2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27 #include <linux/lmb.h>
28 #include <linux/mmzone.h>
31 #include <asm/system.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
42 #include <asm/starfire.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
47 #include <asm/hypervisor.h>
49 #include <asm/sstate.h>
50 #include <asm/mdesc.h>
51 #include <asm/cpudata.h>
54 #define MAX_PHYS_ADDRESS (1UL << 42UL)
55 #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
56 #define KPTE_BITMAP_BYTES \
57 ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
59 unsigned long kern_linear_pte_xor[2] __read_mostly;
61 /* A bitmap, one bit for every 256MB of physical memory. If the bit
62 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
63 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
65 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
67 #ifndef CONFIG_DEBUG_PAGEALLOC
68 /* A special kernel TSB for 4MB and 256MB linear mappings.
69 * Space is allocated for this right after the trap table
70 * in arch/sparc64/kernel/head.S
72 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
77 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
78 static int pavail_ents __initdata;
80 static int cmp_p64(const void *a, const void *b)
82 const struct linux_prom64_registers *x = a, *y = b;
84 if (x->phys_addr > y->phys_addr)
86 if (x->phys_addr < y->phys_addr)
91 static void __init read_obp_memory(const char *property,
92 struct linux_prom64_registers *regs,
95 int node = prom_finddevice("/memory");
96 int prop_size = prom_getproplen(node, property);
99 ents = prop_size / sizeof(struct linux_prom64_registers);
100 if (ents > MAX_BANKS) {
101 prom_printf("The machine has more %s property entries than "
102 "this kernel can support (%d).\n",
103 property, MAX_BANKS);
107 ret = prom_getproperty(node, property, (char *) regs, prop_size);
109 prom_printf("Couldn't get %s property from /memory.\n");
113 /* Sanitize what we got from the firmware, by page aligning
116 for (i = 0; i < ents; i++) {
117 unsigned long base, size;
119 base = regs[i].phys_addr;
120 size = regs[i].reg_size;
123 if (base & ~PAGE_MASK) {
124 unsigned long new_base = PAGE_ALIGN(base);
126 size -= new_base - base;
127 if ((long) size < 0L)
132 /* If it is empty, simply get rid of it.
133 * This simplifies the logic of the other
134 * functions that process these arrays.
136 memmove(®s[i], ®s[i + 1],
137 (ents - i - 1) * sizeof(regs[0]));
142 regs[i].phys_addr = base;
143 regs[i].reg_size = size;
148 sort(regs, ents, sizeof(struct linux_prom64_registers),
152 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
154 /* Kernel physical address base and size in bytes. */
155 unsigned long kern_base __read_mostly;
156 unsigned long kern_size __read_mostly;
158 /* Initial ramdisk setup */
159 extern unsigned long sparc_ramdisk_image64;
160 extern unsigned int sparc_ramdisk_image;
161 extern unsigned int sparc_ramdisk_size;
163 struct page *mem_map_zero __read_mostly;
164 EXPORT_SYMBOL(mem_map_zero);
166 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
168 unsigned long sparc64_kern_pri_context __read_mostly;
169 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
170 unsigned long sparc64_kern_sec_context __read_mostly;
172 int num_kernel_image_mappings;
174 #ifdef CONFIG_DEBUG_DCFLUSH
175 atomic_t dcpage_flushes = ATOMIC_INIT(0);
177 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
181 inline void flush_dcache_page_impl(struct page *page)
183 BUG_ON(tlb_type == hypervisor);
184 #ifdef CONFIG_DEBUG_DCFLUSH
185 atomic_inc(&dcpage_flushes);
188 #ifdef DCACHE_ALIASING_POSSIBLE
189 __flush_dcache_page(page_address(page),
190 ((tlb_type == spitfire) &&
191 page_mapping(page) != NULL));
193 if (page_mapping(page) != NULL &&
194 tlb_type == spitfire)
195 __flush_icache_page(__pa(page_address(page)));
199 #define PG_dcache_dirty PG_arch_1
200 #define PG_dcache_cpu_shift 32UL
201 #define PG_dcache_cpu_mask \
202 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
204 #define dcache_dirty_cpu(page) \
205 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
207 static inline void set_dcache_dirty(struct page *page, int this_cpu)
209 unsigned long mask = this_cpu;
210 unsigned long non_cpu_bits;
212 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
213 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
215 __asm__ __volatile__("1:\n\t"
217 "and %%g7, %1, %%g1\n\t"
218 "or %%g1, %0, %%g1\n\t"
219 "casx [%2], %%g7, %%g1\n\t"
221 "membar #StoreLoad | #StoreStore\n\t"
222 "bne,pn %%xcc, 1b\n\t"
225 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
229 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
231 unsigned long mask = (1UL << PG_dcache_dirty);
233 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
236 "srlx %%g7, %4, %%g1\n\t"
237 "and %%g1, %3, %%g1\n\t"
239 "bne,pn %%icc, 2f\n\t"
240 " andn %%g7, %1, %%g1\n\t"
241 "casx [%2], %%g7, %%g1\n\t"
243 "membar #StoreLoad | #StoreStore\n\t"
244 "bne,pn %%xcc, 1b\n\t"
248 : "r" (cpu), "r" (mask), "r" (&page->flags),
249 "i" (PG_dcache_cpu_mask),
250 "i" (PG_dcache_cpu_shift)
254 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
256 unsigned long tsb_addr = (unsigned long) ent;
258 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
259 tsb_addr = __pa(tsb_addr);
261 __tsb_insert(tsb_addr, tag, pte);
264 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
265 unsigned long _PAGE_SZBITS __read_mostly;
267 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
269 struct mm_struct *mm;
271 unsigned long tag, flags;
272 unsigned long tsb_index, tsb_hash_shift;
274 if (tlb_type != hypervisor) {
275 unsigned long pfn = pte_pfn(pte);
276 unsigned long pg_flags;
279 if (pfn_valid(pfn) &&
280 (page = pfn_to_page(pfn), page_mapping(page)) &&
281 ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
282 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
284 int this_cpu = get_cpu();
286 /* This is just to optimize away some function calls
290 flush_dcache_page_impl(page);
292 smp_flush_dcache_page_impl(page, cpu);
294 clear_dcache_dirty_cpu(page, cpu);
302 tsb_index = MM_TSB_BASE;
303 tsb_hash_shift = PAGE_SHIFT;
305 spin_lock_irqsave(&mm->context.lock, flags);
307 #ifdef CONFIG_HUGETLB_PAGE
308 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
309 if ((tlb_type == hypervisor &&
310 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
311 (tlb_type != hypervisor &&
312 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
313 tsb_index = MM_TSB_HUGE;
314 tsb_hash_shift = HPAGE_SHIFT;
319 tsb = mm->context.tsb_block[tsb_index].tsb;
320 tsb += ((address >> tsb_hash_shift) &
321 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
322 tag = (address >> 22UL);
323 tsb_insert(tsb, tag, pte_val(pte));
325 spin_unlock_irqrestore(&mm->context.lock, flags);
328 void flush_dcache_page(struct page *page)
330 struct address_space *mapping;
333 if (tlb_type == hypervisor)
336 /* Do not bother with the expensive D-cache flush if it
337 * is merely the zero page. The 'bigcore' testcase in GDB
338 * causes this case to run millions of times.
