]> err.no Git - linux-2.6/blob - arch/x86/kernel/kprobes_64.c
x86 boot: use E820 memory map on EFI 32 platform
[linux-2.6] / arch / x86 / kernel / kprobes_64.c
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *              Probes initial implementation ( includes contributions from
22  *              Rusty Russell).
23  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *              interface to access function arguments.
25  * 2004-Oct     Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
26  *              <prasanna@in.ibm.com> adapted for x86_64
27  * 2005-Mar     Roland McGrath <roland@redhat.com>
28  *              Fixed to handle %rip-relative addressing mode correctly.
29  * 2005-May     Rusty Lynch <rusty.lynch@intel.com>
30  *              Added function return probes functionality
31  */
32
33 #include <linux/kprobes.h>
34 #include <linux/ptrace.h>
35 #include <linux/string.h>
36 #include <linux/slab.h>
37 #include <linux/preempt.h>
38 #include <linux/module.h>
39 #include <linux/kdebug.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/alternative.h>
44
45 void jprobe_return_end(void);
46 static void __kprobes arch_copy_kprobe(struct kprobe *p);
47
48 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
49 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
50
51 struct kretprobe_blackpoint kretprobe_blacklist[] = {
52         {"__switch_to", }, /* This function switches only current task, but
53                               doesn't switch kernel stack.*/
54         {NULL, NULL}    /* Terminator */
55 };
56 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
57
58 /*
59  * returns non-zero if opcode modifies the interrupt flag.
60  */
61 static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
62 {
63         switch (*insn) {
64         case 0xfa:              /* cli */
65         case 0xfb:              /* sti */
66         case 0xcf:              /* iret/iretd */
67         case 0x9d:              /* popf/popfd */
68                 return 1;
69         }
70
71         if (*insn  >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
72                 return 1;
73         return 0;
74 }
75
76 int __kprobes arch_prepare_kprobe(struct kprobe *p)
77 {
78         /* insn: must be on special executable page on x86_64. */
79         p->ainsn.insn = get_insn_slot();
80         if (!p->ainsn.insn) {
81                 return -ENOMEM;
82         }
83         arch_copy_kprobe(p);
84         return 0;
85 }
86
87 /*
88  * Determine if the instruction uses the %rip-relative addressing mode.
89  * If it does, return the address of the 32-bit displacement word.
90  * If not, return null.
91  */
92 static s32 __kprobes *is_riprel(u8 *insn)
93 {
94 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf)                \
95         (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
96           (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
97           (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
98           (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
99          << (row % 64))
100         static const u64 onebyte_has_modrm[256 / 64] = {
101                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
102                 /*      -------------------------------         */
103                 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
104                 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
105                 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
106                 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
107                 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
108                 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
109                 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
110                 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
111                 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
112                 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
113                 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
114                 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
115                 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
116                 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
117                 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
118                 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1)  /* f0 */
119                 /*      -------------------------------         */
120                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
121         };
122         static const u64 twobyte_has_modrm[256 / 64] = {
123                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
124                 /*      -------------------------------         */
125                 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
126                 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
127                 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
128                 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
129                 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
130                 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
131                 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
132                 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
133                 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
134                 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
