]> err.no Git - linux-2.6/blob - arch/sparc64/kernel/kprobes.c
[PATCH] kprobes: changed from using spinlock to mutex
[linux-2.6] / arch / sparc64 / kernel / kprobes.c
1 /* arch/sparc64/kernel/kprobes.c
2  *
3  * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
4  */
5
6 #include <linux/config.h>
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <asm/kdebug.h>
10 #include <asm/signal.h>
11 #include <asm/cacheflush.h>
12
13 /* We do not have hardware single-stepping on sparc64.
14  * So we implement software single-stepping with breakpoint
15  * traps.  The top-level scheme is similar to that used
16  * in the x86 kprobes implementation.
17  *
18  * In the kprobe->ainsn.insn[] array we store the original
19  * instruction at index zero and a break instruction at
20  * index one.
21  *
22  * When we hit a kprobe we:
23  * - Run the pre-handler
24  * - Remember "regs->tnpc" and interrupt level stored in
25  *   "regs->tstate" so we can restore them later
26  * - Disable PIL interrupts
27  * - Set regs->tpc to point to kprobe->ainsn.insn[0]
28  * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
29  * - Mark that we are actively in a kprobe
30  *
31  * At this point we wait for the second breakpoint at
32  * kprobe->ainsn.insn[1] to hit.  When it does we:
33  * - Run the post-handler
34  * - Set regs->tpc to "remembered" regs->tnpc stored above,
35  *   restore the PIL interrupt level in "regs->tstate" as well
36  * - Make any adjustments necessary to regs->tnpc in order
37  *   to handle relative branches correctly.  See below.
38  * - Mark that we are no longer actively in a kprobe.
39  */
40
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43
44 int __kprobes arch_prepare_kprobe(struct kprobe *p)
45 {
46         p->ainsn.insn[0] = *p->addr;
47         p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
48         p->opcode = *p->addr;
49         return 0;
50 }
51
52 void __kprobes arch_arm_kprobe(struct kprobe *p)
53 {
54         *p->addr = BREAKPOINT_INSTRUCTION;
55         flushi(p->addr);
56 }
57
58 void __kprobes arch_disarm_kprobe(struct kprobe *p)
59 {
60         *p->addr = p->opcode;
61         flushi(p->addr);
62 }
63
64 void __kprobes arch_remove_kprobe(struct kprobe *p)
65 {
66 }
67
68 static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
69 {
70         kcb->prev_kprobe.kp = kprobe_running();
71         kcb->prev_kprobe.status = kcb->kprobe_status;
72         kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
73         kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
74 }
75
76 static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
77 {
78         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
79         kcb->kprobe_status = kcb->prev_kprobe.status;
80         kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
81         kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
82 }
83
84 static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
85                                 struct kprobe_ctlblk *kcb)
86 {
87         __get_cpu_var(current_kprobe) = p;
88         kcb->kprobe_orig_tnpc = regs->tnpc;
89         kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
90 }
91
92 static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
93                         struct kprobe_ctlblk *kcb)
94 {
95         regs->tstate |= TSTATE_PIL;
96
97         /*single step inline, if it a breakpoint instruction*/
98         if (p->opcode == BREAKPOINT_INSTRUCTION) {
99                 regs->tpc = (unsigned long) p->addr;
100                 regs->tnpc = kcb->kprobe_orig_tnpc;
101         } else {
102                 regs->tpc = (unsigned long) &p->ainsn.insn[0];
103                 regs->tnpc = (unsigned long) &p->ainsn.insn[1];
104         }
105 }
106
107 static int __kprobes kprobe_handler(struct pt_regs *regs)
108 {
109         struct kprobe *p;
110         void *addr = (void *) regs->tpc;
111         int ret = 0;
112         struct kprobe_ctlblk *kcb;
113
114         /*
115          * We don't want to be preempted for the entire
116          * duration of kprobe processing
117          */
118         preempt_disable();
119         kcb = get_kprobe_ctlblk();
120
121         if (kprobe_running()) {
122                 p = get_kprobe(addr);
123                 if (p) {
124                         if (kcb->kprobe_status == KPROBE_HIT_SS) {
125                                 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
126                                         kcb->kprobe_orig_tstate_pil);
127                                 goto no_kprobe;
128                         }
129                         /* We have reentered the kprobe_handler(), since
130                          * another probe was hit while within the handler.
131                          * We here save the original kprobes variables and
132                          * just single step on the instruction of the new probe
133                          * without calling any user handlers.