340 if (page == ZERO_PAGE(0))
343 this_cpu = get_cpu();
345 mapping = page_mapping(page);
346 if (mapping && !mapping_mapped(mapping)) {
347 int dirty = test_bit(PG_dcache_dirty, &page->flags);
349 int dirty_cpu = dcache_dirty_cpu(page);
351 if (dirty_cpu == this_cpu)
353 smp_flush_dcache_page_impl(page, dirty_cpu);
355 set_dcache_dirty(page, this_cpu);
357 /* We could delay the flush for the !page_mapping
358 * case too. But that case is for exec env/arg
359 * pages and those are %99 certainly going to get
360 * faulted into the tlb (and thus flushed) anyways.
362 flush_dcache_page_impl(page);
369 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
371 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
372 if (tlb_type == spitfire) {
375 /* This code only runs on Spitfire cpus so this is
376 * why we can assume _PAGE_PADDR_4U.
378 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
379 unsigned long paddr, mask = _PAGE_PADDR_4U;
381 if (kaddr >= PAGE_OFFSET)
382 paddr = kaddr & mask;
384 pgd_t *pgdp = pgd_offset_k(kaddr);
385 pud_t *pudp = pud_offset(pgdp, kaddr);
386 pmd_t *pmdp = pmd_offset(pudp, kaddr);
387 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
389 paddr = pte_val(*ptep) & mask;
391 __flush_icache_page(paddr);
396 void mmu_info(struct seq_file *m)
398 if (tlb_type == cheetah)
399 seq_printf(m, "MMU Type\t: Cheetah\n");
400 else if (tlb_type == cheetah_plus)
401 seq_printf(m, "MMU Type\t: Cheetah+\n");
402 else if (tlb_type == spitfire)
403 seq_printf(m, "MMU Type\t: Spitfire\n");
404 else if (tlb_type == hypervisor)
405 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
407 seq_printf(m, "MMU Type\t: ???\n");
409 #ifdef CONFIG_DEBUG_DCFLUSH
410 seq_printf(m, "DCPageFlushes\t: %d\n",
411 atomic_read(&dcpage_flushes));
413 seq_printf(m, "DCPageFlushesXC\t: %d\n",
414 atomic_read(&dcpage_flushes_xcall));
415 #endif /* CONFIG_SMP */
416 #endif /* CONFIG_DEBUG_DCFLUSH */
419 struct linux_prom_translation {
425 /* Exported for kernel TLB miss handling in ktlb.S */
426 struct linux_prom_translation prom_trans[512] __read_mostly;
427 unsigned int prom_trans_ents __read_mostly;
429 /* Exported for SMP bootup purposes. */
430 unsigned long kern_locked_tte_data;
432 /* The obp translations are saved based on 8k pagesize, since obp can
433 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
434 * HI_OBP_ADDRESS range are handled in ktlb.S.
436 static inline int in_obp_range(unsigned long vaddr)
438 return (vaddr >= LOW_OBP_ADDRESS &&
439 vaddr < HI_OBP_ADDRESS);
442 static int cmp_ptrans(const void *a, const void *b)
444 const struct linux_prom_translation *x = a, *y = b;
446 if (x->virt > y->virt)
448 if (x->virt < y->virt)
453 /* Read OBP translations property into 'prom_trans[]'. */
454 static void __init read_obp_translations(void)
456 int n, node, ents, first, last, i;
458 node = prom_finddevice("/virtual-memory");
459 n = prom_getproplen(node, "translations");
460 if (unlikely(n == 0 || n == -1)) {
461 prom_printf("prom_mappings: Couldn't get size.\n");
464 if (unlikely(n > sizeof(prom_trans))) {
465 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
469 if ((n = prom_getproperty(node, "translations",
470 (char *)&prom_trans[0],
471 sizeof(prom_trans))) == -1) {
472 prom_printf("prom_mappings: Couldn't get property.\n");
476 n = n / sizeof(struct linux_prom_translation);
480 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
483 /* Now kick out all the non-OBP entries. */
484 for (i = 0; i < ents; i++) {
485 if (in_obp_range(prom_trans[i].virt))
489 for (; i < ents; i++) {
490 if (!in_obp_range(prom_trans[i].virt))
495 for (i = 0; i < (last - first); i++) {
496 struct linux_prom_translation *src = &prom_trans[i + first];
497 struct linux_prom_translation *dest = &prom_trans[i];
501 for (; i < ents; i++) {
502 struct linux_prom_translation *dest = &prom_trans[i];
503 dest->virt = dest->size = dest->data = 0x0UL;
506 prom_trans_ents = last - first;
508 if (tlb_type == spitfire) {
509 /* Clear diag TTE bits. */
510 for (i = 0; i < prom_trans_ents; i++)
511 prom_trans[i].data &= ~0x0003fe0000000000UL;
515 static void __init hypervisor_tlb_lock(unsigned long vaddr,
519 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
522 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
523 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
528 static unsigned long kern_large_tte(unsigned long paddr);
530 static void __init remap_kernel(void)
532 unsigned long phys_page, tte_vaddr, tte_data;
533 int i, tlb_ent = sparc64_highest_locked_tlbent();
535 tte_vaddr = (unsigned long) KERNBASE;
536 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
537 tte_data = kern_large_tte(phys_page);
539 kern_locked_tte_data = tte_data;
541 /* Now lock us into the TLBs via Hypervisor or OBP. */
542 if (tlb_type == hypervisor) {
543 for (i = 0; i < num_kernel_image_mappings; i++) {
544 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
545 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
546 tte_vaddr += 0x400000;
547 tte_data += 0x400000;
550 for (i = 0; i < num_kernel_image_mappings; i++) {
551 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
552 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
553 tte_vaddr += 0x400000;
554 tte_data += 0x400000;
556 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
558 if (tlb_type == cheetah_plus) {
559 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
560 CTX_CHEETAH_PLUS_NUC);
561 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
562 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
567 static void __init inherit_prom_mappings(void)
569 /* Now fixup OBP's idea about where we really are mapped. */
570 printk("Remapping the kernel... ");
575 void prom_world(int enter)
578 set_fs((mm_segment_t) { get_thread_current_ds() });
580 __asm__ __volatile__("flushw");
583 void __flush_dcache_range(unsigned long start, unsigned long end)
587 if (tlb_type == spitfire) {
590 for (va = start; va < end; va += 32) {
591 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
595 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
598 for (va = start; va < end; va += 32)
599 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
603 "i" (ASI_DCACHE_INVALIDATE));
607 /* get_new_mmu_context() uses "cache + 1". */
608 DEFINE_SPINLOCK(ctx_alloc_lock);
609 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
610 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
611 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
612 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
614 /* Caller does TLB context flushing on local CPU if necessary.