135                 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
136                 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
137                 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
138                 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
139                 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
140                 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0)  /* ff */
141                 /*      -------------------------------         */
142                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
143         };
144 #undef  W
145         int need_modrm;
146
147         /* Skip legacy instruction prefixes.  */
148         while (1) {
149                 switch (*insn) {
150                 case 0x66:
151                 case 0x67:
152                 case 0x2e:
153                 case 0x3e:
154                 case 0x26:
155                 case 0x64:
156                 case 0x65:
157                 case 0x36:
158                 case 0xf0:
159                 case 0xf3:
160                 case 0xf2:
161                         ++insn;
162                         continue;
163                 }
164                 break;
165         }
166
167         /* Skip REX instruction prefix.  */
168         if ((*insn & 0xf0) == 0x40)
169                 ++insn;
170
171         if (*insn == 0x0f) {    /* Two-byte opcode.  */
172                 ++insn;
173                 need_modrm = test_bit(*insn, twobyte_has_modrm);
174         } else {                /* One-byte opcode.  */
175                 need_modrm = test_bit(*insn, onebyte_has_modrm);
176         }
177
178         if (need_modrm) {
179                 u8 modrm = *++insn;
180                 if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
181                         /* Displacement follows ModRM byte.  */
182                         return (s32 *) ++insn;
183                 }
184         }
185
186         /* No %rip-relative addressing mode here.  */
187         return NULL;
188 }
189
190 static void __kprobes arch_copy_kprobe(struct kprobe *p)
191 {
192         s32 *ripdisp;
193         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
194         ripdisp = is_riprel(p->ainsn.insn);
195         if (ripdisp) {
196                 /*
197                  * The copied instruction uses the %rip-relative
198                  * addressing mode.  Adjust the displacement for the
199                  * difference between the original location of this
200                  * instruction and the location of the copy that will
201                  * actually be run.  The tricky bit here is making sure
202                  * that the sign extension happens correctly in this
203                  * calculation, since we need a signed 32-bit result to
204                  * be sign-extended to 64 bits when it's added to the
205                  * %rip value and yield the same 64-bit result that the
206                  * sign-extension of the original signed 32-bit
207                  * displacement would have given.
208                  */
209                 s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
210                 BUG_ON((s64) (s32) disp != disp); /* Sanity check.  */
211                 *ripdisp = disp;
212         }
213         p->opcode = *p->addr;
214 }
215
216 void __kprobes arch_arm_kprobe(struct kprobe *p)
217 {
218         text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
219 }
220
221 void __kprobes arch_disarm_kprobe(struct kprobe *p)
222 {
223         text_poke(p->addr, &p->opcode, 1);
224 }
225
226 void __kprobes arch_remove_kprobe(struct kprobe *p)
227 {
228         mutex_lock(&kprobe_mutex);
229         free_insn_slot(p->ainsn.insn, 0);
230         mutex_unlock(&kprobe_mutex);
231 }
232
233 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
234 {
235         kcb->prev_kprobe.kp = kprobe_running();
236         kcb->prev_kprobe.status = kcb->kprobe_status;
237         kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags;
238         kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags;
239 }
240
241 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
242 {
243         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
244         kcb->kprobe_status = kcb->prev_kprobe.status;
245         kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags;
246         kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags;
247 }
248
249 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
250                                 struct kprobe_ctlblk *kcb)
251 {
252         __get_cpu_var(current_kprobe) = p;
253         kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags
254                 = (regs->flags & (TF_MASK | IF_MASK));
255         if (is_IF_modifier(p->ainsn.insn))
256                 kcb->kprobe_saved_rflags &= ~IF_MASK;
257 }
258
259 static __always_inline void clear_btf(void)
260 {
261         if (test_thread_flag(TIF_DEBUGCTLMSR))
262                 wrmsrl(MSR_IA32_DEBUGCTLMSR, 0);
263 }
264
265 static __always_inline void restore_btf(void)
266 {
267         if (test_thread_flag(TIF_DEBUGCTLMSR))
268                 wrmsrl(MSR_IA32_DEBUGCTLMSR, current->thread.debugctlmsr);
269 }
270
271 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
272 {
273         clear_btf();
274         regs->flags |= TF_MASK;
275         regs->flags &= ~IF_MASK;
276         /*single step inline if the instruction is an int3*/
277         if (p->opcode == BREAKPOINT_INSTRUCTION)
278                 regs->ip = (unsigned long)p->addr;
