, *node;
1949 spin_lock(&kvm->mmu_lock);
1950 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
1951 kvm_mmu_zap_page(kvm, sp);
1952 spin_unlock(&kvm->mmu_lock);
1954 kvm_flush_remote_tlbs(kvm);
1957 void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
1959 struct kvm_mmu_page *page;
1961 page = container_of(kvm->arch.active_mmu_pages.prev,
1962 struct kvm_mmu_page, link);
1963 kvm_mmu_zap_page(kvm, page);
1966 static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
1969 struct kvm *kvm_freed = NULL;
1970 int cache_count = 0;
1972 spin_lock(&kvm_lock);
1974 list_for_each_entry(kvm, &vm_list, vm_list) {
1977 spin_lock(&kvm->mmu_lock);
1978 npages = kvm->arch.n_alloc_mmu_pages -
1979 kvm->arch.n_free_mmu_pages;
1980 cache_count += npages;
1981 if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
1982 kvm_mmu_remove_one_alloc_mmu_page(kvm);
1988 spin_unlock(&kvm->mmu_lock);
1991 list_move_tail(&kvm_freed->vm_list, &vm_list);
1993 spin_unlock(&kvm_lock);
1998 static struct shrinker mmu_shrinker = {
1999 .shrink = mmu_shrink,
2000 .seeks = DEFAULT_SEEKS * 10,
2003 void mmu_destroy_caches(void)
2005 if (pte_chain_cache)
2006 kmem_cache_destroy(pte_chain_cache);
2007 if (rmap_desc_cache)
2008 kmem_cache_destroy(rmap_desc_cache);
2009 if (mmu_page_header_cache)
2010 kmem_cache_destroy(mmu_page_header_cache);
2013 void kvm_mmu_module_exit(void)
2015 mmu_destroy_caches();
2016 unregister_shrinker(&mmu_shrinker);
2019 int kvm_mmu_module_init(void)
2021 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
2022 sizeof(struct kvm_pte_chain),
2024 if (!pte_chain_cache)
2026 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
2027 sizeof(struct kvm_rmap_desc),
2029 if (!rmap_desc_cache)
2032 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
2033 sizeof(struct kvm_mmu_page),
2035 if (!mmu_page_header_cache)
2038 register_shrinker(&mmu_shrinker);
2043 mmu_destroy_caches();
2048 * Caculate mmu pages needed for kvm.
2050 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
2053 unsigned int nr_mmu_pages;
2054 unsigned int nr_pages = 0;
2056 for (i = 0; i < kvm->nmemslots; i++)
2057 nr_pages += kvm->memslots[i].npages;
2059 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
2060 nr_mmu_pages = max(nr_mmu_pages,
2061 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
2063 return nr_mmu_pages;
2066 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2069 if (len > buffer->len)
2074 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2079 ret = pv_mmu_peek_buffer(buffer, len);
2084 buffer->processed += len;
2088 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
2089 gpa_t addr, gpa_t value)
2094 if (!is_long_mode(vcpu) && !is_pae(vcpu))
2097 r = mmu_topup_memory_caches(vcpu);
2101 if (!emulator_write_phys(vcpu, addr, &value, bytes))
2107 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2109 kvm_x86_ops->tlb_flush(vcpu);
2113 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
2115 spin_lock(&vcpu->kvm->mmu_lock);
2116 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
2117 spin_unlock(&vcpu->kvm->mmu_lock);
2121 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
2122 struct kvm_pv_mmu_op_buffer *buffer)
2124 struct kvm_mmu_op_header *header;
2126 header = pv_mmu_peek_buffer(buffer, sizeof *header);
2129 switch (header->op) {
2130 case KVM_MMU_OP_WRITE_PTE: {
2131 struct kvm_mmu_op_write_pte *wpte;
2133 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
2136 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
2139 case KVM_MMU_OP_FLUSH_TLB: {
2140 struct kvm_mmu_op_flush_tlb *ftlb;
2142 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
2145 return kvm_pv_mmu_flush_tlb(vcpu);
2147 case KVM_MMU_OP_RELEASE_PT: {
2148 struct kvm_mmu_op_release_pt *rpt;
2150 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