615 * The caller also ensures that CTX_VALID(mm->context) is false.
617 * We must be careful about boundary cases so that we never
618 * let the user have CTX 0 (nucleus) or we ever use a CTX
619 * version of zero (and thus NO_CONTEXT would not be caught
620 * by version mis-match tests in mmu_context.h).
622 * Always invoked with interrupts disabled.
624 void get_new_mmu_context(struct mm_struct *mm)
626 unsigned long ctx, new_ctx;
627 unsigned long orig_pgsz_bits;
631 spin_lock_irqsave(&ctx_alloc_lock, flags);
632 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
633 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
634 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
636 if (new_ctx >= (1 << CTX_NR_BITS)) {
637 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
638 if (new_ctx >= ctx) {
640 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
643 new_ctx = CTX_FIRST_VERSION;
645 /* Don't call memset, for 16 entries that's just
648 mmu_context_bmap[0] = 3;
649 mmu_context_bmap[1] = 0;
650 mmu_context_bmap[2] = 0;
651 mmu_context_bmap[3] = 0;
652 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
653 mmu_context_bmap[i + 0] = 0;
654 mmu_context_bmap[i + 1] = 0;
655 mmu_context_bmap[i + 2] = 0;
656 mmu_context_bmap[i + 3] = 0;
662 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
663 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
665 tlb_context_cache = new_ctx;
666 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
667 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
669 if (unlikely(new_version))
670 smp_new_mmu_context_version();
673 static int numa_enabled = 1;
674 static int numa_debug;
676 static int __init early_numa(char *p)
681 if (strstr(p, "off"))
684 if (strstr(p, "debug"))
689 early_param("numa", early_numa);
691 #define numadbg(f, a...) \
692 do { if (numa_debug) \
693 printk(KERN_INFO f, ## a); \
696 static void __init find_ramdisk(unsigned long phys_base)
698 #ifdef CONFIG_BLK_DEV_INITRD
699 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
700 unsigned long ramdisk_image;
702 /* Older versions of the bootloader only supported a
703 * 32-bit physical address for the ramdisk image
704 * location, stored at sparc_ramdisk_image. Newer
705 * SILO versions set sparc_ramdisk_image to zero and
706 * provide a full 64-bit physical address at
707 * sparc_ramdisk_image64.
709 ramdisk_image = sparc_ramdisk_image;
711 ramdisk_image = sparc_ramdisk_image64;
713 /* Another bootloader quirk. The bootloader normalizes
714 * the physical address to KERNBASE, so we have to
715 * factor that back out and add in the lowest valid
716 * physical page address to get the true physical address.
718 ramdisk_image -= KERNBASE;
719 ramdisk_image += phys_base;
721 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
722 ramdisk_image, sparc_ramdisk_size);
724 initrd_start = ramdisk_image;
725 initrd_end = ramdisk_image + sparc_ramdisk_size;
727 lmb_reserve(initrd_start, sparc_ramdisk_size);
729 initrd_start += PAGE_OFFSET;
730 initrd_end += PAGE_OFFSET;
735 struct node_mem_mask {
738 unsigned long bootmem_paddr;
740 static struct node_mem_mask node_masks[MAX_NUMNODES];
741 static int num_node_masks;
743 int numa_cpu_lookup_table[NR_CPUS];
744 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
746 #ifdef CONFIG_NEED_MULTIPLE_NODES
748 struct mdesc_mblock {
751 u64 offset; /* RA-to-PA */
753 static struct mdesc_mblock *mblocks;
754 static int num_mblocks;
756 static unsigned long ra_to_pa(unsigned long addr)
760 for (i = 0; i < num_mblocks; i++) {
761 struct mdesc_mblock *m = &mblocks[i];
763 if (addr >= m->base &&
764 addr < (m->base + m->size)) {
772 static int find_node(unsigned long addr)
776 addr = ra_to_pa(addr);
777 for (i = 0; i < num_node_masks; i++) {
778 struct node_mem_mask *p = &node_masks[i];
780 if ((addr & p->mask) == p->val)
786 static unsigned long nid_range(unsigned long start, unsigned long end,
789 *nid = find_node(start);
791 while (start < end) {
792 int n = find_node(start);
805 static unsigned long nid_range(unsigned long start, unsigned long end,
813 /* This must be invoked after performing all of the necessary
814 * add_active_range() calls for 'nid'. We need to be able to get
815 * correct data from get_pfn_range_for_nid().