279         else
280                 regs->ip = (unsigned long)p->ainsn.insn;
281 }
282
283 /* Called with kretprobe_lock held */
284 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
285                                       struct pt_regs *regs)
286 {
287         unsigned long *sara = (unsigned long *)regs->sp;
288
289         ri->ret_addr = (kprobe_opcode_t *) *sara;
290         /* Replace the return addr with trampoline addr */
291         *sara = (unsigned long) &kretprobe_trampoline;
292 }
293
294 int __kprobes kprobe_handler(struct pt_regs *regs)
295 {
296         struct kprobe *p;
297         int ret = 0;
298         kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
299         struct kprobe_ctlblk *kcb;
300
301         /*
302          * We don't want to be preempted for the entire
303          * duration of kprobe processing
304          */
305         preempt_disable();
306         kcb = get_kprobe_ctlblk();
307
308         /* Check we're not actually recursing */
309         if (kprobe_running()) {
310                 p = get_kprobe(addr);
311                 if (p) {
312                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
313                                 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
314                                 regs->flags &= ~TF_MASK;
315                                 regs->flags |= kcb->kprobe_saved_rflags;
316                                 goto no_kprobe;
317                         } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) {
318                                 /* TODO: Provide re-entrancy from
319                                  * post_kprobes_handler() and avoid exception
320                                  * stack corruption while single-stepping on
321                                  * the instruction of the new probe.
322                                  */
323                                 arch_disarm_kprobe(p);
324                                 regs->ip = (unsigned long)p->addr;
325                                 reset_current_kprobe();
326                                 ret = 1;
327                         } else {
328                                 /* We have reentered the kprobe_handler(), since
329                                  * another probe was hit while within the
330                                  * handler. We here save the original kprobe
331                                  * variables and just single step on instruction
332                                  * of the new probe without calling any user
333                                  * handlers.
334                                  */
335                                 save_previous_kprobe(kcb);
336                                 set_current_kprobe(p, regs, kcb);
337                                 kprobes_inc_nmissed_count(p);
338                                 prepare_singlestep(p, regs);
339                                 kcb->kprobe_status = KPROBE_REENTER;
340                                 return 1;
341                         }
342                 } else {
343                         if (*addr != BREAKPOINT_INSTRUCTION) {
344                         /* The breakpoint instruction was removed by
345                          * another cpu right after we hit, no further
346                          * handling of this interrupt is appropriate
347                          */
348                                 regs->ip = (unsigned long)addr;
349                                 ret = 1;
350                                 goto no_kprobe;
351                         }
352                         p = __get_cpu_var(current_kprobe);
353                         if (p->break_handler && p->break_handler(p, regs)) {
354                                 goto ss_probe;
355                         }
356                 }
357                 goto no_kprobe;
358         }
359
360         p = get_kprobe(addr);
361         if (!p) {
362                 if (*addr != BREAKPOINT_INSTRUCTION) {
363                         /*
364                          * The breakpoint instruction was removed right
365                          * after we hit it.  Another cpu has removed
366                          * either a probepoint or a debugger breakpoint
367                          * at this address.  In either case, no further
368                          * handling of this interrupt is appropriate.
369                          * Back up over the (now missing) int3 and run
370                          * the original instruction.
371                          */
372                         regs->ip = (unsigned long)addr;
373                         ret = 1;
374                 }
375                 /* Not one of ours: let kernel handle it */
376                 goto no_kprobe;
377         }
378
379         set_current_kprobe(p, regs, kcb);
380         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
381
382         if (p->pre_handler && p->pre_handler(p, regs))
383                 /* handler has already set things up, so skip ss setup */
384                 return 1;
385
386 ss_probe:
387         prepare_singlestep(p, regs);
388         kcb->kprobe_status = KPROBE_HIT_SS;
389         return 1;
390
391 no_kprobe:
392         preempt_enable_no_resched();
393         return ret;
394 }
395
396 /*
397  * For function-return probes, init_kprobes() establishes a probepoint
398  * here. When a retprobed function returns, this probe is hit and
399  * trampoline_probe_handler() runs, calling the kretprobe's handler.