2153 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
2159 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
2160 gpa_t addr, unsigned long *ret)
2163 struct kvm_pv_mmu_op_buffer buffer;
2165 buffer.ptr = buffer.buf;
2166 buffer.len = min_t(unsigned long, bytes, sizeof buffer.buf);
2167 buffer.processed = 0;
2169 r = kvm_read_guest(vcpu->kvm, addr, buffer.buf, buffer.len);
2173 while (buffer.len) {
2174 r = kvm_pv_mmu_op_one(vcpu, &buffer);
2183 *ret = buffer.processed;
2189 static const char *audit_msg;
2191 static gva_t canonicalize(gva_t gva)
2193 #ifdef CONFIG_X86_64
2194 gva = (long long)(gva << 16) >> 16;
2199 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
2200 gva_t va, int level)
2202 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
2204 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
2206 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
2209 if (ent == shadow_trap_nonpresent_pte)
2212 va = canonicalize(va);
2214 if (ent == shadow_notrap_nonpresent_pte)
2215 printk(KERN_ERR "audit: (%s) nontrapping pte"
2216 " in nonleaf level: levels %d gva %lx"
2217 " level %d pte %llx\n", audit_msg,
2218 vcpu->arch.mmu.root_level, va, level, ent);
2220 audit_mappings_page(vcpu, ent, va, level - 1);
2222 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
2223 hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
2225 if (is_shadow_present_pte(ent)
2226 && (ent & PT64_BASE_ADDR_MASK) != hpa)
2227 printk(KERN_ERR "xx audit error: (%s) levels %d"
2228 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
2229 audit_msg, vcpu->arch.mmu.root_level,
2231 is_shadow_present_pte(ent));
2232 else if (ent == shadow_notrap_nonpresent_pte
2233 && !is_error_hpa(hpa))
2234 printk(KERN_ERR "audit: (%s) notrap shadow,"
2235 " valid guest gva %lx\n", audit_msg, va);
2236 kvm_release_pfn_clean(pfn);
2242 static void audit_mappings(struct kvm_vcpu *vcpu)
2246 if (vcpu->arch.mmu.root_level == 4)
2247 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
2249 for (i = 0; i < 4; ++i)
2250 if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
2251 audit_mappings_page(vcpu,
2252 vcpu->arch.mmu.pae_root[i],
2257 static int count_rmaps(struct kvm_vcpu *vcpu)
2262 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
2263 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
2264 struct kvm_rmap_desc *d;
2266 for (j = 0; j < m->npages; ++j) {
2267 unsigned long *rmapp = &m->rmap[j];
2271 if (!(*rmapp & 1)) {
2275 d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
2277 for (k = 0; k < RMAP_EXT; ++k)
2278 if (d->shadow_ptes[k])
2289 static int count_writable_mappings(struct kvm_vcpu *vcpu)
2292 struct kvm_mmu_page *sp;
2295 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2298 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
2301 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
2304 if (!(ent & PT_PRESENT_MASK))
2306 if (!(ent & PT_WRITABLE_MASK))
2314 static void audit_rmap(struct kvm_vcpu *vcpu)
2316 int n_rmap = count_rmaps(vcpu);
2317 int n_actual = count_writable_mappings(vcpu);
2319 if (n_rmap != n_actual)
2320 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
2321 __func__, audit_msg, n_rmap, n_actual);
2324 static void audit_write_protection(struct kvm_vcpu *vcpu)
2326 struct kvm_mmu_page *sp;
2327 struct kvm_memory_slot *slot;
2328 unsigned long *rmapp;
2331 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2332 if (sp->role.metaphysical)
2335 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
2336 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
2337 rmapp = &slot->rmap[gfn - slot->base_gfn];
2339 printk(KERN_ERR "%s: (%s) shadow page has writable"
2340 " mappings: gfn %lx role %x\n",
2341 __func__, audit_msg, sp->gfn,
2346 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
2353 audit_write_protection(vcpu);
2354 audit_mappings(vcpu);