817 static void __init allocate_node_data(int nid)
819 unsigned long paddr, num_pages, start_pfn, end_pfn;
820 struct pglist_data *p;
822 #ifdef CONFIG_NEED_MULTIPLE_NODES
823 paddr = lmb_alloc_nid(sizeof(struct pglist_data),
824 SMP_CACHE_BYTES, nid, nid_range);
826 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
829 NODE_DATA(nid) = __va(paddr);
830 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
832 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
837 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
838 p->node_start_pfn = start_pfn;
839 p->node_spanned_pages = end_pfn - start_pfn;
841 if (p->node_spanned_pages) {
842 num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
844 paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
847 prom_printf("Cannot allocate bootmap for nid[%d]\n",
851 node_masks[nid].bootmem_paddr = paddr;
855 static void init_node_masks_nonnuma(void)
859 numadbg("Initializing tables for non-numa.\n");
861 node_masks[0].mask = node_masks[0].val = 0;
864 for (i = 0; i < NR_CPUS; i++)
865 numa_cpu_lookup_table[i] = 0;
867 numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
870 #ifdef CONFIG_NEED_MULTIPLE_NODES
871 struct pglist_data *node_data[MAX_NUMNODES];
873 EXPORT_SYMBOL(numa_cpu_lookup_table);
874 EXPORT_SYMBOL(numa_cpumask_lookup_table);
875 EXPORT_SYMBOL(node_data);
877 struct mdesc_mlgroup {
883 static struct mdesc_mlgroup *mlgroups;
884 static int num_mlgroups;
886 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
891 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
892 u64 target = mdesc_arc_target(md, arc);
895 val = mdesc_get_property(md, target,
897 if (val && *val == cfg_handle)
903 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
906 u64 arc, candidate, best_latency = ~(u64)0;
908 candidate = MDESC_NODE_NULL;
909 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
910 u64 target = mdesc_arc_target(md, arc);
911 const char *name = mdesc_node_name(md, target);
914 if (strcmp(name, "pio-latency-group"))
917 val = mdesc_get_property(md, target, "latency", NULL);
921 if (*val < best_latency) {
927 if (candidate == MDESC_NODE_NULL)
930 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
933 int of_node_to_nid(struct device_node *dp)
935 const struct linux_prom64_registers *regs;
936 struct mdesc_handle *md;
944 regs = of_get_property(dp, "reg", NULL);
948 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
954 mdesc_for_each_node_by_name(md, grp, "group") {
955 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
967 static void add_node_ranges(void)
971 for (i = 0; i < lmb.memory.cnt; i++) {
972 unsigned long size = lmb_size_bytes(&lmb.memory, i);
973 unsigned long start, end;
975 start = lmb.memory.region[i].base;
977 while (start < end) {
978 unsigned long this_end;
981 this_end = nid_range(start, end, &nid);
983 numadbg("Adding active range nid[%d] "
984 "start[%lx] end[%lx]\n",
985 nid, start, this_end);
987 add_active_range(nid,
989 this_end >> PAGE_SHIFT);
996 static int __init grab_mlgroups(struct mdesc_handle *md)
1002 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1007 paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
1012 mlgroups = __va(paddr);
1013 num_mlgroups = count;
1016 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1017 struct mdesc_mlgroup *m = &mlgroups[count++];
1022 val = mdesc_get_property(md, node, "latency", NULL);
1024 val = mdesc_get_property(md, node, "address-match", NULL);
1026 val = mdesc_get_property(md, node, "address-mask", NULL);
1029 numadbg("MLGROUP[%d]: node[%lx] latency[%lx] "
1030 "match[%lx] mask[%lx]\n",
1031 count - 1, m->node, m->latency, m->match, m->mask);
1037 static int __init grab_mblocks(struct mdesc_handle *md)
1039 unsigned long paddr;
1043 mdesc_for_each_node_by_name(md, node, "mblock")
1048 paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
1053 mblocks = __va(paddr);
1054 num_mblocks = count;
1057 mdesc_for_each_node_by_name(md, node, "mblock") {
1058 struct mdesc_mblock *m = &mblocks[count++];
1061 val = mdesc_get_property(md, node, "base", NULL);
1063 val = mdesc_get_property(md, node, "size", NULL);
1065 val = mdesc_get_property(md, node,
1066 "address-congruence-offset", NULL);
1069 numadbg("MBLOCK[%d]: base[%lx] size[%lx] offset[%lx]\n",
1070 count - 1, m->base, m->size, m->offset);
1076 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1077 u64 grp, cpumask_t *mask)
1083 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1084 u64 target = mdesc_arc_target(md, arc);
1085 const char *name = mdesc_node_name(md, target);
1088 if (strcmp(name, "cpu"))
1090 id = mdesc_get_property(md, target, "id", NULL);
1092 cpu_set(*id, *mask);
1096 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1100 for (i = 0; i < num_mlgroups; i++) {
1101 struct mdesc_mlgroup *m = &mlgroups[i];
1102 if (m->node == node)
1108 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1111 struct mdesc_mlgroup *candidate = NULL;
1112 u64 arc, best_latency = ~(u64)0;
1113 struct node_mem_mask *n;
1115 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1116 u64 target = mdesc_arc_target(md, arc);
1117 struct mdesc_mlgroup *m = find_mlgroup(target);
1120 if (m->latency < best_latency) {
1122 best_latency = m->latency;
1128 if (num_node_masks != index) {
1129 printk(KERN_ERR "Inconsistent NUMA state, "
1130 "index[%d] != num_node_masks[%d]\n",
1131 index, num_node_masks);
1135 n = &node_masks[num_node_masks++];
1137 n->mask = candidate->mask;
1138 n->val = candidate->match;
1140 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%lx])\n",
1141 index, n->mask, n->val, candidate->latency);
1146 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1152 numa_parse_mdesc_group_cpus(md, grp, &mask);
1154 for_each_cpu_mask(cpu, mask)
1155 numa_cpu_lookup_table[cpu] = index;
1156 numa_cpumask_lookup_table[index] = mask;
1159 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1160 for_each_cpu_mask(cpu, mask)
1165 return numa_attach_mlgroup(md, grp, index);
1168 static int __init numa_parse_mdesc(void)
1170 struct mdesc_handle *md = mdesc_grab();
1174 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1175 if (node == MDESC_NODE_NULL) {
1180 err = grab_mblocks(md);
1184 err = grab_mlgroups(md);
1189 mdesc_for_each_node_by_name(md, node, "group") {
