]> err.no Git - linux-2.6/blob - arch/um/kernel/process.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[linux-2.6] / arch / um / kernel / process.c
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/gfp.h>
11 #include <linux/mm.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/sched.h>
17 #include <linux/tick.h>
18 #include <linux/threads.h>
19 #include <asm/current.h>
20 #include <asm/pgtable.h>
21 #include <asm/uaccess.h>
22 #include "as-layout.h"
23 #include "kern_util.h"
24 #include "os.h"
25 #include "skas.h"
26 #include "tlb.h"
27
28 /*
29  * This is a per-cpu array.  A processor only modifies its entry and it only
30  * cares about its entry, so it's OK if another processor is modifying its
31  * entry.
32  */
33 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
34
35 static inline int external_pid(void)
36 {
37         /* FIXME: Need to look up userspace_pid by cpu */
38         return userspace_pid[0];
39 }
40
41 int pid_to_processor_id(int pid)
42 {
43         int i;
44
45         for (i = 0; i < ncpus; i++) {
46                 if (cpu_tasks[i].pid == pid)
47                         return i;
48         }
49         return -1;
50 }
51
52 void free_stack(unsigned long stack, int order)
53 {
54         free_pages(stack, order);
55 }
56
57 unsigned long alloc_stack(int order, int atomic)
58 {
59         unsigned long page;
60         gfp_t flags = GFP_KERNEL;
61
62         if (atomic)
63                 flags = GFP_ATOMIC;
64         page = __get_free_pages(flags, order);
65
66         return page;
67 }
68
69 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
70 {
71         int pid;
72
73         current->thread.request.u.thread.proc = fn;
74         current->thread.request.u.thread.arg = arg;
75         pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
76                       &current->thread.regs, 0, NULL, NULL);
77         return pid;
78 }
79
80 static inline void set_current(struct task_struct *task)
81 {
82         cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
83                 { external_pid(), task });
84 }
85
86 extern void arch_switch_to(struct task_struct *to);
87
88 void *_switch_to(void *prev, void *next, void *last)
89 {
90         struct task_struct *from = prev;
91         struct task_struct *to = next;
92
93         to->thread.prev_sched = from;
94         set_current(to);
95
96         do {
97                 current->thread.saved_task = NULL;
98
99                 switch_threads(&from->thread.switch_buf,
100                                &to->thread.switch_buf);
101
102                 arch_switch_to(current);
103
104                 if (current->thread.saved_task)
105                         show_regs(&(current->thread.regs));
106                 to = current->thread.saved_task;
107                 from = current;
108         } while (current->thread.saved_task);
109
110         return current->thread.prev_sched;
111
112 }
113
114 void interrupt_end(void)
115 {
116         if (need_resched())
117                 schedule();
118         if (test_tsk_thread_flag(current, TIF_SIGPENDING))
119                 do_signal();
120 }
121
122 void exit_thread(void)
123 {
124 }
125
126 void *get_current(void)
127 {
128         return current;
129 }
130
131 /*
132  * This is called magically, by its address being stuffed in a jmp_buf
133  * and being longjmp-d to.
134  */
135 void new_thread_handler(void)
136 {
137         int (*fn)(void *), n;
138         void *arg;
139
140         if (current->thread.prev_sched != NULL)
141                 schedule_tail(current->thread.prev_sched);
142         current->thread.prev_sched = NULL;
143
144         fn = current->thread.request.u.thread.proc;
145         arg = current->thread.request.u.thread.arg;
146
147         /*
148          * The return value is 1 if the kernel thread execs a process,
149          * 0 if it just exits
150          */
151         n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
152         if (n == 1) {
153                 /* Handle any immediate reschedules or signals */
154                 interrupt_end();
155                 userspace(&current->thread.regs.regs);
156         }
157         else do_exit(0);
158 }
159
160 /* Called magically, see new_thread_handler above */
161 void fork_handler(void)
162 {
163         force_flush_all();
164
165         schedule_tail(current->thread.prev_sched);
166
167         /*
168          * XXX: if interrupt_end() calls schedule, this call to
169          * arch_switch_to isn't needed. We could want to apply this to
170          * improve performance. -bb
171          */
172         arch_switch_to(current);
173
174         current->thread.prev_sched = NULL;
175
176         /* Handle any immediate reschedules or signals */
177         interrupt_end();
178
179         userspace(&current->thread.regs.regs);
180 }
181
182 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
183                 unsigned long stack_top, struct task_struct * p,
184                 struct pt_regs *regs)
185 {
186         void (*handler)(void);
187         int ret = 0;
188
189         p->thread = (struct thread_struct) INIT_THREAD;
190
191         if (current->thread.forking) {
192                 memcpy(&p->thread.regs.regs, &regs->regs,
193                        sizeof(p->thread.regs.regs));
194                 REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0);
195                 if (sp != 0)
196                         REGS_SP(p->thread.regs.regs.gp) = sp;
197
198                 handler = fork_handler;
199
200                 arch_copy_thread(&current->thread.arch, &p->thread.arch);
201         }
202         else {
203                 get_safe_registers(p->thread.regs.regs.gp);
204                 p->thread.request.u.thread = current->thread.request.u.thread;
205                 handler = new_thread_handler;
206         }
207
208         new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
209
210         if (current->thread.forking) {
211                 clear_flushed_tls(p);
212
213                 /*
214                  * Set a new TLS for the child thread?