134                          */
135                         save_previous_kprobe(kcb);
136                         set_current_kprobe(p, regs, kcb);
137                         kprobes_inc_nmissed_count(p);
138                         kcb->kprobe_status = KPROBE_REENTER;
139                         prepare_singlestep(p, regs, kcb);
140                         return 1;
141                 } else {
142                         p = __get_cpu_var(current_kprobe);
143                         if (p->break_handler && p->break_handler(p, regs))
144                                 goto ss_probe;
145                 }
146                 goto no_kprobe;
147         }
148
149         p = get_kprobe(addr);
150         if (!p) {
151                 if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
152                         /*
153                          * The breakpoint instruction was removed right
154                          * after we hit it.  Another cpu has removed
155                          * either a probepoint or a debugger breakpoint
156                          * at this address.  In either case, no further
157                          * handling of this interrupt is appropriate.
158                          */
159                         ret = 1;
160                 }
161                 /* Not one of ours: let kernel handle it */
162                 goto no_kprobe;
163         }
164
165         set_current_kprobe(p, regs, kcb);
166         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
167         if (p->pre_handler && p->pre_handler(p, regs))
168                 return 1;
169
170 ss_probe:
171         prepare_singlestep(p, regs, kcb);
172         kcb->kprobe_status = KPROBE_HIT_SS;
173         return 1;
174
175 no_kprobe:
176         preempt_enable_no_resched();
177         return ret;
178 }
179
180 /* If INSN is a relative control transfer instruction,
181  * return the corrected branch destination value.
182  *
183  * The original INSN location was REAL_PC, it actually
184  * executed at PC and produced destination address NPC.
185  */
186 static unsigned long __kprobes relbranch_fixup(u32 insn, unsigned long real_pc,
187                                                unsigned long pc,
188                                                unsigned long npc)
189 {
190         /* Branch not taken, no mods necessary.  */
191         if (npc == pc + 0x4UL)
192                 return real_pc + 0x4UL;
193
194         /* The three cases are call, branch w/prediction,
195          * and traditional branch.
196          */
197         if ((insn & 0xc0000000) == 0x40000000 ||
198             (insn & 0xc1c00000) == 0x00400000 ||
199             (insn & 0xc1c00000) == 0x00800000) {
200                 /* The instruction did all the work for us
201                  * already, just apply the offset to the correct
202                  * instruction location.
203                  */
204                 return (real_pc + (npc - pc));
205         }
206
207         return real_pc + 0x4UL;
208 }
209
210 /* If INSN is an instruction which writes it's PC location
211  * into a destination register, fix that up.
212  */
213 static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
214                                   unsigned long real_pc)
215 {
216         unsigned long *slot = NULL;
217
218         /* Simplest cast is call, which always uses %o7 */
219         if ((insn & 0xc0000000) == 0x40000000) {
220                 slot = &regs->u_regs[UREG_I7];
221         }
222
223         /* Jmpl encodes the register inside of the opcode */
224         if ((insn & 0xc1f80000) == 0x81c00000) {
225                 unsigned long rd = ((insn >> 25) & 0x1f);
226
227                 if (rd <= 15) {
228                         slot = &regs->u_regs[rd];
229                 } else {
230                         /* Hard case, it goes onto the stack. */
231                         flushw_all();
232
233                         rd -= 16;
234                         slot = (unsigned long *)
235                                 (regs->u_regs[UREG_FP] + STACK_BIAS);
236                         slot += rd;
237                 }
238         }
239         if (slot != NULL)
240                 *slot = real_pc;
241 }
242
243 /*
244  * Called after single-stepping.  p->addr is the address of the
245  * instruction whose first byte has been replaced by the breakpoint
246  * instruction.  To avoid the SMP problems that can occur when we
247  * temporarily put back the original opcode to single-step, we
248  * single-stepped a copy of the instruction.  The address of this
249  * copy is p->ainsn.insn.
250  *
251  * This function prepares to return from the post-single-step
252  * breakpoint trap.
253  */
254 static void __kprobes resume_execution(struct kprobe *p,
255                 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
256 {
257         u32 insn = p->ainsn.insn[0];
258
259         regs->tpc = kcb->kprobe_orig_tnpc;
260         regs->tnpc = relbranch_fixup(insn,
261                                      (unsigned long) p->addr,
262                                      (unsigned long) &p->ainsn.insn[0],
263                                      regs->tnpc);
264         retpc_fixup(regs, insn, (unsigned long) p->addr);
265
266         regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
267                         kcb->kprobe_orig_tstate_pil);
268 }
269
270 static inline int post_kprobe_handler(struct pt_regs *regs)
271 {
272         struct kprobe *cur = kprobe_running();
273         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
274
275         if (!cur)
276                 return 0;
277
278         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
279                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
280                 cur->post_handler(cur, regs, 0);
281         }
282
283         resume_execution(cur, regs, kcb);
284
285         /*Restore back the original saved kprobes variables and continue. */
286         if (kcb->kprobe_status == KPROBE_REENTER) {
287                 restore_previous_kprobe(kcb);
288                 goto out;
289         }
290         reset_current_kprobe();
291 out:
292         preempt_enable_no_resched();
293
294         return 1;
295 }
296
297 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
298 {
299         struct kprobe *cur = kprobe_running();
300         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
301
302         if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
303                 return 1;
304
305         if (kcb->kprobe_status & KPROBE_HIT_SS) {
306                 resume_execution(cur, regs, kcb);
307
308                 reset_current_kprobe();
309                 preempt_enable_no_resched();
310         }
311         return 0;
312 }
313
314 /*
315  * Wrapper routine to for handling exceptions.