1190 err = numa_parse_mdesc_group(md, node, count);
1198 for (i = 0; i < num_node_masks; i++) {
1199 allocate_node_data(i);
1209 static int __init numa_parse_sun4u(void)
1214 static int __init bootmem_init_numa(void)
1218 numadbg("bootmem_init_numa()\n");
1221 if (tlb_type == hypervisor)
1222 err = numa_parse_mdesc();
1224 err = numa_parse_sun4u();
1231 static int bootmem_init_numa(void)
1238 static void __init bootmem_init_nonnuma(void)
1240 unsigned long top_of_ram = lmb_end_of_DRAM();
1241 unsigned long total_ram = lmb_phys_mem_size();
1244 numadbg("bootmem_init_nonnuma()\n");
1246 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1247 top_of_ram, total_ram);
1248 printk(KERN_INFO "Memory hole size: %ldMB\n",
1249 (top_of_ram - total_ram) >> 20);
1251 init_node_masks_nonnuma();
1253 for (i = 0; i < lmb.memory.cnt; i++) {
1254 unsigned long size = lmb_size_bytes(&lmb.memory, i);
1255 unsigned long start_pfn, end_pfn;
1260 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
1261 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
1262 add_active_range(0, start_pfn, end_pfn);
1265 allocate_node_data(0);
1270 static void __init reserve_range_in_node(int nid, unsigned long start,
1273 numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1275 while (start < end) {
1276 unsigned long this_end;
1279 this_end = nid_range(start, end, &n);
1281 numadbg(" MATCH reserving range [%lx:%lx]\n",
1283 reserve_bootmem_node(NODE_DATA(nid), start,
1284 (this_end - start), BOOTMEM_DEFAULT);
1286 numadbg(" NO MATCH, advancing start to %lx\n",
1293 static void __init trim_reserved_in_node(int nid)
1297 numadbg(" trim_reserved_in_node(%d)\n", nid);
1299 for (i = 0; i < lmb.reserved.cnt; i++) {
1300 unsigned long start = lmb.reserved.region[i].base;
1301 unsigned long size = lmb_size_bytes(&lmb.reserved, i);
1302 unsigned long end = start + size;
1304 reserve_range_in_node(nid, start, end);
1308 static void __init bootmem_init_one_node(int nid)
1310 struct pglist_data *p;
1312 numadbg("bootmem_init_one_node(%d)\n", nid);
1316 if (p->node_spanned_pages) {
1317 unsigned long paddr = node_masks[nid].bootmem_paddr;
1318 unsigned long end_pfn;
1320 end_pfn = p->node_start_pfn + p->node_spanned_pages;
1322 numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n",
1323 nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1325 init_bootmem_node(p, paddr >> PAGE_SHIFT,
1326 p->node_start_pfn, end_pfn);
1328 numadbg(" free_bootmem_with_active_regions(%d, %lx)\n",
1330 free_bootmem_with_active_regions(nid, end_pfn);
1332 trim_reserved_in_node(nid);
1334 numadbg(" sparse_memory_present_with_active_regions(%d)\n",
1336 sparse_memory_present_with_active_regions(nid);
1340 static unsigned long __init bootmem_init(unsigned long phys_base)
1342 unsigned long end_pfn;
1345 end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
1346 max_pfn = max_low_pfn = end_pfn;
1347 min_low_pfn = (phys_base >> PAGE_SHIFT);
1349 if (bootmem_init_numa() < 0)
1350 bootmem_init_nonnuma();
1352 /* XXX cpu notifier XXX */
1354 for_each_online_node(nid)
1355 bootmem_init_one_node(nid);
1362 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1363 static int pall_ents __initdata;
1365 #ifdef CONFIG_DEBUG_PAGEALLOC
1366 static unsigned long __ref kernel_map_range(unsigned long pstart,
1367 unsigned long pend, pgprot_t prot)
1369 unsigned long vstart = PAGE_OFFSET + pstart;
1370 unsigned long vend = PAGE_OFFSET + pend;
1371 unsigned long alloc_bytes = 0UL;
1373 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1374 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1379 while (vstart < vend) {
1380 unsigned long this_end, paddr = __pa(vstart);
1381 pgd_t *pgd = pgd_offset_k(vstart);
1386 pud = pud_offset(pgd, vstart);
1387 if (pud_none(*pud)) {
1390 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1391 alloc_bytes += PAGE_SIZE;
1392 pud_populate(&init_mm, pud, new);
1395 pmd = pmd_offset(pud, vstart);
1396 if (!pmd_present(*pmd)) {
1399 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1400 alloc_bytes += PAGE_SIZE;
1401 pmd_populate_kernel(&init_mm, pmd, new);
1404 pte = pte_offset_kernel(pmd, vstart);
1405 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1406 if (this_end > vend)
1409 while (vstart < this_end) {
1410 pte_val(*pte) = (paddr | pgprot_val(prot));
1412 vstart += PAGE_SIZE;
1421 extern unsigned int kvmap_linear_patch[1];
1422 #endif /* CONFIG_DEBUG_PAGEALLOC */
1424 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1426 const unsigned long shift_256MB = 28;
1427 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1428 const unsigned long size_256MB = (1UL << shift_256MB);
1430 while (start < end) {
1433 remains = end - start;
1434 if (remains < size_256MB)
1437 if (start & mask_256MB) {
1438 start = (start + size_256MB) & ~mask_256MB;
1442 while (remains >= size_256MB) {
1443 unsigned long index = start >> shift_256MB;
1445 __set_bit(index, kpte_linear_bitmap);
1447 start += size_256MB;
1448 remains -= size_256MB;
1453 static void __init init_kpte_bitmap(void)
1457 for (i = 0; i < pall_ents; i++) {
1458 unsigned long phys_start, phys_end;
1460 phys_start = pall[i].phys_addr;
1461 phys_end = phys_start + pall[i].reg_size;
1463 mark_kpte_bitmap(phys_start, phys_end);
1467 static void __init kernel_physical_mapping_init(void)
1469 #ifdef CONFIG_DEBUG_PAGEALLOC
1470 unsigned long i, mem_alloced = 0UL;
1472 for (i = 0; i < pall_ents; i++) {
1473 unsigned long phys_start, phys_end;
1475 phys_start = pall[i].phys_addr;
1476 phys_end = phys_start + pall[i].reg_size;
1478 mem_alloced += kernel_map_range(phys_start, phys_end,
1482 printk("Allocated %ld bytes for kernel page tables.\n",
1485 kvmap_linear_patch[0] = 0x01000000; /* nop */
1486 flushi(&kvmap_linear_patch[0]);
1492 #ifdef CONFIG_DEBUG_PAGEALLOC
1493 void kernel_map_pages(struct page *page, int numpages, int enable)
1495 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1496 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1498 kernel_map_range(phys_start, phys_end,
1499 (enable ? PAGE_KERNEL : __pgprot(0)));
1501 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1502 PAGE_OFFSET + phys_end);
1504 /* we should perform an IPI and flush all tlbs,
1505 * but that can deadlock->flush only current cpu.