215                  */
216                 if (clone_flags & CLONE_SETTLS)
217                         ret = arch_copy_tls(p);
218         }
219
220         return ret;
221 }
222
223 void initial_thread_cb(void (*proc)(void *), void *arg)
224 {
225         int save_kmalloc_ok = kmalloc_ok;
226
227         kmalloc_ok = 0;
228         initial_thread_cb_skas(proc, arg);
229         kmalloc_ok = save_kmalloc_ok;
230 }
231
232 void default_idle(void)
233 {
234         unsigned long long nsecs;
235
236         while (1) {
237                 /* endless idle loop with no priority at all */
238
239                 /*
240                  * although we are an idle CPU, we do not want to
241                  * get into the scheduler unnecessarily.
242                  */
243                 if (need_resched())
244                         schedule();
245
246                 tick_nohz_stop_sched_tick();
247                 nsecs = disable_timer();
248                 idle_sleep(nsecs);
249                 tick_nohz_restart_sched_tick();
250         }
251 }
252
253 void cpu_idle(void)
254 {
255         cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
256         default_idle();
257 }
258
259 int __cant_sleep(void) {
260         return in_atomic() || irqs_disabled() || in_interrupt();
261         /* Is in_interrupt() really needed? */
262 }
263
264 int user_context(unsigned long sp)
265 {
266         unsigned long stack;
267
268         stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
269         return stack != (unsigned long) current_thread_info();
270 }
271
272 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
273
274 void do_uml_exitcalls(void)
275 {
276         exitcall_t *call;
277
278         call = &__uml_exitcall_end;
279         while (--call >= &__uml_exitcall_begin)
280                 (*call)();
281 }
282
283 char *uml_strdup(const char *string)
284 {
285         return kstrdup(string, GFP_KERNEL);
286 }
287
288 int copy_to_user_proc(void __user *to, void *from, int size)
289 {
290         return copy_to_user(to, from, size);
291 }
292
293 int copy_from_user_proc(void *to, void __user *from, int size)
294 {
295         return copy_from_user(to, from, size);
296 }
297
298 int clear_user_proc(void __user *buf, int size)
299 {
300         return clear_user(buf, size);
301 }
302
303 int strlen_user_proc(char __user *str)
304 {
305         return strlen_user(str);
306 }
307
308 int smp_sigio_handler(void)
309 {
310 #ifdef CONFIG_SMP
311         int cpu = current_thread_info()->cpu;
312         IPI_handler(cpu);
313         if (cpu != 0)
314                 return 1;
315 #endif
316         return 0;
317 }
318
319 int cpu(void)
320 {
321         return current_thread_info()->cpu;
322 }
323
324 static atomic_t using_sysemu = ATOMIC_INIT(0);
325 int sysemu_supported;
326
327 void set_using_sysemu(int value)
328 {
329         if (value > sysemu_supported)
330                 return;
331         atomic_set(&using_sysemu, value);
332 }
333
334 int get_using_sysemu(void)
335 {
336         return atomic_read(&using_sysemu);
337 }
338
339 static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data)
340 {
341         if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size)
342                 /* No overflow */
343                 *eof = 1;
344
345         return strlen(buf);
346 }
347
348 static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data)
349 {
350         char tmp[2];
351
352         if (copy_from_user(tmp, buf, 1))
353                 return -EFAULT;
354
355         if (tmp[0] >= '0' && tmp[0] <= '2')
356                 set_using_sysemu(tmp[0] - '0');
357         /* We use the first char, but pretend to write everything */
358         return count;
359 }
360
361 int __init make_proc_sysemu(void)
362 {
363         struct proc_dir_entry *ent;
364         if (!sysemu_supported)
365                 return 0;
366
367         ent = create_proc_entry("sysemu", 0600, &proc_root);
368
369         if (ent == NULL)
370         {
371                 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
372                 return 0;
373         }
374
375         ent->read_proc  = proc_read_sysemu;
376         ent->write_proc = proc_write_sysemu;
377
378         return 0;
379 }
380
381 late_initcall(make_proc_sysemu);
382
383 int singlestepping(void * t)
384 {
385         struct task_struct *task = t ? t : current;
386
387         if (!(task->ptrace & PT_DTRACE))
388                 return 0;
389
390         if (task->thread.singlestep_syscall)
391                 return 1;
392
393         return 2;
394 }
395
396 /*
397  * Only x86 and x86_64 have an arch_align_stack().
398  * All other arches have "#define arch_align_stack(x) (x)"
399  * in their asm/system.h
400  * As this is included in UML from asm-um/system-generic.h,
401  * we can use it to behave as the subarch does.
402  */
403 #ifndef arch_align_stack
404 unsigned long arch_align_stack(unsigned long sp)
405 {
406         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
407                 sp -= get_random_int() % 8192;
408         return sp & ~0xf;
409 }
410 #endif
411
412 unsigned long get_wchan(struct task_struct *p)
413 {
414         unsigned long stack_page, sp, ip;
415         bool seen_sched = 0;
416
417         if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
418                 return 0;
419
420         stack_page = (unsigned long) task_stack_page(p);
421         /* Bail if the process has no kernel stack for some reason */
422         if (stack_page == 0)
423                 return 0;
424
425         sp = p->thread.switch_buf->JB_SP;
426         /*
427          * Bail if the stack pointer is below the bottom of the kernel
428          * stack for some reason
429          */
430         if (sp < stack_page)
431                 return 0;
432
433         while (sp < stack_page + THREAD_SIZE) {
434                 ip = *((unsigned long *) sp);
435                 if (in_sched_functions(ip))
436                         /* Ignore everything until we're above the scheduler */
437                         seen_sched = 1;
438                 else if (kernel_text_address(ip) && seen_sched)
439                         return ip;
440
441                 sp += sizeof(unsigned long);
442         }
443
444         return 0;
445 }
446
447 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
448 {
449         int cpu = current_thread_info()->cpu;
450
451         return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
452 }
453