400  */
401  void kretprobe_trampoline_holder(void)
402  {
403         asm volatile (  ".global kretprobe_trampoline\n"
404                         "kretprobe_trampoline: \n"
405                         "nop\n");
406  }
407
408 /*
409  * Called when we hit the probe point at kretprobe_trampoline
410  */
411 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
412 {
413         struct kretprobe_instance *ri = NULL;
414         struct hlist_head *head, empty_rp;
415         struct hlist_node *node, *tmp;
416         unsigned long flags, orig_ret_address = 0;
417         unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
418
419         INIT_HLIST_HEAD(&empty_rp);
420         spin_lock_irqsave(&kretprobe_lock, flags);
421         head = kretprobe_inst_table_head(current);
422
423         /*
424          * It is possible to have multiple instances associated with a given
425          * task either because an multiple functions in the call path
426          * have a return probe installed on them, and/or more then one return
427          * return probe was registered for a target function.
428          *
429          * We can handle this because:
430          *     - instances are always inserted at the head of the list
431          *     - when multiple return probes are registered for the same
432          *       function, the first instance's ret_addr will point to the
433          *       real return address, and all the rest will point to
434          *       kretprobe_trampoline
435          */
436         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
437                 if (ri->task != current)
438                         /* another task is sharing our hash bucket */
439                         continue;
440
441                 if (ri->rp && ri->rp->handler)
442                         ri->rp->handler(ri, regs);
443
444                 orig_ret_address = (unsigned long)ri->ret_addr;
445                 recycle_rp_inst(ri, &empty_rp);
446
447                 if (orig_ret_address != trampoline_address)
448                         /*
449                          * This is the real return address. Any other
450                          * instances associated with this task are for
451                          * other calls deeper on the call stack
452                          */
453                         break;
454         }
455
456         kretprobe_assert(ri, orig_ret_address, trampoline_address);
457         regs->ip = orig_ret_address;
458
459         reset_current_kprobe();
460         spin_unlock_irqrestore(&kretprobe_lock, flags);
461         preempt_enable_no_resched();
462
463         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
464                 hlist_del(&ri->hlist);
465                 kfree(ri);
466         }
467         /*
468          * By returning a non-zero value, we are telling
469          * kprobe_handler() that we don't want the post_handler
470          * to run (and have re-enabled preemption)
471          */
472         return 1;
473 }
474
475 /*
476  * Called after single-stepping.  p->addr is the address of the
477  * instruction whose first byte has been replaced by the "int 3"
478  * instruction.  To avoid the SMP problems that can occur when we
479  * temporarily put back the original opcode to single-step, we
480  * single-stepped a copy of the instruction.  The address of this
481  * copy is p->ainsn.insn.
482  *
483  * This function prepares to return from the post-single-step
484  * interrupt.  We have to fix up the stack as follows:
485  *
486  * 0) Except in the case of absolute or indirect jump or call instructions,
487  * the new ip is relative to the copied instruction.  We need to make
488  * it relative to the original instruction.
489  *
490  * 1) If the single-stepped instruction was pushfl, then the TF and IF
491  * flags are set in the just-pushed flags, and may need to be cleared.
492  *
493  * 2) If the single-stepped instruction was a call, the return address
494  * that is atop the stack is the address following the copied instruction.
495  * We need to make it the address following the original instruction.