1507 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1508 PAGE_OFFSET + phys_end);
1512 unsigned long __init find_ecache_flush_span(unsigned long size)
1516 for (i = 0; i < pavail_ents; i++) {
1517 if (pavail[i].reg_size >= size)
1518 return pavail[i].phys_addr;
1524 static void __init tsb_phys_patch(void)
1526 struct tsb_ldquad_phys_patch_entry *pquad;
1527 struct tsb_phys_patch_entry *p;
1529 pquad = &__tsb_ldquad_phys_patch;
1530 while (pquad < &__tsb_ldquad_phys_patch_end) {
1531 unsigned long addr = pquad->addr;
1533 if (tlb_type == hypervisor)
1534 *(unsigned int *) addr = pquad->sun4v_insn;
1536 *(unsigned int *) addr = pquad->sun4u_insn;
1538 __asm__ __volatile__("flush %0"
1545 p = &__tsb_phys_patch;
1546 while (p < &__tsb_phys_patch_end) {
1547 unsigned long addr = p->addr;
1549 *(unsigned int *) addr = p->insn;
1551 __asm__ __volatile__("flush %0"
1559 /* Don't mark as init, we give this to the Hypervisor. */
1560 #ifndef CONFIG_DEBUG_PAGEALLOC
1561 #define NUM_KTSB_DESCR 2
1563 #define NUM_KTSB_DESCR 1
1565 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1566 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1568 static void __init sun4v_ktsb_init(void)
1570 unsigned long ktsb_pa;
1572 /* First KTSB for PAGE_SIZE mappings. */
1573 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1575 switch (PAGE_SIZE) {
1578 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1579 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1583 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1584 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1588 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1589 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1592 case 4 * 1024 * 1024:
1593 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1594 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1598 ktsb_descr[0].assoc = 1;
1599 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1600 ktsb_descr[0].ctx_idx = 0;
1601 ktsb_descr[0].tsb_base = ktsb_pa;
1602 ktsb_descr[0].resv = 0;
1604 #ifndef CONFIG_DEBUG_PAGEALLOC
1605 /* Second KTSB for 4MB/256MB mappings. */
1606 ktsb_pa = (kern_base +
1607 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1609 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1610 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1611 HV_PGSZ_MASK_256MB);
1612 ktsb_descr[1].assoc = 1;
1613 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1614 ktsb_descr[1].ctx_idx = 0;
1615 ktsb_descr[1].tsb_base = ktsb_pa;
1616 ktsb_descr[1].resv = 0;
1620 void __cpuinit sun4v_ktsb_register(void)
1622 unsigned long pa, ret;
1624 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1626 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1628 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1629 "errors with %lx\n", pa, ret);
1634 /* paging_init() sets up the page tables */
1636 extern void central_probe(void);
1638 static unsigned long last_valid_pfn;
1639 pgd_t swapper_pg_dir[2048];
1641 static void sun4u_pgprot_init(void);
1642 static void sun4v_pgprot_init(void);
1644 /* Dummy function */
1645 void __init setup_per_cpu_areas(void)
1649 void __init paging_init(void)
1651 unsigned long end_pfn, shift, phys_base;
1652 unsigned long real_end, i;
1654 /* These build time checkes make sure that the dcache_dirty_cpu()
1655 * page->flags usage will work.
1657 * When a page gets marked as dcache-dirty, we store the
1658 * cpu number starting at bit 32 in the page->flags. Also,
1659 * functions like clear_dcache_dirty_cpu use the cpu mask
1660 * in 13-bit signed-immediate instruction fields.
1664 * Page flags must not reach into upper 32 bits that are used
1665 * for the cpu number
1667 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1670 * The bit fields placed in the high range must not reach below
1671 * the 32 bit boundary. Otherwise we cannot place the cpu field
1672 * at the 32 bit boundary.
1674 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1675 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1677 BUILD_BUG_ON(NR_CPUS > 4096);
1679 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1680 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1684 /* Invalidate both kernel TSBs. */
1685 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1686 #ifndef CONFIG_DEBUG_PAGEALLOC
1687 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1690 if (tlb_type == hypervisor)
1691 sun4v_pgprot_init();
1693 sun4u_pgprot_init();
1695 if (tlb_type == cheetah_plus ||
1696 tlb_type == hypervisor)
1699 if (tlb_type == hypervisor) {
1700 sun4v_patch_tlb_handlers();
1706 /* Find available physical memory...
1708 * Read it twice in order to work around a bug in openfirmware.
1709 * The call to grab this table itself can cause openfirmware to
1710 * allocate memory, which in turn can take away some space from
1711 * the list of available memory. Reading it twice makes sure
1712 * we really do get the final value.
1714 read_obp_translations();
1715 read_obp_memory("reg", &pall[0], &pall_ents);
1716 read_obp_memory("available", &pavail[0], &pavail_ents);
1717 read_obp_memory("available", &pavail[0], &pavail_ents);
1719 phys_base = 0xffffffffffffffffUL;
1720 for (i = 0; i < pavail_ents; i++) {
1721 phys_base = min(phys_base, pavail[i].phys_addr);
1722 lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
1725 lmb_reserve(kern_base, kern_size);
1727 find_ramdisk(phys_base);
1729 lmb_enforce_memory_limit(cmdline_memory_size);
1734 set_bit(0, mmu_context_bmap);
1736 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1738 real_end = (unsigned long)_end;
1739 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1740 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1741 num_kernel_image_mappings);
1743 /* Set kernel pgd to upper alias so physical page computations
1746 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1748 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1750 /* Now can init the kernel/bad page tables. */
1751 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1752 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1754 inherit_prom_mappings();
1758 /* Ok, we can use our TLB miss and window trap handlers safely. */
1763 if (tlb_type == hypervisor)
1764 sun4v_ktsb_register();
1766 /* We must setup the per-cpu areas before we pull in the
1767 * PROM and the MDESC. The code there fills in cpu and
1768 * other information into per-cpu data structures.
1770 real_setup_per_cpu_areas();
1772 prom_build_devicetree();
1774 if (tlb_type == hypervisor)
1777 /* Once the OF device tree and MDESC have been setup, we know
1778 * the list of possible cpus. Therefore we can allocate the
1781 for_each_possible_cpu(i) {
1782 /* XXX Use node local allocations... XXX */
1783 softirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1784 hardirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1787 /* Setup bootmem... */
1788 last_valid_pfn = end_pfn = bootmem_init(phys_base);
1790 #ifndef CONFIG_NEED_MULTIPLE_NODES
1791 max_mapnr = last_valid_pfn;
1793 kernel_physical_mapping_init();
1796 unsigned long max_zone_pfns[MAX_NR_ZONES];
1798 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1800 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1802 free_area_init_nodes(max_zone_pfns);
1805 printk("Booting Linux...\n");
1811 int __init page_in_phys_avail(unsigned long paddr)
1817 for (i = 0; i < pavail_ents; i++) {
1818 unsigned long start, end;
1820 start = pavail[i].phys_addr;
1821 end = start + pavail[i].reg_size;
1823 if (paddr >= start && paddr < end)
1826 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1828 #ifdef CONFIG_BLK_DEV_INITRD
1829 if (paddr >= __pa(initrd_start) &&
1830 paddr < __pa(PAGE_ALIGN(initrd_end)))
1837 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1838 static int pavail_rescan_ents __initdata;
1840 /* Certain OBP calls, such as fetching "available" properties, can
1841 * claim physical memory. So, along with initializing the valid
1842 * address bitmap, what we do here is refetch the physical available
1843 * memory list again, and make sure it provides at least as much
1844 * memory as 'pavail' does.