316  */
317 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
318                                        unsigned long val, void *data)
319 {
320         struct die_args *args = (struct die_args *)data;
321         int ret = NOTIFY_DONE;
322
323         switch (val) {
324         case DIE_DEBUG:
325                 if (kprobe_handler(args->regs))
326                         ret = NOTIFY_STOP;
327                 break;
328         case DIE_DEBUG_2:
329                 if (post_kprobe_handler(args->regs))
330                         ret = NOTIFY_STOP;
331                 break;
332         case DIE_GPF:
333         case DIE_PAGE_FAULT:
334                 /* kprobe_running() needs smp_processor_id() */
335                 preempt_disable();
336                 if (kprobe_running() &&
337                     kprobe_fault_handler(args->regs, args->trapnr))
338                         ret = NOTIFY_STOP;
339                 preempt_enable();
340                 break;
341         default:
342                 break;
343         }
344         return ret;
345 }
346
347 asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
348                                       struct pt_regs *regs)
349 {
350         BUG_ON(trap_level != 0x170 && trap_level != 0x171);
351
352         if (user_mode(regs)) {
353                 local_irq_enable();
354                 bad_trap(regs, trap_level);
355                 return;
356         }
357
358         /* trap_level == 0x170 --> ta 0x70
359          * trap_level == 0x171 --> ta 0x71
360          */
361         if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
362                        (trap_level == 0x170) ? "debug" : "debug_2",
363                        regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
364                 bad_trap(regs, trap_level);
365 }
366
367 /* Jprobes support.  */
368 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
369 {
370         struct jprobe *jp = container_of(p, struct jprobe, kp);
371         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
372
373         kcb->jprobe_saved_regs_location = regs;
374         memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
375
376         /* Save a whole stack frame, this gets arguments
377          * pushed onto the stack after using up all the
378          * arg registers.
379          */
380         memcpy(&(kcb->jprobe_saved_stack),
381                (char *) (regs->u_regs[UREG_FP] + STACK_BIAS),
382                sizeof(kcb->jprobe_saved_stack));
383
384         regs->tpc  = (unsigned long) jp->entry;
385         regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
386         regs->tstate |= TSTATE_PIL;
387
388         return 1;
389 }
390
391 void __kprobes jprobe_return(void)
392 {
393         __asm__ __volatile__(
394                 ".globl jprobe_return_trap_instruction\n"
395 "jprobe_return_trap_instruction:\n\t"
396                 "ta 0x70");
397 }
398
399 extern void jprobe_return_trap_instruction(void);
400
401 extern void __show_regs(struct pt_regs * regs);
402
403 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
404 {
405         u32 *addr = (u32 *) regs->tpc;
406         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
407
408         if (addr == (u32 *) jprobe_return_trap_instruction) {
409                 if (kcb->jprobe_saved_regs_location != regs) {
410                         printk("JPROBE: Current regs (%p) does not match "
411                                "saved regs (%p).\n",
412                                regs, kcb->jprobe_saved_regs_location);
413                         printk("JPROBE: Saved registers\n");
414                         __show_regs(kcb->jprobe_saved_regs_location);
415                         printk("JPROBE: Current registers\n");
416                         __show_regs(regs);
417                         BUG();
418                 }
419                 /* Restore old register state.  Do pt_regs
420                  * first so that UREG_FP is the original one for
421                  * the stack frame restore.
422                  */
423                 memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
424
425                 memcpy((char *) (regs->u_regs[UREG_FP] + STACK_BIAS),
426                        &(kcb->jprobe_saved_stack),
427                        sizeof(kcb->jprobe_saved_stack));
428
429                 preempt_enable_no_resched();
430                 return 1;
431         }
432         return 0;
433 }
434
435 /* architecture specific initialization */
436 int arch_init_kprobes(void)
437 {
438         return 0;
439 }