496  */
497 static void __kprobes resume_execution(struct kprobe *p,
498                 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
499 {
500         unsigned long *tos = (unsigned long *)regs->sp;
501         unsigned long copy_rip = (unsigned long)p->ainsn.insn;
502         unsigned long orig_rip = (unsigned long)p->addr;
503         kprobe_opcode_t *insn = p->ainsn.insn;
504
505         /*skip the REX prefix*/
506         if (*insn >= 0x40 && *insn <= 0x4f)
507                 insn++;
508
509         regs->flags &= ~TF_MASK;
510         switch (*insn) {
511         case 0x9c:      /* pushfl */
512                 *tos &= ~(TF_MASK | IF_MASK);
513                 *tos |= kcb->kprobe_old_rflags;
514                 break;
515         case 0xc2:      /* iret/ret/lret */
516         case 0xc3:
517         case 0xca:
518         case 0xcb:
519         case 0xcf:
520         case 0xea:      /* jmp absolute -- ip is correct */
521                 /* ip is already adjusted, no more changes required */
522                 goto no_change;
523         case 0xe8:      /* call relative - Fix return addr */
524                 *tos = orig_rip + (*tos - copy_rip);
525                 break;
526         case 0xff:
527                 if ((insn[1] & 0x30) == 0x10) {
528                         /* call absolute, indirect */
529                         /* Fix return addr; ip is correct. */
530                         *tos = orig_rip + (*tos - copy_rip);
531                         goto no_change;
532                 } else if (((insn[1] & 0x31) == 0x20) ||        /* jmp near, absolute indirect */
533                            ((insn[1] & 0x31) == 0x21)) {        /* jmp far, absolute indirect */
534                         /* ip is correct. */
535                         goto no_change;
536                 }
537         default:
538                 break;
539         }
540
541         regs->ip = orig_rip + (regs->ip - copy_rip);
542
543 no_change:
544         restore_btf();
545
546         return;
547 }
548
549 int __kprobes post_kprobe_handler(struct pt_regs *regs)
550 {
551         struct kprobe *cur = kprobe_running();
552         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
553
554         if (!cur)
555                 return 0;
556
557         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
558                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
559                 cur->post_handler(cur, regs, 0);
560         }
561
562         resume_execution(cur, regs, kcb);
563         regs->flags |= kcb->kprobe_saved_rflags;
564         trace_hardirqs_fixup_flags(regs->flags);
565
566         /* Restore the original saved kprobes variables and continue. */
567         if (kcb->kprobe_status == KPROBE_REENTER) {
568                 restore_previous_kprobe(kcb);
569                 goto out;
570         }
571         reset_current_kprobe();
572 out:
573         preempt_enable_no_resched();
574
575         /*
576          * if somebody else is singlestepping across a probe point, flags
577          * will have TF set, in which case, continue the remaining processing
578          * of do_debug, as if this is not a probe hit.
579          */
580         if (regs->flags & TF_MASK)
581                 return 0;
582
583         return 1;
584 }
585
586 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
587 {
588         struct kprobe *cur = kprobe_running();
589         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
590         const struct exception_table_entry *fixup;
591
592         switch(kcb->kprobe_status) {
593         case KPROBE_HIT_SS:
594         case KPROBE_REENTER:
595                 /*
596                  * We are here because the instruction being single
597                  * stepped caused a page fault. We reset the current
598                  * kprobe and the ip points back to the probe address
599                  * and allow the page fault handler to continue as a
600                  * normal page fault.
601                  */
602                 regs->ip = (unsigned long)cur->addr;
603                 regs->flags |= kcb->kprobe_old_rflags;
604                 if (kcb->kprobe_status == KPROBE_REENTER)
605                         restore_previous_kprobe(kcb);
606                 else
607                         reset_current_kprobe();
608                 preempt_enable_no_resched();
609                 break;
610         case KPROBE_HIT_ACTIVE:
611         case KPROBE_HIT_SSDONE:
612                 /*
613                  * We increment the nmissed count for accounting,
614                  * we can also use npre/npostfault count for accouting
615                  * these specific fault cases.
616                  */
617                 kprobes_inc_nmissed_count(cur);
618
619                 /*
620                  * We come here because instructions in the pre/post
621                  * handler caused the page_fault, this could happen
622                  * if handler tries to access user space by
623                  * copy_from_user(), get_user() etc. Let the
624                  * user-specified handler try to fix it first.
625                  */
626                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
627                         return 1;
628
629                 /*
630                  * In case the user-specified fault handler returned
631                  * zero, try to fix up.