1846 static void setup_valid_addr_bitmap_from_pavail(void)
1850 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1852 for (i = 0; i < pavail_ents; i++) {
1853 unsigned long old_start, old_end;
1855 old_start = pavail[i].phys_addr;
1856 old_end = old_start + pavail[i].reg_size;
1857 while (old_start < old_end) {
1860 for (n = 0; n < pavail_rescan_ents; n++) {
1861 unsigned long new_start, new_end;
1863 new_start = pavail_rescan[n].phys_addr;
1864 new_end = new_start +
1865 pavail_rescan[n].reg_size;
1867 if (new_start <= old_start &&
1868 new_end >= (old_start + PAGE_SIZE)) {
1869 set_bit(old_start >> 22,
1870 sparc64_valid_addr_bitmap);
1875 prom_printf("mem_init: Lost memory in pavail\n");
1876 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1877 pavail[i].phys_addr,
1878 pavail[i].reg_size);
1879 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1880 pavail_rescan[i].phys_addr,
1881 pavail_rescan[i].reg_size);
1882 prom_printf("mem_init: Cannot continue, aborting.\n");
1886 old_start += PAGE_SIZE;
1891 void __init mem_init(void)
1893 unsigned long codepages, datapages, initpages;
1894 unsigned long addr, last;
1897 i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1899 sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1900 if (sparc64_valid_addr_bitmap == NULL) {
1901 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1904 memset(sparc64_valid_addr_bitmap, 0, i << 3);
1906 addr = PAGE_OFFSET + kern_base;
1907 last = PAGE_ALIGN(kern_size) + addr;
1908 while (addr < last) {
1909 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1913 setup_valid_addr_bitmap_from_pavail();
1915 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1917 #ifdef CONFIG_NEED_MULTIPLE_NODES
1918 for_each_online_node(i) {
1919 if (NODE_DATA(i)->node_spanned_pages != 0) {
1921 free_all_bootmem_node(NODE_DATA(i));
1925 totalram_pages = free_all_bootmem();
1928 /* We subtract one to account for the mem_map_zero page
1931 totalram_pages -= 1;
1932 num_physpages = totalram_pages;
1935 * Set up the zero page, mark it reserved, so that page count
1936 * is not manipulated when freeing the page from user ptes.
1938 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1939 if (mem_map_zero == NULL) {
1940 prom_printf("paging_init: Cannot alloc zero page.\n");
1943 SetPageReserved(mem_map_zero);
1945 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1946 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1947 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1948 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1949 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1950 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1952 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1953 nr_free_pages() << (PAGE_SHIFT-10),
1954 codepages << (PAGE_SHIFT-10),
1955 datapages << (PAGE_SHIFT-10),
1956 initpages << (PAGE_SHIFT-10),
1957 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1959 if (tlb_type == cheetah || tlb_type == cheetah_plus)
1960 cheetah_ecache_flush_init();
1963 void free_initmem(void)
1965 unsigned long addr, initend;
1968 /* If the physical memory maps were trimmed by kernel command
1969 * line options, don't even try freeing this initmem stuff up.
1970 * The kernel image could have been in the trimmed out region
1971 * and if so the freeing below will free invalid page structs.
1973 if (cmdline_memory_size)
1977 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1979 addr = PAGE_ALIGN((unsigned long)(__init_begin));
1980 initend = (unsigned long)(__init_end) & PAGE_MASK;
1981 for (; addr < initend; addr += PAGE_SIZE) {
1986 ((unsigned long) __va(kern_base)) -
1987 ((unsigned long) KERNBASE));
1988 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1991 p = virt_to_page(page);
1993 ClearPageReserved(p);
2002 #ifdef CONFIG_BLK_DEV_INITRD
2003 void free_initrd_mem(unsigned long start, unsigned long end)
2006 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2007 for (; start < end; start += PAGE_SIZE) {
2008 struct page *p = virt_to_page(start);
2010 ClearPageReserved(p);
2019 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2020 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2021 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2022 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2023 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2024 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2026 pgprot_t PAGE_KERNEL __read_mostly;
2027 EXPORT_SYMBOL(PAGE_KERNEL);
2029 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2030 pgprot_t PAGE_COPY __read_mostly;
2032 pgprot_t PAGE_SHARED __read_mostly;
2033 EXPORT_SYMBOL(PAGE_SHARED);
2035 pgprot_t PAGE_EXEC __read_mostly;
2036 unsigned long pg_iobits __read_mostly;
2038 unsigned long _PAGE_IE __read_mostly;
2039 EXPORT_SYMBOL(_PAGE_IE);
2041 unsigned long _PAGE_E __read_mostly;
2042 EXPORT_SYMBOL(_PAGE_E);
2044 unsigned long _PAGE_CACHE __read_mostly;
2045 EXPORT_SYMBOL(_PAGE_CACHE);
2047 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2049 #define VMEMMAP_CHUNK_SHIFT 22
2050 #define VMEMMAP_CHUNK (1UL << VMEMMAP_CHUNK_SHIFT)
2051 #define VMEMMAP_CHUNK_MASK ~(VMEMMAP_CHUNK - 1UL)
2052 #define VMEMMAP_ALIGN(x) (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
2054 #define VMEMMAP_SIZE ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
2055 sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT)
2056 unsigned long vmemmap_table[VMEMMAP_SIZE];
2058 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2060 unsigned long vstart = (unsigned long) start;
2061 unsigned long vend = (unsigned long) (start + nr);
2062 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2063 unsigned long phys_end = (vend - VMEMMAP_BASE);
2064 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2065 unsigned long end = VMEMMAP_ALIGN(phys_end);
2066 unsigned long pte_base;
2068 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2069 _PAGE_CP_4U | _PAGE_CV_4U |
2070 _PAGE_P_4U | _PAGE_W_4U);
2071 if (tlb_type == hypervisor)
2072 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2073 _PAGE_CP_4V | _PAGE_CV_4V |
2074 _PAGE_P_4V | _PAGE_W_4V);
2076 for (; addr < end; addr += VMEMMAP_CHUNK) {
2077 unsigned long *vmem_pp =
2078 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2081 if (!(*vmem_pp & _PAGE_VALID)) {
2082 block = vmemmap_alloc_block(1UL << 22, node);
2086 *vmem_pp = pte_base | __pa(block);
2088 printk(KERN_INFO "[%p-%p] page_structs=%lu "
2089 "node=%d entry=%lu/%lu\n", start, block, nr,
2091 addr >> VMEMMAP_CHUNK_SHIFT,
2092 VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
2097 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2099 static void prot_init_common(unsigned long page_none,
2100 unsigned long page_shared,
2101 unsigned long page_copy,
2102 unsigned long page_readonly,
2103 unsigned long page_exec_bit)
2105 PAGE_COPY = __pgprot(page_copy);
2106 PAGE_SHARED = __pgprot(page_shared);