632                  */
633                 fixup = search_exception_tables(regs->ip);
634                 if (fixup) {
635                         regs->ip = fixup->fixup;
636                         return 1;
637                 }
638
639                 /*
640                  * fixup() could not handle it,
641                  * Let do_page_fault() fix it.
642                  */
643                 break;
644         default:
645                 break;
646         }
647         return 0;
648 }
649
650 /*
651  * Wrapper routine for handling exceptions.
652  */
653 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
654                                        unsigned long val, void *data)
655 {
656         struct die_args *args = (struct die_args *)data;
657         int ret = NOTIFY_DONE;
658
659         if (args->regs && user_mode(args->regs))
660                 return ret;
661
662         switch (val) {
663         case DIE_INT3:
664                 if (kprobe_handler(args->regs))
665                         ret = NOTIFY_STOP;
666                 break;
667         case DIE_DEBUG:
668                 if (post_kprobe_handler(args->regs))
669                         ret = NOTIFY_STOP;
670                 break;
671         case DIE_GPF:
672                 /* kprobe_running() needs smp_processor_id() */
673                 preempt_disable();
674                 if (kprobe_running() &&
675                     kprobe_fault_handler(args->regs, args->trapnr))
676                         ret = NOTIFY_STOP;
677                 preempt_enable();
678                 break;
679         default:
680                 break;
681         }
682         return ret;
683 }
684
685 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
686 {
687         struct jprobe *jp = container_of(p, struct jprobe, kp);
688         unsigned long addr;
689         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
690
691         kcb->jprobe_saved_regs = *regs;
692         kcb->jprobe_saved_rsp = (long *) regs->sp;
693         addr = (unsigned long)(kcb->jprobe_saved_rsp);
694         /*
695          * As Linus pointed out, gcc assumes that the callee
696          * owns the argument space and could overwrite it, e.g.
697          * tailcall optimization. So, to be absolutely safe
698          * we also save and restore enough stack bytes to cover
699          * the argument area.
700          */
701         memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
702                         MIN_STACK_SIZE(addr));
703         regs->flags &= ~IF_MASK;
704         trace_hardirqs_off();
705         regs->ip = (unsigned long)(jp->entry);
706         return 1;
707 }
708
709 void __kprobes jprobe_return(void)
710 {
711         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
712
713         asm volatile ("       xchg   %%rbx,%%rsp     \n"
714                       "       int3                      \n"
715                       "       .globl jprobe_return_end  \n"
716                       "       jprobe_return_end:        \n"
717                       "       nop                       \n"::"b"
718                       (kcb->jprobe_saved_rsp):"memory");
719 }
720
721 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
722 {
723         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
724         u8 *addr = (u8 *) (regs->ip - 1);
725         unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_rsp);
726         struct jprobe *jp = container_of(p, struct jprobe, kp);
727
728         if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
729                 if ((unsigned long *)regs->sp != kcb->jprobe_saved_rsp) {
730                         struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
731                         printk("current sp %p does not match saved sp %p\n",
732                                (long *)regs->sp, kcb->jprobe_saved_rsp);
733                         printk("Saved registers for jprobe %p\n", jp);
734                         show_registers(saved_regs);
735                         printk("Current registers\n");
736                         show_registers(regs);
737                         BUG();
738                 }
739                 *regs = kcb->jprobe_saved_regs;
740                 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
741                        MIN_STACK_SIZE(stack_addr));
742                 preempt_enable_no_resched();
743                 return 1;
744         }
745         return 0;
746 }
747
748 static struct kprobe trampoline_p = {
749         .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
750         .pre_handler = trampoline_probe_handler
751 };
752
753 int __init arch_init_kprobes(void)
754 {
755         return register_kprobe(&trampoline_p);
756 }
757
758 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
759 {
760         if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
761                 return 1;
762
763         return 0;
764 }