2108 protection_map[0x0] = __pgprot(page_none);
2109 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2110 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2111 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2112 protection_map[0x4] = __pgprot(page_readonly);
2113 protection_map[0x5] = __pgprot(page_readonly);
2114 protection_map[0x6] = __pgprot(page_copy);
2115 protection_map[0x7] = __pgprot(page_copy);
2116 protection_map[0x8] = __pgprot(page_none);
2117 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2118 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2119 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2120 protection_map[0xc] = __pgprot(page_readonly);
2121 protection_map[0xd] = __pgprot(page_readonly);
2122 protection_map[0xe] = __pgprot(page_shared);
2123 protection_map[0xf] = __pgprot(page_shared);
2126 static void __init sun4u_pgprot_init(void)
2128 unsigned long page_none, page_shared, page_copy, page_readonly;
2129 unsigned long page_exec_bit;
2131 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2132 _PAGE_CACHE_4U | _PAGE_P_4U |
2133 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2135 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2136 _PAGE_CACHE_4U | _PAGE_P_4U |
2137 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2138 _PAGE_EXEC_4U | _PAGE_L_4U);
2139 PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
2141 _PAGE_IE = _PAGE_IE_4U;
2142 _PAGE_E = _PAGE_E_4U;
2143 _PAGE_CACHE = _PAGE_CACHE_4U;
2145 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2146 __ACCESS_BITS_4U | _PAGE_E_4U);
2148 #ifdef CONFIG_DEBUG_PAGEALLOC
2149 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2152 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2155 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2156 _PAGE_P_4U | _PAGE_W_4U);
2158 /* XXX Should use 256MB on Panther. XXX */
2159 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2161 _PAGE_SZBITS = _PAGE_SZBITS_4U;
2162 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2163 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2164 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2167 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2168 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2169 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2170 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2171 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2172 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2173 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2175 page_exec_bit = _PAGE_EXEC_4U;
2177 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2181 static void __init sun4v_pgprot_init(void)
2183 unsigned long page_none, page_shared, page_copy, page_readonly;
2184 unsigned long page_exec_bit;
2186 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2187 _PAGE_CACHE_4V | _PAGE_P_4V |
2188 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2190 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2191 PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
2193 _PAGE_IE = _PAGE_IE_4V;
2194 _PAGE_E = _PAGE_E_4V;
2195 _PAGE_CACHE = _PAGE_CACHE_4V;
2197 #ifdef CONFIG_DEBUG_PAGEALLOC
2198 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2201 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2204 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2205 _PAGE_P_4V | _PAGE_W_4V);
2207 #ifdef CONFIG_DEBUG_PAGEALLOC
2208 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2211 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2214 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2215 _PAGE_P_4V | _PAGE_W_4V);
2217 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2218 __ACCESS_BITS_4V | _PAGE_E_4V);
2220 _PAGE_SZBITS = _PAGE_SZBITS_4V;
2221 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2222 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2223 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2224 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2226 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2227 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2228 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2229 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2230 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2231 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2232 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2234 page_exec_bit = _PAGE_EXEC_4V;
2236 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2240 unsigned long pte_sz_bits(unsigned long sz)
2242 if (tlb_type == hypervisor) {
2246 return _PAGE_SZ8K_4V;
2248 return _PAGE_SZ64K_4V;
2250 return _PAGE_SZ512K_4V;
2251 case 4 * 1024 * 1024:
2252 return _PAGE_SZ4MB_4V;
2258 return _PAGE_SZ8K_4U;
2260 return _PAGE_SZ64K_4U;
2262 return _PAGE_SZ512K_4U;
2263 case 4 * 1024 * 1024:
2264 return _PAGE_SZ4MB_4U;
2269 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2273 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2274 pte_val(pte) |= (((unsigned long)space) << 32);
2275 pte_val(pte) |= pte_sz_bits(page_size);
2280 static unsigned long kern_large_tte(unsigned long paddr)
2284 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2285 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2286 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2287 if (tlb_type == hypervisor)
2288 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2289 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2290 _PAGE_EXEC_4V | _PAGE_W_4V);
2295 /* If not locked, zap it. */
2296 void __flush_tlb_all(void)
2298 unsigned long pstate;
2301 __asm__ __volatile__("flushw\n\t"
2302 "rdpr %%pstate, %0\n\t"
2303 "wrpr %0, %1, %%pstate"
2306 if (tlb_type == hypervisor) {
2307 sun4v_mmu_demap_all();
2308 } else if (tlb_type == spitfire) {
2309 for (i = 0; i < 64; i++) {
2310 /* Spitfire Errata #32 workaround */
2311 /* NOTE: Always runs on spitfire, so no
2312 * cheetah+ page size encodings.
2314 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2318 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2320 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2321 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2324 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2325 spitfire_put_dtlb_data(i, 0x0UL);
2328 /* Spitfire Errata #32 workaround */
2329 /* NOTE: Always runs on spitfire, so no
2330 * cheetah+ page size encodings.
2332 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2336 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2338 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2339 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2342 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2343 spitfire_put_itlb_data(i, 0x0UL);
2346 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2347 cheetah_flush_dtlb_all();
2348 cheetah_flush_itlb_all();
2350 __asm__ __volatile__("wrpr %0, 0, %%pstate"